
www.it-ebooks.info

http://www.it-ebooks.info/

List of Patterns
Assertion Message (370): We include a descriptive string argument in each call to an Assertion Method.

Assertion Method (362): We call a utility method to evaluate whether an expected outcome has been achieved.

Automated Teardown (503): We keep track of all resources that are created in a test and automatically destroy/free them
during teardown.

Back Door Manipulation (327): We set up the test fi xture or verify the outcome by going through a back door (such as direct
database access).

Behavior Verifi cation (468): We capture the indirect outputs of the system under test (SUT) as they occur and compare them
to the expected behavior.

Chained Tests (454): We let the other tests in a test suite set up the test fi xture.

Confi gurable Test Double (558): We confi gure a reusable Test Double with the values to be returned or verifi ed during the
fi xture setup phase of a test.

Creation Method (415): We set up the test fi xture by calling methods that hide the mechanics of building ready-to-use
objects behind Intent-Revealing Names.

Custom Assertion (474): We create a purpose-built Assertion Method that compares only those attributes of the object that
defi ne test-specifi c equality.

Data-Driven Test (288): We store all the information needed for each test in a data fi le and write an interpreter that reads the
fi le and executes the tests.

Database Sandbox (650): We provide a separate test database for each developer or tester.

Delegated Setup (411): Each test creates its own Fresh Fixture by calling Creation Methods from within the Test Methods.

Delta Assertion (485): We specify assertions based on differences between the pre- and post-exercise state of the SUT.

Dependency Injection (678): The client provides the depended-on object to the SUT.

Dependency Lookup (686): The SUT asks another object to return the depended-on object before it uses it.

Derived Value (718): We use expressions to calculate values that can be derived from other values.

Dummy Object (728): We pass an object that has no implementation as an argument of a method called on the SUT.

Fake Object (551): We replace a component that the SUT depends on with a much lighter-weight implementation.

Four-Phase Test (358): We structure each test with four distinct parts executed in sequence.

Fresh Fixture (311): Each test constructs its own brand-new test fi xture for its own private use.

Garbage-Collected Teardown (500): We let the garbage collection mechanism provided by the programming language clean
up after our test.

Generated Value (723): We generate a suitable value each time the test is run.

Guard Assertion (490): We replace an if statement in a test with an assertion that fails the test if not satisfi ed.

Hard-Coded Test Double (568): We build the Test Double by hard-coding the return values and/or expected calls.

Humble Object (695): We extract the logic into a separate, easy-to-test component that is decoupled from its environment.

Implicit Setup (424): We build the test fi xture common to several tests in the setUp method.

Implicit Teardown (516): The Test Automation Framework calls our clean up logic in the tearDown method after every Test
Method.

In-line Setup (408): Each Test Method creates its own Fresh Fixture by calling the appropriate constructor methods to build
exactly the test fi xture it requires.

In-line Teardown (509): We include teardown logic at the end of the Test Method immediately after the result verifi cation.

Layer Test (337): We can write separate tests for each layer of the layered architecture.

Lazy Setup (435): We use Lazy Initialization of the fi xture to create it in the fi rst test that needs it.

Literal Value (714): We use literal constants for object attributes and assertions.

Minimal Fixture (302): We use the smallest and simplest fi xture possible for each test.

Mock Object (544): We replace an object the SUT depends on with a test-specifi c object that verifi es it is being used correctly
by the SUT.

www.it-ebooks.info

http://www.it-ebooks.info/

Named Test Suite (592): We defi ne a test suite, suitably named, that contains a set of tests that we wish to be able to run as a
group.

Parameterized Test (607): We pass the information needed to do fi xture setup and result verifi cation to a utility method that
implements the entire test life cycle.

Prebuilt Fixture (429): We build the Shared Fixture separately from running the tests.

Recorded Test (278): We automate tests by recording interactions with the application and playing them back using a test
tool.

Scripted Test (285): We automate the tests by writing test programs by hand.

Setup Decorator (447): We wrap the test suite with a Decorator that sets up the shared test fi xture before running the tests
and tears it down after all the tests are done.

Shared Fixture (317): We reuse the same instance of the test fi xture across many tests.

Standard Fixture (305): We reuse the same design of the test fi xture across many tests.

State Verifi cation (462): We inspect the state of the SUT after it has been exercised and compare it to the expected state.

Stored Procedure Test (654): We write Fully Automated Tests for each stored procedure.

Suite Fixture Setup (441): We build/destroy the shared fi xture in special methods called by the Test Automation Framework
before/after the fi rst/last Test Method is called.

Table Truncation Teardown (661): We truncate the tables modifi ed during the test to tear down the fi xture.

Test Automation Framework (298): We use a framework that provides all the mechanisms needed to run the test logic so the
test writer needs to provide only the test-specifi c logic.

Test Discovery (393): The Test Automation Framework discovers all the tests that belong to the test suite automatically.

Test Double (522): We replace a component on which the SUT depends with a “test-specifi c equivalent.”

Test Enumeration (399): The test automater manually writes the code that enumerates all tests that belong to the test suite.

Test Helper (643): We defi ne a helper class to hold any Test Utility Methods we want to reuse in several tests.

Test Hook (709): We modify the SUT to behave differently during the test.

Test Method (348): We encode each test as a single Test Method on some class.

Test Runner (377): We defi ne an application that instantiates a Test Suite Object and executes all the Testcase Objects it
contains.

Test Selection (403): The Test Automation Framework selects the Test Methods to be run at runtime based on attributes of
the tests.

Test Spy (538): We use a Test Double to capture the indirect output calls made to another component by the SUT for later
verifi cation by the test.

Test Stub (529): We replace a real object with a test-specifi c object that feeds the desired indirect inputs into the SUT.

Test Suite Object (387): We defi ne a collection class that implements the standard test interface and use it to run a set of
related Testcase Objects.

Test Utility Method (599): We encapsulate the test logic we want to reuse behind a suitably named utility method.

Test-Specifi c Subclass (579): We add methods that expose the state or behavior needed by the test to a subclass of the SUT.

Testcase Class (373): We group a set of related Test Methods on a single Testcase Class.

Testcase Class per Class (617): We put all the Test Methods for one SUT class onto a single Testcase Class.

Testcase Class per Feature (624): We group the Test Methods onto Testcase Classes based on which testable feature of the
SUT they exercise.

Testcase Class per Fixture (631): We organize Test Methods into Testcase Classes based on commonality of the test fi xture.

Testcase Object (382): We create a Command object for each test and call the run method when we wish to execute it.

Testcase Superclass (638): We inherit reusable test-specifi c logic from an abstract Testcase Superclass.

Transaction Rollback Teardown (668): We roll back the uncommitted test transaction as part of the teardown.

Unfi nished Test Assertion (494): We ensure that incomplete tests fail by executing an assertion that is guaranteed to fail.

www.it-ebooks.info

http://www.it-ebooks.info/

xUnit Test Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

www.awprofessional.com
http://www.it-ebooks.info/

xUnit Test Patterns
Refactoring Test Code

Gerard Meszaros

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or con-
sequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data

Meszaros, Gerard.

 XUnit test patterns : refactoring test code / Gerard Meszaros.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-13-149505-0 (hardback : alk. paper)
 ISBN-10: 0-13-149505-4
 1. Software patterns. 2. Computer software—Testing. I. Title.
 QA76.76.P37M49 2007
 005.1—dc22
 2006103488

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 13: 978-0-13-149505-0
ISBN 10: 0-13-149505-4
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, May 2007

www.it-ebooks.info

http://www.awprofessional.com/safarienabled
www.awprofessional.com
http://www.it-ebooks.info/

This book is dedicated to the memory of Denis Clelland, who
recruited me away from Nortel in 1995 to work at ClearStream

Consulting and thereby gave me the opportunity to have the
experiences that led to this book. Sadly, Denis passed away on

April 27, 2006, while I was fi nalizing the second draft.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Visual Summary of the Pattern Language xvii

Foreword . xix

Preface . xxi

Acknowledgments . xxvii

Introduction . xxix

Refactoring a Test . xlv

PART I. The Narratives . 1

Chapter 1. A Brief Tour . 3

About This Chapter . 3
The Simplest Test Automation Strategy That
Could Possibly Work . 3

Development Process . 4
Customer Tests . 5
Unit Tests . 6
Design for Testability . 7
Test Organization . 7

What’s Next? . 8

Chapter 2. Test Smells . 9

About This Chapter . 9
An Introduction to Test Smells . 9

What’s a Test Smell? . 10
Kinds of Test Smells . 10
What to Do about Smells? . 11

A Catalog of Smells . 12
The Project Smells . 12
The Behavior Smells . 13
The Code Smells . 16

What’s Next? . 17

vii

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. Goals of Test Automation . 19

About This Chapter . 19
Why Test? . 19

Economics of Test Automation . 20
Goals of Test Automation . 21

Tests Should Help Us Improve Quality 22
Tests Should Help Us Understand the SUT 23
Tests Should Reduce (and Not Introduce) Risk 23
Tests Should Be Easy to Run . 25
Tests Should Be Easy to Write and Maintain 27
Tests Should Require Minimal Maintenance as
the System Evolves Around Them . 29

What’s Next? . 29

Chapter 4. Philosophy of Test Automation . 31

About This Chapter . 31
Why Is Philosophy Important? . 31
Some Philosophical Differences . 32

Test First or Last? . 32
Tests or Examples? . 33
Test-by-Test or Test All-at-Once? . 33
Outside-In or Inside-Out? . 34
State or Behavior Verifi cation? . 36
Fixture Design Upfront or Test-by-Test? 36

When Philosophies Differ . 37
My Philosophy . 37
What’s Next? . 37

Chapter 5. Principles of Test Automation . 39

About This Chapter . 39
The Principles . 39
What’s Next? . 48

Chapter 6. Test Automation Strategy . 49

About This Chapter . 49
What’s Strategic? . 49
Which Kinds of Tests Should We Automate? 50

Per-Functionality Tests . 50
Cross-Functional Tests . 52

Contentsviii

www.it-ebooks.info

http://www.it-ebooks.info/

Which Tools Do We Use to Automate Which Tests? 53
Test Automation Ways and Means . 54
Introducing xUnit . 56
The xUnit Sweet Spot . 58

Which Test Fixture Strategy Do We Use? . 58
What Is a Fixture? . 59
Major Fixture Strategies . 60
Transient Fresh Fixtures . 61
Persistent Fresh Fixtures . 62
Shared Fixture Strategies . 63

How Do We Ensure Testability? . 65
Test Last—at Your Peril . 65
Design for Testability—Upfront . 65
Test-Driven Testability . 66
Control Points and Observation Points 66
Interaction Styles and Testability Patterns 67
Divide and Test . 71

What’s Next? . 73

Chapter 7. xUnit Basics . 75

About This Chapter . 75
An Introduction to xUnit . 75
Common Features . 76
The Bare Minimum . 76

Defi ning Tests . 76
What’s a Fixture? . 78
Defi ning Suites of Tests . 78
Running Tests . 79
Test Results . 79

Under the xUnit Covers . 81
Test Commands . 82
Test Suite Objects . 82

xUnit in the Procedural World . 82
What’s Next? . 83

 Contents ix

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Transient Fixture Management . 85

About This Chapter . 85
Test Fixture Terminology . 86

What Is a Fixture? . 86
What Is a Fresh Fixture? . 87
What Is a Transient Fresh Fixture? . 87

Building Fresh Fixtures . 88
In-line Fixture Setup . 88
Delegated Fixture Setup . 89
Implicit Fixture Setup . 91
Hybrid Fixture Setup . 93

Tearing Down Transient Fresh Fixtures . 93
What’s Next? . 94

Chapter 9. Persistent Fixture Management .95

About This Chapter . 95
Managing Persistent Fresh Fixtures . 95

What Makes Fixtures Persistent? . 95
Issues Caused by Persistent Fresh Fixtures 96
Tearing Down Persistent Fresh Fixtures 97
Avoiding the Need for Teardown . 100
Dealing with Slow Tests . 102

Managing Shared Fixtures . 103
Accessing Shared Fixtures . 103
Triggering Shared Fixture Construction 104

What’s Next? . 106

Chapter 10. Result Verifi cation . 107

About This Chapter . 107
Making Tests Self-Checking . 107

Verify State or Behavior? . 108
State Verifi cation . 109

Using Built-in Assertions . 110
Delta Assertions . 111
External Result Verifi cation . 111

Verifying Behavior . 112
Procedural Behavior Verifi cation . 113
Expected Behavior Specifi cation . 113

Contentsx

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Test Code Duplication . 114
Expected Objects . 115
Custom Assertions . 116
Outcome-Describing Verifi cation Method 117
Parameterized and Data-Driven Tests 118

Avoiding Conditional Test Logic . 119
Eliminating “if” Statements . 120
Eliminating Loops . 121

Other Techniques . 121
Working Backward, Outside-In . 121
Using Test-Driven Development to
Write Test Utility Methods . 122

Where to Put Reusable Verifi cation Logic? 122
What’s Next? . 123

Chapter 11. Using Test Doubles . 125

About This Chapter . 125
What Are Indirect Inputs and Outputs? . 125

Why Do We Care about Indirect Inputs? 126
Why Do We Care about Indirect Outputs? 126
How Do We Control Indirect Inputs? 128
How Do We Verify Indirect Outputs? 130

Testing with Doubles . 133
Types of Test Doubles . 133
Providing the Test Double . 140
Confi guring the Test Double . 141
Installing the Test Double . 143

Other Uses of Test Doubles . 148
Endoscopic Testing . 149
Need-Driven Development . 149
Speeding Up Fixture Setup . 149
Speeding Up Test Execution . 150

Other Considerations . 150
What’s Next? . 151

Chapter 12. Organizing Our Tests . 153

About This Chapter . 153
Basic xUnit Mechanisms . 153

 Contents xi

www.it-ebooks.info

http://www.it-ebooks.info/

Right-Sizing Test Methods . 154
Test Methods and Testcase Classes . 155

Testcase Class per Class . 155
Testcase Class per Feature . 156
Testcase Class per Fixture . 156
Choosing a Test Method Organization Strategy 158

Test Naming Conventions . 158
Organizing Test Suites . 160

Running Groups of Tests . 160
Running a Single Test . 161

Test Code Reuse . 162
Test Utility Method Locations . 163
TestCase Inheritance and Reuse . 163

Test File Organization . 164
Built-in Self-Test . 164
Test Packages . 164
Test Dependencies . 165

What’s Next? . 165

Chapter 13. Testing with Databases . 167

About This Chapter . 167
Testing with Databases . 167

Why Test with Databases? . 168
Issues with Databases . 168

Testing without Databases. 169
Testing the Database . 171

Testing Stored Procedures . 172
Testing the Data Access Layer . 172
Ensuring Developer Independence. 173

Testing with Databases (Again!) . 173
What’s Next? . 174

Chapter 14. A Roadmap to Effective Test Automation 175

About This Chapter . 175
Test Automation Diffi culty . 175
Roadmap to Highly Maintainable Automated Tests 176

Exercise the Happy Path Code . 177
Verify Direct Outputs of the Happy Path 178

Contentsxii

www.it-ebooks.info

http://www.it-ebooks.info/

Verify Alternative Paths . 178
Verify Indirect Output Behavior . 179
Optimize Test Execution and Maintenance 180

What’s Next? . 181

PART II. The Test Smells . 183

Chapter 15. Code Smells . 185

Obscure Test . 186
Conditional Test Logic . 200
Hard-to-Test Code . 209
Test Code Duplication . 213
Test Logic in Production . 217

Chapter 16. Behavior Smells . 223

Assertion Roulette . 224
Erratic Test . 228
Fragile Test . 239
Frequent Debugging . 248
Manual Intervention . 250
Slow Tests . 253

Chapter 17. Project Smells . 259

Buggy Tests . 260
Developers Not Writing Tests . 263
High Test Maintenance Cost . 265
Production Bugs . 268

PART III. The Patterns . 275

Chapter 18. Test Strategy Patterns . 277

Recorded Test . 278
Scripted Test . 285
Data-Driven Test . 288
Test Automation Framework . 298
Minimal Fixture . 302
Standard Fixture . 305
Fresh Fixture . 311

 Contents xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Shared Fixture . 317
Back Door Manipulation . 327
Layer Test . 337

Chapter 19. xUnit Basics Patterns . 347

Test Method . 348
Four-Phase Test . 358
Assertion Method . 362
Assertion Message . 370
Testcase Class . 373
Test Runner . 377
Testcase Object . 382
Test Suite Object . 387
Test Discovery . 393
Test Enumeration . 399
Test Selection. 403

Chapter 20. Fixture Setup Patterns . 407

In-line Setup . 408
Delegated Setup . 411
Creation Method . 415
Implicit Setup . 424
Prebuilt Fixture . 429
Lazy Setup . 435
Suite Fixture Setup . 441
Setup Decorator . 447
Chained Tests . 454

Chapter 21. Result Verifi cation Patterns . 461

State Verifi cation . 462
Behavior Verifi cation . 468
Custom Assertion . 474
Delta Assertion . 485
Guard Assertion . 490
Unfi nished Test Assertion . 494

Chapter 22. Fixture Teardown Patterns . 499

Garbage-Collected Teardown . 500

Contentsxiv

www.it-ebooks.info

http://www.it-ebooks.info/

Automated Teardown . 503
In-line Teardown . 509
Implicit Teardown . 516

Chapter 23. Test Double Patterns . 521

Test Double . 522
Test Stub . 529
Test Spy . 538
Mock Object . 544
Fake Object . 551
Confi gurable Test Double . 558
Hard-Coded Test Double . 568
Test-Specifi c Subclass. 579

Chapter 24. Test Organization Patterns . 591

Named Test Suite . 592
Test Utility Method . 599
Parameterized Test . 607
Testcase Class per Class. 617
Testcase Class per Feature . 624
Testcase Class per Fixture . 631
Testcase Superclass . 638
Test Helper . 643

Chapter 25. Database Patterns . 649

Database Sandbox . 650
Stored Procedure Test . 654
Table Truncation Teardown . 661
Transaction Rollback Teardown . 668

Chapter 26. Design-for-Testability Patterns . 677

Dependency Injection . 678
Dependency Lookup . 686
Humble Object . 695
Test Hook . 709

Chapter 27. Value Patterns . 713

Literal Value . 714

 Contents xv

www.it-ebooks.info

http://www.it-ebooks.info/

Derived Value . 718
Generated Value . 723
Dummy Object . 728

PART IV. Appendixes . 733

Appendix A. Test Refactorings . 735

Appendix B. xUnit Terminology . 741

Appendix C. xUnit Family Members . 747

Appendix D. Tools . 753

Appendix E. Goals and Principles . 757

Appendix F. Smells, Aliases, and Causes . 761

Appendix G. Patterns, Aliases, and Variations . 767

Glossary . 785

References . 819

Index . 835

Visual Summary of the Pattern Languagexvi

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

Visual Summary of the
Pattern Language

Goals, Principles, and Smells

Key to Visual Summary of the Pattern Language

Code Smells

Obscure Test
Eager Test

General Fixture
Indirect Testing
Mystery Guest

And more!

Conditional Test Logic

Hard-to-Test Code

Test Code Duplication

Test Logic In Production

Erratic Test
Unrepeatable Test
Interacting Tests

Test Run War
Resource Optimism

And more!
Fragile Test
Fragile Fixture

Assertion Roulette

Frequent Debugging

Manual Intervention

Slow Tests

Eager Test

Project Goals Test Writing Goals

Do No Harm

Repeatable Test

Self-Checking

Expressive Tests

Separation of Concerns

Fully Automated

Robust Test

Simple Test

Reduce Risk

Tests as Safety Net

Defect Localization

Easy to Write/Maintain

Improve Quality

Tests as Documentation

Tests as Specification

Bug Repellent

Principles of Test Automation
Write the Tests First

Isolate the SUT

Don’t Modify the SUT

Minimize Test Overlap

Communicate Intent

Use the Front Door First

Verify One Condition per Test

Test Concerns Separately

Keep Tests Independent

Minimize Untestable Code

Keep Test Logic Out of Production

Ensure Commensurate Effort and Responsibility

Goals of Test Automation

Project Smells

Buggy Tests

Developers Not Writing Tests

High Test Maintenance Cost

Production Bugs

Behavior Smells

Code Smells

Obscure Test
Eager Test

General Fixture
Indirect Testing
Mystery Guest

And more!

Conditional Test Logic

Hard-to-Test Code

Test Code Duplication

Test Logic In Production

Erratic Test
Unrepeatable Test
Interacting Tests

Test Run War
Resource Optimism

And more!
Fragile Test
Fragile Fixture

Assertion Roulette

Frequent Debugging

Manual Intervention

Slow Tests

Eager Test

Project Goals Test Writing Goals

Do No Harm

Repeatable Test

Self-Checking

Expressive Tests

Separation of Concerns

Fully Automated

Robust Test

Simple Test

Reduce Risk

Tests as Safety Net

Defect Localization

Easy to Write/Maintain

Improve Quality

Tests as Documentation

Tests as Specification

Bug Repellent

Principles of Test Automation
Write the Tests First

Isolate the SUT

Don’t Modify the SUT

Minimize Test Overlap

Communicate Intent

Use the Front Door First

Verify One Condition per Test

Test Concerns Separately

Keep Tests Independent

Minimize Untestable Code

Keep Test Logic Out of Production

Ensure Commensurate Effort and Responsibility

Goals of Test Automation

Project Smells

Buggy Tests

Developers Not Writing Tests

High Test Maintenance Cost

Production Bugs

Behavior Smells

Chapter Name

Sub-Category

Sub-Category

Pattern 1
Alternative Pattern
from Other ChapterPattern 2

Alternative
Pattern 1

Alternative
Pattern 2

Pattern
Pattern

Variation of Pattern leads to

variation of

used with
each otherVariation described

separately

Chapter Name

Smell
Cause of Smell

Smell

Smell

Chapter Name

Sub-Category

Sub-Category

Pattern 1
Alternative Pattern
from Other ChapterPattern 2

Alternative
Pattern 1

Alternative
Pattern 2

Pattern
Pattern

Variation of Pattern leads to

variation of

used with
each otherVariation described

separately

Chapter Name

Smell
Cause of Smell

Smell

Smell

www.it-ebooks.info

http://www.it-ebooks.info/

xviii

The Patterns

Test Double
Construction

Hard -Coded
Test Double

Confiugrable
Test Double

Dummy
Object

Fake
Object

Test
Stub

Test
Spy

Mock
Object

Test Double Patterns

Test
Double

Test-Specific
Subclass

Subclassed Test
Double

 Fixture Setup Patterns

Literal
Value

Derived
Value

Generated
Value

Dummy
Object

Value Patterns

Design- for-Testability Patterns

Dependency
Injection

Setter Injection
Parameter Injection

Constructor Injection

Humble Object
Humble Container Adapter

Humble Transaction Controller
Humble Executable

Humble Dialog

Test Hook

Dependency
Lookup

Object Factory
Service Locator

Test-Specific
Subclass

Substituted Singleton

xUnit Basics Patterns

Test Selection

Test Suite Object

Test Execution

Test
Runner

Test Discovery
Test

Automation
Framework

Test Definition

Testcase
Class

Assertion
Method

Assertion
Message

Four Phase
Test

Test Enumeration

Test Case Object

Test Method

Database Patterns

Stored
Procedure

Test

Transaction
Rollback
Teardown

Table
Truncation
Teardown

Lazy Teardown

Database
Sandbox

Delta
Assertion

Fake
Database

Delta
Assertion

Behavior
Verification

Guard
Assertion

Custom Assertion
Verification Method

Result Verification Patterns

State
Verification

Assertion Method

Back Door
Verification

VerificationStrategy

Assertion Method Styles

Scripted
Test

Data-Driven
Test

Standard FixtureMinimal Fixture
Layer Test

Back Door
Manipulation

Shared Fixture
Immutable Fixture

Test Fixture Strategy

Test Automation Strategy Patterns

Recorded
Test

Fresh Fixture

Test Automation Strategy

SUT Interaction
Strategy

Persistent
Transient

Test Automation Framework

Fresh Fixture Setup Shared Fixture Construction

Lazy
Setup

SuiteFixture
Setup

Setup
Decorator

Chained
Tests

Prebuilt
Fixture

Result Verification

Delta AssertionTest Utility Method
 Finder Method

Shared Fixture Access

Inline
Setup

Delegated
Setup

Implicit
Setup

Creation
Method

Fixture TearDown Patterns

 Shared Fixture

 Persistent Fresh Fixture

Applicability

Inline Teardown

Implicit Teardown

Code Organization

Strategy

Automated
Teardown

Garbage-
Collected
Teardown

Transaction
Rollback
Teardown

Table
Truncation
Teardown

Test Organization Patterns

Testcase
Superclass

Test Helper
Object Mother

Testcase
Class

Utility Method Location

Named
Test
Suite

Testcase Class Structure
Testcase Class per Class

Testcase Class per Fixture

Testcase Class per Feature

Test Code Reuse

Test Utility Method
Finder Method

Custom Assertion
Verification Method

Creation Method

Parameterized Test

Test Helper
Object Mother

Test Double
Construction

Hard -Coded
Test Double

Confiugrable
Test Double

Dummy
Object

Fake
Object

Test
Stub

Test
Spy

Mock
Object

Test Double Patterns

Test
Double

Test-Specific
Subclass

Subclassed Test
Double

 Fixture Setup Patterns

Literal
Value

Derived
Value

Generated
Value

Dummy
Object

Value Patterns

Design- for-Testability Patterns

Dependency
Injection

Setter Injection
Parameter Injection

Constructor Injection

Humble Object
Humble Container Adapter

Humble Transaction Controller
Humble Executable

Humble Dialog

Test Hook

Dependency
Lookup

Object Factory
Service Locator

Test-Specific
Subclass

Substituted Singleton

xUnit Basics Patterns

Test Selection

Test Suite Object

Test Execution

Test
Runner

Test Discovery
Test

Automation
Framework

Test Definition

Testcase
Class

Assertion
Method

Assertion
Message

Four Phase
Test

Test Enumeration

Test Case Object

Test Method

Database Patterns

Stored
Procedure

Test

Transaction
Rollback
Teardown

Table
Truncation
Teardown

Lazy Teardown

Database
Sandbox

Delta
Assertion

Fake
Database

Delta
Assertion

Behavior
Verification

Guard
Assertion

Custom Assertion
Verification Method

Result Verification Patterns

State
Verification

Assertion Method

Back Door
Verification

VerificationStrategy

Assertion Method Styles

Scripted
Test

Data-Driven
Test

Standard FixtureMinimal Fixture
Layer Test

Back Door
Manipulation

Shared Fixture
Immutable Fixture

Test Fixture Strategy

Test Automation Strategy Patterns

Recorded
Test

Fresh Fixture

Test Automation Strategy

SUT Interaction
Strategy

Persistent
Transient

Test Automation Framework

Fresh Fixture Setup Shared Fixture Construction

Lazy
Setup

SuiteFixture
Setup

Setup
Decorator

Chained
Tests

Prebuilt
Fixture

Result Verification

Delta AssertionTest Utility Method
 Finder Method

Shared Fixture Access

Inline
Setup

Delegated
Setup

Implicit
Setup

Creation
Method

Fixture TearDown Patterns

 Shared Fixture

 Persistent Fresh Fixture

Applicability

Inline Teardown

Implicit Teardown

Code Organization

Strategy

Automated
Teardown

Garbage-
Collected
Teardown

Transaction
Rollback
Teardown

Table
Truncation
Teardown

Test Organization Patterns

Testcase
Superclass

Test Helper
Object Mother

Testcase
Class

Utility Method Location

Named
Test
Suite

Testcase Class Structure
Testcase Class per Class

Testcase Class per Fixture

Testcase Class per Feature

Test Code Reuse

Test Utility Method
Finder Method

Custom Assertion
Verification Method

Creation Method

Parameterized Test

Test Helper
Object Mother

Visual Summary of the Pattern Language

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

If you go to junit.org, you’ll see a quote from me: “Never in the fi eld of software
development have so many owed so much to so few lines of code.” JUnit has
been criticized as a minor thing, something any reasonable programmer could
produce in a weekend. This is true, but utterly misses the point. The reason JUnit
is important, and deserves the Churchillian knock-off, is that the presence of this
tiny tool has been essential to a fundamental shift for many programmers: Testing
has moved to a front and central part of programming. People have advocated it
before, but JUnit made it happen more than anything else.

It’s more than just JUnit, of course. Ports of JUnit have been written for lots
of programming languages. This loose family of tools, often referred to as xUnit
tools, has spread far beyond its java roots. (And of course the roots weren’t really
in Java—Kent Beck wrote this code for Smalltalk years before.)

 xUnit tools, and more importantly their philosophy, offer up huge opportu-
nities to programming teams—the opportunity to write powerful regression test
suites that enable teams to make drastic changes to a code-base with far less risk;
the opportunity to re-think the design process with Test Driven Development.

But with these opportunities come new problems and new techniques. Like
any tool, the xUnit family can be used well or badly. Thoughtful people have
fi gured out various ways to use xUnit, to organize the tests and data effectively.
Like the early days of objects, much of the knowledge to really use the tools
is hidden in the heads of its skilled users. Without this hidden knowledge you
really can’t reap the full benefi ts.

It was nearly twenty years ago when people in the object-oriented commu-
nity realized this problem for objects and began to formulate an answer. The
answer was to describe their hidden knowledge in the form of patterns. Gerard
Meszaros was one of the pioneers in doing this. When I fi rst started exploring
patterns, Gerard was one of the leaders that I learned from. Like many in the
patterns world, Gerard also was an early adopter of eXtreme Programming,
and thus worked with xUnit tools from the earliest days. So it’s entirely logical
that he should have taken on the task of capturing that expert knowledge in the
form of patterns.

I’ve been excited by this project since I fi rst heard about it. (I had to launch
a commando raid to steal this book from Bob Martin because I wanted it to

xix

www.it-ebooks.info

http://www.it-ebooks.info/

xx

grace my series instead.) Like any good patterns book it provides knowledge
to new people in the fi eld, and just as important, provides the vocabulary and
foundations for experienced practitioners to pass their knowledge on to their
colleagues. For many people, the famous Gang of Four book Design Patterns
unlocked the hidden gems of object-oriented design. This book does the same
for xUnit.

Martin Fowler
Series Editor
Chief Scientist, ThoughtWorks

Foreword

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The Value of Self-Testing Code

In Chapter 4 of Refactoring [Ref], Martin Fowler writes:

If you look at how most programmers spend their time, you’ll fi nd that
writing code is actually a small fraction. Some time is spent fi guring out
what ought to be going on, some time is spent designing, but most time
is spent debugging. I’m sure every reader can remember long hours of
debugging, often long into the night. Every programmer can tell a story
of a bug that took a whole day (or more) to fi nd. Fixing the bug is usually
pretty quick, but fi nding it is a nightmare. And then when you do fi x a bug,
there’s always a chance that anther one will appear and that you might not
even notice it until much later. Then you spend ages fi nding that bug.

Some software is very diffi cult to test manually. In these cases, we are often
forced into writing test programs.

I recall a project I was working on in 1996. My task was to build an event
framework that would let client software register for an event and be notifi ed
when some other software raised that event (the Observer [GOF] pattern). I
could not think of a way to test this framework without writing some sample
client software. I had about 20 different scenarios I needed to test, so I coded up
each scenario with the requisite number of observers, events, and event raisers.
At fi rst, I logged what was occurring in the console and scanned it manually.
This scanning became very tedious very quickly.

Being quite lazy, I naturally looked for an easier way to perform this test-
ing. For each test I populated a Dictionary indexed by the expected event and
the expected receiver of it with the name of the receiver as the value. When a
particular receiver was notifi ed of the event, it looked in the Dictionary for the
entry indexed by itself and the event it had just received. If this entry existed,
the receiver removed the entry. If it didn’t, the receiver added the entry with an
error message saying it was an unexpected event notifi cation.

After running all the tests, the test program merely looked in the Dictionary
and printed out its contents if it was not empty. As a result, running all of my
tests had a nearly zero cost. The tests either passed quietly or spewed a list of test
failures. I had unwittingly discovered the concept of a Mock Object (page 544)
and a Test Automation Framework (page 298) out of necessity!

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

My First XP Project

In late 1999, I attended the OOPSLA conference, where I picked up a copy of
Kent Beck’s new book, eXtreme Programming Explained [XPE]. I was used to
doing iterative and incremental development and already believed in the value
of automated unit testing, although I had not tried to apply it universally. I had
a lot of respect for Kent, whom I had known since the fi rst PLoP1 conference in
1994. For all these reasons, I decided that it was worth trying to apply eXtreme
Programming on a ClearStream Consulting project. Shortly after OOPSLA,
I was fortunate to come across a suitable project for trying out this develop-
ment approach—namely, an add-on application that interacted with an existing
database but had no user interface. The client was open to developing software
in a different way.

We started doing eXtreme Programming “by the book” using pretty much all
of the practices it recommended, including pair programming, collective owner-
ship, and test-driven development. Of course, we encountered a few challenges
in fi guring out how to test some aspects of the behavior of the application, but
we still managed to write tests for most of the code. Then, as the project pro-
gressed, I started to notice a disturbing trend: It was taking longer and longer to
implement seemingly similar tasks.

I explained the problem to the developers and asked them to record on each
task card how much time had been spent writing new tests, modifying existing
tests, and writing the production code. Very quickly, a trend emerged. While
the time spent writing new tests and writing the production code seemed to be
staying more or less constant, the amount of time spent modifying existing tests
was increasing and the developers’ estimates were going up as a result. When
a developer asked me to pair on a task and we spent 90% of the time modify-
ing existing tests to accommodate a relatively minor change, I knew we had to
change something, and soon!

When we analyzed the kinds of compile errors and test failures we were
experiencing as we introduced the new functionality, we discovered that many
of the tests were affected by changes to methods of the system under test (SUT).
This came as no surprise, of course. What was surprising was that most of the
impact was felt during the fi xture setup part of the test and that the changes
were not affecting the core logic of the tests.

This revelation was an important discovery because it showed us that we
had the knowledge about how to create the objects of the SUT scattered across
most of the tests. In other words, the tests knew too much about nonessential

1 The Pattern Languages of Programs conference.

Prefacexxii

www.it-ebooks.info

http://www.it-ebooks.info/

parts of the behavior of the SUT. I say “nonessential” because most of the af-
fected tests did not care about how the objects in the fi xture were created; they
were interested in ensuring that those objects were in the correct state. Upon
further examination, we found that many of the tests were creating identical or
nearly identical objects in their test fi xtures.

The obvious solution to this problem was to factor out this logic into a small
set of Test Utility Methods (page 599). There were several variations:

• When we had a bunch of tests that needed identical objects, we simply
created a method that returned that kind of object ready to use. We
now call these Creation Methods (page 415).

• Some tests needed to specify different values for some attribute of the
object. In these cases, we passed that attribute as a parameter to the
Parameterized Creation Method (see Creation Method).

• Some tests wanted to create a malformed object to ensure that the SUT
would reject it. Writing a separate Parameterized Creation Method for
each attribute cluttered the signature of our Test Helper (page 643), so
we created a valid object and then replaced the value of the One Bad
Attribute (see Derived Value on page 718).

We had discovered what would become2 our fi rst test automation patterns.
Later, when tests started failing because the database did not like the fact

that we were trying to insert another object with the same key that had a unique
constraint, we added code to generate the unique key programmatically. We
called this variant an Anonymous Creation Method (see Creation Method) to
indicate the presence of this added behavior.

Identifying the problem that we now call a Fragile Test (page 239) was an im-
portant event on this project, and the subsequent defi nition of its solution pat-
terns saved this project from possible failure. Without this discovery we would,
at best, have abandoned the automated unit tests that we had already built. At
worst, the tests would have reduced our productivity so much that we would
have been unable to deliver on our commitments to the client. As it turned out,
we were able to deliver what we had promised and with very good quality. Yes,
the testers3 still found bugs in our code because we were defi nitely missing some
tests. Introducing the changes needed to fi x those bugs, once we had fi gured

2 Technically, they are not truly patterns until they have been discovered by three inde-
pendent project teams.
3 The testing function is sometimes referred to as “Quality Assurance.” This usage is,
strictly speaking, incorrect.

 Preface xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

out what the missing tests needed to look like, was a relatively straightforward
process, however.

We were hooked. Automated unit testing and test-driven development really
did work, and we have been using them consistently ever since.

As we applied the practices and patterns on subsequent projects, we have
run into new problems and challenges. In each case, we have “peeled the on-
ion” to fi nd the root cause and come up with ways to address it. As these tech-
niques have matured, we have added them to our repertoire of techniques for
automated unit testing.

We fi rst described some of these patterns in a paper presented at XP2001.
In discussions with other participants at that and subsequent conferences, we
discovered that many of our peers were using the same or similar techniques.
That elevated our methods from “practice” to “pattern” (a recurring solution
to a recurring problem in a context). The fi rst paper on test smells [RTC] was
presented at the same conference, building on the concept of code smells fi rst
described in [Ref].

My Motivation

I am a great believer in the value of automated unit testing. I practiced software
development without it for the better part of two decades, and I know that my
professional life is much better with it than without it. I believe that the xUnit
framework and the automated tests it enables are among the truly great ad-
vances in software development. I fi nd it very frustrating when I see companies
trying to adopt automated unit testing but being unsuccessful because of a lack
of key information and skills.

As a software development consultant with ClearStream Consulting, I see a
lot of projects. Sometimes I am called in early on a project to help clients make
sure they “do things right.” More often than not, however, I am called in when
things are already off the rails. As a result, I see a lot of “worst practices” that
result in test smells. If I am lucky and I am called early enough, I can help the
client recover from the mistakes. If not, the client will likely muddle through
less than satisfi ed with how TDD and automated unit testing worked—and the
word goes out that automated unit testing is a waste of time.

In hindsight, most of these mistakes and best practices are easily avoid-
able given the right knowledge at the right time. But how do you obtain that
knowledge without making the mistakes for yourself? At the risk of sounding
self-serving, hiring someone who has the knowledge is the most time-effi cient
way of learning any new practice or technology. According to Gerry Weinberg’s

Prefacexxiv

www.it-ebooks.info

http://www.it-ebooks.info/

“Law of Raspberry Jam” [SoC],4 taking a course or reading a book is a much
less effective (though less expensive) alternative. I hope that by writing down a
lot of these mistakes and suggesting ways to avoid them, I can save you a lot of
grief on your project, whether it is fully agile or just more agile than it has been
in the past—the “Law of Raspberry Jam” not withstanding.

Who This Book Is For

I have written this book primarily for software developers (programmers,
designers, and architects) who want to write better tests and for the managers
and coaches who need to understand what the developers are doing and why
the developers need to be cut enough slack so they can learn to do it even bet-
ter! The focus here is on developer tests and customer tests that are automated
using xUnit. In addition, some of the higher-level patterns apply to tests that are
automated using technologies other than xUnit. Rick Mugridge and Ward Cun-
ningham have written an excellent book on Fit [FitB], and they advocate many of
the same practices.

Developers will likely want to read the book from cover to cover, but they
should focus on skimming the reference chapters rather than trying to read them
word for word. The emphasis should be on getting an overall idea of which pat-
terns exist and how they work. Developers can then return to a particular pat-
tern when the need for it arises. The fi rst few elements (up to and include the
“When to Use It” section) of each pattern should provide this overview.

Managers and coaches might prefer to focus on reading Part I, The Nar-
ratives, and perhaps Part II, The Test Smells. They might also need to read
Chapter 18, Test Strategy Patterns, as these are decisions they need to under-
stand and provide support to the developers as they work their way through
these patterns. At a minimum, managers should read Chapter 3, Goals of Test
Automation.

About the Cover Photo

Every book in the Martin Fowler Signature Series features a picture of a bridge
on the cover. One of the thoughts I had when Martin Fowler asked if he could
“steal me for his series” was “Which bridge should I put on the cover?” I
thought about the ability of testing to avoid catastrophic failures of software

4 The Law of Raspberry Jam: “The wider you spread it, the thinner it gets.”

 Preface xxv

www.it-ebooks.info

http://www.it-ebooks.info/

and how that related to bridges. Several famous bridge failures immediately
came to mind, including “Galloping Gertie” (the Tacoma Narrows bridge) and
the Iron Workers Memorial Bridge in Vancouver (named for the iron workers
who died when a part of it collapsed during construction).

After further refl ection, it just did not seem right to claim that testing might
have prevented these failures, so I chose a bridge with a more personal con-
nection. The picture on the cover shows the New River Gorge bridge in West
Virginia. I fi rst passed over and subsequently paddled under this bridge on a
whitewater kayaking trip in the late 1980s. The style of the bridge is also rel-
evant to this book’s content: The complex arch structure underneath the bridge
is largely hidden from those who use it to get to the other side of the gorge. The
road deck is completely level and four lanes wide, resulting in a very smooth
passage. In fact, at night it is quite possible to remain completely oblivious to
the fact that one is thousands of feet above the valley fl oor. A good test automa-
tion infrastructure has the same effect: Writing tests is easy because most of the
complexity lies hidden beneath the road bed.

Colophon

This book’s manuscript was written using XML, which I published to HTML
for previewing on my Web site. I edited the XML using Eclipse and the XML
Buddy plug-in. The HTML was generated using a Ruby program that I fi rst
obtained from Martin Fowler and which I then evolved quite extensively as I
evolved my custom markup language. Code samples were written, compiled,
and executed in (mostly) Eclipse and were inserted into the HTML automati-
cally by XML tag handlers (one of the main reasons for using Ruby instead of
XSLT). This gave me the ability to “publish early, publish often” to the Web
site. I could also generate a single Word or PDF document for reviewers from
the source, although this required some manual steps.

Prefacexxvi

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

While this book is largely a solo writing effort, many people have contributed to it
in their own ways. Apologies in advance to anyone whom I may have missed.

People who know me well may wonder how I found enough time to write
a book like this. When I am not working, I am usually off doing various (some
would say “extreme”) outdoor sports, such as back-country (extreme) skiing,
whitewater (extreme) kayaking, and mountain (extreme) biking. Personally, I
do not agree with this application of the “extreme” adjective to my activities
any more than I agree with its use for highly iterative and incremental (extreme)
programming. Nevertheless, the question of where I found the time to write this
book is a valid one. I must give special thanks to my friend Heather Armitage,
with whom I engage in most of the above activities. She has driven many long
hours on the way to or from these adventures with me hunched over my laptop
computer in the passenger seat working on this book. Also, thanks go to Alf
Skrastins, who loves to drive all his friends to back-country skiing venues west of
Calgary in his Previa. Also, thanks to the operators of the various back-country
ski lodges who let me recharge my laptop from their generators so I could work
on the book while on vacation—Grania Devine at Selkirk Lodge, Tannis Dakin at
Sorcerer Lodge, and Dave Flear and Aaron Cooperman at Sol Mountain Touring.
Without their help, this book would have taken much longer to write!

As usual, I’d like to thank all my reviewers, both offi cial and unoffi cial. Rob-
ert C. (“Uncle Bob”) Martin reviewed an early draft. The offi cial reviewers of
the fi rst “offi cial” draft were Lisa Crispin and Rick Mugridge. Lisa Crispin, Jer-
emy Miller, Alistair Duguid, Michael Hedgpeth, and Andrew Stopford reviewed
the second draft.

Thanks to my “shepherds” from the various PLoP conferences who provided
feedback on drafts of these patterns—Michael Stahl, Danny Dig, and especially
Joe Yoder; they provided expert comments on my experiments with the pattern
form. I would also like to thank the members of the PLoP workshop group
on Pattern Languages at PLoP 2004 and especially Eugene Wallingford, Ralph
Johnson, and Joseph Bergin. Brian Foote and the SAG group at UIUC posted
several gigabytes of MP3’s of the review sessions in which they discussed the
early drafts of the book. Their comments caused me to rewrite from scratch at
least one of the narrative chapters.

Many people e-mailed me comments about the material posted on my Web
site at http://xunitpatterns.com or posted comments on the Yahoo! group; they

xxvii

www.it-ebooks.info

http://xunitpatterns.com
http://www.it-ebooks.info/

provided very timely feedback on the sometimes very draft-like material I had
posted there. These folks included Javid Jamae, Philip Nelson, Tomasz Gajewski,
John Hurst, Sven Gorts, Bradley T. Landis, Cédric Beust, Joseph Pelrine, Sebas-
tian Bergmann, Kevin Rutherford, Scott W. Ambler, J. B. Rainsberger, Oli Bye,
Dale Emery, David Nunn, Alex Chaffee, Burkhardt Hufnagel, Johannes Brod-
wall, Bret Pettichord, Clint Shank, Sunil Joglekar, Rachel Davies, Nat Pryce,
Paul Hodgetts, Owen Rogers, Amir Kolsky, Kevin Lawrence, Alistair Cockburn,
Michael Feathers, and Joe Schmetzer. Special thanks go to Neal Norwitz, Markus
Gaelli, Stephane Ducasse, and Stefan Reichhart, who provided copious feedback
as unoffi cial reviewers.

Quite a few people sent me e-mails describing their favorite pattern or special
feature from their member of the xUnit family. Most of these were variations on
patterns I had already documented; I’ve included them in this book as aliases or
implementation variations as appropriate. A few were more esoteric patterns
that I had to leave out for space reasons—for that, I apologize.

Many of the ideas described in this book came from projects I worked on
with my colleagues from ClearStream Consulting. We all pushed one another
to fi nd better ways of doing things back in the early days of eXtreme Program-
ming when few—if any—resources were available. It was this single-minded
determination that led to many of the more useful techniques described here.
Those colleagues are Jennitta Andrea, Ralph Bohnet, Dave Braat, Russel Bryant,
Greg Cook, Geoff Hardy, Shaun Smith, and Thomas (T2) Tannahill. Many of
them also provided early reviews of various chapters. Greg also provided many
of the code samples in Chapter 25, Database Patterns, while Ralph set up my
CVS repository and automated build process for the Web site. I would also like
to thank my bosses at ClearStream, who let me take time off from consulting
engagements to work on the book and for permission to use the code-based
exercises from our two-day “Testing for Developers” course as the basis for
many of the code samples. Thanks, Denis Clelland and Luke McFarlane!

Several people encouraged me to keep working on the book when the going
got tough. They were always willing to take a phone call to discuss some sticky
issue I was grappling with. Foremost among these individuals were Joshua
Kerievsky and Martin Fowler.

I’d like to especially thank Shaun Smith for helping me get started on this
book and for the technical support he provided throughout the early part of
writing it. He hosted my Web site, created the fi rst CSS style sheets, taught
me Ruby, set up a wiki for discussing the patterns, and even provided some of
the early content before personal and work demands forced him to pull out of
the writing side of the project. Whenever I say “we” when I talk about experi-
ences, I am probably referring to Shaun and myself, although other coworkers
may also share the same opinion.

Acknowledgmentsxxviii

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

It has been said before but it bears repeating: Writing defect-free software is
exceedingly diffi cult. Proof of correctness of real systems is still well beyond our
abilities, and specifi cation of behavior is equally challenging. Predicting future
needs is a hit or miss affair—we’d all be getting rich on the stock market instead
of building software systems if we were any good at it!

Automated verifi cation of software behavior is one of the biggest advances in
development methods in the last few decades. This very developer-friendly prac-
tice has huge benefi ts in terms of increasing productivity, improving quality, and
keeping software from becoming brittle. The very fact that so many developers
are now doing it of their own free will speaks for its effectiveness.

This chapter introduces the concept of test automation using a variety of
tools (including xUnit), describes why you would do it, and explains what
makes it diffi cult to do test automation well.

Feedback

Feedback is a very important element in many activities. Feedback tells us
whether our actions are having the right effect. The sooner we get feedback,
the more quickly we can react. A good example of this kind of feedback is the
rumble strips now being ground into many highways between the main driving
surface and the shoulders. Yes, driving off the shoulder gives us feedback that
we have left the road. But getting feedback earlier (when our wheels fi rst enter
the shoulder) gives us more time to correct our course and reduces the likeli-
hood that we will drive off the road at all.

Testing is all about getting feedback on software. For this reason, feedback is
one of the essential elements of “agile” or “lean” software development. Hav-
ing feedback loops in the development process is what gives us confi dence in
the software that we write. It lets us work more quickly and with less paranoia.
It lets us focus on the new functionality we are adding by having the tests tell us
whenever we break old functionality.

xxix

www.it-ebooks.info

http://www.it-ebooks.info/

Testing

The traditional defi nition of “testing” comes from the world of quality assurance.
We test software because we are sure it has bugs in it! So we test and we test
and we test some more, until we cannot prove there are still bugs in the software.
Traditionally, this testing occurs after the software is complete. As a result, it is a
way of measuring quality—not a way of building quality into the product. In many
organizations, testing is done by someone other than the software developers.
The feedback provided by this kind of testing is very valuable, but it comes so
late in the development cycle that its value is greatly diminished. It also has the
nasty effect of extending the schedule as the problems found are sent back to
development for rework, to be followed by another round of testing. So what kind
of testing should software developers do to get feedback earlier?

Developer Testing

Rare is the software developer who believes he or she can write code that works
“fi rst time, every time.” In fact, most of us are pleasantly surprised when some-
thing does work the fi rst time. (I hope I am not shattering any illusions for the
nondeveloper readers out there!)

So developers do testing, too. We want to prove to ourselves that the soft-
ware works as we intended it to. Some developers might do their testing the
same way as testers do it: by testing the whole system as a single entity. Most
developers, however, prefer to test their software unit by unit. The “units” may
be larger-grained components or they may be individual classes, methods, or
functions. The key thing that distinguishes these tests from the ones that the
testers write is that the units being tested are a consequence of the design of the
software, rather than being a direct translation of the requirements.1

Automated Testing

Automated testing has been around for several decades. When I worked on
telephone switching systems at Nortel’s R&D subsidiary Bell-Northern
Research in the early 1980s, we did automated regression and load testing of

1 A small percentage of the unit tests may correspond directly to the business logic
described in the requirements and the customer tests, but a large majority tests the code
that surrounds the business logic.

Introductionxxx

www.it-ebooks.info

http://www.it-ebooks.info/

the software/hardware that we were building. This testing was done primarily
in the context of the “System Test” organization using specialized hardware
and software that were programmed with test scripts. The test machines con-
nected to the switch being tested as though it were a bunch of telephones and
other telephone switches; it made telephone calls and exercised the myriad of
telephone features. Of course, this automated testing infrastructure was not
suitable for unit testing, nor was it generally available to the developers because
of the huge amounts of hardware involved.

In the last decade, more general-purpose test automation tools have become
available for testing applications through their user interfaces. Some of these
tools use scripting languages to defi ne the tests; the sexier tools rely on the
“robot user” or “record and playback” metaphor for test automation. Unfor-
tunately, many of the early experiences with these latter tools left the testers
and test managers less than satisfi ed. The cause was high test maintenance costs
caused by the “fragile test” problem.

The “Fragile Test” Problem

Test automation using commercial “record and playback” or “robot user” tools
has gained a bad reputation among early users of these tools. Tests automated
using this approach often fail for seemingly trivial reasons. It is important to
understand the limitations of this style of test automation to avoid falling vic-
tim to the pitfalls commonly associated with it—namely, behavior sensitivity,
interface sensitivity, data sensitivity, and context sensitivity.

Behavior Sensitivity

If the behavior of the system is changed (e.g., if the requirements are changed
and the system is modifi ed to meet the new requirements), any tests that exer-
cise the modifi ed functionality will most likely fail when replayed.2 This is a
basic reality of testing regardless of the test automation approach used. The real
problem is that we often need to use that functionality to maneuver the system
into the right state to start a test. As a consequence, behavioral changes have a
much larger impact on the testing process than one might expect.

2 A change in behavior could occur because the system is doing something different or
because it is doing the same thing with different timing or sequencing.

 Introduction xxxi

www.it-ebooks.info

http://www.it-ebooks.info/

Interface Sensitivity

Testing the business logic inside the system under test (SUT) via the user inter-
face is a bad idea. Even minor changes to the interface can cause tests to fail,
even though a human user might say the test should still pass. Such unintended
interface sensitivity is partly what gave test automation tools such a bad name
in the past decade. Although the problem occurs regardless of which user inter-
face technology is being used, it seems to be worse with some types of interfaces
than with others. Graphical user interfaces (GUIs) are a particularly challeng-
ing way to interact with the business logic inside the system. The recent shift to
Web-based (HTML) user interfaces has made some aspects of test automation
easier but has introduced yet another problem because of the executable code
needed within the HTML to provide a rich user experience.

Data Sensitivity

All tests assume some starting point, called the test fi xture; this test context
is sometimes called the “pre-conditions” or “before picture” of the test. Most
commonly, this test fi xture is defi ned in terms of data that is already in the sys-
tem. If the data changes, the tests may fail unless great effort has been expended
to make them insensitive to the data being used.

Context Sensitivity

The behavior of the system may be affected by the state of things outside the
system. These external factors could include the states of devices (e.g., printers,
servers), other applications, or even the system clock (e.g., the time and/or date
of execution of the test). Any tests that are affected by this context will be dif-
fi cult to repeat deterministically without getting control over the context.

Overcoming the Four Sensitivities

The four sensitivities exist regardless of which technology we use to automate
the tests. Of course, some technologies give us ways to work around these sen-
sitivities, while others force us down a particular path. The xUnit family of test
automation frameworks gives us a large degree of control; we just have to learn
how to use it effectively.

xxxii Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

Uses of Automated Tests

Thus far, most of the discussion here has centered on regression testing of
applications. This is a very valuable form of feedback when modifying existing
applications because it helps us catch defects that we have introduced inadver-
tently.

Tests as Specifi cation

A completely different use of automated testing is seen in test-driven devel-
opment (TDD), which is one of the core practices of agile methods such as
eXtreme Programming. This use of automated testing is more about specifi cation
of the behavior of the software yet to be written than it is about regression
testing. The effectiveness of TDD comes from the way it lets us separate our
thinking about software into two separate phases: what it should do, and how it
should do it.

Hold on a minute! Don’t the proponents of agile software development
eschew waterfall-style development? Yes, indeed. Agilists prefer to design and
build a system feature by feature, with working software being available at
every step to prove that each feature works before they move on to develop the
next feature. That does not mean we do not do design; it simply means we do
“continuous design”! Taking this to the extreme results in “emergent design,”
where very little design is done upfront. But development does not have to be
done that way. We can combine high-level design (or architecture) upfront with
detailed design on a feature-by-feature basis. Either way, it can be useful to delay
thinking about how to achieve the behavior of a specifi c class or method for a
few minutes while we capture what that behavior should be in the form of an
executable specifi cation. After all, most of us have trouble concentrating on one
thing at a time, let alone several things simultaneously.

Once we have fi nished writing the tests and verifying that they fail as expected,
we can switch our perspective and focus on making them pass. The tests are now
acting as a progress measurement. If we implement the functionality incremen-
tally, we can see each test pass one by one as we write more code. As we work,
we keep running all of the previously written tests as regression tests to make
sure our changes have not had any unexpected side effects. This is where the true
value of automated unit testing lies: in its ability to “pin down” the functionality
of the SUT so that the functionality is not changed accidentally. That is what al-
lows us to sleep well at night!

 Introduction xxxiii

www.it-ebooks.info

http://www.it-ebooks.info/

Test-Driven Development

Many books have been written recently on the topic of test-driven develop-
ment, so this one will not devote a lot of space to that topic. This book focuses
on what the code in the tests looks like, rather than when we wrote the tests.
The closest we will get to talking about how the tests come into being is when
we investigate refactoring of tests and learn how to refactor tests written using
one pattern into tests that use a pattern with different characteristics.

I am trying to stay “development process agnostic” in this book because au-
tomated testing can help any team regardless of whether its members are doing
TDD, test-fi rst development, or test-last development. Also, once people learn
how to automate tests in a “test last” environment, they are likely to be more
inclined to experiment with a “test fi rst” approach. Nevertheless, we do ex-
plore some parts of the development process because they affect how easily we
can do test automation. There are two key aspects of this investigation: (1) the
interplay between Fully Automated Tests (see page 26) and our development in-
tegration process and tools, and (2) the way in which the development process
affects the testability of our designs.

Patterns

In preparing to write this book, I read a lot of conference papers and books
on xUnit-based test automation. Not surprisingly, each author seems to have a
particular area of interest and favorite techniques. While I do not always agree
with their practices, I am always trying to understand why these authors do
things a particular way and when it would be more appropriate to use their
techniques than the ones I already use.

This level of understanding is one of the major differences between examples
and prose that merely explain the “how to” of a technique and a pattern. A pat-
tern helps readers understand the why behind the practice, allowing them to
make intelligent choices between the alternative patterns and thereby avoid any
unexpected nasty consequences in the future.

Software patterns have been around for a decade, so most readers should at
least be aware of the concept. A pattern is a “solution to a recurring problem.”
Some problems are bigger than others and, therefore, too big to solve with a
single pattern. That is where the pattern language comes into play; this collec-
tion (or grammar) of patterns leads the reader from an overall problem step by
step to a detailed solution. In a pattern language, some of the patterns will nec-
essarily be of higher levels of abstraction, while others will focus on lower-level
details. To be useful, there must be linkages between the patterns so that we

Introductionxxxiv

www.it-ebooks.info

http://www.it-ebooks.info/

can work our way down from the higher-level “strategy” patterns to the more
detailed “design patterns” and the most detailed “coding idioms.”

Patterns versus Principles versus Smells

This book includes three kinds of patterns. The most traditional kind of pat-
tern is the “recurring solution to a common problem”; most of the patterns in
this book fall into this general category. I do distinguish between three different
levels:

• “Strategy”-level patterns have far-reaching consequences. The decision
to use a Shared Fixture (page 317) rather than a Fresh Fixture (page 311)
takes us down a very different path and leads to a different set of test
design patterns. Each of the strategy patterns has its own write-up in
the “Strategy Patterns” chapter in the reference section of the book.

• Test “design”-level patterns are used when developing tests for specifi c
functionality. They focus on how we organize our test logic. An exam-
ple that should be familiar to most readers is the Mock Object pattern
(page 544). Each test design pattern has its own write-up and the pat-
terns are grouped into chapters in the reference section of the book based
on topics such as Test Double patterns.

• Test “coding idioms” describe different ways to code a specifi c test.
Many of these are language specifi c; examples include using block
closures for Expected Exception Tests (see Test Method on page 348)
in Smalltalk and anonymous inner classes for Mock Objects in Java.
Some, such as Simple Success Test (see Test Method), are fairly generic
in that they have analogs in each language. These idioms are typically
listed as implementation variations or examples within the write-up of
a “test design pattern.”

Often, several alternative patterns could be used at each level. Of course, I
almost always have a preference for which patterns to use, but one person’s “anti-
pattern” may be another person’s “best practice pattern.” As a result, this book
includes patterns that I do not necessarily advocate. It describes the advantages
and disadvantages of each of those patterns, allowing readers to make informed
decisions about their use. I have tried to provide linkages to those alternatives in
each of the pattern descriptions as well as in the introductory narratives.

The nice thing about patterns is that they provide enough information to
make an intelligent decision between several alternatives. The pattern we choose
may be affected by the goals we have for test automation. The goals describe

 Introduction xxxv

www.it-ebooks.info

http://www.it-ebooks.info/

desired outcomes of the test automation efforts. These goals are supported by a
number of principles that codify a belief system about what makes automated
tests “good.” In this book, the goals of test automation are described in Chapter 3,
Goals of Test Automation, and the principles are described in Chapter 5, Prin-
ciples of Test Automation.

The fi nal kind of pattern is more of an anti-pattern [AP]. These test smells
describe recurring problems that our patterns help us address in terms of the
symptoms we might observe and the root causes of those symptoms. Code
smells were fi rst popularized in Martin Fowler’s book [Ref] and applied to
xUnit-based testing as test smells in a paper presented at XP2001 [RTC].
The test smells are cross-referenced with the patterns that can be used to
banish them as well as the patterns3 that are more likely to lead to them.4 In
addition, the test smells are covered in depth in their own section: Part II,
The Test Smells.

Pattern Form

This book includes my descriptions of patterns. The patterns themselves existed
before I started cataloging them, by virtue of having been invented indepen-
dently by at least three different test automaters. I took it upon myself to write
them down as a way of making the knowledge more easily distributable. But to
do so, I had to choose a pattern description form.

Pattern descriptions come in many shapes and sizes. Some have a very rigid
structure defi ned by many headings that help the reader fi nd the various sec-
tions. Others read more like literature but may be more diffi cult to use as a ref-
erence. Nevertheless, all patterns have a common core of information, however
it is presented.

My Pattern Form

I have really enjoyed reading the works of Martin Fowler, and I attribute much
of that enjoyment to the pattern form that he uses. As the saying goes, “Imita-
tion is the sincerest form of fl attery”: I have copied his format shamelessly with
only a few minor modifi cations.

The template begins with the problem statement, the summary statement, and
a sketch. The italicized problem statement summarizes the core of the problem

3 Some might want to call these patterns “anti-patterns.” Just because a pattern often has
negative consequences, it does not imply that the pattern is always bad. For this reason,
I prefer not to call these anti-patterns; I just do not use them very often.
4 In a few cases, there are even a pattern and a smell with similar names.

xxxvi Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

that the pattern addresses. It is often stated as a question: “How do we . . . ?”
The boldface summary statement captures the essence of the pattern in one or
two sentences, while the sketch provides a visual representation of the pattern.
The untitled section of text immediately after the sketch summarizes why we
might want to use the pattern in just a few sentences. It elaborates on the problem
statement and includes both the “Problem” and “Context” sections from the tra-
ditional pattern template. A reader should be able to get a sense of whether he or
she wants to read any further by skimming this section.

The next three sections provide the meat of the pattern. The “How It Works”
section describes the essence of how the pattern is structured and what it is
about. It also includes information about the “resulting context” when there
are several ways to implement some important aspect of the pattern. This sec-
tion corresponds to the “Solution” or “Therefore” sections of more traditional
pattern forms. The “When to Use It” section describes the circumstances in
which you should consider using the pattern. This section corresponds to the
“Problem,” “Forces,” “Context,” and “Related Patterns” sections of traditional
pattern templates. It also includes information about the “Resulting Context,”
when this information might affect whether you would want to use this pattern.
I also include any “test smells” that might suggest that you should use this pat-
tern. The “Implementation Notes” section describes the nuts and bolts of how
to implement the pattern. Subheadings within this section indicate key compo-
nents of the pattern or variations in how the pattern can be implemented.

Most of the concrete patterns include three additional sections. The “Moti-
vating Example” section provides examples of what the test code might have
looked like before this pattern was applied. The section titled “Example: {Pat-
tern Name}” shows what the test would look like after the pattern was applied.
The “Refactoring Notes” section provides more detailed instructions on how to
get from the “Motivating Example” to the “Example: {Pattern Name}.”

If the pattern is written up elsewhere, the description may include a section
titled “Further Reading.” A “Known Uses” section appears when there is some-
thing particularly interesting about those applications. Most of these patterns
have been seen in many systems, of course, so picking three uses to substantiate
them would be arbitrary and meaningless.

Where a number of related techniques exist, they are often presented here
as a single pattern with several variations. If the variations are different ways
to implement the same fundamental pattern (namely, solving the same prob-
lem the same general way), the variations and the differences between them are
listed in the “Implementation Notes” section. If the variations are primarily a
different reason for using the pattern, the variations are listed in the “When to
Use It” section.

 Introduction xxxvii

www.it-ebooks.info

http://www.it-ebooks.info/

Historical Patterns and Smells

I struggled mightily when trying to come up with a concise enough list of pat-
terns and smells while still keeping historical names whenever possible. I often
list the historical name as an alias for the pattern or smell. In some cases, it
made more sense to consider the historical version of the pattern as a specifi c
variation of a larger pattern. In such a case, I usually include the historical pat-
tern as a named variation in the “Implementation Notes” section.

Many of the historical smells did not pass the “sniff test”—that is, the smell
described a root cause rather than a symptom.5 Where an historical test smell
describes a cause and not a symptom, I have chosen to move it into the cor-
responding symptom-based smell as a special kind of variation titled “Cause.”
Mystery Guest (see Obscure Test on page 186) is a good example.

Referring to Patterns and Smells

I also struggled to come up with a good way to refer to patterns and smells, espe-
cially the historical ones. I wanted to be able to use both the historical names when
appropriate and the new aggregate names, whichever was more appropriate. I also
wanted the reader to be able to see which was which. In the online version of this
book, hyperlinks were used for this purpose. For the printed version, however, I
needed a way to represent this linkage as a page number annotation of the refer-
ence without cluttering up the entire text with references. The solution I landed
on after several tries includes the page number where the pattern or smell can be
found the fi rst time it is referenced in a chapter, pattern, or smell. If the reference
is to a pattern variation or the cause of a smell, I include the aggregate pattern or
smell name the fi rst time. Note how this second reference to the Mystery Guest
cause of Obscure Test shows up without the smell name, whereas references to
other causes of Obscure Test such as Irrelevant Information (see Obscure Test)
include the aggregate smell name but not the page number.

Refactoring

Refactoring is a relatively new concept in software development. While
people have always had a need to modify existing code, refactoring is a highly

5 The “sniff test” is based on the diaper story in [Ref] wherein Kent Beck asks Grandma
Beck, “How do I know that it is time to change the diaper?” “If it stinks, change it!” was
her response. Smells are named based on the “stink,” not the cause of the stink.

Introductionxxxviii

www.it-ebooks.info

http://www.it-ebooks.info/

disciplined approach to changing the design without changing the behavior of
the code. It goes hand-in-hand with automated testing because it is very diffi cult
to do refactoring without having the safety net of automated tests to prove that
you have not broken anything during your redesign.

Many of the modern integrated development environments (IDEs) have built-in
support for refactoring. Most of them automate the refactoring steps of at least a
few of the refactorings described in Martin Fowler’s book [Ref]. Unfortunately,
the tools do not tell us when or why we should use refactoring. We will have to
get a copy of Martin’s book for that! Another piece of mandatory reading on this
topic is Joshua Kerievsky’s book [RtP].

Refactoring tests differs a bit from refactoring production code because we
do not have automated tests for our automated tests! If a test fails after a refac-
toring of the test, did the failure occur because we made a mistake during the
refactoring? Just because a test passes after a test refactoring, can we be sure it
will still fail when appropriate? To address this issue, many test refactorings are
very conservative, “safe refactorings” that minimize the chance of introducing a
change of behavior into the test. We also try to avoid having to do major refac-
torings of tests by adopting an appropriate test strategy, as described in Chapter
6, Test Automation Strategy.

This book focuses more on the target of the refactoring than on the mechanics
of this endeavor. A short summary of the refactorings does appear in Appendix A,
but the process of refactoring is not the primary focus of this book. The patterns
themselves are new enough that we have not yet had time to agree on their names,
content, or applicability, let alone reach consensus on the best way to refactor to
them. A further complication is that there are potentially many starting points for
each refactoring target (pattern), and attempting to provide detailed refactoring
instructions would make this already large book much larger.

Assumptions

In writing this book, I assumed that the reader is somewhat familiar with object
technology (also known as “object-oriented programming”); object technology
seemed to be a prerequisite for automated unit testing to become popular. That
does not mean we cannot perform testing in procedural or functional languages,
but use of these languages may make it more challenging (or at least different).

Different people have different learning styles. Some need to start with the
“big picture” abstractions and work down to “just enough” detail. Others can
understand only the details and have no need for the “big picture.” Some learn
best by hearing or reading words; others need pictures to help them visualize

 Introduction xxxix

www.it-ebooks.info

http://www.it-ebooks.info/

a concept. Still others learn programming concepts best by reading code. I’ve
tried to accommodate all of these learning styles by providing a summary, a
detailed description, code samples, and a picture wherever possible. These items
should be Skippable Sections [PLOPD3] for those readers who won’t benefi t
from that style of learning.

Terminology

This book brings together terminology from two different domains: software
development and software testing. As a consequence, some terminology will
inevitably be unfamiliar to some readers. Readers should refer to the glossary
when they encounter any terms that they do not understand. I will, however,
point out one or two terms here, because becoming familiar with these terms is
essential to understanding most of the material in this book.

Testing Terminology

Software developers will probably fi nd the term “system under test” (abbrevi-
ated throughout this book as SUT) unfamiliar. It is short for “whatever thing
we are testing.” When we are writing unit tests, the SUT is whatever class or
method(s) we are testing; when we are writing customer tests, the SUT is prob-
ably the entire application (or at least a major subsystem of it).

Any part of the application or system we are building that is not included in
the SUT may still be required to run our test because it is called by the SUT or
because it sets up prerequisite data that the SUT will use as we exercise it. The
former type of element is called a depended-on component (DOC), and both
types are part of the test fi xture. This is illustrated in Figure I.1.

Language-Specifi c xUnit Terminology

Although this book includes examples in a variety of languages and xUnit fam-
ily members, JUnit fi gures prominently in this coverage. JUnit is the language
and xUnit framework that most people are at least somewhat familiar with.
Many of the translations of JUnit to other languages are relatively faithful
ports, with only minor changes in class and method names needed to accom-
modate the differences in the underlying language. Where this isn’t the case,
Appendix B, xUnit Terminology Cross-Reference, often includes the appropri-
ate mapping.

xl Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

Figure I.1. A range of tests each with its own SUT. An application, component,
or unit is only the SUT with respect to a specifi c set of tests. The “Unit1 SUT”
plays the role of DOC (part of the fi xture) to “Unit2 Test” and is part of the
“Comp1 SUT” and the “App1 SUT.”

Using Java as the main sample language also means that in some discussions
we will refer to the JUnit name of a method and will not list the corresponding
method names in each of the xUnit frameworks. For example, a discussion may
refer to JUnit’s assertTrue method without mentioning that the NUnit equiva-
lent is Assert.IsTrue, the SUnit equivalent is should:, and the VbUnit equivalent
is verify. Readers are expected to do the mental swap of method names to the
SUnit, VbUnit, Test::Unit, and other equivalents with which they may be most
familiar. The Intent-Revealing Names [SBPP] of the JUnit methods should be
clear enough for the purposes of our discussion.

Code Samples

Sample code is always a problem. Samples of code from real projects are typi-
cally much too large to include and are usually covered by nondisclosure agree-
ments that preclude their publication. “Toy programs” do not get much respect
because “they aren’t real.” A book such as this one has little choice except to
use “toy programs,” but I have tried to make them as representative as possible
of real projects.

App1
SUT

Comp1
SUT

Unit2
SUT

Comp1
Test

Exercise

Unit1
SUT

Unit1
Test

Exercise

Unit2
Test

Exercise

Comp2
SUT

Comp2
Test

Exercise

App1
Test Exercise

Uses

Uses

App1
SUT

Comp1
SUT

Unit2
SUT

Comp1
Test

Exercise

Unit1
SUT

Unit1
Test

Exercise

Unit2
Test

Exercise

Comp2
SUT

Comp2
Test

Exercise

App1
Test Exercise

Uses

Uses

 Introduction xli

www.it-ebooks.info

http://www.it-ebooks.info/

Almost all of the code samples presented here came from “real” compilable
and executable code, so they should not (knock on wood) contain any compile
errors unless they were introduced during the editing process. Most of the Ruby
examples come from the XML-based publishing system I used to prepare this
book, while many of the Java and C# samples came from courseware that we
use at ClearStream to teach these concepts to ClearStream’s clients.

I have tried to use a variety of languages to illustrate the nearly universal
application of the patterns across the members of the xUnit family. In some cases,
the specifi c pattern dictated the use of language because of specifi c features of
either the language or the xUnit family member. In other cases, the language
was dictated by the availability of third-party extensions for a specifi c member
of the xUnit family. Otherwise, the default language for examples is Java with
some C# because most people have at least reading-level familiarity with them.

Formatting code for a book is a particular challenge due to the recommended
line length of just 65 characters. I have taken some liberties in shortening vari-
able and class names simply to reduce the number of lines that wrap. I’ve also
invented some line-wrapping conventions to minimize the vertical size of these
samples. You can take solace in the fact that your test code should look a lot
“shorter” than mine because you have to wrap many fewer lines!

Diagramming Notation

“A picture is worth a thousand words.” Wherever possible, I have tried to include
a sketch of each pattern or smell. I’ve based the sketches loosely on the Unifi ed
Modeling Language (UML) but took a few liberties to make them more expres-
sive. For example, I use the aggregation symbol (diamond) and the inheritance
symbol (a triangle) of UML class diagrams, but I mix classes and objects on the
same diagram along with associations and object interactions. Most of the nota-
tion is introduced in the patterns in Chapter 19, xUnit Basics Patterns, so you may
fi nd it worthwhile to skim this chapter just to look at the pictures.

Although I have tried to make this notation “discoverable” simply through
comparing sketches, a few conventions are worth pointing out. Objects have
shadows; classes and methods do not. Classes have square corners, in keep-
ing with UML; methods have round corners. Large exclamation marks are as-
sertions (potential test failures), and a starburst is an error or exception being
raised. The fi xture is a cloud, refl ecting its nebulous nature, and any compo-
nents the SUT depends on are superimposed on the cloud. Whatever the sketch
is trying to illustrate is highlighted with heavier lines and darker shading. As
a result, you should be able to compare two sketches of related concepts and
quickly determine what is emphasized in each.

Introductionxlii

www.it-ebooks.info

http://www.it-ebooks.info/

Limitations

As you use these patterns, please keep in mind that I could not have seen every
test automation problem and every solution to every problem; there may well
be other, possibly better, ways to solve some of these problems. These solutions
are just the ones that have worked for me and for the people I have been com-
municating with. Accept everyone’s advice with a grain of salt!

My hope is that these patterns will give you a starting point for writing good,
robust automated tests. With luck, you will avoid many of the mistakes we
made on our fi rst attempts and will go on to invent even better ways of auto-
mating tests. I’d love to hear about them!

 Introduction xliii

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Refactoring a Test

 y

Why Refactor Tests?

Tests can quickly become a bottleneck in an agile development process. This may
not be immediately obvious to those who have never experienced the difference
between simple, easily understood tests and complex, obtuse, hard-to-maintain
tests. The productivity difference can be staggering!

This section of the book acts as a “motivating example” for the entire book
by showing you how much of a difference refactoring tests can make. It walks
you through an example starting with a complex test and, step by step, refac-
tors it to a simple, easily understood test. Along the way, I will point out some
key smells and the patterns that we can use to remove them. Ideally, this exer-
cise will whet your appetite for more.

A Complex Test

Here is a test that is not atypical of some of the tests I have seen on various
projects:

 public void testAddItemQuantity_severalQuantity_v1(){
 Address billingAddress = null;
 Address shippingAddress = null;
 Customer customer = null;
 Product product = null;
 Invoice invoice = null;
 try {
 // Set up fixture
 billingAddress = new Address("1222 1st St SW",
 "Calgary", "Alberta", "T2N 2V2","Canada");
 shippingAddress = new Address("1333 1st St SW",
 "Calgary", "Alberta", "T2N 2V2", "Canada");
 customer = new Customer(99, "John", "Doe",
 new BigDecimal("30"),
 billingAddress,
 shippingAddress);
 product = new Product(88, "SomeWidget",
 new BigDecimal("19.99"));
 invoice = new Invoice(customer);

xlv

www.it-ebooks.info

http://www.it-ebooks.info/

 // Exercise SUT
 invoice.addItemQuantity(product, 5);
 // Verify outcome
 List lineItems = invoice.getLineItems();
 if (lineItems.size() == 1) {
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("inv", invoice, actItem.getInv());
 assertEquals("prod", product, actItem.getProd());
 assertEquals("quant", 5, actItem.getQuantity());
 assertEquals("discount", new BigDecimal("30"),
 actItem.getPercentDiscount());
 assertEquals("unit price",new BigDecimal("19.99"),
 actItem.getUnitPrice());
 assertEquals("extended", new BigDecimal("69.96"),
 actItem.getExtendedPrice());
 } else {
 assertTrue("Invoice should have 1 item", false);
 }
 } finally {
 // Teardown
 deleteObject(invoice);
 deleteObject(product);
 deleteObject(customer);
 deleteObject(billingAddress);
 deleteObject(shippingAddress);
 }
 }

This test is quite long1 and is much more complicated than it needs to be. This
Obscure Test (page 186) is diffi cult to understand because the sheer number of
lines in the test makes it hard to see the big picture. It also suffers from a num-
ber of other problems that we will address individually.

Cleaning Up the Test

Let’s look at each of the various parts of the test.

Cleaning Up the Verifi cation Logic

First, let’s focus on the part that verifi es the expected outcome. Maybe we can
infer from the assertions which test conditions this test is trying to verify.

1 While the need to wrap lines to keep them at 65 characters makes this code look even
longer than it really is, it is still unnecessarily long. It contains 25 executable statements
including initialized declarations, 6 lines of control statements, 4 in-line comments, and
2 lines to declare the test method—giving a total of 37 lines of unwrapped source code.

Refactoring a Testxlvi

www.it-ebooks.info

http://www.it-ebooks.info/

 List lineItems = invoice.getLineItems();
 if (lineItems.size() == 1) {
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("inv", invoice, actItem.getInv());
 assertEquals("prod", product, actItem.getProd());
 assertEquals("quant", 5, actItem.getQuantity());
 assertEquals("discount", new BigDecimal("30"),
 actItem.getPercentDiscount());
 assertEquals("unit price",new BigDecimal("19.99"),
 actItem.getUnitPrice());
 assertEquals("extended", new BigDecimal("69.96"),
 actItem.getExtendedPrice());
 } else {
 assertTrue("Invoice should have 1 item", false);
 }

A simple problem to fi x is the obtuse assertion on the very last line. Calling
assertTrue with an argument of false should always result in a test failure, so
why don’t we say so directly? Let’s change this to a call to fail:

 List lineItems = invoice.getLineItems();
 if (lineItems.size() == 1) {
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("inv", invoice, actItem.getInv());
 assertEquals("prod", product, actItem.getProd());
 assertEquals("quant", 5, actItem.getQuantity());
 assertEquals("discount", new BigDecimal("30"),
 actItem.getPercentDiscount());
 assertEquals("unit price",new BigDecimal("19.99"),
 actItem.getUnitPrice());
 assertEquals("extended", new BigDecimal("69.96"),
 actItem.getExtendedPrice());
 } else {
 fail("Invoice should have exactly one line item");
 }

We can think of this move as an Extract Method [Fowler] refactoring, because we
are replacing the Stated Outcome Assertion (see Assertion Method on page 362)
with a hard-coded parameter with a more intent-revealing call to a Single Out-
come Assertion (see Assertion Method) method that encapsulates the call.

Of course, this set of assertions suffers from several more problems. For exam-
ple, why do we need so many of them? It turns out that many of these assertions
are testing fi elds set by the constructor for the LineItem, which is itself covered by
another unit test. So why repeat these assertions here? It will just create more test
code to maintain when the logic changes.

One solution is to use a single assertion on an Expected Object (see State Veri-
fi cation on page 462) instead of one assertion per object fi eld. First, we defi ne an
object that looks exactly how we expect the result to look. In this case, we create

 Cleaning Up the Test xlvii

www.it-ebooks.info

http://www.it-ebooks.info/

an expected LineItem with the fi elds fi lled in with the expected values, including
the unitPrice and extendedPrice initialized from the product.

 List lineItems = invoice.getLineItems();
 if (lineItems.size() == 1) {
 LineItem expected =
 new LineItem(invoice, product, 5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("invoice", expected.getInv(),
 actItem.getInv());
 assertEquals("product", expected.getProd(),
 actItem.getProd());
 assertEquals("quantity",expected.getQuantity(),
 actItem.getQuantity());
 assertEquals("discount",
 expected.getPercentDiscount(),
 actItem.getPercentDiscount());
 assertEquals("unit pr", new BigDecimal("19.99"),
 actItem.getUnitPrice());
 assertEquals("extend pr",new BigDecimal("69.96"),
 actItem.getExtendedPrice());
 } else {
 fail("Invoice should have exactly one line item");
 }

Once we have created our Expected Object, we can then assert on it using
assertEquals:

 List lineItems = invoice.getLineItems();
 if (lineItems.size() == 1) {
 LineItem expected =
 new LineItem(invoice, product,5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("invoice", expected, actItem);
 } else {
 fail("Invoice should have exactly one line item");
 }

Clearly, the Preserve Whole Object [Fowler] refactoring makes the code a lot
simpler and more obvious. But wait! Why do we have an if statement in a test?
If there are several paths through a test, how do we know which one is actually
being executed? It would be a lot better if we could eliminate this Conditional
Test Logic (page 200). Luckily for us, the pattern Guard Assertion (page 490) is
designed to handle exactly this case. We simply use a Replace Conditional with
Guard Clause [Fowler] refactoring to replace the if ... else fail() ... sequence
with an assertion on the same condition. This Guard Assertion halts execution
if the condition is not met without introducing Conditional Test Logic.

Refactoring a Testxlviii

www.it-ebooks.info

http://www.it-ebooks.info/

 List lineItems = invoice.getLineItems();
 assertEquals("number of items", 1,lineItems.size());
 LineItem expected =
 new LineItem(invoice, product, 5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("invoice", expected, actItem);

So far, we have reduced 11 lines of verifi cation code to just 4, and those 4 lines
are a lot simpler code to boot.2 Some people might suggest that this refactor-
ing is good enough. But can’t we make this assertion even more obvious? What
are we really trying to verify? We are trying to say that there should be only
one line item and it should look exactly like our expectedLineItem. We can say
this explicitly by using an Extract Method refactoring to defi ne a Custom Asser-
tion (page 474).

 LineItem expected =
 new LineItem(invoice, product, 5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);

That is better! Now we have the verifi cation part of the test down to just two
lines. Let’s review what the whole test looks like:

 public void testAddItemQuantity_severalQuantity_v6(){
 Address billingAddress = null;
 Address shippingAddress = null;
 Customer customer = null;
 Product product = null;
 Invoice invoice = null;
 try {
 // Set up fixture
 billingAddress = new Address("1222 1st St SW",
 "Calgary", "Alberta", "T2N 2V2", "Canada");
 shippingAddress = new Address("1333 1st St SW",
 "Calgary", "Alberta", "T2N 2V2", "Canada");
 customer = new Customer(99, "John", "Doe",
 new BigDecimal("30"),
 billingAddress,
 shippingAddress);
 product = new Product(88, "SomeWidget",
 new BigDecimal("19.99"));
 invoice = new Invoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, 5);

2 It’s a good thing we are not being rewarded for the number of lines of code we write!
This is yet another example of why KLOC is such a poor measure of productivity.

 Cleaning Up the Test xlix

www.it-ebooks.info

http://www.it-ebooks.info/

 // Verify outcome
 LineItem expected =
 new LineItem(invoice, product, 5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 } finally {
 // Teardown
 deleteObject(invoice);
 deleteObject(product);
 deleteObject(customer);
 deleteObject(billingAddress);
 deleteObject(shippingAddress);
 }
 }

Cleaning Up the Fixture Teardown Logic

Now that we have cleaned up the result verifi cation logic, let’s turn our atten-
tion to the fi nally block at the end of the test. What is this code doing?

 } finally {
 // Teardown
 deleteObject(invoice);
 deleteObject(product);
 deleteObject(customer);
 deleteObject(billingAddress);
 deleteObject(shippingAddress);
 }

Most modern languages have an equivalent construct to the try/fi nally block
that can be used to ensure that code gets run even when an error or exception
occurs. In a Test Method (page 348), the fi nally block ensures that any cleanup
code gets run regardless of whether the test passed or failed. A failed assertion
throws an exception, which would transfer control back to the Test Automation
Framework’s (page 298) exception-handling code, so we use the fi nally block to
clean up fi rst. This approach means that we avoid having to catch the exception
and then rethrow it.

In this test, the fi nally block calls the deleteObject method on each of the objects
created by the test. Unfortunately, this code suffers from a fatal fl aw. Have you
noticed it yet?

Things could go wrong during the teardown itself. What happens if the fi rst
call to deleteObject throws an exception? As coded here, none of the other calls
to deleteObject would be executed. The solution is to use a nested try/fi nally block
around this fi rst call, thereby ensuring that the second call to deleteObject always
executes. But what if the second call fails? In this case, we would need a total

l Refactoring a Test

www.it-ebooks.info

http://www.it-ebooks.info/

of six nested try/fi nally blocks to make this maneuver work. That would almost
double the length of the test, and we cannot afford to write and maintain so
much code in each test.

 } finally {
 // Teardown
 try {
 deleteObject(invoice);
 } finally {
 try {
 deleteObject(product);
 } finally {
 try {
 deleteObject(customer);
 } finally {
 try {
 deleteObject(billingAddress);
 } finally {
 deleteObject(shippingAddress);
 }
 }
 }
 }

The problem is that we now have a Complex Teardown (see Obscure Test).
What are the chances of getting this code right? And how do we test the test
code? Clearly, our current approach is not going to be very effective.

Of course, we could move this code into the tearDown method. That would
have the advantage of removing it from the Test Method. Also, because the
tearDown method acts as a fi nally block, we would get rid of the outermost try/
fi nally. Unfortunately, this strategy doesn’t address the root of the problem: the
need to write detailed teardown code in each test.

We could try to avoid creating the objects in the fi rst place by using a Shared
Fixture (page 317) that is not torn down between tests. Unfortunately, this
approach is likely to lead to a number of test smells, including Unrepeatable Test
(see Erratic Test on page 228) and Interacting Tests (see Erratic Test), caused by
interactions via the shared fi xture. Another issue is that the references to objects
used from the shared fi xture are often Mystery Guests (see Obscure Test).3

The best solution is to use a Fresh Fixture (page 311) but to avoid writ-
ing teardown code for every test. To do so, we can use an in-memory fi xture
that is automatically garbage collected. This approach won’t work, however,
if the objects we create are persistent (e.g., if they are saved in a database).
While it is best to construct the system architecture so that most of our tests can

3 The test reader cannot see the objects being used by the test.

 Cleaning Up the Test li

www.it-ebooks.info

http://www.it-ebooks.info/

be executed without the database, we almost always have some tests that need
it. In these cases, we can extend the Test Automation Framework to do most of
the work for us. We can add a means to register each object we create with the
framework so that it can do the deleting for us.

First, we need to register each object as we create it:

 // Set up fixture
 billingAddress = new Address("1222 1st St SW", "Calgary",
 "Alberta", "T2N 2V2", "Canada");
 registerTestObject(billingAddress);
 shippingAddress = new Address("1333 1st St SW", "Calgary",
 "Alberta","T2N 2V2", "Canada");
 registerTestObject(shippingAddress);
 customer = new Customer(99, "John", "Doe",
 new BigDecimal("30"),
 billingAddress,
 shippingAddress);
 registerTestObject(shippingAddress);
 product = new Product(88, "SomeWidget",
 new BigDecimal("19.99"));
 registerTestObject(shippingAddress);
 invoice = new Invoice(customer);
 registerTestObject(shippingAddress);

Registration consists of adding the object to a collection of test objects:

 List testObjects;

 protected void setUp() throws Exception {
 super.setUp();
 testObjects = new ArrayList();
 }

 protected void registerTestObject(Object testObject) {
 testObjects.add(testObject);
 }

In the tearDown method, we iterate through the list of test objects and delete each
one:

 public void tearDown() {
 Iterator i = testObjects.iterator();
 while (i.hasNext()) {
 try {
 deleteObject(i.next());
 } catch (RuntimeException e) {
 // Nothing to do; we just want to make sure
 // we continue on to the next object in the list
 }
 }
 }

Refactoring a Testlii

www.it-ebooks.info

http://www.it-ebooks.info/

Now our test looks like this:

 public void testAddItemQuantity_severalQuantity_v8(){
 Address billingAddress = null;
 Address shippingAddress = null;
 Customer customer = null;
 Product product = null;
 Invoice invoice = null;
 // Set up fixture
 billingAddress = new Address("1222 1st St SW", "Calgary",
 "Alberta", "T2N 2V2", "Canada");
 registerTestObject(billingAddress);
 shippingAddress = new Address("1333 1st St SW", "Calgary",
 "Alberta","T2N 2V2", "Canada");
 registerTestObject(shippingAddress);
 customer = new Customer(99, "John", "Doe",
 new BigDecimal("30"),
 billingAddress,
 shippingAddress);
 registerTestObject(shippingAddress);
 product = new Product(88, "SomeWidget",
 new BigDecimal("19.99"));
 registerTestObject(shippingAddress);
 invoice = new Invoice(customer);
 registerTestObject(shippingAddress);
 // Exercise SUT
 invoice.addItemQuantity(product, 5);
 // Verify outcome
 LineItem expected =
 new LineItem(invoice, product, 5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }

We have been able to remove the try/fi nally block and, except for the additional
calls to registerTestObject, our code is much simpler. But we can still clean this
code up a bit more. Why, for example, do we need to declare the variables and
initialize them to null, only to reinitialize them later? This action was needed
with the original test because they had to be accessible in the fi nally block; now
that we have removed this block, we can combine the declaration with the
initialization:

 public void testAddItemQuantity_severalQuantity_v9(){
 // Set up fixture
 Address billingAddress = new Address("1222 1st St SW",
 "Calgary", "Alberta", "T2N 2V2", "Canada");
 registerTestObject(billingAddress);
 Address shippingAddress = new Address("1333 1st St SW",
 "Calgary", "Alberta", "T2N 2V2", "Canada");

 Cleaning Up the Test liii

www.it-ebooks.info

http://www.it-ebooks.info/

 registerTestObject(shippingAddress);
 Customer customer = new Customer(99, "John", "Doe",
 new BigDecimal("30"),
 billingAddress,
 shippingAddress);
 registerTestObject(shippingAddress);
 Product product = new Product(88, "SomeWidget",
 new BigDecimal("19.99"));
 registerTestObject(shippingAddress);
 Invoice invoice = new Invoice(customer);
 registerTestObject(shippingAddress);
 // Exercise SUT
 invoice.addItemQuantity(product, 5);
 // Verify outcome
 LineItem expected =
 new LineItem(invoice, product, 5,
 new BigDecimal("30"),
 new BigDecimal("69.95"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }

Cleaning Up the Fixture Setup

Now that we have cleaned up the assertions and the fi xture teardown, let’s turn
our attention to the fi xture setup. One obvious “quick fi x” would be to take each
of the calls to a constructor, take the subsequent call to registerTestObject, and
use an Extract Method refactoring to defi ne a Creation Method (page 415). This
will make the test a bit simpler to read and write. The use of Creation Methods
has another advantage: They encapsulate the API of the SUT and reduce the test
maintenance effort when the various object constructors change by allowing us
to modify only a single place rather than having to change each test.

 public void testAddItemQuantity_severalQuantity_v10(){
 // Set up fixture
 Address billingAddress =
 createAddress("1222 1st St SW", "Calgary", "Alberta",
 "T2N 2V2", "Canada");
 Address shippingAddress =
 createAddress("1333 1st St SW", "Calgary", "Alberta",
 "T2N 2V2", "Canada");
 Customer customer =
 createCustomer(99, "John", "Doe", new BigDecimal("30"),
 billingAddress, shippingAddress);
 Product product =
 createProduct(88,"SomeWidget",new BigDecimal("19.99"));
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, 5);

liv Refactoring a Test

www.it-ebooks.info

http://www.it-ebooks.info/

 // Verify outcome
 LineItem expected =
 new LineItem(invoice, product,5, new BigDecimal("30"),
 new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }

This fi xture setup logic still suffers from several problems. The fi rst problem
is that it is diffi cult to tell how the fi xture is related to the expected outcome of
the test. Do the customer’s particulars affect the outcome in some way? Does the
customer’s address affect the outcome? What is this test really verifying?

The other problem is that this test exhibits Hard-Coded Test Data (see Obscure
Test). Given that our SUT persists all objects we create in a database, the use of
Hard-Coded Test Data may result in an Unrepeatable Test, an Interacting Test,
or a Test Run War (see Erratic Test) if any of the fi elds of the customer, product, or
invoice must be unique.

We can solve this problem by generating a unique value for each test and then
using that value to seed the attributes of the objects we create for the test. This
approach will ensure that the test creates different objects each time the test is
run. Because we have already moved the object creation logic into Creation Meth-
ods, this step is relatively easy; we just put this logic into the Creation Method and
remove the corresponding parameters. This is another application of the Extract
Method refactoring, in which we create a new, parameterless version of the Cre-
ation Method.

 public void testAddItemQuantity_severalQuantity_v11(){
 final int QUANTITY = 5;
 // Set up fixture
 Address billingAddress = createAnAddress();
 Address shippingAddress = createAnAddress();
 Customer customer = createACustomer(new BigDecimal("30"),
 billingAddress, shippingAddress);
 Product product = createAProduct(new BigDecimal("19.99"));
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, QUANTITY);
 // Verify outcome
 LineItem expected =
 new LineItem(invoice, product, 5, new BigDecimal("30"),
 new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }
 private Product createAProduct(BigDecimal unitPrice) {
 BigDecimal uniqueId = getUniqueNumber();
 String uniqueString = uniqueId.toString();
 return new Product(uniqueId.toBigInteger().intValue(),
 uniqueString, unitPrice);
 }

 Cleaning Up the Test lv

www.it-ebooks.info

http://www.it-ebooks.info/

We call this pattern an Anonymous Creation Method (see Creation Method)
because we are declaring that we don’t care about the particulars of the object.
If the expected behavior of the SUT depends on a particular value, we can either
pass the value as a parameter or imply it in the name of the creation method.

This test looks a lot better now, but we are not done yet. Does the expected
outcome depend in any way on the addresses of the customer? If not, we can
hide their construction completely by using an Extract Method refactoring
(again!) to create a version of the createACustomer method that fabricates them
for us.

 public void testAddItemQuantity_severalQuantity_v12(){
 // Set up fixture
 Customer cust = createACustomer(new BigDecimal("30"));
 Product prod = createAProduct(new BigDecimal("19.99"));
 Invoice invoice = createInvoice(cust);
 // Exercise SUT
 invoice.addItemQuantity(prod, 5);
 // Verify outcome
 LineItem expected = new LineItem(invoice, prod, 5,
 new BigDecimal("30"), new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }

By moving the calls that create the addresses into the method that creates the
customer, we have made it clear that the addresses do not affect the logic that
we are verifying in this test. The outcome does depend on the customer’s dis-
count, however, so we pass the discount percentage to the customer creation
method.

We still have one or two things to clean up. For example, the Hard-Coded
Test Data for the unit price, quantity, and customer’s discount is repeated twice
in the test. We can clarify the meaning of these numbers by using a Replace
Magic Number with Symbolic Constant [Fowler] refactoring to give them role-
describing names. Also, the constructor we are using to create the LineItem is
not used anywhere in the SUT itself because the LineItem normally calculates the
extendedCost when it is constructed. We should turn this test-specifi c code into a
Foreign Method [Fowler] implemented within the test harness. We have already
seen examples of how to do so with the Customer and Product: We use a Param-
eterized Creation Method (see Creation Method) to return the expected LineItem
based on only those values of interest.

 public void testAddItemQuantity_severalQuantity_v13(){
 final int QUANTITY = 5;
 final BigDecimal UNIT_PRICE = new BigDecimal("19.99");
 final BigDecimal CUST_DISCOUNT_PC = new BigDecimal("30");

Refactoring a Testlvi

www.it-ebooks.info

http://www.it-ebooks.info/

 // Set up fixture
 Customer customer = createACustomer(CUST_DISCOUNT_PC);
 Product product = createAProduct(UNIT_PRICE);
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, QUANTITY);
 // Verify outcome
 final BigDecimal EXTENDED_PRICE = new BigDecimal("69.96");
 LineItem expected =
 new LineItem(invoice, product, QUANTITY,
 CUST_DISCOUNT_PC, EXTENDED_PRICE);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

One fi nal point: Where did the value “69.96” come from? If this value comes
from the output of some reference system, we should say so. Because it was just
manually calculated and typed into the test, we can show the calculation in the
test for the test reader’s benefi t.

The Cleaned-Up Test

Here is the fi nal cleaned-up version of the test:

 public void testAddItemQuantity_severalQuantity_v14(){
 final int QUANTITY = 5;
 final BigDecimal UNIT_PRICE = new BigDecimal("19.99");
 final BigDecimal CUST_DISCOUNT_PC = new BigDecimal("30");
 // Set up fixture
 Customer customer = createACustomer(CUST_DISCOUNT_PC);
 Product product = createAProduct(UNIT_PRICE);
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, QUANTITY);
 // Verify outcome
 final BigDecimal BASE_PRICE =
 UNIT_PRICE.multiply(new BigDecimal(QUANTITY));
 final BigDecimal EXTENDED_PRICE =
 BASE_PRICE.subtract(BASE_PRICE.multiply(
 CUST_DISCOUNT_PC.movePointLeft(2)));
 LineItem expected =
 createLineItem(QUANTITY, CUST_DISCOUNT_PC,
 EXTENDED_PRICE, product, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

We have used an Introduce Explaining Variable [Fowler] refactoring to better
document the calculation of the BASE_PRICE (price*quantity) and EXTENDED_PRICE
(the price with discount). The revised test is now much smaller and clearer than

 The Cleaned-Up Test lvii

www.it-ebooks.info

http://www.it-ebooks.info/

the bulky code we started with. It fulfi lls the role of Tests as Documentation
(see page 23) very well. So what did we discover that this test verifi es? It con-
fi rms that the line items added to an invoice are, indeed, added to the invoice
and that the extended cost is based on the product price, the customer’s dis-
count, and the quantity ordered.

Writing More Tests

It seemed like we went to a lot of effort to refactor this test to make it clearer.
Will we have to spend so much effort on every test?

I should hope not! Much of the effort here related to the discovery of which
Test Utility Methods (page 599) were required for writing the test. We defi ned a
Higher-Level Language (see page 41) for testing our application. Once we have
those methods in place, writing other tests becomes much simpler. For example, if
we want to write a test that verifi es that the extended cost is recalculated when we
change the quantity of a LineItem, we can reuse most of the Test Utility Methods.

 public void testAddLineItem_quantityOne(){
 final BigDecimal BASE_PRICE = UNIT_PRICE;
 final BigDecimal EXTENDED_PRICE = BASE_PRICE;
 // Set up fixture
 Customer customer = createACustomer(NO_CUST_DISCOUNT);
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(PRODUCT, QUAN_ONE);
 // Verify outcome
 LineItem expected =
 createLineItem(QUAN_ONE, NO_CUST_DISCOUNT,
 EXTENDED_PRICE, PRODUCT, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

 public void testChangeQuantity_severalQuantity(){
 final int ORIGINAL_QUANTITY = 3;
 final int NEW_QUANTITY = 5;
 final BigDecimal BASE_PRICE =
 UNIT_PRICE.multiply(new BigDecimal(NEW_QUANTITY));
 final BigDecimal EXTENDED_PRICE =
 BASE_PRICE.subtract(BASE_PRICE.multiply(
 CUST_DISCOUNT_PC.movePointLeft(2)));
 // Set up fixture
 Customer customer = createACustomer(CUST_DISCOUNT_PC);
 Invoice invoice = createInvoice(customer);
 Product product = createAProduct(UNIT_PRICE);
 invoice.addItemQuantity(product, ORIGINAL_QUANTITY);

lviii Refactoring a Test

www.it-ebooks.info

http://www.it-ebooks.info/

 // Exercise SUT
 invoice.changeQuantityForProduct(product, NEW_QUANTITY);
 // Verify outcome
 LineItem expected = createLineItem(NEW_QUANTITY,
 CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

This test was written in about two minutes and did not require adding any new
Test Utility Methods. Contrast that with how long it would have taken to write
a completely new test in the original style. And the effort saved in writing the
tests is just part of the equation—we also need to consider the effort we saved
understanding existing tests each time we need to revisit them. Over the course
of a development project and the subsequent maintenance activity, this cost sav-
ings will really add up.

Further Compaction

Writing these additional tests revealed a few more sources of Test Code Duplication
(page 213). For example, it seems that we always create both a Customer and an
Invoice. Why not combine these two lines? Similarly, we continually defi ne and
initialize the QUANTITY and CUSTOMER_DISCOUNT_PC constants inside our test methods.
Why can’t we do these tasks just once? The Product does not seem to play any
roles in these tests; we always create it exactly the same way. Can we factor this
responsibility out, too? Certainly! We just apply an Extract Method refactoring
to each set of duplicated code to create more powerful Creation Methods.

 public void testAddItemQuantity_severalQuantity_v15(){
 // Set up fixture
 Invoice invoice = createCustomerInvoice(CUST_DISCOUNT_PC);
 // Exercise SUT
 invoice.addItemQuantity(PRODUCT, SEVERAL);
 // Verify outcome
 final BigDecimal BASE_PRICE =
 UNIT_PRICE.multiply(new BigDecimal(SEVERAL));
 final BigDecimal EXTENDED_PRICE =
 BASE_PRICE.subtract(BASE_PRICE.multiply(
 CUST_DISCOUNT_PC.movePointLeft(2)));
 LineItem expected = createLineItem(SEVERAL,
 CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

 public void testAddLineItem_quantityOne_v2(){
 final BigDecimal BASE_PRICE = UNIT_PRICE;
 final BigDecimal EXTENDED_PRICE = BASE_PRICE;

 Further Compaction lix

www.it-ebooks.info

http://www.it-ebooks.info/

 // Set up fixture
 Invoice invoice = createCustomerInvoice(NO_CUST_DISCOUNT);
 // Exercise SUT
 invoice.addItemQuantity(PRODUCT, QUAN_ONE);
 // Verify outcome
 LineItem expected = createLineItem(SEVERAL,
 CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

 public void testChangeQuantity_severalQuantity_V2(){
 final int NEW_QUANTITY = SEVERAL + 2;
 final BigDecimal BASE_PRICE =
 UNIT_PRICE.multiply(new BigDecimal(NEW_QUANTITY));
 final BigDecimal EXTENDED_PRICE =
 BASE_PRICE.subtract(BASE_PRICE.multiply(
 CUST_DISCOUNT_PC.movePointLeft(2)));
 // Set up fixture
 Invoice invoice = createCustomerInvoice(CUST_DISCOUNT_PC);
 invoice.addItemQuantity(PRODUCT, SEVERAL);
 // Exercise SUT
 invoice.changeQuantityForProduct(PRODUCT, NEW_QUANTITY);
 // Verify outcome
 LineItem expected = createLineItem(NEW_QUANTITY,
 CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

We have now reduced the number of lines of code we need to understand from 35
statements in the original test to just 6 statements.4 We are left with just a bit more
than one sixth of the original code to maintain! We could go further by factoring
out the fi xture setup into a setUp method, but that effort would be worthwhile only
if a lot of tests needed the same Customer/Discount/Invoice confi guration. If we
wanted to reuse these Test Utility Methods from other Testcase Classes (page 373),
we could use an Extract Superclass [Fowler] refactoring to create a Testcase Super-
class (page 638), and then use a Pull Up Method [Fowler] refactoring to move the
Test Utility Methods to it so they can be reused.

4 Ignoring wrapped lines, we have 6 executable statements surrounded by the two lines
of method declarations/end.

Refactoring a Testlx

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

The Narratives

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

3

Chapter 1

A Brief Tour

About This Chapter

There are a lot of principles, patterns, and smells in this book—and even more pat-
terns that couldn’t fi t into the book. Do you need to learn them all? Do you need
to use them all? Probably not! This chapter provides an abbreviated introduction
to the bulk of the material in the entire book. You can use it as a quick tour of the
material before diving into particular patterns or smells of interest. You can also
use it as a warm-up before exploring the more detailed narrative chapters.

The Simplest Test Automation Strategy That Could
Possibly Work

There is a simple test automation strategy that will work for many, many
projects. This section describes this minimal test strategy. The principles, pat-
terns, and smells referenced here are the core patterns that will serve us well in
the long run. If we learn to apply them effectively, we will probably be success-
ful in our test automation endeavors. If we fi nd that we really cannot make the
minimal test strategy work on our project by using these patterns, we can fall
back to the alternative patterns listed in the full descriptions of these patterns
and in the other narratives.

I have laid out this simple strategy in fi ve parts:

• Development Process: How the process we use to develop the code
affects our tests.

• Customer Tests: The fi rst tests we should write as the ultimate defi ni-
tion of “what done looks like.”

www.it-ebooks.info

http://www.it-ebooks.info/

4 Chapter 1 A Brief Tour

• Unit Tests: The tests that help our design emerge incrementally and
ensure that all our code is tested.

• Design for Testability: The patterns that make our design easier to test,
thereby reducing the cost of test automation.

• Test Organization: How we can organize our Test Methods (page 348)
and Testcase Classes (page 373).

Development Process

First things fi rst: When do we write our tests? Writing tests before we write our
software has several benefi ts. In particular, it gives us an agreed-upon defi nition
of what success looks like.1

When doing new software development, we strive to do storytest-driven
development by fi rst automating a suite of customer tests that verify the func-
tionality provided by the application. To ensure that all of our software is tested,
we augment these tests with a suite of unit tests that verify all code paths or, at a
minimum, all the code paths that are not covered by the customer tests. We can
use code coverage tools to discover which code is not being exercised and then
retrofi t unit tests to accommodate the untested code.2

By organizing the unit tests and customer tests into separate test suites, we
ensure that we can run just the unit tests or just the customer tests if neces-
sary. The unit tests should always pass before we check them in; this is what
we mean by the phrase “keep the bar green.” To ensure that the unit tests are
run frequently, we can include them in the Smoke Tests [SCM] that are run as
part of the Integration Build [SCM]. Although many of the customer tests will
fail until the corresponding functionality is built, it is nevertheless useful to
run all the passing customer tests as part of the integration build phase—but
only if this step does not slow the build down too much. In that case, we can
leave them out of the check-in build and simply run them every night.

We can ensure that our software is testable by doing test-driven development
(TDD). That is, we write the unit tests before we write the code, and we use
the tests to help us defi ne the software’s design. This strategy helps concentrate
all the business logic that needs verifi cation in well-defi ned objects that can be
tested independently of the database. Although we should also have unit tests

1 If our customer cannot defi ne the tests before we have built the software, we have every
reason to be worried!
2 We will likely fi nd fewer Missing Unit Tests (see Production Bugs on page 268) when
we practice test-driven development than if we adopt a “test last” policy. Even so, there
is still value in running the code coverage tools with TDD.

www.it-ebooks.info

http://www.it-ebooks.info/

5

for the data access layer and the database, we try to keep the dependency on the
database to a minimum in the unit tests for the business logic.

Customer Tests

The customer tests should capture the essence of what the customer wants
the system to do. Enumerating the tests before we begin their development is
an important step whether or not we actually automate the tests, because it
helps the development team understand what the customer really wants; these
tests defi ne what success looks like. We can automate the tests using Scripted
Tests (page 285) or Data-Driven Tests (page 288) depending on who is pre-
paring the tests; customers can take part in test automation if we use Data-
Driven Tests. On rare occasions, we might even use Recorded Tests (page 278)
for regression testing an existing application while we refactor the application
to improve its testability. Of course, we usually discard these tests once we have
developed other tests that cover the functionality, because Recorded Tests tend
to be Fragile Tests (page 239).

During their development, we strive to make our customer tests represen-
tative of how the system is really used. Unfortunately, this goal often confl icts
with attempts to keep the tests from becoming too long, because long tests
are often Obscure Tests (page 186) and tend not to provide very good Defect
Localization (see page 22) when they fail partway through the test. We can also
use well-written Tests as Documentation (see page 23) to identify how the system
is supposed to work. To keep the tests simple and easy to understand, we can
bypass the user interface by performing Subcutaneous Testing (see Layer Test on
page 337) against one or more Service Facades [CJ2EEP]. Service Facades encap-
sulate all of the business logic behind a simple interface that is also used by the
presentation layer.

Every test needs a starting point. As part of our testing plan, we take care
that each test sets up this starting point, known as the test fi xture, each time
the test is run. This Fresh Fixture (page 311) helps us avoid Interacting Tests
(see Erratic Test on page 228) by ensuring that tests do not depend on anything
they did not set up themselves. We avoid using a Shared Fixture (page 317),
unless it is an Immutable Shared Fixture, to avoid starting down the slippery
slope to Erratic Tests.

If our application normally interacts with other applications, we may need
to isolate it from any applications that we do not have in our development en-
vironment by using some form of Test Double (page 522) for the objects that
act as interfaces to the other applications. If the tests run too slowly because of
database access or other slow components, we can replace them with functionally

 The Simplest Test Automation Strategy That Could Possibly Work

www.it-ebooks.info

http://www.it-ebooks.info/

6

equivalent Fake Objects (page 551) to speed up our tests, thereby encouraging
developers to run them more regularly. If at all possible, we avoid using Chained
Tests (page 454)—they are just the test smell Interacting Tests in disguise.

Unit Tests

For our unit tests to be effective, each one should be a Fully Automated Test
(page 26) that does a round-trip test against a class through its public interface.
We can strive for Defect Localization by ensuring that each test is a Single-
Condition Test (see page 45) that exercises a single method or object in a single
scenario. We should also write our tests so that each part of the Four-Phase
Test (page 358) is easily recognizable, which enables us to use the Tests as Docu-
mentation.

We use a Fresh Fixture strategy so that we do not have to worry about In-
teracting Tests or fi xture teardown. We begin by creating a Testcase Class for
each class we are testing (see Testcase Class per Class on page 617), with each
test being a separate Test Method on that class. Each Test Method can use Del-
egated Setup (page 411) to build a Minimal Fixture (page 302) that makes the
tests easily understood by calling well-named Creation Methods (page 415) to
build the objects required for each test fi xture.

To make the tests self-checking (Self-Checking Test; see page 26), we
express the expected outcome of each test as one or more Expected Objects
(see State Verifi cation on page 462) and compare them with the actual objects
returned by the system under test (SUT) using the built-in Equality Assertions
(see Assertion Method on page 362) or Custom Assertions (page 474) that
implement our own test-specifi c equality. If several tests are expected to result
in the same outcome, we can factor out the verifi cation logic into an outcome-
describing Verifi cation Method (see Custom Assertion) that the test reader can
more easily recognize.

If we have Untested Code (see Production Bugs on page 268) because we
cannot fi nd a way to execute the path through the code, we can use a Test
Stub (page 529) to gain control of the indirect inputs of the SUT. If there
are Untested Requirements (see Production Bugs) because not all of the
system’s behavior is observable via its public interface, we can use a Mock
Object (page 544) to intercept and verify the indirect outputs of the SUT.

Chapter 1 A Brief Tour

www.it-ebooks.info

http://www.it-ebooks.info/

7

Design for Testability

Automated testing is much simpler if we adopt a Layered Architecture [DDD,
PEAA, WWW]. At a minimum, we should separate our business logic from the
database and the user interface, thereby enabling us to test it easily using either
Subcutaneous Tests or Service Layer Tests (see Layer Test). We can minimize any
dependence on a Database Sandbox (page 650) by doing most—if not all—of
our testing using in-memory objects only. This scheme lets the runtime environ-
ment implement Garbage-Collected Teardown (page 500) for us automatically,
meaning that we can avoid writing potentially complex, error-prone teardown
logic (a sure source of Resource Leakage; see Erratic Test). It also helps us avoid
Slow Tests (page 253) by reducing disk I/O, which is much slower than memory
manipulation.

If we are building a GUI, we should try to keep the complex GUI logic out
of the visual classes. Using a Humble Dialog (see Humble Object on page 695)
that delegates all decision making to nonvisual classes allows us to write unit
tests for the GUI logic (e.g., enabling/disabling buttons) without having to
instantiate the graphical objects or the framework on which they depend.

If the application is complex enough or if we are expected to build compo-
nents that will be reused by other projects, we can augment the unit tests with
component tests that verify the behavior of each component in isolation. We
will probably need to use Test Doubles to replace any components on which
our component depends. To install the Test Doubles at runtime, we can use
either Dependency Injection (page 678), Dependency Lookup (page 686), or a
Subclassed Singleton (see Test-Specifi c Subclass on page 579).

Test Organization

If we end up with too many Test Methods on our Testcase Class, we can con-
sider splitting the class based on either the methods (or features) verifi ed by the
tests or their fi xture needs. These patterns are called Testcase Class per Fea-
ture (page 624) and Testcase Class per Fixture (page 631), respectively. Testcase
Class per Fixture allows us to move all of the fi xture setup code into the setUp
method, an approach called Implicit Setup (page 424). We can then aggregate
the Test Suite Objects (page 387) for the resulting Testcase Classes into a single
Test Suite Object, resulting in a Suite of Suites (see Test Suite Object) containing
all the tests from the original Testcase Class. This Test Suite Object can, in turn,
be added to the Test Suite Object for the containing package or namespace. We
can then run all of the tests or just a subset that is relevant to the area of the
software in which we are working.

 The Simplest Test Automation Strategy That Could Possibly Work

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 A Brief Tour

What’s Next?

This whirlwind tour of the most important goals, principles, patterns, and
smells is just a brief introduction to test automation. Chapters 2 through 14
give a more detailed overview of each area touched upon here. If you have
already spotted some patterns or smells you want to learn more about, you can
certainly proceed directly to the detailed descriptions in Parts II and III. Other-
wise, your next step is to delve into the subsequent narratives, which provide a
somewhat more in-depth examination of these patterns and the alternatives to
them. First up is Chapter 2, Test Smells, which describes some common “test
smells” that motivate much of the refactoring we do on our tests.

8

www.it-ebooks.info

http://www.it-ebooks.info/

9

Chapter 2

Test Smells

About This Chapter

Chapter 1, A Brief Tour, provided a very quick introduction to the core patterns
and smells covered in this book. This chapter provides a more detailed examina-
tion of the “test smells” we are likely to encounter on our projects. We explore
the basic concept of test smells fi rst, and then move on to investigate the smells
in three broad categories: test code smells, automated test behavior smells, and
project smells related to automated testing.

An Introduction to Test Smells

In his book Refactoring: Improving the Design of Existing Code, Martin Fowler
documented a number of ways that the design of code can be changed without
actually changing what the code does. The motivation for this refactoring was
the identifi cation of “bad smells” that frequently occur in object-oriented code.
These code smells were described in a chapter coauthored by Kent Beck that
started with the famous quote from Grandma Beck: “If it stinks, change it.” The
context of this quote was the question, “How do you know you need to change
a baby’s diaper?” And so a new term was added to the programmer’s lexicon.

The code smells described in Refactoring focused on problems commonly
found in production code. Many of us had long suspected that there were
smells unique to automated test scripts. At XP2001, the paper “Refactoring
Test Code” [RTC] confi rmed these suspicions by identifying a number of “bad
smells” that occur specifi cally in test code. The authors also recommended a set
of refactorings that can be applied to the tests to remove the noxious smells.

This chapter provides an overview of these test smells. More detailed ex-
amples of each test smell can be found in the reference section.

www.it-ebooks.info

http://www.it-ebooks.info/

10

What’s a Test Smell?

A smell is a symptom of a problem. A smell doesn’t necessarily tell us what is
wrong, because a particular smell may originate from any of several sources.
Most of the smells in this book have several different named causes; some causes
even appear under several smells. That’s because a root cause may reveal itself
through several different symptoms (i.e., smells).

Not all problems are considered smells, and some problems may even be the
root cause of several smells. The “Occam’s razor” test for deciding whether
something really is a smell (versus just a problem) is the “sniffability test.” That
is, the smell must grab us by the nose and say, “Something is wrong here.” As
discussed in the next section, I have classifi ed the smells based on the kinds of
symptoms they exhibit (how they “grab us by the nose”).

Based on the “sniffability” criteria, I have demoted some of the test smells
listed in prior papers and articles to “cause” status. I have mostly left their
names unchanged so that we can still refer to them when talking about a par-
ticular side effect of applying a pattern. In this case, it is more appropriate to
refer directly to the cause rather than to the more general but sniffable smell.

Kinds of Test Smells

Over the years we have discovered that there are at least two different kinds of
smells: code smells, which must be recognized when looking at code, and behav-
ior smells, which affect the outcome of tests as they execute.

Code smells are coding-level anti-patterns that a developer, tester, or coach
may notice while reading or writing test code. That is, the code just doesn’t look
quite right or doesn’t communicate its intent very clearly. Code smells must fi rst
be recognized before we can take any action, and the need for action may not be
equally obvious to everyone. Code smells apply to all kinds of tests, including both
Scripted Tests (page 285) and Recorded Tests (page 278). They become particu-
larly relevant for Recorded Tests when we must maintain the recorded code. Un-
fortunately, most Recorded Tests suffer from Obscure Tests (page 186), because
they are recorded by a tool that doesn’t know what is relevant to the human reader.

Behavior smells, by contrast, are much more diffi cult to ignore because they
cause tests to fail (or not compile at all) at the most inopportune times, such as
when we are trying to integrate our code into a crucial build; we are forced to
unearth the problems before we can “make the bar green.” Like code smells,
behavior smells are relevant to both Scripted Tests and Recorded Tests.

Chapter 2 Test Smells

www.it-ebooks.info

http://www.it-ebooks.info/

11

Developers typically notice code and behavior smells when they automate,
maintain, and run tests. More recently, we have identifi ed a third kind of
smell—a smell that is usually noticed by the project manager or the customer,
who does not look at the test code or run the tests. These project smells are in-
dicators of the overall health of a project.

What to Do about Smells?

Some smells are inevitable simply because they take too much effort to elimi-
nate. The important thing is that we are aware of the smells and know what
causes them. We can then make a conscious decision about which ones we must
address to keep the project running effi ciently.

The decision of which smells must be eliminated comes down to the
balance between cost and benefi t. Some smells are harder to stamp out than
others; some smells cause more grief than others. We need to eradicate those
smells that cause us the most grief because they will keep us from being suc-
cessful. That being said, many smells can be avoided by selecting a sound test
automation strategy and by following good test automation coding standards.

While we carefully delineated the various types of smells, it is important to
note that very often we will observe symptoms of each kind of smell at the
same time. Project smells, for example, are the project-level symptoms of some
underlying cause. That cause may show up as a behavior smell but ultimately
there is probably an underlying code smell that is the root cause of the problem.
The good news: We have three different ways to identify a problem. The bad
news: It is easy to focus on the symptom at one level and to try to solve that
problem directly without understanding the root cause.

A very effective technique for identifying the root cause is the “Five Why’s”
[TPS]. First, we ask why something is occurring. Once we have identifi ed the
factors that led to it, we next ask why each of those factors occurred. We repeat
this process until no new information is forthcoming. In practice, asking why
fi ve times is usually enough—hence the name “Five Why’s.”1

In the rest of this chapter, we will look at the test-related smells that we
are most likely to encounter on our projects. We will begin with the project
smells, and then work our way down to the behavior smells and code smells
that cause them.

1 This practice is also called “root cause analysis” or “peeling the onion” in some circles.

 An Introduction To Test Smells

www.it-ebooks.info

http://www.it-ebooks.info/

12 Chapter 2 Test Smells

A Catalog of Smells

Now that we have a better understanding of test smells and their role in projects
that use automated testing, let’s look at some smells. Based on the “sniffability”
criteria outlined earlier, this section focuses on introducing the smells. Discus-
sions of their causes and the individual smell descriptions appear in Part II of
this book.

The Project Smells

Project smells are symptoms that something has gone wrong on the project. Their
root cause is likely to be one or more of the code or behavior smells. Because proj-
ect managers rarely run or write tests, however, project smells are likely to be the
fi rst hint they get that something may be less than perfect in test automation land.

Project managers focus most on functionality, quality, resources, and cost.
For this reason, the project-level smells tend to cluster around these issues. The
most obvious metric a project manager is likely to encounter as a smell is the
quality of the software as measured in defects found in formal testing or by
users/customers. If the number of Production Bugs (page 268) is higher than
expected, the project manager must ask, “Why are all of these bugs getting
through our safety net of automated tests?”

The project manager may be monitoring the number of times the daily in-
tegration build fails as a way of getting an early indication of software quality
and adherence to the team’s development process. The manager may become
worried if the build fails too frequently, and especially if it takes more than a
few minutes to fi x the build. Root cause analysis of the failures may indicate
that many of the test failures are not the result of buggy software but rather
derive from Buggy Tests (page 260). This is an example in which the tests cry
“Wolf!” and consume a lot of resources as part of their correction, but do not
actually increase the quality of the production code.

Buggy Tests are just one contributor to the more general problem of High
Test Maintenance Cost (page 265), which can severely affect the productivity
of the team if not addressed quickly. If the tests need to be modifi ed too often
(e.g., every time the SUT is modifi ed) or if the cost of modifying tests is too high
due to Obscure Tests, the project manager may decide that the effort and ex-
pense being directed toward writing the automated tests would be better spent

www.it-ebooks.info

http://www.it-ebooks.info/

13

on writing more production code or doing manual testing. At this point, the
manager is likely to tell the developers to stop writing tests.2

Alternatively, the project manager may decide that the Production Bugs are
caused by Developers Not Writing Tests (page 263). This pronouncement is
likely to come during a process retrospective or as part of a root cause analysis
session. Developers Not Writing Tests may be caused by an overly aggressive
development schedule, supervisors who tell developers not to “waste time writ-
ing tests,” or developers who do not have the skills to write tests. Other poten-
tial causes might include an imposed design that is not conducive to testing or
a test environment that leads to Fragile Tests (page 239). Finally, this problem
could result from Lost Tests (see Production Bugs)—tests that exist but are not
included in the AllTests Suite (see Named Test Suite on page 592) used by devel-
opers during check-in or by the automated build tool.

The Behavior Smells

Behavior smells are encountered when we compile or run tests. We don’t have
to be particularly observant to notice them, as these smells will take the form of
compile errors or test failures.

The most common behavior smell is Fragile Tests. It arises when tests that
once passed begin failing for some reason. The Fragile Test problem has given
test automation a bad name in many circles, especially when commercial
“record and playback” test tools fail to deliver on their promise of easy test
automation. Once recorded, these tests are very susceptible to breakage. Often
the only remedy is to rerecord them because the test recordings are diffi cult to
understand or modify by hand.

The root causes of Fragile Tests can be classifi ed into four broad categories:

• Interface Sensitivity (see Fragile Test) occurs when tests are broken by
changes to the test programming API or the user interface used to au-
tomate the tests. Commercial Record and Playback Test (see Recorded
Test) tools typically interact with the system via the user interface. Even
minor changes to the interface can cause tests to fail, even in circum-
stances in which a human user would say that the test should still pass.

2 It can be hard enough to get project managers to buy into letting developers write
automated tests. It is crucial that we don’t squander this opportunity by being sloppy
or ineffi cient. The need for this balancing act is, in a nutshell, why I started writing this
book: to help developers succeed and avoid giving the pessimistic project manager an
excuse for calling a halt to automated unit testing.

 A Catalog of Smells

www.it-ebooks.info

http://www.it-ebooks.info/

14 Chapter 2 Test Smells

• Behavior Sensitivity (see Fragile Test) occurs when tests are broken by
changes to the behavior of the SUT. This may seem like a “no-brainer”
(of course, the tests should break if we change the SUT!) but the issue
is that only a few tests should be broken by any one change. If many or
most of the tests break, we have a problem.

• Data Sensitivity (see Fragile Test) occurs when tests are broken by
changes to the data already in the SUT. This issue is particularly a
problem for applications that use databases. Data Sensitivity is a spe-
cial case of Context Sensitivity (see Fragile Test) where the context in
question is the database.

• Context Sensitivity occurs when tests are broken by differences in the
environment surrounding the SUT. The most common example is when
tests depend on the time or date, but this problem can also arise when
tests rely on the state of devices such as servers, printers, or monitors.

Data Sensitivity and Context Sensitivity are examples of a special kind of Frag-
ile Test, known as a Fragile Fixture, in which changes to a commonly used test
fi xture cause multiple existing tests to fail. This scenario increases the cost of
extending the Standard Fixture (page 305) to support new tests and, in turn,
discourages good test coverage. Although Fragile Fixture’s root cause is poor
test design, the problem actually appears when the fi xture is changed rather
than when the SUT is changed.

Most agile projects use some form of daily or continuous integration that
includes two steps: compiling the latest version of the code and running all
of the automated tests against the newly compiled build. Assertion Rou-
lette (page 224) can make it diffi cult to determine how and why tests failed
during the integration build because the failure log does not include suffi -
cient information to clearly identify which assertion failed. Troubleshooting
of the build failures may proceed slowly, because the failure must be repro-
duced in the development environment before we can speculate on the cause
of the failure.

A common cause of grief is tests that fail for no apparent reason. That is,
neither the tests nor the production code has been modifi ed, yet the tests sud-
denly begin failing. When we try to reproduce these results in the development
environment, the tests may or may not fail. These Erratic Tests (page 228) are
both very annoying and time-consuming to fi x, because they have numerous
possible causes. A few are listed here:

www.it-ebooks.info

http://www.it-ebooks.info/

15

• Interacting Tests arise when several tests use a Shared Fixture (page 317).
They make it hard to run tests individually or to run several test suites as
part of a larger Suite of Suites (see Test Suite Object on page 387). They
can also cause cascading failures (where a single test failure leaves the
Shared Fixture in a state that causes many other tests to fail).

• Test Run Wars occur when several Test Runners (page 377) run tests
against a Shared Fixture at the same time. They invariably happen at
the worst possible time, such as when you are trying to fi x the last few
bugs before a release.

• Unrepeatable Tests provide a different result between the fi rst and
subsequent test runs. They may force the test automater to perform a
Manual Intervention (page 250) between test runs.

Another productivity-sapping smell is Frequent Debugging (page 248). Auto-
mated unit tests should obviate the need to use a debugger in all but rare cases,
because the set of tests that are failing should make it obvious why the failure is
occurring. Frequent Debugging is a sign that the unit tests are lacking in cover-
age or are trying to test too much functionality at once.

The real value of having Fully Automated Tests (page 26) is being able to run
them frequently. Agile developers who are doing test-driven development often
run (at least a subset of) the tests every few minutes. This behavior should be
encouraged because it shortens the feedback loop, thereby reducing the cost of
any defects introduced into the code. When tests require Manual Intervention
each time they are run, developers tend to run the tests less frequently. This
practice increases the cost of fi nding all defects introduced since the tests were
last run, because more changes will have been made to the software since it was
last tested.

Another smell that has the same net impact on productivity is Slow
Tests (page 253). When tests take more than approximately 30 seconds to run,
developers stop running them after every individual code change, instead wait-
ing for a “logical time” to run them—for example, before a coffee break, lunch,
or a meeting. This delayed feedback results in a loss of “fl ow” and increases
the time between when a defect is introduced and when it is identifi ed by a test.
The most frequently used solution to Slow Tests is also the most problematic;
a Shared Fixture can result in many behavior smells and should be the solution
of last resort.

 A Catalog of Smells

www.it-ebooks.info

http://www.it-ebooks.info/

16 Chapter 2 Test Smells

The Code Smells

Code smells are the “classic” bad smells that were fi rst described by Martin
Fowler in Refactoring [Ref]. Indeed, most of the smells identifi ed by Fowler are
code smells. These smells must be recognized by test automaters as they main-
tain test code. Although code smells typically affect maintenance cost of tests,
they may also be early warning signs of behavior smells to follow.

When reading tests, a fairly obvious—albeit often overlooked—smell is
Obscure Test. It can take many forms, but all versions have the same impact: It
becomes diffi cult to tell what the test is trying to do, because the test does not
Communicate Intent (page 41). This ambiguity increases the cost of test main-
tenance and can lead to Buggy Tests when a test maintainer makes the wrong
change to the test.

A related smell is Conditional Test Logic (page 200). Tests should be simple,
linear sequences of statements. When tests have multiple execution paths, we
cannot be sure exactly how the test will execute in a specifi c case.

Hard-Coded Test Data (see Obscure Test) can be insidious for several rea-
sons. First, it makes tests more problematic to understand: We need to look at
each value and guess whether it is related to any of the other values to under-
stand how the SUT is supposed to behave. Second, it creates challenges when
we are testing a SUT that includes a database. Hard-Coded Test Data can lead
to Erratic Tests (if tests happen to use the same database key) or Fragile Fix-
tures (if the values refer to records in the database that have been changed).

Hard-to-Test Code (page 209) may be a contributing factor to a number of
other code and behavior smells. This problem is most obvious to the person
who is writing a test and cannot fi nd a way to set up the fi xture, exercise the
SUT, or verify the expected outcome. The test automater may then be forced
to test more software (a larger SUT consisting of many classes) than he or she
would like. When reading a test, Hard-to-Test Code tends to show up as an
Obscure Test because of the hoops the test automater had to jump through to
interact with the SUT.

Test Code Duplication (page 213) is a poor practice because it increases the
cost of maintaining tests. We have more test code to maintain and that code
is more challenging to maintain because it often coincides with an Obscure
Test. Duplication often arises when the automated tester clones tests and does
not put enough thought into how to reuse test logic intelligently.3 As testing
needs emerge, it is important that the test automater factor out commonly used
sequences of statements into Test Utility Methods (page 599) that can be reused

3 Note that I said “reuse test logic” and not “reuse Test Methods.”

www.it-ebooks.info

http://www.it-ebooks.info/

by various Test Methods (page 348).4 This practice reduces the maintenance
cost of tests in several ways.

Test Logic in Production (page 217) is undesirable because there is no way
to ensure that it will not run accidentally.5 It also makes the production code
larger and more complicated. Finally, this error may cause other software com-
ponents or libraries to be included in the executable.

What’s Next?

In this chapter, we saw a plethora of things that can go wrong when automating
tests. Chapter 3, Goals of Test Automation, describes the goals we need to keep
in mind while automating tests so that we can have an effective test automation
experience. That understanding will prepare us to look at the principles that will
help us steer clear of many of the problems described in this chapter.

4 It is equally important that we do not reuse Test Methods, as that practice results in
Flexible Tests (see Conditional Test Logic).
5 See the sidebar on Ariane (page 218) for a cautionary tale.

 What’s Next 17

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

19

Chapter 3

Goals of Test Automation

About This Chapter

Chapter 2, Test Smells, introduced the various “test smells” that can act as
symptoms of problems with automated testing. This chapter describes the goals
we should be striving to reach to ensure successful automated unit tests and
customer tests. It begins with a general discussion of why we automate tests,
then turns to a description of the overall goals of test automation, including re-
ducing costs, improving quality, and improving the understanding of code. Each
of these areas has more detailed named goals that are discussed briefl y here as
well. This chapter doesn’t describe how to achieve these goals; that explanation
will come in subsequent chapters where these goals are used as the rationale for
many of the principles and patterns.

Why Test?

Much has been written about the need for automated unit and acceptance tests
as part of agile software development. Writing good test code is hard, and main-
taining obtuse test code is even harder. Because test code is optional (i.e., it is
not what the customer is paying for), there is a strong temptation to abandon
testing when the tests become diffi cult or expensive to maintain. Once we have
given up on the principle of “keep the bar green to keep the code clean,” much
of the value of the automated tests is lost.

Over a series of projects, the teams I have worked with have faced a number
of challenges to automated testing. The cost of writing and maintaining test suites
has been a particular challenge, especially on projects with thousands of tests.
Fortunately, as the cliché says, “Necessity is the mother of invention.” My teams,
and others, have developed a number of solutions to address these challenges.
I have since spent a lot of time refl ecting on these solutions to ask why they are good

www.it-ebooks.info

http://www.it-ebooks.info/

20

solutions. Along the way, I have divided the components of successful solutions
into goals (things to achieve) and principles (ways to achieve them). Adherence
to these goals and principles will result in automated tests that are easier to write,
read, and maintain.

Economics of Test Automation

Of course, there is always a cost incurred in building and maintaining an auto-
mated test suite. Ardent test automation advocates will argue that it is worth
spending more to have the ability to change the software later. Unfortunately,
this “pay me now so you don’t have to pay me later” argument doesn’t go very
far in a tough economic climate.1

Our goal should be to make the decision to do test automation a “no-brainer”
by ensuring that it does not increase the cost of software development. Thus the
additional cost of building and maintaining automated tests must be offset by
savings through reduced manual unit testing and debugging/troubleshooting as
well as the remediation cost of the defects that would have gone undetected until
the formal test phase of the project or early production usage of the application.
Figure 3.1 shows how the cost of automation is offset by the savings received
from automation.

Figure 3.1 An automated unit test project with a good return on investment.
The cost-benefi t trade-off when the total cost is reduced by good test practices.

Initially, the cost of learning the new technology and practices takes additional
effort. Once we get over this “hump,” however, we should settle down to a
steady state where the added cost (the part above the line) is fully offset by the

1 The argument that the quality improvement is worth the extra cost also doesn’t go very
far in these days of “just good enough” software quality.

Effort
Spent on

Automating
Tests

Development
Effort on

Production
Code Saved Effort

Time

Increased
Effort

(Hump)
Reduced

Effort
Initial
Effort

Effort
Spent on

Automating
Tests

Development
Effort on

Production
Code Saved Effort

Time

Increased
Effort

(Hump)
Reduced

Effort
Initial
Effort

Chapter 3 Goals of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

21

savings (the part below the line). If tests are diffi cult to write, are diffi cult to
understand, and require frequent, expensive maintenance, the total cost of soft-
ware development (the heights of the vertical arrows) goes up as illustrated in
Figure 3.2.

Figure 3.2 An automated unit test project with a poor return on investment.
The cost-benefi t trade-off when the total cost is increased by poor test practices.

Note how the added work above the line in Figure 3.2 is more than that seen
in Figure 3.1 and continues to increase over time. Also, the saved effort below
the line is reduced. This refl ects the increase in overall effort, which exceeds the
original effort without test automation.

Goals of Test Automation

We all come to test automation with some notion of why having automated
tests would be a “good thing.” Here are some high-level objectives that might
apply:

• Tests should help us improve quality.

• Tests should help us understand the SUT.

• Tests should reduce (and not introduce) risk.

• Tests should be easy to run.

• Tests should be easy to write and maintain.

• Tests should require minimal maintenance as the system evolves
around them.

Time

Initial
Effort

Ongoing
Effort

Increased
Effort

(Hump)

Effort
Spent on

Automating
Tests

Development
Effort on

Production
Code

Saved Effort

Time

Initial
Effort

Ongoing
Effort

Increased
Effort

(Hump)

Effort
Spent on

Automating
Tests

Development
Effort on

Production
Code

Saved Effort

Goals of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

22 Chapter 3 Goals of Test Automation

The fi rst three objectives demonstrate the value provided by the tests, whereas
the last three objectives focus on the characteristics of the tests themselves. Most
of these objectives can be decomposed into more concrete (and measurable)
goals. I have given these short catchy names so that I can refer to them as moti-
vators of specifi c principles or patterns.

Tests Should Help Us Improve Quality

The traditional reason given for doing testing is for quality assurance (QA).
What, precisely, do we mean by this? What is quality? Traditional defi nitions
distinguish two main categories of quality based on the following questions:
(1) Is the software built correctly? and (2) Have we built the right software?

Goal: Tests as Specifi cation

If we are doing test-driven development or test-fi rst development, the tests give
us a way to capture what the SUT should be doing before we start building it.
They enable us to specify the behavior in various scenarios captured in a form
that we can then execute (essentially an “executable specifi cation”). To ensure
that we are “building the right software,” we must ensure that our tests refl ect
how the SUT will actually be used. This effort can be facilitated by developing
user interface mockups that capture just enough detail about how the applica-
tion appears and behaves so that we can write our tests.

The very act of thinking through various scenarios in enough detail to turn
them into tests helps us identify those areas where the requirements are ambigu-
ous or self-contradictory. Such analysis improves the quality of the specifi ca-
tion, which improves the quality of the software so specifi ed.

Goal: Bug Repellent

Yes, tests fi nd bugs—but that really isn’t what automated testing is about. Auto-
mated testing tries to prevent bugs from being introduced. Think of automated
tests as “bug repellent” that keeps nasty little bugs from crawling back into our
software after we have made sure it doesn’t contain any bugs. Wherever we
have regression tests, we won’t have bugs because the tests will point the bugs
out before we even check in our code. (We are running all the tests before every
check-in, aren’t we?)

Goal: Defect Localization

Mistakes happen! Of course, some mistakes are much more expensive to pre-
vent than to fi x. Suppose a bug does slip through somehow and shows up in

Also known as:
Executable

Specifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

23

the Integration Build [SCM]. If our unit tests are fairly small (i.e., we test only
a single behavior in each one), we should be able to pinpoint the bug quickly
based on which test fails. This specifi city is one of the major advantages that unit
tests enjoy over customer tests. The customer tests tell us that some behavior
expected by the customer isn’t working; the unit tests tell us why. We call this
phenomenon Defect Localization. If a customer test fails but no unit tests fail, it
indicates a Missing Unit Test (see Production Bugs on page 268).

All of these benefi ts are wonderful—but we cannot achieve them if we don’t
write tests for all possible scenarios that each unit of software needs to cover.
Nor will we realize these benefi ts if the tests themselves contain bugs. Clearly,
it is crucial that we keep the tests as simple as possible so that they can be
easily seen to be correct. While writing unit tests for our unit tests is not a
practical solution, we can—and should—write unit tests for any Test Utility
Method (page 599) to which we delegate complex algorithms needed by the test
methods.

Tests Should Help Us Understand the SUT

Repelling bugs isn’t the only thing the tests can do for us. They can also show
the test reader how the code is supposed to work. Black box component tests
are—in effect—describing the requirements of that of software component.

Goal: Tests as Documentation

Without automated tests, we would need to pore over the SUT code trying to
answer the question, “What should be the result if . . . ?” With automated tests,
we simply use the corresponding Tests as Documentation; they tell us what the
result should be (recall that a Self-Checking Test states the expected outcome in
one or more assertions). If we want to know how the system does something, we
can turn on the debugger, run the test, and single-step through the code to see
how it works. In this sense, the automated tests act as a form of documentation
for the SUT.

Tests Should Reduce (and Not Introduce) Risk

As mentioned earlier, tests should improve the quality of our software by help-
ing us better document the requirements and prevent bugs from creeping in dur-
ing incremental development. This is certainly one form of risk reduction. Other
forms of risk reduction involve verifying the software’s behavior in the “impos-
sible” circumstances that cannot be induced when doing traditional customer
testing of the entire application as a black box. It is a very useful exercise to

 Goals of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

24 Chapter 3 Goals of Test Automation

review all of the project’s risks and brainstorm about which kinds of risks could
be at least partially mitigated through the use of Fully Automated Tests.

Goal: Tests as Safety Net

When working on legacy code, I always feel nervous. By defi nition, legacy code
doesn’t have a suite of automated regression tests. Changing this kind of code is
risky because we never know what we might break, and we have no way of know-
ing whether we have broken something! As a consequence, we must work very
slowly and carefully, doing a lot of manual analysis before making any changes.

When working with code that has a regression test suite, by contrast, we can
work much more quickly. We can adopt a more experimental style of changing
the software: “I wonder what would happen if I changed this? Which tests fail?
Interesting! So that’s what this parameter is for.” In this way, the automated
tests act as a safety net that allows us to take chances.2

The effectiveness of the safety net is determined by how completely our tests
verify the behavior of the system. Missing tests are like holes in the safety net.
Incomplete assertions are like broken strands. Each gap in the safety net can let
bugs of various sizes through.

The effectiveness of the safety net is amplifi ed by the version-control capabil-
ities of modern software development environments. A source code repository
[SCM] such as CVS, Subversion, or SourceSafe lets us roll back our changes to
a known point if our tests suggest that the current set of changes is affecting the
code too extensively. The built-in “undo” or “local history” features of the IDE
let us turn the clock back 5 seconds, 5 minutes, or even 5 hours.

Goal: Do No Harm

Naturally, there is a fl ip side to this discussion: How might automated tests in-
troduce risk? We must be careful not to introduce new kinds of problems into
the SUT as a result of doing automated testing. The Keep Test Logic Out of
Production Code principle directs us to avoid putting test-specifi c hooks into
the SUT. It is certainly desirable to design the system for testability, but any test-
specifi c code should be plugged in by the test and only in the test environment;
it should not exist in the SUT when it is in production.

Another form of risk is believing that some code is reliable because it has
been thoroughly tested when, in fact, it has not. A common mistake made by
developers new to the use of Test Doubles (page 522) is replacing too much of

2 Imagine trying to learn to be a trapeze artist in the circus without having that big net
that allows you to make mistakes. You would never progress beyond swinging back and
forth!

Also known as:
Safety Net

Also known as:
No Test Risk

www.it-ebooks.info

http://www.it-ebooks.info/

25

the SUT with a Test Double. This leads to another important principle: Don’t
Modify the SUT. That is, we must be clear about which SUT we are testing and
avoid replacing the parts we are testing with test-specifi c logic (Figure 3.3).

Figure 3.3 A range of tests, each with its own SUT. An application, component,
or unit is only the SUT with respect to a specifi c set of tests. The “Unit1 SUT”
plays the role of DOC (part of the fi xture) to the “Unit2 Test” and is part of the
“Comp1 SUT.”

Tests Should Be Easy to Run

Most software developers just want to write code; testing is simply a necessary
evil in our line of work. Automated tests provide a nice safety net so that we can
write code more quickly,3 but we will run the automated tests frequently only if
they are really easy to run.

What makes tests easy to run? Four specifi c goals answer this question:

• They must be Fully Automated Tests so they can be run without any
effort.

3 “With less paranoia” is probably more accurate!

App1
SUT

Comp1
SUT

Unit2
SUT

Comp1
Test

Exercise

Unit1
SUT

Unit1
Test

Exercise

Unit2
Test

Exercise

Comp2
SUT

Comp2
Test

Exercise

App1
Test Exercise

uses

uses

App1
SUT

Comp1
SUT

Unit2
SUT

Comp1
Test

Exercise

Unit1
SUT

Unit1
Test

Exercise

Unit2
Test

Exercise

Comp2
SUT

Comp2
Test

Exercise

App1
Test Exercise

uses

uses

 Goals of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

26 Chapter 3 Goals of Test Automation

• They must be Self-Checking Tests so they can detect and report any
errors without manual inspection.

• They must be Repeatable Tests so they can be run multiple times with
the same result.

• Ideally, each test should be an Independent Test that can be run by itself.

With these four goals satisfi ed, one click of a button (or keyboard shortcut) is all
it should take to get the valuable feedback the tests provide. Let’s look at these
goals in a bit more detail.

Goal: Fully Automated Test

A test that can be run without any Manual Intervention (page 250) is a Fully
Automated Test. Satisfying this criterion is a prerequisite to meeting many of the
other goals. Yes, it is possible to write Fully Automated Tests that don’t check the
results and that can be run only once. The main() program that runs the code and
directs print statements to the console is a good example of such a test. I consider
these two aspects of test automation to be so important in making tests easy to run
that I have made them separate goals: Self-Checking Test and Repeatable Test.

Goal: Self-Checking Test

A Self-Checking Test has encoded within it everything that the test needs to
verify that the expected outcome is correct. Self-Checking Tests apply the Holly-
wood principle (“Don’t call us; we’ll call you”) to running tests. That is, the Test
Runner (page 377) “calls us” only when a test did not pass; as a consequence,
a clean test run requires zero manual effort. Many members of the xUnit fam-
ily provide a Graphical Test Runner (see Test Runner) that uses a green bar to
signal that everything is “A-okay”; a red bar indicates that a test has failed and
warrants further investigation.

Goal: Repeatable Test

A Repeatable Test can be run many times in a row and will produce exactly the
same results without any human intervention between runs. Unrepeatable Tests
(see Erratic Test on page 228) increase the overhead of running tests signifi cantly.
This outcome is very undesirable because we want all developers to be able to run
the tests very frequently—as often as after every “save.” Unrepeatable Tests can be
run only once before whoever is running the tests must perform a Manual Interven-
tion. Just as bad are Nondeterministic Tests (see Erratic Test) that produce different
results at different times; they force us to spend lots of time chasing down failing
tests. The power of the red bar diminishes signifi cantly when we see it regularly

www.it-ebooks.info

http://www.it-ebooks.info/

27

without good reason. All too soon, we begin ignoring the red bar, assuming that it
will go away if we wait long enough. Once this happens, we have lost a lot of the
value of our automated tests, because the feedback indicating that we have intro-
duced a bug and should fi x it right away disappears. The longer we wait, the more
effort it takes to fi nd the source of the failing test.

Tests that run only in memory and that use only local variables or fi elds are
usually repeatable without us expending any additional effort. Unrepeatable
Tests usually come about because we are using a Shared Fixture (page 317) of
some sort (this defi nition includes any persistence of data implemented within
the SUT). In such a case, we must ensure that our tests are “self-cleaning” as
well. When cleaning is necessary, the most consistent and foolproof strategy
is to use a generic Automated Teardown (page 503) mechanism. Although it
is possible to write teardown code for each test, this approach can result in
Erratic Tests when it is not implemented correctly in every test.

Tests Should Be Easy to Write and Maintain

Coding is a fundamentally diffi cult activity because we must keep a lot of in-
formation in our heads as we work. When we are writing tests, we should stay
focused on testing rather than coding of the tests. This means that tests must
be simple—simple to read and simple to write. They need to be simple to read
and understand because testing the automated tests themselves is a complicated
endeavor. They can be tested properly only by introducing the very bugs that
they are intended to detect into the SUT; this is hard to do in an automated way
so it is usually done only once (if at all), when the test is fi rst written. For these
reasons, we need to rely on our eyes to catch any problems that creep into the
tests, and that means we must keep the tests simple enough to read quickly.

Of course, if we are changing the behavior of part of the system, we should expect
a small number of tests to be affected by our modifi cations. We want to Minimize
Test Overlap so that only a few tests are affected by any one change. Contrary to
popular opinion, having more tests pass through the same code doesn’t improve
the quality of the code if most of the tests do exactly the same thing.

Tests become complicated for two reasons:

• We try to verify too much functionality in a single test.

• Too large an “expressiveness gap” separates the test scripting language
(e.g., Java) and the before/after relationships between domain concepts
that we are trying to express in the test.

 Goals of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

28 Chapter 3 Goals of Test Automation

Goal: Simple Tests

To avoid “biting off more than they can chew,” our tests should be small and test
one thing at a time. Keeping tests simple is particularly important during test-
driven development because code is written to pass one test at a time and we want
each test to introduce only one new bit of behavior into the SUT. We should strive
to Verify One Condition per Test by creating a separate Test Method (page 348)
for each unique combination of pre-test state and input. Each Test Method should
drive the SUT through a single code path.4

The major exception to the mandate to keep Test Methods short occurs with
customer tests that express real usage scenarios of the application. Such extend-
ed tests offer a useful way to document how a potential user of the software
would go about using it; if these interactions involve long sequences of steps,
the Test Methods should refl ect this reality.

Goal: Expressive Tests

The “expressiveness gap” can be addressed by building up a library of Test
Utility Methods that constitute a domain-specifi c testing language. Such a col-
lection of methods allows test automaters to express the concepts that they
wish to test without having to translate their thoughts into much more detailed
code. Creation Methods (page 415) and Custom Assertion (page 474) are good
examples of the building blocks that make up such a Higher-Level Language.

The key to solving this dilemma is avoiding duplication within tests. The DRY
principle—“Don’t repeat yourself”—of the Pragmatic Programmers (http://www.
pragmaticprogrammer.com) should be applied to test code in the same way it is
applied to production code. There is, however, a counterforce at play. Because
the tests should Communicate Intent, it is best to keep the core test logic in each
Test Method so it can be seen in one place. Nevertheless, this idea doesn’t pre-
clude moving a lot of supporting code into Test Utility Methods, where it needs
to be modifi ed in only one place if it is affected by a change in the SUT.

Goal: Separation of Concerns

Separation of Concerns applies in two dimensions: (1) We want to keep test code
separate from our production code (Keep Test Logic Out of Production Code)
and (2) we want each test to focus on a single concern (Test Concerns Separately)
to avoid Obscure Tests (page 186). A good example of what not to do is testing
the business logic in the same tests as the user interface, because it involves testing

4 There should be at least one Test Method for each unique path through the code; often
there will be several, one for each boundary value of the equivalence class.

www.it-ebooks.info

http://www.pragmaticprogrammer.com
http://www.pragmaticprogrammer.com
http://www.it-ebooks.info/

29

two concerns at the same time. If either concern is modifi ed (e.g., the user inter-
face changes), all the tests would need to be modifi ed as well. Testing one concern
at a time may require separating the logic into different components. This is a
key aspect of design for testability, a consideration that is explored further in
Chapter 11, Using Test Doubles.

Tests Should Require Minimal Maintenance as the System
Evolves Around Them

Change is a fact of life. Indeed, we write automated tests mostly to make change
easier, so we should strive to ensure that our tests don’t inadvertently make
change more diffi cult.

Suppose we want to change the signature of some method on a class. When we
add a new parameter, suddenly 50 tests no longer compile. Does that result en-
courage us to make the change? Probably not. To counter this problem, we intro-
duce a new method with the parameter and arrange to have the old method call
the new method, defaulting the missing parameter to some value. Now all of the
tests compile but 30 of them still fail! Are the tests helping us make the change?

Goal: Robust Test

Inevitably, we will want to make many kinds of changes to the code as a project
unfolds and its requirements evolve. For this reason, we want to write our tests
in such a way that the number of tests affected by any one change is quite small.
That means we need to minimize overlap between tests. We also need to ensure
that changes to the test environment don’t affect our tests; we do this by isolat-
ing the SUT from the environment as much as possible. This results in much
more Robust Tests.

We should strive to Verify One Condition per Test. Ideally, only one kind of
change should cause a test to require maintenance. System changes that affect
fi xture setup or teardown code can be encapsulated behind Test Utility Methods
to further reduce the number of tests directly affected by the change.

What’s Next?

This chapter discussed why we have automated tests and specifi c goals we
should try to achieve when writing Fully Automated Tests. Before moving on to
Chapter 5, Principles of Test Automation, we need to take a short side-trip to
Chapter 4, Philosophy of Test Automation, to understand the different mindsets
of various kinds of test automaters.

What’s Next?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

31

Chapter 4

Philosophy of Test
Automation

About This Chapter

Chapter 3, Goals of Test Automation, described many of the goals and benefi ts
of having an effective test automation program in place. This chapter introduces
some differences in the way people think about design, construction, and testing
that change the way they might naturally apply these patterns. The “big picture”
questions include whether we write tests fi rst or last, whether we think of them
as tests or examples, whether we build the software from the inside-out or from
the outside-in, whether we verify state or behavior, and whether we design the
fi xture upfront or test by test.

Why Is Philosophy Important?

What’s philosophy got to do with test automation? A lot! Our outlook on life
(and testing) strongly affects how we go about automating tests. When I was
discussing an early draft of this book with Martin Fowler (the series editor), we
came to the conclusion that there were philosophical differences between how
different people approached xUnit-based test automation. These differences lie
at the heart of why, for example, some people use Mock Objects (page 544)
sparingly and others use them everywhere.

Since that eye-opening discussion, I have been on the lookout for other phil-
osophical differences among test automaters. These alternative viewpoints tend
to come up as a result of someone saying, “I never (fi nd a need to) use that pat-
tern” or “I never run into that smell.” By questioning these statements, I can
learn a lot about the testing philosophy of the speaker. Out of these discussions
have come the following philosophical differences:

www.it-ebooks.info

http://www.it-ebooks.info/

32 Chapter 4 Philosophy of Test Automation

• “Test after” versus “test fi rst”

• Test-by-test versus test all-at-once

• “Outside-in” versus “inside-out” (applies independently to design and
coding)

• Behavior verifi cation versus state verifi cation

• “Fixture designed test-by-test” versus “big fi xture design upfront”

Some Philosophical Differences

Test First or Last?

Traditional software development prepares and executes tests after all software
is designed and coded. This order of steps holds true for both customer tests and
unit tests. In contrast, the agile community has made writing the tests fi rst the
standard way of doing things. Why is the order in which testing and develop-
ment take place important? Anyone who has tried to retrofi t Fully Automated
Tests (page 22) onto a legacy system will tell you how much more diffi cult it is
to write automated tests after the fact. Just having the discipline to write auto-
mated unit tests after the software is “already fi nished” is challenging, whether
or not the tests themselves are easy to construct. Even if we design for testability,
the likelihood that we can write the tests easily and naturally without modifying
the production code is low. When tests are written fi rst, however, the design of
the system is inherently testable.

Writing the tests fi rst has some other advantages. When tests are written fi rst
and we write only enough code to make the tests pass, the production code tends
to be more minimalist. Functionality that is optional tends not to be written;
no extra effort goes into fancy error-handling code that doesn’t work. The tests
tend to be more robust because only the necessary methods are provided on each
object based on the tests’ needs.

Access to the state of the object for the purposes of fi xture setup and result
verifi cation comes much more naturally if the software is written “test fi rst.”
For example, we may avoid the test smell Sensitive Equality (see Fragile Test on
page 239) entirely because the correct attributes of objects are used in assertions
rather than comparing the string representations of those objects. We may even
fi nd that we don’t need to implement a String representation at all because we

www.it-ebooks.info

http://www.it-ebooks.info/

33

have no real need for it. The ability to substitute dependencies with Test Doubles
(page 522) for the purpose of verifying the outcome is also greatly enhanced be-
cause substitutable dependency is designed into the software from the start.

Tests or Examples?

Whenever I mention the concept of writing automated tests for software before the
software has been written, some listeners get strange looks on their faces. They ask,
“How can you possibly write tests for software that doesn’t exist?” In these cases,
I follow Brian Marrick’s lead by reframing the discussion to talk about “examples”
and example-driven development (EDD). It seems that examples are much easier
for some people to envision writing before code than are “tests.” The fact that the
examples are executable and reveal whether the requirements have been satisfi ed
can be left for a later discussion or a discussion with people who have a bit more
imagination.

By the time this book is in your hands, a family of EDD frameworks is likely
to have emerged. The Ruby-based RSpec kicked off the reframing of TDD to
EDD, and the Java-based JBehave followed shortly thereafter. The basic design
of these “unit test frameworks” is the same as xUnit but the terminology has
changed to refl ect the Executable Specifi cation (see Goals of Test Automation on
page 21) mindset.

Another popular alternative for specifying components that contain business
logic is to use Fit tests. These will invariably be more readable by nontechnical
people than something written in a programming language regardless of how
“business friendly” we make the programming language syntax!

Test-by-Test or Test All-at-Once?

The test-driven development process encourages us to “write a test” and then
“write some code” to pass that test. This process isn’t a case of all tests being
written before any code, but rather the writing of tests and code being inter-
leaved in a very fi ne-grained way. “Test a bit, code a bit, test a bit more”—this
is incremental development at its fi nest. Is this approach the only way to do
things? Not at all! Some developers prefer to identify all tests needed by the
current feature before starting any coding. This strategy enables them to “think
like a client” or “think like a tester” and lets developers avoid being sucked into
“solution mode” too early.

Test-driven purists argue that we can design more incrementally if we build
the software one test at a time. “It’s easier to stay focused if only a single test is
failing,” they say. Many test drivers report not using the debugger very much

Some Philosophical Differences

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Philosophy of Test Automation

because the fi ne-grained testing and incremental development leave little doubt
about why tests are failing; the tests provide Defect Localization (see Goals of
Test Automation on page 22) while the last change we made (which caused the
problem) is still fresh in our minds.

This consideration is especially relevant when we are talking about unit tests
because we can choose when to enumerate the detailed requirements (tests) of
each object or method. A reasonable compromise is to identify all unit tests at
the beginning of a task—possibly roughing in empty Test Method (page 348)
skeletons, but coding only a single Test Method body at a time. We could also
code all Test Method bodies and then disable all but one of the tests so that we
can focus on building the production code one test at a time.

With customer tests, we probably don’t want to feed the tests to the devel-
oper one by one within a user story. Therefore, it makes sense to prepare all the
tests for a single story before we begin development of that story. Some teams
prefer to have the customer tests for the story identifi ed—although not neces-
sarily fl eshed out—before they are asked to estimate the effort needed to build
the story, because the tests help frame the story.

Outside-In or Inside-Out?

Designing the software from the outside inward implies that we think fi rst about
black-box customer tests (also known as storytests) for the entire system and
then think about unit tests for each piece of software we design. Along the way,
we may also implement component tests for the large-grained components we
decide to build.

Each of these sets of tests inspires us to “think like the client” well before we
start thinking like a software developer. We focus fi rst on the interface provided
to the user of the software, whether that user is a person or another piece of
software. The tests capture these usage patterns and help us enumerate the vari-
ous scenarios we need to support. Only when we have identifi ed all the tests are
we “fi nished” with the specifi cation. Some people prefer to design outside-in
but then code inside-out to avoid dealing with the “dependency problem.” This
tactic requires anticipating the needs of the outer software when writing the
tests for the inner software. It also means that we don’t actually test the outer
software in isolation from the inner software. Figure 4.1 illustrates this concept.
The top-to-bottom progression in the diagram implies the order in which we
write the software. Tests for the middle and lower classes can take advantage of
the already-built classes above them—a strategy that avoids the need for Test
Stubs (page 529) or Mock Objects in many of the tests. We may still need to use
Test Stubs in those tests where the inner components could potentially return

34

www.it-ebooks.info

http://www.it-ebooks.info/

35

specifi c values or throw exceptions, but cannot be made to do so on cue. In
such a case, a Saboteur (see Test Stub) comes in very handy.

Figure 4.1 “Inside-out” development of functionality. Development starts with
the innermost components and proceeds toward the user interface, building on
the previously constructed components.

Other test drivers prefer to design and code from the outside-in. Writing the
code outside-in forces us to deal with the “dependency problem.” We can use
Test Stubs to stand in for the software we haven’t yet written, so that the outer
layer of software can be executed and tested. We can also use Test Stubs to inject
“impossible” indirect inputs (return values, out parameters, or exceptions) into
the SUT to verify that it handles these cases correctly.

In Figure 4.2, we have reversed the order in which we build our classes. Be-
cause the subordinate classes don’t exist yet, we used Test Doubles to stand in
for them.

Figure 4.2 “Outside-in” development of functionality supported by Test
Doubles. Development starts at the outside using Test Doubles in place of the
depended-on components (DOCs) and proceeds inward as requirements for
each DOC are identifi ed.

SUT

SUTTest Exercise

SUTTest Exercise

Test Exercise

Uses

Uses

SUT

SUTTest Exercise

SUTTest Exercise

Test Exercise

Uses

Uses

SUT

Test
DoubleSUTTest Exercise

SUTTest Exercise

Test
DoubleTest Exercise

Uses

Uses

SUT

Test
DoubleSUTTest Exercise

SUTTest Exercise

Test
DoubleTest Exercise

Uses

Uses

Some Philosophical Differences

www.it-ebooks.info

http://www.it-ebooks.info/

36 Chapter 4 Philosophy of Test Automation

Once the subordinate classes have been built, we could remove the Test Doubles
from many of the tests. Keeping them provides better Defect Localization at the
cost of potentially higher test maintenance cost.

State or Behavior Verifi cation?

From writing code outside-in, it is but a small step to verifying behavior rather
than just state. The “statist” view suggests that it is suffi cient to put the SUT
into a specifi c state, exercise it, and verify that the SUT is in the expected state
at the end of the test. The “behaviorist” view says that we should specify not
only the start and end states of the SUT, but also the calls the SUT makes to its
dependencies. That is, we should specify the details of the calls to the “outgoing
interfaces” of the SUT. These indirect outputs of the SUT are outputs just like
the values returned by functions, except that we must use special measures to
trap them because they do not come directly back to the client or test.

The behaviorist school of thought is sometimes called behavior-driven
development. It is evidenced by the copious use of Mock Objects or Test
Spies (page 538) throughout the tests. Behavior verification does a better
job of testing each unit of software in isolation, albeit at a possible cost of
more difficult refactoring. Martin Fowler provides a detailed discussion of
the statist and behaviorist approaches in [MAS].

Fixture Design Upfront or Test-by-Test?

In the traditional test community, a popular approach is to defi ne a “test bed”
consisting of the application and a database already populated with a variety of
test data. The content of the database is carefully designed to allow many differ-
ent test scenarios to be exercised.

When the fi xture for xUnit tests is approached in a similar manner, the test
automater may defi ne a Standard Fixture (page 305) that is then used for all
the Test Methods of one or more Testcase Classes (page 373). This fi xture may
be set up as a Fresh Fixture (page 311) in each Test Method using Delegated
Setup (page 411) or in the setUp method using Implicit Setup (page 424). Alter-
natively, it can be set up as a Shared Fixture (page 317) that is reused by many
tests. Either way, the test reader may fi nd it diffi cult to determine which parts of
the fi xture are truly pre-conditions for a particular Test Method.

The more agile approach is to custom design a Minimal Fixture (page 302)
for each Test Method. With this perspective, there is no “big fi xture design up-
front” activity. This approach is most consistent with using a Fresh Fixture.

www.it-ebooks.info

http://www.it-ebooks.info/

37

When Philosophies Differ

We cannot always persuade the people we work with to adopt our philosophy,
of course. Even so, understanding that others subscribe to a different philosophy
helps us appreciate why they do things differently. It’s not that these individuals
don’t share the same goals as ours;1 it’s just that they make the decisions about
how to achieve those goals using a different philosophy. Understanding that dif-
ferent philosophies exist and recognizing which ones we subscribe to are good
fi rst steps toward fi nding some common ground between us.

My Philosophy

In case you were wondering what my personal philosophy is, here it is:

• Write the tests fi rst!

• Tests are examples!

• I usually write tests one at a time, but sometimes I list all the tests I can
think of as skeletons upfront.

• Outside-in development helps clarify which tests are needed for the
next layer inward.

• I use primarily State Verifi cation (page 462) but will resort to Behavior
Verifi cation (page 468) when needed to get good code coverage.

• I perform fi xture design on a test-by-test basis.

There! Now you know where I’m coming from.

What’s Next?

This chapter introduced the philosophies that anchor software design, construc-
tion, testing, and test automation. Chapter 5, Principles of Test Automation,
describes key principles that will help us achieve the goals described in Chapter
3, Goals of Test Automation. We will then be ready to start looking at the over-
all test automation strategy and the individual patterns.

1 For example, high-quality software, fi t for purpose, on time, under budget.

What’s Next?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

39

Chapter 5

Principles of Test
Automation

About This Chapter

Chapter 3, Goals of Test Automation, described the goals we should strive to
achieve to help us be successful at automating our unit tests and customer tests.
Chapter 4, Philosophy of Test Automation, discussed some of the differences in
the way people approach software design, construction, and testing. This pro-
vides the background for the principles that experienced test automaters follow
while automating their tests. I call them “principles” for two reasons: They are
too high level to be patterns and they represent a value system that not everyone
will share. A different value system may cause you to choose different patterns
than the ones presented in this book. Making this value system explicit will, I
hope, accelerate the process of understanding where we disagree and why.

The Principles

When Shaun Smith and I came up with the list in the original Test Automation
Manifesto [TAM], we considered what was driving us to write tests the way we
did. The Manifesto is a list of the qualities we would like to see in a test—not a
set of patterns that can be directly applied. However, those principles have led us
to identify a number of somewhat more concrete principles, some of which are
described in this chapter. What makes these principles different from the goals is
that there is more debate about them.

Principles are more “prescriptive” than patterns and higher level in nature. Un-
like patterns, they don’t have alternatives, but rather are presented in a “do this
because” fashion. To distinguish them from patterns, I have given them imperative
names rather than the noun-phrase names I use for goals, patterns, and smells.

www.it-ebooks.info

http://www.it-ebooks.info/

40

For the most part, these principles apply equally well to unit tests and story-
tests. A possible exception is the principle Verify One Condition per Test, which
may not be practical for customer tests that exercise more involved chunks of
functionality. It is, however, still worth striving to follow these principles and to
deviate from them only when you are fully cognizant of the consequences.

Principle: Write the Tests First

Test-driven development is very much an acquired habit. Once one has “gotten
the hang of it,” writing code in any other way can seem just as strange as TDD
seems to those who have never done it. There are two major arguments in favor
of doing TDD:

1. The unit tests save us a lot of debugging effort—effort that often fully
offsets the cost of automating the tests.

2. Writing the tests before we write the code forces the code to be designed
for testability. We don’t need to think about testability as a separate
design condition; it just happens because we have written tests.

Principle: Design for Testability

Given the last principle, this principle may seem redundant. For developers
who choose to ignore Write the Tests First, Design for Testability becomes an
even more important principle because they won’t be able to write automated
tests after the fact if the testability wasn’t designed in. Anyone who has tried
to retrofi t automated unit tests onto legacy software can testify to the diffi culty
this raises. Mike Feathers talks about special techniques for introducing tests in
this case in [WEwLC].

Principle: Use the Front Door First

Objects have several kinds of interfaces. There is the “public” interface that clients
are expected to use. There may also be a “private” interface that only close friends
should use. Many objects also have an “outgoing interface” consisting of the used
part of the interfaces of any objects on which they depend.

The types of interfaces we use infl uence the robustness of our tests. The use of
Back Door Manipulation (page 327) to set up the fi xture or verify the expected
outcome or a test can result in Overcoupled Software (see Fragile Test on page
239) that needs more frequent test maintenance. Overuse of Behavior Verifi ca-
tion (page 468) and Mock Objects (page 544) can result in Overspecifi ed Software
(see Fragile Test) and tests that are more brittle and may discourage developers
from doing desirable refactorings.

Also known as:
Test-Driven

Development,
Test-First

Development

Chapter 5 Principles of Test Automation

Also known as:
Front Door First

www.it-ebooks.info

http://www.it-ebooks.info/

41

When all choices are equally effective, we should use round-trip tests to test
our SUT. To do so, we test an object through its public interface and use State
Verifi cation (page 462) to determine whether it behaved correctly. If this is not suf-
fi cient to accurately describe the expected behavior, we can make our tests layer-
crossing tests and use Behavior Verifi cation to verify the calls the SUT makes to
depended-on components (DOCs). If we must replace a slow or unavailable DOC
with a faster Test Double (page 522), using a Fake Object (page 551) is preferable
because it encodes fewer assumptions into the test (the only assumption is that the
component that the Fake Object replaces is actually needed).

Principle: Communicate Intent

Fully Automated Tests, especially Scripted Tests (page 285), are programs. They
need to be syntactically correct to compile and semantically correct to run success-
fully. They need to implement whatever detailed logic is required to put the SUT
into the appropriate starting state and to verify that the expected outcome has
occurred. While these characteristics are necessary, they are not suffi cient because
they neglect the single most important interpreter of the tests: the test maintainer.

Tests that contain a lot of code1 or Conditional Test Logic (page 200) are
usually Obscure Tests (page 186). They are much harder to understand because
we need to infer the “big picture” from all the details. This reverse engineering
of meaning takes extra time whenever we need to revisit the test either to main-
tain it or to use the Tests as Documentation. It also increases the cost of owner-
ship of the tests and reduces their return on investment.

Tests can be made easier to understand and maintain if we Communi-
cate Intent. We can do so by calling Test Utility Methods (page 599) with
Intent-Revealing Names [SBPP] to set up our test fi xture and to verify that the
expected outcome has been realized. It should be readily apparent within the
Test Method (page 348) how the test fi xture infl uences the expected outcome of
each test—that is, which inputs result in which outputs. A rich library of Test
Utility Methods also makes tests easier to write because we don’t have to code
the details into every test.

Principle: Don’t Modify the SUT

Effective testing often requires us to replace a part of the application with a Test
Double or override part of its behavior using a Test-Specifi c Subclass (page 579).
This may be because we need to gain control over its indirect inputs or because we
need to perform Behavior Verifi cation by intercepting its indirect outputs. It may

1 Anything more than about ten lines is getting to be too much.

Also known as:
Higher-Level
Language,
Single-Glance
Readable

 The Principles

www.it-ebooks.info

http://www.it-ebooks.info/

42

also be because parts of the application’s behavior have unacceptable side effects or
dependencies that are impossible to satisfy in our development or test environment.

Modifying the SUT is a dangerous thing whether we are putting in Test
Hooks (page 709), overriding behavior in a Test-Specifi c Subclass, or replacing
a DOC with a Test Double. In any of these circumstances, we may no longer
actually be testing the code we plan to put into production.

We need to ensure that we are testing the software in a confi guration that is
truly representative of how it will be used in production. If we do need to replace
something the SUT depends on to get better control of the context surrounding the
SUT, we must make sure that we are doing so in a representative way. Otherwise,
we may end up replacing part of the SUT that we think we are testing. Suppose,
for example, that we are writing tests for objects X, Y, and Z, where object X
depends on object Y, which in turn depends on object Z. When writing tests for
X, it is reasonable to replace Y and Z with a Test Double. When testing Y, we can
replace Z with a Test Double. When testing Z, however, we cannot replace it with
a Test Double because Z is what we are testing! This consideration is particularly
salient when we have to refactor the code to improve its testability.

When we use a Test-Specifi c Subclass to override part of the behavior of an
object to allow testing, we have to be careful that we override only those meth-
ods that the test specifi cally needs to null out or use to inject indirect inputs. If
we choose to reuse a Test-Specifi c Subclass created for another test, we must
ensure that it does not override any of the behavior that this test is verifying.

Another way of looking at this principle is as follows: The term SUT is rela-
tive to the tests we are writing. In our “X uses Y uses Z” example, the SUT for
some component tests might be the aggregate of X, Y, and Z; for unit testing
purposes, it might be just X for some tests, just Y for other tests, and just Z for
yet other tests. Just about the only time we consider the entire application to be
the SUT is when we are doing user acceptance testing using the user interface
and going all the way back to the database. Even here, we might be testing only
one module of the entire application (e.g., the “Customer Management Mod-
ule”). Thus “SUT” rarely equals “application.”

Principle: Keep Tests Independent

When doing manual testing, it is common practice to have long test procedures that
verify many aspects of the SUT’s behavior in a single test. This aggregation of tasks is
necessary because the steps involved in setting up the starting state of the system for
one test may simply repeat the steps used to verify other parts of its behavior. When
tests are executed manually, this repetition is not cost-effective. In addition, human
testers have the ability to recognize when a test failure should preclude continuing

Also known as:
Independent

Test

Chapter 5 Principles of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

43

execution of the test, when it should cause certain tests to be skipped, or when the
failure is immaterial to subsequent tests (though it may still count as a failed test.)

If tests are interdependent and (even worse) order dependent, we will deprive
ourselves of the useful feedback that individual test failures provide. Interacting
Tests (see Erratic Test on page 228) tend to fail in a group. The failure of a test
that moved the SUT into the state required by the dependent test will lead to
the failure of the dependent test, too. With both tests failing, how can we tell
whether the failure refl ects a problem in code that both tests rely on in some
way or whether it signals a problem in code that only the fi rst test relies on?
When both tests fail, we can’t tell. And we are talking about only two tests in
this case—imagine how much worse matters would be with tens or even hun-
dreds of Interacting Tests.

An Independent Test can be run by itself. It sets up its own Fresh Fix-
ture (page 311) to put the SUT into a state that lets it verify the behavior it is
testing. Tests that build a Fresh Fixture are much more likely to be independent
than tests that use a Shared Fixture (page 317). The latter can lead to various
kinds of Erratic Tests, including Lonely Tests, Interacting Tests, and Test Run
Wars. With independent tests, unit test failures give us Defect Localization to
help us pinpoint the source of the failure.

Principle: Isolate the SUT

Some pieces of software depend on nothing but the (presumably correct) run-
time system or operating system. Most pieces of software build on other pieces
of software developed by us or by others. When our software depends on other
software that may change over time, our tests may suddenly start failing because
the behavior of the other software has changed. This problem, which is called
Context Sensitivity (see Fragile Test), is a form of Fragile Test.

When our software depends on other software whose behavior we cannot
control, we may fi nd it diffi cult to verify that our software behaves properly
with all possible return values. This is likely to lead to Untested Code (see Pro-
duction Bugs on page 268) or Untested Requirements (see Production Bugs).
To avoid this problem, we need to be able to inject all possible reactions of the
DOC into our software under the complete control of our tests.

Whatever application, component, class, or method we are testing, we should
strive to isolate it as much as possible from all other parts of the software that
we choose not to test. This isolation of elements allows us to Test Concerns
Separately and allows us to Keep Tests Independent of one another. It also helps
us create a Robust Test by reducing the likelihood of Context Sensitivity caused
by too much coupling between our SUT and the software that surrounds it.

 The Principles

www.it-ebooks.info

http://www.it-ebooks.info/

44

We can satisfy this principle by designing our software such that each piece
of depended-on software can be replaced with a Test Double using Dependency
Injection (page 678) or Dependency Lookup (page 686) or overridden with a
Test-Specifi c Subclass that gives us control of the indirect inputs of the SUT.
This design for testability makes our tests more repeatable and robust.

Principle: Minimize Test Overlap

Most applications have lots of functionality to verify. Proving that all of the
functionality works correctly in all possible combinations and interaction sce-
narios is nearly impossible. Therefore, picking the tests to write is an exercise in
risk management.

We should structure our tests so that as few tests as possible depend on a
particular piece of functionality. This may seem counter-intuitive at fi rst be-
cause one would think that we would want to improve test coverage by testing
the software as often as possible. Unfortunately, tests that verify the same func-
tionality typically fail at the same time. They also tend to need the same mainte-
nance when the functionality of the SUT is modifi ed. Having several tests verify
the same functionality is likely to increase test maintenance costs and probably
won’t improve quality very much.

We do want to ensure that all test conditions are covered by the tests that we
do use. Each test condition should be covered by exactly one test—no more, no
less. If it seems to provide value to test the code in several different ways, we
may have identifi ed several different test conditions.

Principle: Minimize Untestable Code

Some kinds of code are diffi cult to test using Fully Automated Tests. GUI com-
ponents, multithreaded code, and Test Methods immediately spring to mind as
“untestable” code. All of these kinds of code share the same problem: They are
embedded in a context that makes it hard to instantiate or interact with them
from automated tests.

Untestable code simply won’t have any Fully Automated Tests to protect it
from those nefarious little bugs that can creep into code when we aren’t look-
ing. That makes it more diffi cult to refactor this code safely and more danger-
ous to modify existing functionality or introduce new functionality.

It is highly desirable to minimize the amount of untestable code that we have
to maintain. We can refactor the untestable code to improve its testability by
moving the logic we want to test out of the class that is causing the lack of test-
ability. For active objects and multithreaded code, we can refactor to Humble
Executable (see Humble Object on page 695). For user interface objects, we

Chapter 5 Principles of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

45

can refactor to Humble Dialog (see Humble Object). Even Test Methods can
have much of their untestable code extracted into Test Utility Methods, which
can then be tested.

When we Minimize Untestable Code, we improve the overall test coverage of
our code. In so doing, we also improve our confi dence in the code and extend
our ability to refactor at will. The fact that this technique improves the quality
of the code is yet another benefi t.

Principle: Keep Test Logic Out of Production Code

When the production code hasn’t been designed for testability (whether as a
result of test-driven development or otherwise), we may be tempted to put
“hooks” into the production code to make it easier to test. These hooks typi-
cally take the form of if testing then ... and may either run alternative logic or
prevent certain logic from running.

Testing is about verifying the behavior of a system. If the system behaves dif-
ferently when under test, then how can we be certain that the production code
actually works? Even worse, the test hooks could cause the software to fail in
production!

The production code should not contain any conditional statements of the if
testing then sort. Likewise, it should not contain any test logic. A well-designed
system (from a testing perspective) is one that allows for the isolation of func-
tionality. Object-oriented systems are particularly amenable to testing because
they are composed of discrete objects. Unfortunately, even object-oriented sys-
tems can be built in such a way as to be diffi cult to test, and we may still en-
counter code with embedded test logic.

Principle: Verify One Condition per Test

Many tests require a starting state other than the default state of the SUT, and
many operations of the SUT leave it in a different state from its original state.
There is a strong temptation to reuse the end state of one test condition as the
starting state of the next test condition by combining the verifi cation of the two
test conditions into a single Test Method because this makes testing more effi -
cient. This approach is not recommended, however, because when one assertion
fails, the rest of the test will not be executed. As a consequence, it becomes more
diffi cult to achieve Defect Localization.

Verifying multiple conditions in a single test makes sense when we execute
tests manually because of the high overhead of test setup and because the live-
ware can adapt to test failures. It is too much work to set up the fi xture for a
large number of manual tests, so human testers naturally tend to write long

Also known as:
No Test Logic
in Production
Code

 The Principles

Also known as:
Single-Condition
Test

www.it-ebooks.info

http://www.it-ebooks.info/

46

multiple-condition tests.2 They also have the intelligence to work around any
issues they encounter so that all is not lost if a single step fails. In contrast, with
automated tests, a single failed assertion will cause the test to stop running and
the rest of the test will provide no data on what works and what doesn’t.

Each Scripted Test should verify a single test condition. This single-mindedness
is possible because the test fi xture is set up programmatically rather than by a
human. Programs can set up fi xtures very quickly and they don’t have trouble ex-
ecuting exactly the same sequence of steps hundreds of times! If several tests need
the same test fi xture, either we can move the Test Methods into a single Testcase
Class per Fixture (page 631) so we can use Implicit Setup (page 424) or we can
call Test Utility Methods to set up the fi xture using Delegated Setup (page 411).

We design each test to have four distinct phases (see Four-Phase Test on
page 358) that are executed in sequence: fi xture setup, exercise SUT, result
verifi cation, and fi xture teardown.

• In the fi rst phase, we set up the test fi xture (the “before” picture) that
is required for the SUT to exhibit the expected behavior as well as any-
thing we need to put in place to observe the actual outcome (such as
using a Test Double).

• In the second phase, we interact with the SUT to exercise whatever
behavior we are trying to verify. This should be a single, distinct behav-
ior; if we try to exercise several parts of the SUT, we are not writing a
Single-Condition Test.

• In the third phase, we do whatever is necessary to determine whether
the expected outcome has been obtained and fail the test if it has not.

• In the fourth phase, we tear down the test fi xture and put the world
back into the state in which we found it.

Note that there is a single exercise SUT phase and a single result verifi cation
phase. We avoid having a series of such alternating calls (exercise, verify, exercise,
verify) because that approach would be trying to verify several distinct condi-
tions—something that is better handled via distinct Test Methods.

One possibly contentious aspect of Verify One Condition per Test is what
we mean by “one condition.” Some test drivers insist on one assertion per test.
This insistence may be based on using a Testcase Class per Fixture organization
of the Test Methods and naming each test based on what the one assertion is

2 Clever testers often use automated test scripts to put the SUT into the correct starting
state for their manual tests, thereby avoiding long manual test scripts.

Chapter 5 Principles of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

47

verifying.3 Having one assertion per test makes such naming very easy but also
leads to many more test methods if we have to assert on many output fi elds. Of
course, we can often comply with this interpretation by extracting a Custom
Assertion (page 474) or Verifi cation Method (see Custom Assertion) that allows
us to reduce the multiple assertion method calls to a single call. Sometimes that
approach makes the test more readable. When it doesn’t, I wouldn’t be too dog-
matic about insisting on a single assertion.

Principle: Test Concerns Separately

The behavior of a complex application consists of the aggregate of a large num-
ber of smaller behaviors. Sometimes several of these behaviors are provided by
the same component. Each of these behaviors is a different concern and may
have a signifi cant number of scenarios in which it needs to be verifi ed.

The problem with testing several concerns in a single Test Method is that
this method will be broken whenever any of the tested concerns is modifi ed.
Even worse, it won’t be obvious which concern is the one at fault. Identify-
ing the real culprit typically requires Manual Debugging (see Frequent Debug-
ging on page 248) because of the lack of Defect Localization. The net effect is
that more tests will fail and each test will take longer to troubleshoot and fi x.
Refactoring is also made more diffi cult by testing several concerns in the same
test; it will be harder to “tease apart” the eager class into several independent
classes, each of which implements a single concern, because the tests will need
extensive redesign.

Testing our concerns separately allows a failure to tell us that we have a
problem in a specifi c part of our system rather than simply saying that we
have a problem somewhere. This approach to testing also makes it easier
to understand the behavior now and to separate the concerns in subsequent
refactorings. That is, we should just be able to move a subset of the tests to
a different Testcase Class (page 373) that verifi es the newly created class; it
shouldn’t be necessary to modify the test much more than changing the class
name of the SUT.

Principle: Ensure Commensurate Effort and Responsibility

The amount of effort it takes to write or modify tests should not exceed the
effort it takes to implement the corresponding functionality. Likewise, the tools
required to write or maintain the test should require no more expertise than the
tools used to implement the functionality. For example, if we can confi gure the

3 For example, AwaitingApprovalFlight.validApproverRequestShouldBeApproved.

 The Principles

www.it-ebooks.info

http://www.it-ebooks.info/

48

behavior of a SUT using metadata and we want to write tests that verify that
the metadata is set up correctly, we should not have to write code to do so. A
Data-Driven Test (page 288) would be much more appropriate in these circum-
stances.

What’s Next?

Previous chapters covered the common pitfalls (in the form of test smells) and
goals of test automation. This chapter made the value system we use while
choosing patterns explicit. In Chapter 6, Test Automation Strategy, we will
examine the “hard to change” decisions that we should try to get right early in
the project.

Chapter 5 Principles of Test Automation

www.it-ebooks.info

http://www.it-ebooks.info/

49

Chapter 6

Test Automation Strategy

About This Chapter

In previous chapters, we saw some of the problems we might encounter with
test automation. In Chapter 5, Principles of Test Automation, we learned about
some of the principles we can apply to help address those problems. This chapter
gets a bit more concrete but still focuses at the 30,000-foot level. In the logical
sequence of things, test strategy comes before fi xture setup but is a somewhat
more advanced topic. If you are new to test automation using xUnit, you may
want to skip this chapter and come back after reading more about the basics
of xUnit in Chapter 7, xUnit Basics, and about fi xture setup and teardown in
Chapter 8, Transient Fixture Management, and subsequent chapters.

What’s Strategic?

As the story in the preface amply demonstrates, it is easy to get off on the wrong
foot. This is especially true when you lack experience in test automation and
when this testing strategy is adopted “bottom up.” If we catch the problems early
enough, the cost of refactoring the tests to eliminate the problems can be manage-
able. If, however, the problems are left to fester for too long or the wrong approach
is taken to address them, a very large amount of effort can be wasted. This is not
to suggest that we should follow a “big design upfront” (BDUF) approach to test
automation. BDUF is almost always the wrong answer. Rather, it is helpful to be
aware of the strategic decisions necessary and to make them “just in time” rather
than “much too late.” This chapter gives a “head’s up” about some of the strategic
issues we want to keep in mind so that we don’t get blindsided by them later.

What makes a decision “strategic”? A decision is strategic if it is “hard to
change.” That is, a strategic decision affects a large number of tests, especially
such that many or all the tests would need to be converted to a different approach

www.it-ebooks.info

http://www.it-ebooks.info/

at the same time. Put another way, any decision that could cost a large amount of
effort to change is strategic.

Common strategic decisions include the following considerations:

• Which kinds of tests to automate?

• Which tools to use to automate them?

• How to manage the test fi xture?

• How to ensure that the system is easily tested and how the tests interact
with the SUT?

Each of these decisions can have far-reaching consequences, so they are best made
consciously, at the right time, and based on the best available information.

The strategies and more detailed patterns described in this book are equally
applicable regardless of the kind of Test Automation Framework (page 298)
we choose to use. Most of my experience is with xUnit, so it is the focus of this
book. But “don’t throw out the baby with the bath water”: If you fi nd yourself
using a different kind of Test Automation Framework, remember that most of
what you learn in regard to xUnit may still be applicable.

Which Kinds of Tests Should We Automate?

Roughly speaking, we can divide tests into the following two categories:

• Per-functionality tests (also known as functional tests) verify the behavior
of the SUT in response to a particular stimulus.

• Cross-functional tests verify various aspects of the system’s behavior
that cut across specifi c functionality.

Figure 6.1 shows these two basic kinds of tests as two columns, each of which is
further subdivided into more specifi c kinds of tests.

Per-Functionality Tests

Per-functionality tests verify the directly observable behavior of a piece of soft-
ware. The functionality can be business related (e.g., the principal use cases of
the system) or related to operational requirements (e.g., system maintenance
and specifi c fault-tolerance scenarios). Most of these requirements can also be
expressed as use cases, features, user stories, or test scenarios.

Per-functionality tests can be characterized by whether the functionality is
business (or user) facing and by the size of the SUT on which they operate.

50 Chapter 6 Test Automation Strategy

www.it-ebooks.info

http://www.it-ebooks.info/

51

Figure 6.1 A summary of the kinds of tests we write and why. The left column
contains the tests we write that describe the functionality of the product at
various levels of granularity; we perform these tests to support development.
The right column contains tests that span specifi c chunks of functionality; we
execute these tests to critique the product. The bottom of each cell describes
what we are trying to communicate or verify.

Customer Tests

Customer tests verify the behavior of the entire system or application. They typi-
cally correspond to scenarios of one or more use cases, features, or user stories.
These tests often go by other names such as functional tests, acceptance tests, or
end-user tests. Although they may be automated by developers, their key char-
acteristic is that an end user should be able to recognize the behavior specifi ed
by the test even if the user cannot read the test representation.

Unit Tests

Unit tests verify the behavior of a single class or method that is a consequence
of a design decision. This behavior is typically not directly related to the require-
ments except when a key chunk of business logic is encapsulated within the
class or method in question. These tests are written by developers for their own
use; they help developers describe what “done looks like” by summarizing the
behavior of the unit in the form of tests.

Customer
Tests

Business Intent
(Executable Specification)

Usability
Testing

Exploratory
Testing

Unit
Tests

Developer Intent
(Design of the Code)

Property
Testing

Is it responsive,
secure, scalable?

Automated Manual

Automated Tool -

Technology
Facing

Business
Facing

Support
Development

Critique
Product

Automated
various Manual

Automated
xUnit Based

Special-Purpose
Tool-Based

Purpose of Tests

Component
Tests

Architect Intent
(Design of the System)

Is it pleasurable?

Is it self-consistent?

ManualManual

AutomatedAutomated
xUnit

Per Functionality Cross-Functional
Kind of Behavior

Diagram adapted
from Mary

Poppendieck and
Brian Marick

Customer
Tests

Business Intent
(Executable Specification)

Usability
Testing

Exploratory
Testing

Unit
Tests

Developer Intent
(Design of the Code)

Property
Testing

Is it responsive,
secure, scalable?

Automated Manual

Automated Tool -

Technology
Facing

Business
Facing

Support
Development

Critique
Product

Automated
various Manual

Automated
xUnit Based

Special-Purpose
Tool-Based

Purpose of Tests

Component
Tests

Architect Intent
(Design of the System)

Is it pleasurable?

Is it self-consistent?

ManualManual

AutomatedAutomated
xUnit

Per Functionality Cross-Functional
Kind of Behavior

Diagram adapted
from Mary

Poppendieck and
Brian Marick

 Which Kinds of Tests Should We Automate?

www.it-ebooks.info

http://www.it-ebooks.info/

52 Chapter 6 Test Automation Strategy

Component Tests

Component tests verify components consisting of groups of classes that collec-
tively provide some service. They fi t somewhere between unit tests and customer
tests in terms of the size of the SUT being verifi ed. Although some people call
these “integration tests” or “subsystem tests,” those terms can mean something
entirely different from “tests of a specifi c larger-grained subcomponent of the
overall system.”

Fault Insertion Tests

Fault insertion tests typically show up at all three levels of granularity within
these functional tests, with different kinds of faults being inserted at each level.
From a test automation strategy point of view, fault insertion is just another set
of tests at the unit and component test levels. Things get more interesting at the
whole-application level, however. Inserting faults here can be hard to automate
because it is challenging to automate insertion of the faults without replacing
parts of the application.

Cross-Functional Tests

Property Tests

Performance tests verify various “nonfunctional” (also known as “extra-functional”
or “cross-functional”) requirements of the system. These requirements are different
in that they span the various kinds of functionality. They often correspond to the
architectural “-ilities.” These kinds of tests include

• Response time tests

• Capacity tests

• Stress tests

From a test automation perspective, many of these tests must be automated (at
least partially) because human testers would have a hard time creating enough
load to verify the behavior under stress. While we can run the same test many
times in a row in xUnit, the xUnit framework is not particularly well suited to
automating performance tests.

One advantage of agile methods is that we can start running these kinds of
tests quite early in the project—as soon as the key components of the architecture
have been roughed in and the skeleton of the functionality is executable. The
same tests can then be run continuously throughout the project as new features
are added to the system skeleton.

www.it-ebooks.info

http://www.it-ebooks.info/

53

Usability Tests

Usability tests verify “fi tness for purpose” by confi rming that real users can use
the software application to achieve the stated goals. These tests are very diffi cult
to automate because they require subjective assessment by people regarding how
easy it is to use the SUT. For this reason, usability tests are rarely automated and
will not be discussed further in this book.

Exploratory Testing

Exploratory testing is a way to determine whether the product is self-consistent.
The testers use the product, observe how it behaves, form hypotheses, design
tests to verify those hypotheses, and exercise the product with them. By its very
nature, exploratory testing cannot be automated, although automated tests can
be used to set up the SUT in preparation for doing exploratory testing.

Which Tools Do We Use to Automate Which Tests?

Choosing the right tool for the job is as important as having good skills with the
tools selected for use. A wide array of tools are available in the marketplace, and
it is easy to be seduced by the features of a particular tool. The choice of tool is
a strategic decision: Once we have invested a lot of time and effort in learning a
tool and automating many tests using that tool, it becomes much more diffi cult
to change to a different tool.

There are two fundamentally different approaches to automating tests
(Figure 6.2). The Recorded Test (page 278) approach involves the use of tools
that monitor our interactions with the SUT while we test it manually. This
information is then saved to a fi le or database and becomes the script for re-
playing this test against another (or even the same) version of the SUT. The
main problem with Recorded Tests is the level of granularity they record. Most
commercial tools record actions at the user interface (UI) element level, which
results in Fragile Tests (page 239).

The second approach to automating tests, Hand-Scripted Tests (see Scripted
Test on page 285), involves the hand-coding of test programs (“scripts”) that ex-
ercise the system. While xUnit is probably the most commonly used Test
Automation Framework for preparing Hand-Scripted Tests, they may be pre-
pared in other ways, including “batch” fi les, macro languages, and commercial or
open-source test tools. Some of the better-known open-source tools for preparing
Scripted Tests are Watir (test scripts coded in Ruby and run inside Internet Ex-
plorer), Canoo WebTest (tests scripted in XML and run using the WebTest tool),

 Which Tools Do We Use to Automate Which Tests?

www.it-ebooks.info

http://www.it-ebooks.info/

54 Chapter 6 Test Automation Strategy

and the ever-popular Fit (and its wiki-based sibling FitNesse). Some of these tools
even provide a test capture capability, thereby blurring the lines between Scripted
Tests and Recorded Tests.

Figure 6.2 A summary of the three dimensions of test automation choices.
The left side shows the two ways of interacting with the SUT. The bottom
edge enumerates how we create the test scripts. The front-to-back dimension
categorizes the different sizes of SUT we may choose to test.

Choosing which test automation tools to use is a large part of the test strategy
decision. A full survey of the different kinds of tools available is beyond the
scope of this book, but a somewhat more detailed treatment of the topic is avail-
able in [ARTRP]. The following sections summarize the information here to
provide an overview of the strengths and weaknesses of each approach.

Test Automation Ways and Means

Figure 6.3 depicts the decision-making possibilities as a matrix. In theory, there
are 2 × 2 × 3 possible combinations in this matrix, but it is possible to under-
stand the primary differences between the approaches by looking at the front
face of the cube. Some of the four quadrants are applicable to all levels of granu-
larity; others are primarily used for automating customer tests.

Scripted

system
component

unit

UI

API
Means of
Test – SUT
Interaction

Way of Capturing Tests

SUT

Gra
nu

lar
ity

Recorded

System
Component

Unit

Scripted

system
component

unit

UI

API
Means of
Test – SUT
Interaction

Way of Capturing Tests

SUT

Gra
nu

lar
ity

Recorded

System
Component

Unit

www.it-ebooks.info

http://www.it-ebooks.info/

55

Figure 6.3 The choices on the front face of the cube. A more detailed look
at the front face of the cube in Figure 6.2 along with the advantages (+) and
disadvantages of each (–).

Upper-Right Quadrant: Modern xUnit

The upper-right quadrant of the front face of the cube is dominated by the xUnit
family of testing frameworks. These frameworks involve hand-scripting tests
that exercise the system at all three levels of granularity (system, component,
and unit) via internal interfaces. A good example is unit tests automated using
JUnit or NUnit.

Lower-Right Quadrant: Scripted UI Tests

This quadrant represents a variation on the “modern xUnit” approach, with the
most common examples being the use of HttpUnit, JFCUnit, Watir, or similar
tools to hand-script tests using the UI. It is also possible to hand-script tests using
commercial Recorded Test tools such as QTP. These approaches all reside within
the lower-right quadrant at various levels of SUT granularity. For example, when
used for customer tests, these tools would perform at the system test level of
granularity. They could also be used to test just the UI component of the system
(or possibly even some UI units such as custom widgets), although this effort
would require stubbing out the actual system behind the UI.

Lower-Left Quadrant: Robot User

The “robot user” quadrant focuses on recording tests that interact with the
system via the UI. Most commercial test automation tools follow this approach.
It applies primarily at the “whole system” granularity but, like scripted UI Tests,

Built -in
R&PB

Modern
XUnit

Robot
User

Means of
Test – SUT
Interaction

API

UI

Way of Capturing Tests

+ No special skills
+ API not required
- Mostly complex, flaky,

expensive tools

+ Robust
+ More maintainable
+ Can be prebuilt
-
-
+ Simple, cheap tools

+ Somewhat robust

+ Fewer skills required
- API required

-
-

- More skills required

+ Mostly open-
source tools

Scripted
UI Tests

Built-in
R&PB

Modern
xUnit

Robot
User

Recorded Tests Scripted Tests

- Very fragile
- Not maintainable
- Cannot be pre-built

- More skills required
- API required

- Less maintainable?
- Cannot be prebuilt

- Few COTS tools
- Somewhat fragile
- High maintenance
+ Can be prebuilt

+ UI is the API

Scripted
UI Tests

Built -in
R&PB

Modern
XUnit

Robot
User

Means of
Test – SUT
Interaction

API

UI

Way of Capturing Tests

+ No special skills
+ API not required
- Mostly complex, flaky,

expensive tools

+ Robust
+ More maintainable
+ Can be prebuilt
-
-
+ Simple, cheap tools

+ Somewhat robust

+ Fewer skills required
- API required

-
-

- More skills required

+ Mostly open-
source tools

Scripted
UI Tests

Built-in
R&PB

Modern
xUnit

Robot
User

Recorded Tests Scripted Tests

- Very fragile
- Not maintainable
- Cannot be pre-built

- More skills required
- API required

- Less maintainable?
- Cannot be prebuilt

- Few COTS tools
- Somewhat fragile
- High maintenance
+ Can be prebuilt

+ UI is the API

Scripted
UI Tests

 Which Tools Do We Use to Automate Which Tests?

www.it-ebooks.info

http://www.it-ebooks.info/

56 Chapter 6 Test Automation Strategy

could be applied to the UI components or units if the rest of the system can be
stubbed out.

Upper-Left Quadrant: Internal Recording

For completeness, the upper-left quadrant involves creating Recorded Tests via
an API somewhere behind the UI by recording all inputs and responses as the
SUT is exercised. It may even involve inserting observation points between the
SUT (at whatever granularity we are testing) and any DOCs. During test play-
back, the test APIs inject the inputs recorded earlier and compare the results
with what was recorded

This quadrant is not well populated with commercial tools1 but is a feasible
option when building a Recorded Test mechanism into the application itself.

Introducing xUnit

The xUnit family of Test Automation Frameworks is designed for use in auto-
mating programmer tests. Its design is intended to meet the following goals:

• Make it easy for developers to write tests without needing to learn a
new programming language. xUnit is available in most languages in
use today.

• Make it easy to test individual classes and objects without needing to
have the rest of the application available. xUnit is designed to allow us
to test the software from the inside; we just have to design for testability
to take advantage of this capability.

• Make it easy to run one test or many tests with a single action. xUnit
includes the concept of a test suite and Suite of Suites (see Test Suite
Object on page 387) to support this kind of test execution.

• Minimize the cost of running the tests so programmers aren’t discour-
aged from running the existing tests. For this reason, each test should
be a Self-Checking Test (page 26) that implements the Hollywood
principle.2

1 Most of the tools in this quadrant focus on recording regression tests by inserting obser-
vation points into a component-based application and recording the (remote) method calls
and responses between the components. This approach is becoming more popular with
the advent of service-oriented architecture (SOA).
2 The name is derived from what directors in Hollywood tell aspiring applicants at mass
casting calls: “Don’t call us; we’ll call you (if we want you).”

www.it-ebooks.info

http://www.it-ebooks.info/

57

The xUnit family has been extraordinarily successful at meeting its goals.
I cannot imagine that Erich Gamma and Kent Beck could have possibly antici-
pated just how big an impact that fi rst version of JUnit would have on software
development!3 The same characteristics that make xUnit particularly well suited
to automating programmer tests, however, may make it less suitable for writing
some other kinds of tests. In particular, the “stop on fi rst failure” behavior of as-
sertions in xUnit has often been criticized (or overridden) by people who want to
use xUnit for automating multistep customer tests so that they can see the whole
score (what worked and what didn’t) rather than merely the fi rst deviation from
the expected results. This disagreement points out several things:

• “Stop on fi rst failure” is a tool philosophy, not a characteristic of
unit tests. It so happens that most test automaters prefer to have their
unit tests stop on fi rst failure, and most recognize that customer tests
must necessarily be longer than unit tests.

• It is possible to change the fundamental behavior of xUnit to satisfy
specifi c needs; this fl exibility is just one advantage of open-source
tools.

• Seeing a need to change the fundamental behavior of xUnit should
probably be interpreted as a trigger for considering whether some other
tool might possibly be a better fi t.

For example, the Fit framework has been designed specifi cally for the purpose
of running customer tests. It overcomes the limitations of xUnit that lead to the
“stop on fi rst failure” behavior by communicating the pass/fail status of each
step of a test using color coding. Another option for Java developers is TestNG,
which provides capabilities for explicitly sequencing Chained Tests (page 454).

Having said this, choosing a different tool doesn’t eliminate the need to make
many of the strategic decisions unless the tool constrains that decision making
in some way. For example, we still need to set up the test fi xture for a Fit test.
Some patterns—such as Chained Tests, where one test sets up the fi xture for a
subsequent test—are diffi cult to automate and may therefore be less attractive in
Fit than in xUnit. And isn’t it ironic that the very fl exibility of xUnit is what al-
lows test automaters to get themselves into so much trouble by creating Obscure
Tests (page 186) that result in High Test Maintenance Cost (page 265)?

3 Technically, SUnit came fi rst but it took JUnit and the “Test Infected” article [TI] to
really get things rolling.

 Which Tools Do We Use to Automate Which Tests?

www.it-ebooks.info

http://www.it-ebooks.info/

58 Chapter 6 Test Automation Strategy

The xUnit Sweet Spot

The xUnit family works best when we can organize our tests as a large set of
small tests, each of which requires a small test fi xture that is relatively easy to set
up. This allows us to create a separate test for each test scenario of each object.
The test fi xture should be managed using a Fresh Fixture (page 311) strategy by
setting up a new Minimal Fixture (page 302) for each test.

xUnit works best when we write tests against software APIs and then test
single classes or small groups of classes in isolation. This approach allows us to
build small test fi xtures that can be instantiated quickly.

When doing customer tests, xUnit works best if we defi ne a Higher-Level
Language (page 41) with which to describe our tests. This choice moves the
level of abstraction higher, away from the nitty-gritty of the technology and
closer to the business concepts that customers understand. From here, it is a
very small step to convert these tests to Data-Driven Tests (page 288) imple-
mented in xUnit or Fit.

Note that many of the higher-level patterns and principles described in this
book apply equally well to both Fit tests and xUnit tests. I have also found them
to be useful when working with commercial GUI-based testing tools, which
typically use a “record and playback” metaphor. The fi xture management
patterns are particularly salient in this arena, as are reusable “test components”
that may be strung together to form a variety of test scripts. This is entirely
analogous to the xUnit practice of single-purpose Test Methods (page 348)
calling reusable Test Utility Methods (page 599) to reduce their coupling to the
SUT’s API.

Which Test Fixture Strategy Do We Use?

The test fi xture management strategy is strategic because it has a large impact on
the execution time and robustness of the tests. The effects of picking the wrong
strategy won’t be felt immediately because it takes at least a few hundred tests
before the Slow Tests (page 253) smell becomes evident and probably several
months of development before the High Test Maintenance Cost smell starts to
emerge. Once these smells appear, however, the need to change the test automa-
tion strategy will become apparent—and its cost will be signifi cant because of
the number of tests affected.

www.it-ebooks.info

http://www.it-ebooks.info/

59

What Is a Fixture?

Every test consists of four parts, as described in Four-Phase Test (page 358). In
the fi rst phase, we create the SUT and everything it depends on and put them
into the state required to exercise the SUT. In xUnit, we call everything we need
in place to exercise the SUT the test fi xture, and we call the part of the test logic
that we execute to set it up the fi xture setup phase of the test.

At this point, a word of caution is in order. The term “fi xture” means many
things to many people:

• Some variants of xUnit keep the concept of the fi xture separate from
the Testcase Class (page 373) that creates it. JUnit and its direct ports
fall into this category.

• Other members of the xUnit family assume that an instance of the Test-
case Class “is a” fi xture. NUnit is a good example.

• A third camp uses an entirely different name for the fi xture. For
example, RSpec captures the pre-conditions of the test in a test con-
text class that holds the Test Methods (same idea as NUnit but with
different terminology).

• The term “fi xture” is used to mean entirely different things in other
kinds of test automation. In Fit, for example, it means the custom-built
parts of the Data-Driven Test Interpreter [GOF] that we use to defi ne
our Higher-Level Language.

The “class ‘is a’ fi xture” approach assumes the Testcase Class per Fixture (page 631)
approach to organizing the tests. When we choose a different way of organizing
the tests, such as Testcase Class per Class (page 617) or Testcase Class per Fea-
ture (page 624), this merging of the concepts of test fi xture and Testcase Class can
be confusing. Throughout this book, I use “test fi xture”—or just “fi xture”—to
mean “the pre-conditions of the test” and Testcase Class to mean “the class that
contains the Test Methods and any code needed to set up the test fi xture.”

The most common way to set up the fi xture is to use front door fi xture setup
by calling the appropriate methods on the SUT to construct the objects. When
the state of the SUT is stored in other objects or components, we can do Back
Door Setup (see Back Door Manipulation on page 327) by inserting the neces-
sary records directly into the other component on which the behavior of the
SUT depends. We use Back Door Setup most often with databases or when
we need to use a Mock Object (page 544) or Test Double (page 522); these
concepts are covered in more detail in Chapter 13, Testing with Databases, and
Chapter 11, Using Test Doubles.

 Which Test Fixture Strategy Do We Use?

www.it-ebooks.info

http://www.it-ebooks.info/

60 Chapter 6 Test Automation Strategy

Major Fixture Strategies

There are probably many ways to classify just about anything. For the purposes
of this discussion, we will classify our test fi xture strategies based on what kinds
of test development work we need to do for each one.

The fi rst and simplest fi xture management strategy requires us to worry only
how we will organize the code to build the fi xture for each test. That is, do we
put this code in our Test Methods, factor it into Test Utility Methods that we
call from our Test Methods, or put it into a setUp method in our Testcase Class?
This strategy involves the use of Transient Fresh Fixtures (see Fresh Fixture).
These fi xtures live only in memory and very conveniently disappear as soon as
we are done with them.

A second strategy involves the use of Fresh Fixtures that, for one reason or
another, persist beyond the single Test Method that uses it. To keep them from
turning into Shared Fixtures (page 317), these Persistent Fresh Fixtures (see
Fresh Fixture) require explicit code to tear them down at the end of each test.
This requirement brings into play the fi xture teardown patterns.

A third strategy involves persistent fi xtures that are deliberately reused across
many tests. This Shared Fixture strategy is often used to improve the execu-
tion speed of tests that use a Persistent Fresh Fixture but comes with a fair
amount of baggage. These tests require the use of one of the fi xture construc-
tion and teardown triggering patterns. They also involve tests that interact with
one another, whether by design or by consequence, which often leads to Erratic
Tests (page 228) and High Test Maintenance Costs.

Table 6.1 summarizes the fi xture management overhead associated with each
of the three styles of fi xtures.

Table 6.1 A Summary of the Fixture Setup and Teardown Requirements of the
Various Test Fixture Strategies

 Set Up Code Tear Down Code Setup/Teardown
 Triggering

Transient Fresh Fixture Yes

Persistent Fresh Fixture Yes Yes

Shared Fixture Yes Yes Yes

Note: The Shared Fixture row assumes we are building a new Shared Fixture each test
run rather than using a Prebuilt Fixture (page 429).

www.it-ebooks.info

http://www.it-ebooks.info/

61

Figure 6.4 illustrates the interaction between our goals, freshness of fi xtures or
fi xture reuse, and fi xture persistence. It also illustrates a few variations of the
Shared Fixture.

Figure 6.4 A summary of the main test fi xture strategies. Fresh Fixtures can be
either transient or persistent; Shared Fixtures must be persistent. An Immutable
Shared Fixture (see Shared Fixture) must not be modifi ed by any test. As a
consequence, most tests augment the Shared Fixture with a Fresh Fixture that
they can modify.

The relationship between persistence and freshness is reasonably obvious for
two of these combinations. The persistent Fresh Fixture is discussed in more
detail later in this chapter. The transient Shared Fixture is inherently transient—
how we hold references to these fi xtures is what makes them persist. Other than
this distinction, transient Shared Fixtures can be treated exactly like persistent
Shared Fixtures.

Transient Fresh Fixtures

In this approach, each test creates a temporary Fresh Fixture as it runs. Any
objects or records it requires are created by the test itself (though not necessarily
inside the Test Method). Because the test fi xture visibility is restricted to the one
test alone, we ensure that each test is completely independent because it cannot
depend, either accidentally or on purpose, on the output of any other tests that
use the same fi xture.

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

 Which Test Fixture Strategy Do We Use?

www.it-ebooks.info

http://www.it-ebooks.info/

62 Chapter 6 Test Automation Strategy

We call this approach Fresh Fixture because each test starts with a clean slate
and builds from there. It does not “inherit” or “reuse” any part of the fi xture
from other tests or from a Prebuilt Fixture (page 429). Every object or record
used by the SUT is “fresh,” “brand new,” and not “previously enjoyed.”

The main disadvantage of using the Fresh Fixture approach is the additional
CPU cycles it takes to create all the objects for each test. As a consequence, the
tests may run more slowly than under a Shared Fixture approach, especially if
we use a Persistent Fresh Fixture.

Persistent Fresh Fixtures

A Persistent Fresh Fixture sounds a bit oxymoronic. We want the fi xture to be
fresh, yet it persists beyond the lifetime of a single test! What kind of strategy is
that? Some might say “stupid,” but sometimes one has to do this.

We are “forced” into this strategy when we are testing components that are
tightly coupled to a database or other persistence mechanism. The obvious so-
lution is that we should not let the coupling be so tight, but rather make the
database a substitutable dependency of the component we are testing. This step
may not be practical when testing legacy software, however—yet we may still
want to partake of the benefi ts of a Fresh Fixture. Hence the existence of the
Persistent Fresh Fixture strategy. The key difference between this strategy and the
Transient Fresh Fixture is the need for code to tear down the fi xture after each test.
Persistent Fresh Fixtures can result in Slow Tests if the persistence of the fi xture is
caused by the use of a database, fi le system, or other high-latency dependency.

We can at least partially address the resulting Slow Tests by applying one or
more of the following patterns:

1. Construct a Minimal Fixture (the smallest fi xture possible).

2. Speed up the construction by using a Test Double to replace the pro-
vider of any data that takes too long to set up.

3. If the tests still are not fast enough, minimize the size of the part of
the fi xture we need to destroy and reconstruct each time by using an
Immutable Shared Fixture for any objects that are referenced but not
modifi ed.

The project teams with which I have worked have found that, on average, our
tests run 50 times faster (yes, they take 2% as long) when we use Dependency
Injection (page 678) or Dependency Lookup (page 686) to replace the entire
database with a Fake Database (see Fake Object on page 551) that uses a set of

www.it-ebooks.info

http://www.it-ebooks.info/

63

hash tables instead of tables. Each test may require many, many database opera-
tions to set up and tear down the fi xture required by a single query in the SUT.

There is a lot to be said for minimizing the size and complexity of the test
fi xture. A Minimal Fixture (see Minimal Fixture) is much easier to understand
and helps highlight the cause–effect relationship between the fi xture and the ex-
pected outcome. In this regard, it is a major enabler of Tests as Documentation
(page 23). In some cases, we can make the test fi xture much smaller by using
Entity Chain Snipping (see Test Stub on page 529) to eliminate the need to in-
stantiate those objects on which our test depends only indirectly. This tactic will
certainly speed up the instantiation of our test fi xture.

Shared Fixture Strategies

Sometimes we cannot—or choose not to—use a Fresh Fixture strategy. In these
cases, we can use a Shared Fixture. In this approach, many tests reuse the same
instance of a test fi xture.

The major advantage of Shared Fixtures is that we save a lot of execution
time in setting up and tearing down the fi xture. The main disadvantage is con-
veyed by one of its aliases, Stale Fixture, and by the test smell that describes its
most common side effects, Interacting Tests (see Erratic Test). Although Shared
Fixtures do have other benefi ts, most can be realized by applying other patterns
to Fresh Fixtures; Standard Fixture (page 305) avoids the fi xture design and
coding effort for every test without actually sharing the fi xture.

Now, if Shared Fixtures are so bad, why even discuss them? Because every-
one seems to go down this road at least once in his or her career—so we might
as well share the best available information about them should you venture
down that path. Mind you, this discussion isn’t meant to encourage anyone to
go down this path unnecessarily because it is paved with broken glass, infested
with poisonous snakes, and . . . well, you get my drift.

Given that we have decided to use a Shared Fixture (we did investigate every
possible alternative, didn’t we?), what are our options? We can make the fol-
lowing adjustments (Figure 6.5):

• How far and wide we share a fi xture (e.g., a Testcase Class, all tests in
a test suite, all test run by a particular user)

• How often we recreate the fi xture

 Which Test Fixture Strategy Do We Use?

www.it-ebooks.info

http://www.it-ebooks.info/

64 Chapter 6 Test Automation Strategy

Figure 6.5 The various ways we can manage a Shared Fixture. The strategies
are ordered by the length of the fi xture’s lifetime, with the longestlasting fi xture
appearing on the left.

The more tests that share a fi xture, the more likely that one of them will make a
mess of things and spoil everything for all the tests that follow it. The less often
we reconstruct the fi xture, the longer the effects of a messed-up fi xture will per-
sist. For example, a Prebuilt Fixture can be set up outside the test run, thereby
avoiding the entire cost of setting up the fi xture as part of the test run; unfor-
tunately, it can also result in Unrepeatable Tests (see Erratic Test) if tests don’t
clean up after themselves properly. This strategy is most commonly used with a
Database Sandbox (page 650) that is initialized using a database script; once the
fi xture is corrupted, it must be reinitialized by rerunning the script. If the Shared
Fixture is accessible to more than one Test Runner (page 377), we may end up
in a Test Run War (see Erratic Test), in which tests fail randomly as they try to
use the same fi xture resource at the same time as some other test.

We can avoid both Unrepeatable Tests and Test Run Wars by setting up the
fi xture each time the test suite is run. xUnit provides several ways to do so,
including Lazy Setup (page 435), Suite Fixture Setup (page 441), and Setup
Decorator (page 447). The concept of “lazy initialization” should be familiar to
most object-oriented developers; here we just apply the concept to the construc-
tion of the test fi xture. The latter two choices provide a way to tear down the
test fi xture when the test run is fi nished because they call a setUp method and a
corresponding tearDown at the appropriate times; Lazy Setup does not give us a
way to do this.

Chained Tests represent another option for setting up a Shared Fixture, one that
involves running the tests in a predefi ned order and letting each test use the previ
ous test’s results as its test fi xture. Unfortunately, once one test fails, many of the
tests that follow will provide erratic results because their pre-conditions have not

Shared Fixture Setup

Shared
Fixture

Setup
Decorator

Suite
Fixture
Setup

Lazy
Setup

Prebuilt
Fixture

Chained
Tests

Shared Fixture Setup

Shared
Fixture

Setup
Decorator

Suite
Fixture
Setup

Lazy
Setup

Prebuilt
Fixture

Chained
Tests

www.it-ebooks.info

http://www.it-ebooks.info/

65

been satisfi ed. This problem can be made easier to diagnose by having each test
use Guard Assertions (page 490) to verify that its pre-conditions have been met.4

As mentioned earlier, an Immutable Shared Fixture is a strategy for speeding
up tests that use a Fresh Fixture. We can also use an Immutable Shared Fixture
to make tests based on a Shared Fixture less erratic by restricting changes to a
smaller, mutable part of a Shared Fixture.

How Do We Ensure Testability?

The last strategic concern touched on in this chapter is ensuring testability. The
discussion here isn’t intended to be a complete treatment of the topic—it is too
large to cover in a single chapter on test strategy. Nevertheless, we shouldn’t
sweep this issue under the carpet either, because it defi nitely has a major impact
on test automation. But fi rst, I must climb onto my soapbox for a short digres-
sion into the development process.

Test Last—at Your Peril

Anyone who has tried to retrofi t unit tests onto an existing application has prob-
ably experienced a lot of pain! This is the hardest kind of test automation we
can do as well as the least productive. A lot of the benefi t of automated tests is
derived during the “debugging phase” of software development, when such tests
can reduce the amount of time spent working with debugging tools. Tackling a
test retrofi t on legacy software as your fi rst attempt at automated unit testing
is the last thing you want to try, as it is sure to discourage even the most deter-
mined developers and project managers.

Design for Testability—Upfront

BDUF5 design for testability is hard because it is diffi cult to know what the tests
will need in the way of control points and observation points on the SUT. We
can easily build software that is diffi cult to test. We can also spend a lot of time
designing in testability mechanisms that are either insuffi cient or unnecessary.
Either way, we will have spent a lot of effort with nothing to show for it.

4 Unfortunately, this may result in slower tests when the fi xture is in a database. Never-
theless, it will still be many times faster than if each test had to insert all the records it
needed.
5 “Big Design Upfront” (also known as “waterfall design”) is the opposite of emergent
design (“just-in-time design”).

 How Do We Ensure Testability?

www.it-ebooks.info

http://www.it-ebooks.info/

66 Chapter 6 Test Automation Strategy

Test-Driven Testability

The nice thing about building our software driven by tests is that we don’t have
to think very much about design for testability; we just write the tests and that
forces us to build for testability. The act of writing the test defi nes the control
points and observation points that the SUT needs to provide. Once we have
passed the tests, we know we have a testable design.

Now that I’ve done my bit promoting TDD as a “design for testability” pro-
cess, let’s get on with our discussion of the mechanics of actually making our
software testable.

Control Points and Observation Points

A test interacts with the software6 through one or more interfaces or interaction
points. From the test’s point of view, these interfaces can act as either control
points or observation points (Figure 6.6).

Figure 6.6 Control points and observation points. The test interacts with
the SUT through interaction points. Direct interaction points are synchronous
method calls made by the test; indirect interaction points require some form of
Back Door Manipulation. Control points have arrows pointing toward the SUT;
observation points have arrows pointing away from the SUT.

6 I am deliberately not saying “SUT” here because it interacts with more than just the
SUT.

Fixture

DOCSetup

Exercise

Verify

Teardown

SUT

A C

B

Indirect Output
(Observation Point)

Exercise
(with return value)

Get State

Indirect Input
(Control Point)

Indirect Output
(Observation Point)

Direct Inputs
(Control Points)

Direct Outputs
(Observation Points)

Get Something
(with return value)

Do Something
(no return value)

Initialize

Fixture

DOCSetup

Exercise

Verify

Teardown

SUT

A C

B

Indirect Output
(Observation Point)

Exercise
(with return value)

Get State

Indirect Input
(Control Point)

Indirect Output
(Observation Point)

Direct Inputs
(Control Points)

Direct Outputs
(Observation Points)

Get Something
(with return value)

Do Something
(no return value)

Initialize

www.it-ebooks.info

http://www.it-ebooks.info/

67

A control point is how the test asks the software to do something for it. This
could be for the purpose of putting the software into a specifi c state as part of
setting up or tearing down the test fi xture, or it could be to exercise the SUT.
Some control points are provided strictly for the tests; they should not be used
by the production code because they bypass input validation or short-circuit the
normal life cycle of the SUT or some object on which it depends.

An observation point is how the test fi nds out about the SUT’s behavior dur-
ing the result verifi cation phase of the test. Observation points can be used to
retrieve the post-test state of the SUT or a DOC. They can also be used to
spy on the interactions between the SUT and any components with which it is
expected to interact while it is being exercised. Verifying these indirect outputs
is an example of Back Door Verifi cation (see Back Door Manipulation).

Both control points and observation points can be provided by the SUT as
synchronous method calls; we call this “going in the front door.” Some inter-
action points may be via a “back door” to the SUT; we call this Back Door
Manipulation. In the diagrams that follow, control points are represented by
the arrowheads that point to the SUT, whether from the test or from a DOC.
Observation points are represented by the arrows whose heads point back to
the test itself. These arrows typically start at the SUT or DOC7 or start at the
test and interact with either the SUT or DOC before returning to the test.8

Interaction Styles and Testability Patterns

When testing a particular piece of software, our tests can take one of two basic
forms.

A round-trip test interacts with the SUT in question only through its public
interface—that is, its “front door” (Figure 6.7). Both the control points and
the observation points in a typical round-trip test are simple method calls. The
nice thing about this approach is that it does not violate encapsulation. The test
needs to know only the public interface of the software; it doesn’t need to know
anything about how it is built.

The main alternative is the layer-crossing test (Figure 6.8), in which we exer-
cise the SUT through the API and keep an eye on what comes out the back door
using some form of Test Double such as a Test Spy (page 538) or Mock Object.
This can be a very powerful testing technique for verifying certain kinds of
mostly architectural requirements. Unfortunately, this approach can also result
in Overspecifi ed Software (see Fragile Test) if it is overused because changes in
how the software implements its responsibilities can cause tests to fail.

7 An asynchronous observation point.
8 A synchronous observation point.

 How Do We Ensure Testability?

www.it-ebooks.info

http://www.it-ebooks.info/

68 Chapter 6 Test Automation Strategy

Figure 6.7 A round-trip test interacts with the SUT only via the front door. The
test on the right replaces a DOC with a Fake Object to improve its repeatability
or performance.

Figure 6.8 A layer-crossing test can interact with the SUT via a “back door.”
The test on the left controls the SUT’s indirect inputs using a Test Stub. The test
on the right verifi es its indirect outputs using a Mock Object.

DOC

DOC

SUT

FakeComponentTest

testMethod_1

testMethod_2

RealComponentTest

testMethod_2

Fake
Object

Installation

SUT Creation

testMethod_1

DOC

DOC

SUT

FakeComponentTest

testMethod_1

testMethod_2

RealComponentTest

testMethod_2

Fake
Object

Installation

SUT Creation

testMethod_1

IndirectOutputTest

DOC DOC

SUT

IndirectInputTest
testMethod_1

testMethod_2

testMethod_1

testMethod_2

Test Stub Mock Object

SUT

Indirect
Outputs

Indirect
Inputs

Installation

Creation
and

Configuration

Installation

Creation
and

Configuration

IndirectOutputTest

DOC DOC

SUT

IndirectInputTest
testMethod_1

testMethod_2

testMethod_1

testMethod_2

Test Stub Mock Object

SUT

Indirect
Outputs

Indirect
Inputs

Installation

Creation
and

Configuration

Installation

Creation
and

Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

69

In Figure 6.8, the test on the right uses a Mock Object that stands in for the DOC
as the observation point. The test on the left uses a Test Stub that stands in for
the DOC as a control point. Testing in this style implies a Layered Architecture
[DDD, PEAA, WWW], which in turn opens the door to using Layer Tests (page 337)
to test each layer of the architecture independently (Figure 6.9). An even more
general concept is the use of Component Tests (see Layer Test) to test each com-
ponent within a layer independently.

Figure 6.9 A pair of Layer Tests each testing a different layer of the system.
Each layer of a layered architecture can be tested independently using a distinct
set of Layer Tests. This ensures good separation of concerns, and the tests
reinforce the layered architecture.

Whenever we want to write layer-crossing tests, we need to ensure that we have
built in a substitutable dependency mechanism for any components on which
the SUT depends but that we want to test independently. The leading contend-
ers include any of the variations of Dependency Injection (Figure 6.10) or some
form of Dependency Lookup such as Object Factory or Service Locator. These
dependency substitution mechanisms can be hand-coded or we can use an in-
version of control (IOC) framework if one is available in our programming
environment. The fallback plan is to use a Test-Specifi c Subclass (page 579)
of the SUT or the DOC in question. This subclass can be used to override the
dependency access or construction mechanism within the SUT or to replace the
behavior of the DOC with test-specifi c behavior.

DOC

Layer n

LayernTestcaseClass
testMethod_1

testMethod_2

Layer1TestcaseClass
testMethod_1

testMethod_2

Layer 1
Test Double

Test Double

DOC

Layer n

LayernTestcaseClass
testMethod_1

testMethod_2

Layer1TestcaseClass
testMethod_1

testMethod_2

Layer 1
Test Double

Test Double

 How Do We Ensure Testability?

www.it-ebooks.info

http://www.it-ebooks.info/

70 Chapter 6 Test Automation Strategy

The “solution of last resort” is the Test Hook (page 709).9 These constructs
do have utility as temporary measures that allow us to automate tests to act
as a Safety Net (page 24) while refactoring to retrofi t testability. We defi nitely
shouldn’t make a habit of using them, however, as continued use of Test Hooks
will result in Test Logic in Production (page 217).

Figure 6.10 A Test Double being “injected” into a SUT by a test. A test can
use Dependency Injection to replace a DOC with an appropriate Test Double. The
DOC is passed to the SUT by the test as or after it has been created.

A third kind of test worth mentioning is the asynchronous test, in which the test
interacts with the SUT through real messaging. Because the responses to these
requests also come asynchronously, these tests must include some kind of inter-
process synchronization such as calls to wait. Unfortunately, the need to wait for
message responses that might never arrive can cause these tests to take much,
much longer to execute. This style of testing should be avoided at all costs in
unit and component tests.

Fortunately, the Humble Executable pattern (see Humble Object on page 695)
can remove the need to conduct unit tests this way (Figure 6.11). It involves
putting the logic that handles the incoming message into a separate class or
component, which can then be tested synchronously using either a round-trip
or layer-crossing style.

A related issue is the testing of business logic through a UI. In general, such
Indirect Testing (see Obscure Test) is a bad idea because changes to the UI code
will break tests that are trying to verify the business logic behind it. Because the
UI tends to change frequently, especially on agile projects, this strategy will
greatly increase test maintenance costs. Another reason this is a bad idea is that

9 These typically take the form of if (testing) then ... else ... endif.

DOC

Test
Double

Creation

Creation

SUT Usage

Client

Exercise

Setup
Exercise

Verify
Teardown

Usage Usage

DOC

Test
Double

Creation

Creation

SUT Usage

Client

Exercise

Setup
Exercise

Verify
Teardown

Usage Usage

www.it-ebooks.info

http://www.it-ebooks.info/

71

UIs are inherently asynchronous. Tests that exercise the system through the UI
have to be asynchronous tests along with all the issues that come with them.

Figure 6.11 A Humble Executable making testing easier. The Humble
Executable pattern can improve the repeatability and speed of verifying logic
that would otherwise have to be verifi ed via asynchronous tests.

Divide and Test

We can turn almost any Hard-to-Test Code (page 209) into easily tested code
through refactoring as long as we have enough tests in place to ensure that we
do not introduce bugs during this refactoring.

We can avoid using the UI for customer tests by writing those tests as Subcu-
taneous Tests (see Layer Test). These tests bypass the UI layer of the system and
exercise the business logic via a Service Facade [CJ2EEP] that exposes the neces-
sary synchronous interaction points to the test. The UI relies on the same facade,
enabling us to verify that the business logic works correctly even before we hook
up the UI logic. The layered architecture also enables us to test the UI logic before
the business logic is fi nished; we can replace the Service Facade with a Test Double
that provides completely deterministic behavior that our tests can depend on.10

10 This Test Double can be either hard-coded or fi le driven. Either way, it should be inde-
pendent of the real implementation so that the UI tests need to know only which data to
use to evoke specifi c behaviors from the Service Facade, not the logic behind it.

Fixture

Setup

Exercise

Verify

Teardown

Testable

Component

Humble
Executable Asynchronous

Interface

 Synchronous
Interface

Fixture

Setup

Exercise

Verify

Teardown

Testable

Component

Humble
Executable Asynchronous

Interface

 Synchronous
Interface

 How Do We Ensure Testability?

www.it-ebooks.info

http://www.it-ebooks.info/

72 Chapter 6 Test Automation Strategy

When conducting unit testing of nontrivial UIs,11 we can use a Humble Dialog
(see Humble Object) to move the logic that makes decisions about the UI out
of the visual layer, which is diffi cult to test synchronously, and into a layer of
supporting objects, which can be verifi ed with standard unit-testing techniques
(Figure 6.12). This approach allows the presentation logic behavior to be tested
as thoroughly as the business logic behavior.

Figure 6.12 A Humble Dialog reducing the dependency of the test on the UI
framework. The logic that controls the state of UI components can be very diffi cult
to test. Extracting it into a testable component leaves behind a Humble Dialog that
requires very little testing.

From a test automation strategy perspective, the key thing is to make the
decision about which test–SUT interaction styles should be used and which
ones should be avoided, and to ensure that the software is designed to support
that decision.

11 Any UI that contains state information or supports conditional display or enabling of
elements should be considered nontrivial.

Setup

Exercise

Verify

Teardown

Testable

GUI Logic

Component

Humble Dialog
Abc
def
ghi

OK Cancel

 GUI
 Frame-
 workMock

Dialog

Setup

Exercise

Verify

Teardown

Testable

GUI Logic

Component

Humble Dialog
Abc
def
ghi

OK Cancel

 GUI
 Frame-
 workMock

Dialog

www.it-ebooks.info

http://www.it-ebooks.info/

73

What’s Next?

This concludes our introduction to the hard-to-change decisions we must make
as we settle upon our test automation strategy. Given that you are still reading,
I will assume that you have decided xUnit is an appropriate tool for doing your
test automation. The following chapters introduce the detailed patterns for im-
plementing our chosen fi xture strategy, whether it involves a Fresh Fixture or a
Shared Fixture. First, we will explore the simplest case, a Transient Fresh Fixture,
in Chapter 8, Transient Fixture Management. We will then investigate the use of
persistent fi xtures in Chapter 9, Persistent Fixture Management. But fi rst, we must
establish the basic xUnit terminology and notation that is used throughout this
book in Chapter 7, xUnit Basics.

 What’s Next?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

75

Chapter 7

xUnit Basics

About This Chapter

Chapter 6, Test Automation Strategy, introduced the “hard to change” decisions
that we need to get right early in the project. The current chapter serves two
purposes. First, it introduces the xUnit terminology and diagramming notation
used throughout this book. Second, it explains how the xUnit framework oper-
ates beneath the covers and why it was built that way. This knowledge can help
the builder of a new Test Automation Framework (page 298) understand how
to port xUnit. It can also help test automaters understand how to use certain
features of xUnit.

An Introduction to xUnit

The term xUnit is how we refer to any member of the family of Test Automa-
tion Frameworks used for automating Hand-Scripted Tests (see Scripted Test
on page 285) that share the common set of features described here. Most pro-
gramming languages in widespread use today have at least one implementation
of xUnit; Hand-Scripted Tests are usually automated using the same program-
ming language as is used for building the SUT. Although this is not necessarily
the case, this strategy is usually much easier because our tests have easy access
to the SUT API. By using a programming language with which the developers
are familiar, less effort is required to learn how to automate Fully Automated
Tests (page 26).1

1 See the sidebar “Testing Stored Procs with JUnit” (page 657) for an example of using a
testing framework in one language to test an SUT in another language.

www.it-ebooks.info

http://www.it-ebooks.info/

76 Chapter 7 xUnit Basics

Common Features

Given that most members of the xUnit family are implemented using an object-
oriented programming language (OOPL), they are described here fi rst and then
places where the non-OOPL members of the family differ are noted.

All members of the xUnit family implement a basic set of features. They all
provide a way to perform the following tasks:

• Specify a test as a Test Method (page 348)

• Specify the expected results within the test method in the form of calls
to Assertion Methods (page 362)

• Aggregate the tests into test suites that can be run as a single operation

• Run one or more tests to get a report on the results of the test run

Because many members of the xUnit family support Test Method Discovery (see
Test Discovery on page 393), we do not have to use Test Enumeration (page 399)
in these members to manually add each Test Method we want to run to a test
suite. Some members also support some form of Test Selection (page 403) to run
subsets of test methods based on some criteria.

The Bare Minimum

Here is the bare minimum we need to understand about how xUnit operates
(Figure 7.1):

• How we defi ne tests using Test Methods on Testcase Classes (page 373)

• How we can build up arbitrary Suites of Suites (see Test Suite Object on
page 387)2

• How we run the tests

• How we interpret the test results

Defi ning Tests

Each test is represented by a Test Method that implements a single Four-Phase
Test (page 358) by following these steps:

2 Even those xUnit variants that don’t have an explicit Suite class or method still build
Test Suite Objects behind the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

77

• Setting up the test fi xture using either In-line Setup (page 408), Delegated
Setup (page 411), or Implicit Setup (page 424)

• Exercising the SUT by interacting with methods in its public or private
interface

• Verifying that the expected outcome has occurred using calls to Assertion
Methods

• Tearing down the test fi xture using either Garbage-Collected Tear-
down (page 500), In-line Teardown (page 509), Implicit Teardown (page 516),
or Automated Teardown (page 503)

Figure 7.1 The static test structure as seen by a test automater. The test
automater sees only the static structure as he or she reads or writes tests. The
test automater writes one Test Method with four distinct phases for each test in
the Testcase Class. The Test Suite Factory (see Test Enumeration) is used only
for Test Enumeration. The runtime structure (shown grayed out) is left to the
test automater’s imagination.

The most common types of tests are the Simple Success Test (see Test Method),
which verifi es that the SUT has behaved correctly with valid inputs, and the
Expected Exception Test (see Test Method), which verifi es that the SUT raises an
exception when used incorrectly. A special type of test, the Constructor Test (see
Test Method), verifi es that the object constructor logic builds new objects cor-
rectly. Both “simple success” and “expected exception” forms of the Constructor
Test may be needed. The Test Methods that contain our test logic need to live

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Setup

Exercise

Verify

Teardown

Suite

Test Runner

Test
Suite

Factory
Create

testMethod_1

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Setup

Exercise

Verify

Teardown

Suite

Test Runner

Test
Suite

Factory
Create

testMethod_1

 The Bare Minimum

www.it-ebooks.info

http://www.it-ebooks.info/

78 Chapter 7 xUnit Basics

somewhere, so we defi ne them as methods of a Testcase Class.3 We then pass the
name of this Testcase Class (or the module or assembly in which it resides) to
the Test Runner (page 377) to run our tests. This may be done explicitly—such
as when invoking the Test Runner on a command line—or implicitly by the
integrated development environment (IDE) that we are using.

What’s a Fixture?

The test fi xture is everything we need to have in place to exercise the SUT. Typi-
cally, it includes at least an instance of the class whose method we are testing. It
may also include other objects on which the SUT depends. Note that some mem-
bers of the xUnit family call the Testcase Class the test fi xture—a preference that
likely refl ects an assumption that all Test Methods on the Testcase Class should use
the same fi xture. This unfortunate name collision makes discussing test fi xtures
particularly problematic. In this book, I have used different names for the Testcase
Class and the test fi xture it creates. I trust that the reader will translate this termi-
nology to the terminology of his or her particular member of the xUnit family.

Defi ning Suites of Tests

Most Test Runners “auto-magically” construct a test suite containing all of the
Test Methods in the Testcase Class. Often, this is all we need. Sometimes we
want to run all the tests for an entire application; at other times we want to run
just those tests that focus on a specifi c subset of the functionality. Some mem-
bers of the xUnit family and some third-party tools implement Testcase Class
Discovery (see Test Discovery) in which the Test Runner fi nds the test suites by
searching either the fi le system or an executable for test suites.

If we do not have this capability, we need to use Test Suite Enumeration (see
Test Enumeration), in which we defi ne the overall test suite for the entire system or
application as an aggregate of several smaller test suites. To do so, we must defi ne
a special Test Suite Factory class whose suite method returns a Test Suite Object
containing the collection of Test Methods and other Test Suite Objects to run.

This collection of test suites into increasingly larger Suites of Suites is com-
monly used as a way to include the unit test suite for a class into the test suite
for the package or module, which is in turn included in the test suite for the
entire system. Such a hierarchical organization supports the running of test
suites with varying degrees of completeness and provides a practical way for
developers to run that subset of the tests that is most relevant to the software of

3 This scheme is called a test fi xture in some variants of xUnit, probably because the
creators assumed we would have a single Testcase Class per Fixture (page 631).

www.it-ebooks.info

http://www.it-ebooks.info/

79

interest. It also allows them to run all the tests that exist with a single command
before they commit their changes into the source code repository [SCM].

Running Tests

Tests are run by using a Test Runner. Several different kinds of Test Runners are
available for most members of the xUnit family.

A Graphical Test Runner (see Test Runner) provides a visual way for the user
to specify, invoke, and observe the results of running a test suite. Some Graphi-
cal Test Runners allow the user to specify a test by typing in the name of a Test
Suite Factory; others provide a graphical Test Tree Explorer (see Test Runner)
that can be used to select a specifi c Test Method to execute from within a tree
of test suites, where the Test Methods serve as the tree’s leaves. Many Graphical
Test Runners are integrated into an IDE to make running tests as easy as select-
ing the Run As Test command from a context menu.

A Command-Line Test Runner (see Test Runner) can be used to execute tests
when running the test suite from the command line, as in Figure 7.2. The name
of the Test Suite Factory that should be used to create the test suite is included
as a command-line parameter. Command-Line Test Runners are most common-
ly used when invoking the Test Runner from Integration Build [SCM] scripts or
sometimes from within an IDE.

>ruby testrunner.rb c:/examples/tests/SmellHandlerTest.rb
Loaded suite SmellHandlerTest
Started
.....
Finished in 0.016 seconds.
5 tests, 6 assertions, 0 failures, 0 errors
>Exit code: 0

Figure 7.2 Using a Command-Line Test Runner to run tests from the command
line.

Test Results

Naturally, the main reason for running automated tests is to determine the re-
sults. For the results to be meaningful, we need a standard way to describe them.
In general, members of the xUnit family follow the Hollywood principle (“Don’t
call us; we’ll call you”). In other words, “No news is good news”; the tests will
“call you” when a problem occurs. Thus we can focus on the test failures rather
than inspecting a bunch of passing tests as they roll by.

Test results are classifi ed into one of three categories, each of which is trea-
ted slightly differently. When a test runs without any errors or failures, it is

 The Bare Minimum

www.it-ebooks.info

http://www.it-ebooks.info/

80 Chapter 7 xUnit Basics

considered to be successful. In general, xUnit does not do anything special for
successful tests—there should be no need to examine any output when a Self-
Checking Test (page 26) passes.

A test is considered to have failed when an assertion fails. That is, the test
asserts that something should be true by calling an Assertion Method, but
that assertion turns out not to be the case. When it fails, an Assertion Method
throws an assertion failure exception (or whatever facsimile the programming
language supports). The Test Automation Framework increments a counter for
each failure and adds the failure details to a list of failures; this list can be ex-
amined more closely later, after the test run is complete. The failure of a single
test, while signifi cant, does not prevent the remaining tests from being run; this
is in keeping with the principle Keep Tests Independent (see page 42).

A test is considered to have an error when either the SUT or the test itself
fails in an unexpected way. Depending on the language being used, this problem
could consist of an uncaught exception, a raised error, or something else. As
with assertion failures, the Test Automation Framework increments a counter
for each error and adds the error details to a list of errors, which can then be
examined after the test run is complete.

For each test error or test failure, xUnit records information that can be ex-
amined to help understand exactly what went wrong. As a minimum, the name
of the Test Method and Testcase Class are recorded, along with the nature of
the problem (whether it was a failed assertion or a software error). In most
Graphical Test Runners that are integrated with an IDE, one merely has to
(double-) click on the appropriate line in the traceback to see the source code
that emitted the failure or caused the error.

Because the name test error sounds more drastic than a test failure, some
test automaters try to catch all errors raised by the SUT and turn them into test
failures. This is simply unnecessary. Ironically, in most cases it is easier to deter-
mine the cause of a test error than the cause of a test failure: The stack trace for
a test error will typically pinpoint the problem code within the SUT, whereas
the stack track for a test failure merely shows the location in the test where
the failed assertion was made. It is, however, worthwhile using Guard Asser-
tions (page 490) to avoid executing code within the Test Method that would
result in a test error being raised from within the Test Method4 itself; this is just
a normal part of verifying the expected outcome of exercising the SUT and does
not remove useful diagnostic tracebacks.

4 For example, before executing an assertion on the contents of a fi eld of an object
returned by the SUT, it is worthwhile to assertNotNull on the object reference so as to avoid
a “null reference” error.

www.it-ebooks.info

http://www.it-ebooks.info/

81

Under the xUnit Covers

The description thus far has focused on Test Methods and Testcase Classes with
the odd mention of test suites. This simplifi ed “compile time” view is enough
for most people to get started writing automated unit tests in xUnit. It is pos-
sible to use xUnit without any further understanding of how the Test Automa-
tion Framework operates—but the lack of more extensive knowledge is likely
to lead to confusion when building and reusing test fi xtures. Thus it is better
to understand how xUnit actually runs the Test Methods. In most5 members
of the xUnit family, each Test Method is represented at runtime by a Testcase
Object (page 382) because it is a lot easier to manipulate tests if they are “fi rst-
class” objects (Figure 7.3). The Testcase Objects are aggregated into Test Suite
Objects, which can then be used to run many tests with a single user action.

Figure 7.3 The runtime test structure as seen by the Test Automation
Framework. At runtime, the Test Runner asks the Testcase Class or a Test
Suite Factory to instantiate one Testcase Object for each Test Method, with the
objects being wrapped up in a single Test Suite Object. The Test Runner tells this
Composite [GOF] object to run its tests and collect the results. Each Testcase
Object runs one Test Method.

5 NUnit is a known exception and others may exist. See the sidebar “There’s Always an
Exception” (page 384) for more information.

Create

Test
Suite

Object
Run Testcase

Object
testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Exercise

Exercise

Create

Fixture

SUT
Run

Test Runner

Test
Suite

Factory

Suite

Create Run

Create

Test
Suite

Object
Run Testcase

Object
testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Exercise

Exercise

Create

Fixture

SUT
Run

Test Runner

Test
Suite

Factory

Suite

Create Run

 Under the xUnit Covers

www.it-ebooks.info

http://www.it-ebooks.info/

82 Chapter 7 xUnit Basics

Test Commands

The Test Runner cannot possibly know how to call each Test Method individu-
ally. To avoid the need for this, most members of the xUnit family convert each
Test Method into a Command [GOF] object with a run method. To create these
Testcase Objects, the Test Runner calls the suite method of the Testcase Class to
get a Test Suite Object. It then calls the run method via the standard test inter-
face. The run method of a Testcase Object executes the specifi c Test Method for
which it was instantiated and reports whether it passed or failed. The run method
of a Test Suite Object iterates over all the members of the collection of tests,
keeping track of how many tests were run and which ones failed.

Test Suite Objects

A Test Suite Object is a Composite object that implements the same standard
test interface that all Testcase Objects implement. That interface (implicit in lan-
guages lacking a type or interface construct) requires provision of a run method.
The expectation is that when run is invoked, all of the tests contained in the
receiver will be run. In the case of a Testcase Object, it is itself a “test” and
will run the corresponding Test Method. In the case of a Test Suite Object, that
means invoking run on all of the Testcase Objects it contains. The value of using
a Composite Command is that it turns the processes of running one test and
running many tests into exactly the same process.

To this point, we have assumed that we already have the Test Suite Object
instantiated. But where did it come from? By convention, each Testcase Class
acts as a Test Suite Factory. The Test Suite Factory provides a class method
called suite that returns a Test Suite Object containing one Testcase Object for
each Test Method in the class. In languages that support some form of refl ec-
tion, xUnit may use Test Method Discovery to discover the test methods and
automatically construct the Test Suite Object containing them. Other mem-
bers of the xUnit family require test automaters to implement the suite method
themselves; this kind of Test Enumeration takes more effort and is more likely
to lead to Lost Tests (see Production Bugs on page 268).

xUnit in the Procedural World

Test Automation Frameworks and test-driven development became popular only
after object-oriented programming became commonplace. Most members of
the xUnit family are implemented in object-oriented programming languages

www.it-ebooks.info

http://www.it-ebooks.info/

83

that support the concept of a Testcase Object. Although the lack of objects
should not keep us from testing procedural code, it does make writing Self-
Checking Tests more labor-intensive and building generic, reusable Test Runners
more diffi cult.

In the absence of objects or classes, we must treat Test Methods as global
(public static) procedures. These methods are typically stored in fi les or mod-
ules (or whatever modularity mechanism the language supports). If the language
supports the concept of procedure variables (also known as function pointers),
we can defi ne a generic Test Suite Procedure (see Test Suite Object) that takes
an array of Test Methods (commonly called “test procedures”) as an argument.
Typically, the Test Methods must be aggregated into the arrays using Test Enu-
meration because very few non-object-oriented programming languages sup-
port refl ection.

If the language does not support any way of treating Test Methods as data,
we must defi ne the test suites by writing Test Suite Procedures that make explicit
calls to Test Methods and/or other Test Suite Procedures. Test runs may be initi-
ated by defi ning a main method on the module.

A fi nal option is to encode the tests as data in a fi le and use a single Data-
Driven Test (page 288) interpreter to execute them. The main disadvantage of
this approach is that it restricts the kinds of tests that can be run to those imple-
mented by the Data-Driven Test interpreter, which must itself be written anew
for each SUT. This strategy does have the advantage of moving the coding of
the actual tests out of the developer arena and into the end-user or tester arena,
which makes it particularly appropriate for customer tests.

What’s Next?

In this chapter we established the basic terminology for talking about how xUnit
tests are put together. Now we turn our attention to a new task—constructing
our fi rst test fi xture in Chapter 8, Transient Fixture Management.

 What’s Next?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

85

Chapter 8

Transient Fixture
Management

About This Chapter

Chapter 6, Test Automation Strategy, looked at the strategic decisions that we need
to make. That included the defi nition of the term “fi xture” and the selection of a
test fi xture strategy. Chapter 7, xUnit Basics, established our basic xUnit terminol-
ogy and diagramming notation. This chapter builds on both of these earlier chap-
ters by focusing on the mechanics of implementing the chosen fi xture strategy.

There are several different ways to set up a Fresh Fixture (page 311), and our
decision will affect how much effort it takes to write the tests, how much effort

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

Figure 8.1 Transient Fresh Fixture. Fresh Fixtures come in two fl avors:
Transient and Persistent. Both require fi xture setup; the latter also requires
fi xture teardown.

www.it-ebooks.info

http://www.it-ebooks.info/

86 Chapter 8 Transient Fixture Management

it takes to maintain our tests, and whether we achieve Tests as Documentation
(see page 23). Persistent Fresh Fixtures (see Fresh Fixture) are set up the same way
as Transient Fresh Fixtures (see Fresh Fixture), albeit with some additional factors
to consider related to fi xture teardown (Figure 8.1). Shared Fixtures (page 317)
introduce another set of considerations. Persistent Fresh Fixtures and Shared
Fixtures are discussed in detail in Chapter 9.

Test Fixture Terminology

Before we can talk about setting up a fi xture, we need to agree what a fi xture is.

What Is a Fixture?

Every test consists of four parts, as described in Four-Phase Test (page 358). The
fi rst part is where we create the SUT and everything it depends on and where we
put those elements into the state required to exercise the SUT. In xUnit, we call
everything we need in place to exercise the SUT the test fi xture and the part of
the test logic that we execute to set it up the fi xture setup.

The most common way to set up the fi xture is using front door fi xture set-
up—that is, to call the appropriate methods on the SUT to put it into the start-
ing state. This may require constructing other objects and passing them to the
SUT as arguments of method calls. When the state of the SUT is stored in other
objects or components, we can do Back Door Setup (see Back Door Manipulation
on page 327)—that is, we can insert the necessary records directly into the other
component on which the behavior of the SUT depends. We use Back Door Setup
most often with databases or when we need to use a Mock Object (page 544) or
Test Double (page 522). These possibilities are covered in Chapter 13, Testing
with Databases, and Chapter 11, Using Test Doubles, respectively.

It is worth noting that the term “fi xture” is used to mean different things in
different kinds of test automation. The xUnit variants for the Microsoft lan-
guages call the Testcase Class (page 373) the test fi xture. Most other variants
of xUnit distinguish between the Testcase Class and the test fi xture (or test con-
text) it sets up. In Fit [FitB], the term “fi xture” is used to mean the custom-built
parts of the Data-Driven Test (page 288) interpreter that we use to defi ne our
Higher-Level Language (see page 41). Whenever this book says “test fi xture”
without further qualifying this term, it refers to the stuff we set up before ex-
ercising the SUT. To refer to the class that hosts the Test Methods (page 348),
whether it be in Java or C#, Ruby or VB, this book uses Testcase Class.

www.it-ebooks.info

http://www.it-ebooks.info/

87

What Is a Fresh Fixture?

In a Fresh Fixture strategy, we set up a brand-new fi xture for every test we run
(Figure 8.2). That is, each Testcase Object (page 382) builds its own fi xture be-
fore exercising the SUT and does so every time it is rerun. That is what makes
the fi xture “fresh.” As a result, we completely avoid the problems associated
with Interacting Tests (see Erratic Test on page 228).

Figure 8.2 A pair of Fresh Fixtures, each with its creator. A Fresh Fixture is
built specifi cally for a single test, used once, and then retired.

What Is a Transient Fresh Fixture?

When our fi xture is an in-memory fi xture referenced only by local variables
or instance variables,1 the fi xture just “disappears” after every test courtesy of
Garbage-Collected Teardown (page 500). When fi xtures are persistent, this is
not the case. Thus we have some decisions to make about how we implement
the Fresh Fixture strategy. In particular, we have two different ways to keep
them “fresh.” The obvious option is tear down the fi xture after each test. The
less obvious option is to leave the old fi xture around and then build a new
fi xture in such a way that it does not collide with the old fi xture.

1 See the sidebar “There’s Always an Exception” (page 384).

Fixture
Setup

Exercise

Verify

Teardown

SUTFixture
Setup

Exercise

Verify

Teardown

SUT

Fixture
Setup

Exercise

Verify

Teardown

SUTFixture
Setup

Exercise

Verify

Teardown

SUT

 Test Fixture Terminology

www.it-ebooks.info

http://www.it-ebooks.info/

88 Chapter 8 Transient Fixture Management

Most Fresh Fixtures we build are transient, so we will cover that case fi rst.
We will then come back to managing Persistent Fresh Fixtures in Chapter 9.

Building Fresh Fixtures

Whether we are building a Transient Fresh Fixture or a Persistent Fresh Fixture,
the choices we have for how to construct it are pretty much the same. The fi xture
setup logic includes the code needed to instantiate the SUT,2 the code to put the SUT
into the appropriate starting state, and the code to create and initialize the state of
anything the SUT depends on or that will be passed to it as an argument. The most
obvious way to set up a Fresh Fixture is through In-line Setup (page 408), in which
all fi xture setup logic is contained within the Test Method. This type of fi xture can
also be constructed by using Delegated Setup (page 411), which involves calling
Test Utility Methods (page 599). Finally, we can use Implicit Setup (page 424),
in which the Test Automation Framework (page 298) calls a special setUp method
we provide on our Testcase Class. We can also use a combination of these three
approaches. Let’s look at each possibility individually.

In-line Fixture Setup

In In-line Setup, the test handles all of the fixture setup within the body of
the Test Method. We construct objects, call methods on them, construct the
SUT, and call methods on it to put into a specific state. We perform all of
these tasks from within our Test Method. Think of In-line Setup as the do-
it-yourself approach to fixture creation.

 public void testStatus_initial() {
 // In-line setup
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");
 Flight flight = new Flight(flightNumber,
 departureAirport,
 destinationAirport);
 // Exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // tearDown:
 // Garbage-collected
 }

2 This discussion assumes that the SUT is an object and not just static methods on a
class.

www.it-ebooks.info

http://www.it-ebooks.info/

89

The main drawback of In-line Setup is that it tends to lead to Test Code Dupli-
cation (page 213) because each Test Method needs to construct the SUT. Many
of the Test Methods also need to perform similar fi xture setup. This Test Code
Duplication leads, in turn, to High Test Maintenance Cost (page 265) caused
by Fragile Tests (page 239). If the work to create the fi xture is complex, it can
also lead to Obscure Tests (page 186). A related problem is that In-line Setup
tends to encourage Hard-Coded Test Data (see Obscure Test) within each Test
Method because creating a local variable with an Intent-Revealing Name [SBPP]
may seem like too much work for the benefi t yielded.

We can prevent these test smells by moving the code that sets up the fi xture
out of the Test Method. The location where we move it determines which of the
alternative fi xture setup strategies we have used.

Delegated Fixture Setup

A quick and easy way to reduce Test Code Duplication and the resulting Obscure
Tests is to refactor our Test Methods to use Delegated Setup. We can use an Extract
Method [Fowler] refactoring to move a sequence of statements used in several Test
Methods into a Test Utility Method that we then call from those Test Methods. This
is a very simple and safe refactoring, especially when we let the IDE do all the heavy
lifting for us. When the extracted method contains logic to create an object on which
our test depends, we call it a Creation Method (page 415). Creation Methods3 with
Intent-Revealing Names make the test’s pre-conditions readily apparent to the reader
while avoiding unnecessary Test Code Duplication. They allow both the test reader
and the test automater to focus on what is being created without being distracted
by how it is created. The Creation Methods act as reusable building blocks for test
fi xture construction.

 public void testGetStatus_inital() {
 // Setup
 Flight flight = createAnonymousFlight();
 // Exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // Teardown
 // Garbage-collected
 }

One goal of these Creation Methods is to eliminate the need for every test
to know the details of how the objects it requires are created. This stream-
lining goes a long way toward preventing Fragile Tests caused by changes to

3 When referenced via a Test Helper (page 643) class, they are often called the Object
Mother pattern (see Test Helper on page 643).

 Building Fresh Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/

90 Chapter 8 Transient Fixture Management

constructor method signatures or semantics. When a test does not care about
the specifi c identity of the objects it is creating, we can use Anonymous Cre-
ation Methods (see Creation Method). These methods generate any unique keys
required by the object being created. By using a Distinct Generated Value (see
Generated Value on page 723), we can guarantee that no other test instance
that requires a similar object will accidentally use the same object as this test.
This safeguard prevents many forms of the behavior smell Erratic Test, includ-
ing Unrepeatable Tests, Interacting Tests, and Test Run Wars, even if we hap-
pen to be using a persistent object repository that supports Shared Fixtures.

When a test does care about the attributes of the object being created, we
use a Parameterized Anonymous Creation Method (see Creation Method). This
method is passed any attributes that the test cares about (i.e., attributes that are
important to the test outcome), leaving all other attributes to be defaulted by the
implementation of the Creation Method. My motto is this:

When it is not important for something to be seen in the test method,
it is important that it not be seen in the test method!

Delegated Setup is often used when we write input validation tests for
SUT methods that are expected to validate the attributes of an object argu-
ment. In such a case, we need to write a separate test for each invalid at-
tribute that should be detected. Building all of these slightly invalid objects
would be a lot of work using In-line Setup. We can reduce the effort and
the amount of Test Code Duplication dramatically by using the pattern
One Bad Attribute (see Derived Value on page 718). That is, we first call
a Creation Method to create a valid object, and then we replace one attri-
bute with an invalid value that should be rejected by the SUT. Similarly, we
might create an object in the correct state by using a Named State Reaching
Method (see Creation Method).

Some people prefer to Reuse Tests for Fixture Setup (see Creation Method) as an
alternative to using Chained Tests (page 454). That is, they call other tests directly
within the setup portion of their test. This approach is not an unreasonable one as
long as the test reader can readily identify what the other test is setting up for the
current test. Unfortunately, very few tests are named in such a way as to convey this
intention. For this reason, if we value Tests as Documentation, we will want to con-
sider wrapping the called test with a Creation Method that has an Intent-Revealing
Name so that test reader can get a sense of what the fi xture looks like.

The Creation Methods can be kept as private methods on the Testcase
Class, pulled up to a Testcase Superclass (page 638), or moved to a Test Help-
er (page 643). The “mother of all creation methods” is Object Mother (see Test

www.it-ebooks.info

http://www.it-ebooks.info/

91

Helper). This strategy-level pattern describes a family of approaches that center
on the use of Creation Methods on one or more Test Helpers and may include
Automated Teardown (page 503) as well.

Implicit Fixture Setup

Most members of the xUnit family provide a convenient hook for calling code
that needs to be run before every Test Method. Some members call a method
with a specifi c name (e.g., setUp). Others call a method that has a specifi c annota-
tion (e.g., “@before” in JUnit) or method attribute (e.g., “[Setup]” in NUnit). To
avoid repeating these alternative ways every time we need to refer to this mecha-
nism, this book simply calls it the setUp method regardless of how we indicate
this fact to the Test Automation Framework. The setUp method is optional or an
empty default implementation is provided by the framework, so we do not have
to provide one in each Testcase Class.

In Implicit Setup, we take advantage of this framework “hook” by putting all
of the fi xture creation logic into the setUp method. Because every Test Method on
the Testcase Class shares this fi xture setup logic, all Test Methods need to be able
to use the fi xture it creates. This tactic certainly addresses the Test Code Duplica-
tion problem but it does have several consequences. What does the following test
actually verify?

 Airport departureAirport;
 Airport destinationAirport;
 Flight flight;

 public void testGetStatus_inital() {
 // Implicit setup
 // Exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 }

The fi rst consequence is that this approach can make the tests more diffi cult to
understand because we cannot see how the pre-conditions of the test (the test
fi xture) correlate with the expected outcome within the Test Method; we have to
look in the setUp method to see this relationship.

 public void setUp() throws Exception{
 super.setUp();
 departureAirport = new Airport("Calgary", "YYC");
 destinationAirport = new Airport("Toronto", "YYZ");
 BigDecimal flightNumber = new BigDecimal("999");
 flight = new Flight(flightNumber , departureAirport,
 destinationAirport);
 }

 Building Fresh Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/

92 Chapter 8 Transient Fixture Management

We can mitigate this problem by naming our Testcase Class based on the test
fi xture created in the setUp method. Of course, this makes sense only if all of the
Test Methods really need the same fi xture—it is an example of Testcase Class per
Fixture (page 631). As mentioned earlier, several members of the xUnit family
(VbUnit and NUnit, to name two) use the term “test fi xture” to describe what
this book calls the Testcase Class. This nomenclature is probably based on the
assumption that we are using a Testcase Class per Fixture strategy.

Another consequence of using Implicit Setup is that we cannot use local vari-
ables to hold references to the objects in our fi xture. Instead, we are forced to
use instance variables to refer to any objects that are constructed in the setUp
method and that are needed either when exercising the SUT, when verifying
the expected outcome, or when tearing down the fi xture. These instance vari-
ables act as global variables between the parts of the test. As long as we stick
to instance variables rather than class variables, however, the test fi xture will
be newly constructed for each test case in the Testcase Class. Most members
of xUnit provide isolation between the fi xture created for each Test Method
but at least one (NUnit) does not; see the sidebar “There’s Always an Excep-
tion” (page 384) for more information. In any event, we should defi nitely give
the variables Intent-Revealing Names so that we do not need to keep referring
back to the setUp method to understand what they hold.

Misuse of the SetUp Method

When you have a new hammer, everything looks like a nail!

Like any feature of any system, the setUp method can be abused. We should
not feel obligated to use it just because it is provided. It is one of several code
reuse mechanisms that are available for our application. When object-oriented
languages were fi rst introduced, programmers were enamored with inheritance
and tried to apply it in all possible reuse scenarios. Over time, we learned when
inheritance was appropriate and when we should resort to other mechanisms
such as delegation. The setUp method is xUnit’s inheritance.

The setUp method is most prone to misuse when it is applied to build a Gen-
eral Fixture (see Obscure Test) with multiple distinct parts, each of which is
dedicated to a different Test Method. This can lead to Slow Tests (page 253)
if we are building a Persistent Fresh Fixture. More importantly, it can lead to
Obscure Tests by hiding the cause–effect relationship between the fi xture and
the expected outcome of exercising the SUT.

If we do not adopt the practice of grouping the Test Methods into Testcase
Classes based on identical fi xtures but we do use the setUp method, we should
build only the lowest common denominator part of the fi xture in the setUp

www.it-ebooks.info

http://www.it-ebooks.info/

93

method. That is, only the setup logic that will not cause problems in any of
the tests should be placed in the setUp method. Even the fi xture setup code
that does not cause problems for any of the Test Methods can still cause other
problems if we use the setUp method to build a General Fixture instead of a
Minimal Fixture (page 302). A General Fixture is a common cause of Slow
Tests because each test spends much more time than necessary building the
test fi xture. It also tends to produce Obscure Tests because the test reader
cannot easily see which part of the fi xture a particular Test Method depends
on. A General Fixture often evolves into a Fragile Fixture (see Fragile Test)
as the relationship between its various elements and the tests that use them
is forgotten over time. Changes made to the fi xture to support a newly added
test may then cause existing tests to fail.

Note that if we use a class variable to hold the object, we may have crossed
the line into the world of Persistent Fresh Fixtures. Use of Lazy Setup (page 435)
to populate the variable, by contrast, carries us into the world of Shared Fix-
tures because later tests within the test suite may reuse the object(s) created
in earlier tests and thus may become dependent on the changes the other test
(should have) made to it.

Hybrid Fixture Setup

This chapter has presented the three styles of fi xture construction as strict alter-
natives to one another. In practice, there is value in combining them. Test auto-
maters often call some Creation Methods from within the Test Method but then
do some additional setup on an in-line basis. The readability of the setUp method
can also be improved if it calls Creation Methods to construct the fi xture. An
additional benefi t is that the Creation Methods can be unit-tested much more
easily than either in-line fi xture construction logic or the setUp method. These
methods can also be located on a class outside the Testcase Class hierarchy such
as a Test Helper.

Tearing Down Transient Fresh Fixtures

One really nice thing about Transient Fresh Fixtures is that fi xture teardown requires
very little effort. Most members of the xUnit family are implemented in languages
that support garbage collection. As long as our references to the fi xture are held in
variables that go out of scope, we can count on Garbage-Collected Teardown to do
all the work for us. See the sidebar “There’s Always an Exception” on page 384 for
a description of why the same is not true in NUnit.

 Tearing Down Transient Fresh Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/

94 Chapter 8 Transient Fixture Management

If we are using one of the few members of the xUnit family that does not sup-
port garbage collection, we may have to treat all Fresh Fixtures as persistent.

What’s Next?

This chapter introduced techniques for setting up and tearing down an in-memory
Fresh Fixture. With some planning and a bit of luck, they are all you should need for
the majority of your tests. Managing Fresh Fixtures is more complicated when the
fi xture is persisted either by the SUT or by the test itself. Chapter 9, Persistent Fixture
Management, introduces additional techniques needed for managing persistent fi x-
tures, including Persistent Fresh Fixtures and Shared Fixtures.

www.it-ebooks.info

http://www.it-ebooks.info/

95

Chapter 9

Persistent Fixture
Management

About This Chapter

In Chapter 8, Transient Fixture Management, we saw how we can go about
building in-memory Fresh Fixtures (page 311). We noted in that chapter that
managing Fresh Fixtures is more complicated when the fi xture is persisted either
by the SUT or by the test itself. This chapter introduces the additional patterns
required to manage persistent fi xtures, including both Persistent Fresh Fixtures
(see Fresh Fixture) and Shared Fixtures (page 317).

Managing Persistent Fresh Fixtures

The term Persistent Fresh Fixture might sound like an oxymoron but it is
actually not as large a contradiction as it might fi rst seem. The Fresh Fixture strat-
egy means that each run of each Test Method (page 348) uses a newly created fi x-
ture. The name speaks to its intent: We do not reuse the fi xture! It does not need
to imply that the fi xture is transient—only that it is not reused (Figure 9.1). Per-
sistent Fresh Fixtures present several challenges not encountered with Transient
Fresh Fixtures. In this chapter, we focus on the challenge posed by Unrepeatable
Tests (see Erratic Test on page 228) caused by leftover Persistent Fresh Fixtures
and Slow Tests (page 253) caused by Shared Fixtures (page 317).

What Makes Fixtures Persistent?

A fi xture, fresh or otherwise, can become persistent for one of two reasons. The
fi rst reason is that the SUT is a stateful object and “remembers” how it was used
in the past. This scenario most often occurs when the SUT includes a database,

www.it-ebooks.info

http://www.it-ebooks.info/

96 Chapter 9 Persistent Fixture Management

Figure 9.1 A Fresh Fixture can be either transient or persistent. We can apply a
Fresh Fixture strategy even if the test fi xture is naturally persistent but we must
have a way to tear it down after each test.

but it can occur simply because the SUT uses class variables to hold some of its
data. The second reason is that the Testcase Class (page 373) holds a reference
to an otherwise Transient Fresh Fixture in a way that makes it survive across
Test Method invocations.

Some members of the xUnit family provide a mechanism to reload all classes
at the beginning of each test run. This behavior may appear as an option—a
check box labeled “Reload Classes”—or it may be automatic. Such a feature
keeps the fi xture from becoming persistent when it is referenced from a class
variable; it does not prevent the Fresh Fixture from becoming persistent if either
the SUT or the test puts the fi xture into the fi le system or a database.

Issues Caused by Persistent Fresh Fixtures

When fi xtures are persistent, we may fi nd that subsequent runs of the same Test
Method try to recreate a fi xture that already exists. This behavior may cause
confl icts between the preexisting and newly created resources. Although violat-
ing unique key constraints in the database is the most common example of this
problem, the confl ict could be as simple as trying to create a fi le with the same
name as one that already exists. One way to avoid these Unrepeatable Tests is
to tear down the fi xture at the end of each test; another is to use Distinct Gen-
erated Values (see Generated Value on page 723) for any identifi ers that might
cause confl icts.

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

Tearing Down Persistent Fresh Fixtures

Unlike fi xture setup code, which should help us understand the pre-conditions
of the test, fi xture teardown code is purely a matter of good housekeeping. It
does not help us understand the behavior of the SUT but it has the potential to
obscure the intent of the test or at least make it more diffi cult to understand.
Therefore, the best kind of teardown code is the nonexistent kind. We should
avoid writing teardown code whenever we can, which is why Garbage-Collected
Teardown (page 500) is so preferable. Unfortunately, we cannot take advantage
of Garbage-Collected Teardown if our Fresh Fixture is persistent.

Hand-Coded Teardown

One way to ensure that the fi xture is destroyed after we are done with it is to
include test-specifi c teardown code within our Test Methods. This teardown
mechanism might seem simple, but it is actually more complex than immediately
meets the eye. Consider the following example:

 public void testGetFlightsByOriginAirport_NoFlights()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(outboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 facade.removeAirport(outboundAirport);
 }

This Naive In-line Teardown (see In-line Teardown on page 509) will tear down
the fi xture when the test passes—but it won’t tear down the fi xture if the test
fails or ends with an error. This is because the calls to the Assertion Meth-
ods (page 362) throw an exception; therefore, we may never make it to the
teardown code. To ensure that the In-line Teardown code always executes, we
must surround everything in the Test Method that might raise an exception with
a try/catch control structure. Here’s the same test suitably modifi ed:

 public void testGetFlightsByOriginAirport_NoFlights_td()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 try {
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(outboundAirport);

 Managing Persistent Fresh Fixtures 97

www.it-ebooks.info

http://www.it-ebooks.info/

98 Chapter 9 Persistent Fixture Management

 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 facade.removeAirport(outboundAirport);
 }
 }

Unfortunately, the mechanism to ensure that the teardown code always runs in-
troduces a fair bit of complication into the Test Method. Matters become even
more complicated when we must tear down several resources: Even if our attempt
to clean up one resource fails, we want to ensure that the other resources are still
cleaned up. We can address part of this problem by using Extract Method [Fowler]
refactoring to move the teardown code into a Test Utility Method (page 599)
that we call from inside the error-handling construct. Although this Delegated
Teardown (see In-line Teardown) hides the complexity of dealing with teardown
errors, we still need to ensure that the method gets called even when test errors
or test failures occur.

Most members of the xUnit family solve this problem by supporting Implicit
Teardown (page 516). The Test Automation Framework (page 298) calls a spe-
cial tearDown method after each Test Method regardless of whether the test passed
or failed. This approach avoids placing the error-handling code within the Test
Method but imposes two requirements on our tests. First, the fi xture must be
accessible from the tearDown method, so we must use instance variables (pre-
ferred), class variables, or global variables to hold the fi xture. Second, we must
ensure that the tearDown method works properly with each of the Test Methods
regardless of which fi xture it sets up.1

Matching Setup with Teardown Code Organization

Given the three ways of organizing our setup code—In-line Setup (page 408),
Delegated Setup (page 411), and Implicit Setup (page 424)—and the three ways
of organizing our teardown code—In-line Teardown, Delegated Teardown, and
Implicit Teardown—nine different combinations are available to us. Choosing
the right one turns out to be an easy decision because it is not important for
the teardown code to be visible to the test reader. We simply choose the most
appropriate setup code organization and either the equivalent or more hidden
version of teardown (Table 9.1). For example, it is appropriate to use Implicit
Teardown even with In-line Setup or Delegated Setup; it is almost never a good

1 This is less of an issue with Testcase Class per Fixture (page 631) because the fi xture
should always be the same. With other Testcase Class organizations, we may need to
include Teardown Guard Clauses (see In-line Teardown) within the tearDown method to
ensure that it doesn’t produce errors when it runs.

www.it-ebooks.info

http://www.it-ebooks.info/

99

idea to use In-line Teardown with anything other than In-line Setup, and even
then it should probably be avoided!

Table 9.1 The Compatibility of Various Fixture Setup and Teardown Strate-
gies for Persistent Test Fixtures

 Teardown Mechanism

Setup Mechanism In-line Teardown Delegated Teardown Implicit Teardown

In-line Setup Not recommended Acceptable Recommended

Delegated Setup Not recommended Acceptable Recommended

Implicit Setup Not recommended Not recommended Recommended

Automated Teardown

Hand-coded teardown is associated with two problems: Extra work is required
to write the tests, and the teardown code is hard to get right and even harder
to test. When the teardown goes wrong, it may lead to Erratic Tests caused by
Resource Leakage because the test that fails as a result is often different from the
one that didn’t clean up properly.

In languages that support garbage collection, tearing down a Transient Fresh
Fixture should be pretty much automatic. As long as our fi xtures are referenced only
by instance variables that go out of scope when our Testcase Object (page 382) is
destroyed, garbage collection will clean them up. Garbage collection won’t work,
however, if we use class variables or if our fi xtures include persistent objects such
as fi les or database rows. In those cases, we need to perform our own cleanup.

Not surprisingly, this situation may inspire the lazy but creative programmer
to come up with a way to automate the teardown logic. The important thing to
note is that teardown code doesn’t help us understand the test so it is better for
it to remain hidden.2 We can eliminate the need to write hand-crafted teardown
code for each Test Method or Testcase Class by building an Automated Tear-
down (page 503) mechanism. It consists of three parts:

1. A well-tested mechanism to iterate over a list of objects that need to be
deleted and catch/report any errors it encounters while ensuring that
all the deletions are attempted.

2. A dispatching mechanism that invokes the deletion code appropriate
to the kind of object to be deleted. This mechanism is often imple-
mented as a Command [GOF] object that wraps each object to be

2 Unlike setup code, which is often very important for understanding the test.

 Managing Persistent Fresh Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 9 Persistent Fixture Management

deleted, but could be as simple as calling a delete method on the object
itself or using a switch statement based on the object’s class.

3. A registration mechanism to add newly created objects (suitably
wrapped if necessary) to the list of objects to be deleted.

Once we have built our Automated Teardown mechanism, we can simply in-
voke the registration method from our Creation Methods (page 415) and the
cleanup method from the tearDown method. The latter operation can be specifi ed
in a Testcase Superclass (page 638) that all of our Testcase Classes inherit from.
We can even extend this mechanism to delete objects created by the SUT as it
is exercised. To do so, we use an observable Object Factory (see Dependency
Lookup on page 686) inside the SUT and have our Testcase Superclass register
itself as an Observer [GOF] of object creation.

Database Teardown

When our persistent Fresh Fixture has been built entirely in a relational database,
we can take advantage of certain features of the database to implement its tear-
down. Table Truncation Teardown (page 661) is a brute-force way to blow away
the entire contents of a table with a single database command. Of course, it is
appropriate only when each Test Runner (page 377) has its own Database Sand-
box (page 650). A somewhat less drastic approach is to use Transaction Rollback
Teardown (page 668) to undo all changes made within the context of the current
test. This mechanism relies on the SUT having been designed using the Humble
Transaction Controller pattern (see Humble Object on page 695) so that we can
invoke the business logic from the test without having the SUT commit the trans-
action automatically. Both of these database-specifi c teardown patterns are most
commonly implemented using Implicit Teardown to keep the teardown logic out
of the Test Methods.

Avoiding the Need for Teardown

So far, we have looked at ways to do fi xture teardown. Now, let us look at ways
to avoid fi xture teardown.

Avoiding Fixture Collisions

We need to do fi xture teardown for three reasons:

1. The accumulation of leftover fi xture objects can cause tests to run
slowly.

www.it-ebooks.info

http://www.it-ebooks.info/

101

2. The leftover fi xture objects can cause the SUT to behave differently or
our assertions to report incorrect results.

3. The leftover fi xture objects can prevent us from creating the Fresh Fix-
ture required by our test.

The issue that is easiest to address is the fi rst one: We can schedule a periodic
cleansing of the persistence mechanism back to a known, minimalist state. Un-
fortunately, this tactic is useful only if we can get the tests to run correctly in the
presence of accumulated test detritus.

The second issue can be addressed by using Delta Assertions (page 485)
rather than “absolute” assertions. Delta Assertions work by taking a snapshot
of the fi xture before the test is run and verifying that the expected differences
have appeared after we exercise the SUT.

The third issue can be addressed by ensuring that each test generates a differ-
ent set of fi xture objects each time it is run. Thus any objects that the test needs
to create must be given totally unique identifi ers—that is, unique fi lenames,
unique keys, and so on. To do so, we can build a simple unique ID generator
and create a new ID at the beginning of each test. We can then use that unique
ID as part of the identity of each newly created fi xture object. If the fi xture is
shared beyond a single Test Runner, we may need to include something about
the user in the unique identifi ers we create; the currently logged-in user ID is
usually suffi cient. Using Distinct Generated Values as keys offers another ben-
efi t: It allows us to implement a Database Partitioning Scheme (see Database
Sandbox) in which we can use absolute assertions despite the presence of left-
over fi xture objects.

Avoiding Fixture Persistence

We seem to be going to a lot of trouble to undo the side effects caused by a
persistent Fresh Fixture. Wouldn’t it be nice if we could avoid all of this work?
The good news is that we can. The bad news is that we need to make our Fresh
Fixture nonpersistent to do so. When the SUT is to blame for the persistence of
the fi xture, one possibility is to replace the persistence mechanism with a Test
Double (page 522) that the test can wipe out at will. A good example of this ap-
proach is the use of a Fake Database (see Fake Object on page 551). When the
test is to blame for fi xture persistence, the solution is even easier: Just use a less
persistent fi xture reference mechanism.

 Managing Persistent Fresh Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 9 Persistent Fixture Management

Dealing with Slow Tests

A major drawback of using a Persistent Fresh Fixture is speed or, more precisely,
the lack thereof. File systems and databases are much slower than the processors
used in modern computers. As a consequence, tests that interact with databases
tend to run much more slowly than tests that run entirely in memory. Part of
this difference arises because the SUT is accessing the fi xture from disk—but this
issue turns out to be only a small part of the reason for the slowdown. Setting
up the Fresh Fixture at the beginning of each test and tearing it down at the end
of each test typically takes many more disk accesses than those used by the SUT
to access the fi xture. As a result, tests that access the database often take 50 to
100 times3 longer to run than tests that run entirely in memory, all other things
being equal.

The typical reaction to slow tests caused by Persistent Fresh Fixtures is to
eliminate the fi xture setup and teardown overhead by reusing the fi xture across
many tests. Assuming we have fi ve disk accesses to set up and tear down the
fi xture for every disk access performed by the SUT, the absolute best4 we can
do by switching to a Shared Fixture is somewhere around ten times as slow.
Of course, this outcome is still too slow in most situations and it comes with a
hefty price: The tests are no longer independent. That means we will likely have
Interacting Tests (see Erratic Test), Lonely Tests (see Erratic Test), and Unre-
peatable Tests on top of our Slow Tests!

A much better solution is to eliminate the need to have a disk-based database
under the application. With a small amount of effort, we should be able to re-
place the disk-based database with an In-Memory Database (see Fake Object)
or a Fake Database. This decision is best made early in the project while the
effort is still low. Yes, there are some challenges, such as dealing with stored
procedures, but they are all surmountable.

This tactic isn’t the only way to deal with Slow Tests, of course. The side-
bar “Faster Tests Without Shared Fixtures” (page 319) explores some other
strategies.

3 This is two orders of magnitude!
4 Your mileage may vary.

www.it-ebooks.info

http://www.it-ebooks.info/

103

Managing Shared Fixtures

Managing Shared Fixtures has a lot in common with managing Persistent Fresh
Fixtures, except that we deliberately choose not to tear the fi xture down after every
test so that we can reuse it in subsequent tests (Figure 9.2). This implies two things.
First, we must be able to access the fi xture in the other tests. Second, we must have
a way of triggering both the construction and the teardown of the fi xture.

Figure 9.2 A Shared Fixture with two Test Methods that share it. A Shared
Fixture is set up once and used by two or more tests that may interact, either
deliberately or accidentally, as a result. Note the lack of a fi xture setup phase for
the second test.

Accessing Shared Fixtures

Regardless of how and when we choose to build the Shared Fixture, the tests
need a way to fi nd the test fi xture they are to reuse. The choices available to
us depend on the nature of the fi xture. When the fi xture is stored in a database
(the most common usage of a Shared Fixture), tests may access it directly with-
out making direct references to the fi xture objects as long as they know about
the database. There may be a temptation to use Hard-Coded Values (see Literal
Value on page 714) in database lookups to access the fi xture objects. This is al-
most always a bad idea, however, because it leads to a close coupling between
tests and the fi xture implementation and because it has poor documentation value
(Obscure Test; page 186). To avoid these potential problems, we can use Finder
Methods (see Test Utility Method) with Intent-Revealing Names [SBPP] to access

Setup

Exercise

Verify

Teardown

Fixture

Exercise

Verify

Teardown

SUT

Setup

Exercise

Verify

Teardown

Fixture

Exercise

Verify

Teardown

SUT

 Managing Shared Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 9 Persistent Fixture Management

the fi xture. These Finder Methods may have names that are very similar to those
of Creation Methods, but they return references to existing fi xture objects rather
than building brand new ones.

We have a range of possible solutions when the fi xture is stored in memory. If
all tests that need to share the fi xture are in the same Testcase Class, we can use a
fi xture holding class variable to hold the reference to the fi xture. As long as we give
the variable an Intent-Revealing Name, the test reader should be able to understand
the pre-conditions of the test. Another alternative is to use a Finder Method.

If we need to share the fi xture across many Testcase Classes, we must use a
more sophisticated technique. We could, of course, let one class declare the fi xture
holding class variable and have the other tests access the fi xture via that variable.
Unfortunately, this approach may create unnecessary coupling between the tests.
Another alternative is to move the declaration to a well-known object—namely, a
Test Fixture Registry (see Test Helper on page 643). This Registry [PEAA] object
could be something like a test database or it could merely be a class. It can expose
various parts of a fi xture via discrete fi xture holding class variables or via Finder
Methods. When the Test Fixture Registry has only Finder Methods that know how
to access the objects but don’t hold references to them, we call it a Test Helper.

Triggering Shared Fixture Construction

For a test fi xture to be shared, it must be built before any Test Method needs it.
This construction could take place as late as right before the Test Method’s logic
is run, just before the entire test suite is run, or at some earlier time (Figure 9.3).
This leads us to the basic patterns of Shared Fixture creation.

Figure 9.3 The plethora of ways to manage a Shared Fixture. A Shared Fixture
can be set up at a variety of times; the decision is based on how many tests need
to reuse the fi xture and how many times they need to do so.

Shared Fixture Setup

Shared
Fixture

Setup
Decorator

Suite
Fixture
Setup

Lazy
Setup

Prebuilt
Fixture

Chained
Tests

Shared Fixture Setup

Shared
Fixture

Setup
Decorator

Suite
Fixture
Setup

Lazy
Setup

Prebuilt
Fixture

Chained
Tests

www.it-ebooks.info

http://www.it-ebooks.info/

105

If we are happy with the idea of creating the test fi xture the fi rst time any test
needs it, we can use Lazy Setup (page 435) in the setUp method of the corre-
sponding Testcase Class to create it as part of running the fi rst test. Subsequent
tests will then see that the fi xture already exists and reuse it. Because there is no
obvious signal that the last test in a test suite (or Suite of Suites; see Test Suite
Object on page 387) has been run, we won’t know when to tear down the fi x-
ture after each test run. This can lead to Unrepeatable Tests because the fi xture
may survive across test runs (depending on how the various tests access it).

If we need to share the fi xture more broadly, we could include a Fixture Set-
up Testcase at the beginning of the test suite. This is a special case of Chained
Tests and suffers from the same problem as Lazy Setup—specifi cally, we don’t
know when it is time to tear down the fi xture. It also depends on the ordering
of tests within a suite, so it works best with Test Enumeration (page 399).

If we need to be able to tear down the test fi xture after running a test suite,
we must use a fi xture management mechanism that tells us when the last test
has been run. Several members of the xUnit family support the concept of a
setUp method that runs just once for the test suite created from a single Testcase
Class. This Suite Fixture Setup (page 441) method has a corresponding tearDown
method that is called when the last Test Method has fi nished running.5 We can
then guarantee that a new fi xture is built for each test run. The fi xture is not left
over to cause problems with subsequent test runs, which prevents Unrepeatable
Tests; it does not prevent Interacting Tests within the test run, however. This
capability could be added as an extension to any member of the xUnit family.
When it isn’t supported or when we need to share the fi xture beyond a single
Testcase Class, we can resort to using a Setup Decorator (page 447) to bracket
the running of a test suite with the execution of the fi xture setUp and tearDown
logic. The biggest drawback of Setup Decorator is that tests that depend on the
decorator cannot be run by themselves; they are Lonely Tests.

The fi nal option is to build the fi xture well before the tests are run—that is,
to employ a Prebuilt Fixture (page 429). This approach offers the most options
regarding how the test fi xture is actually constructed because the fi xture setup
need not be executable from within xUnit. For example, it could be set up manu-
ally, by using database scripts, by copying a “golden” database, or by running
a data generation program. The major disadvantage with a Prebuilt Fixture
is that if any tests are Unrepeatable Tests, we will need to perform a Manual
Intervention (page 250) before each test run. As a result, a Prebuilt Fixture is of-
ten used in combination with a Fresh Fixture to construct an Immutable Shared
Fixture (see Shared Fixture).

5 Think of it as a built-in decorator for a single Testcase Class.

 Managing Shared Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/

106 Chapter 9 Persistent Fixture Management

What’s Next?

Now that we’ve determined how we will set up and tear down our fi xtures, we are
ready to turn our attention to exercising the SUT and verifying that the expected
outcome has occurred using calls to Assertion Methods. This process is described
in more detail in Chapter 10, Result Verifi cation.

www.it-ebooks.info

http://www.it-ebooks.info/

107

Chapter 10

Result Verifi cation

About This Chapter

Chapter 8, Transient Fixture Management, and Chapter 9, Persistent Fixture
Management, described how to set up the test fi xture and how to tear it down
after exercising the SUT. This chapter introduces a variety of options for verify-
ing that the SUT has behaved correctly, including exercising the SUT and com-
paring the actual outcome with the expected outcome.

Making Tests Self-Checking

One of the key characteristics of tests automated using xUnit is that they can be
(and should be) Self-Checking Tests (see Goals of Test Automation on page 21).
This characteristic makes them cost-effective enough to be run very frequently.
Most members of the xUnit family come with a collection of built-in Assertion
Methods (page 362) and some documentation that tells us which one to use
when. On the surface this sounds pretty simple—but there’s a lot more to writ-
ing good tests than just calling the built-in Assertion Methods. We also need to
learn key techniques for making tests easy to understand and for avoiding and
removing Test Code Duplication (page 213).

A key challenge in coding the assertions is getting access to the information
we want to compare with the expected results. This is where observation points
come into play; they provide a window into the state or behavior of the SUT
so that we can pass it to the Assertion Methods. Observation points for infor-
mation accessible via synchronous method calls are relatively straightforward;
observation points for other kinds of information can be quite challenging,
which is precisely what makes automated unit testing so interesting.

Assertions are usually—but not always—called from within the Test Method
(page 348) body right after the SUT has been exercised. Some test automaters put

www.it-ebooks.info

http://www.it-ebooks.info/

108 Chapter 10 Result Verification

assertions after the fi xture setup phase of the test to ensure that the fi xture is set
up correctly. This practice almost always contributes to Obscure Tests (page 186),
so I would rather write unit tests for the Test Utility Methods (page 599).1 Some
styles of testing do require us to set up our expectations before we exercise the SUT;
this topic is discussed in more detail in Chapter 11, Using Test Doubles. We’ll see
several examples of calling Assertion Methods from within Test Utility Methods
in this chapter.

One possible—though rarely used—place to put calls to Assertion Methods is
in the tearDown method used in Implicit Teardown (page 516). Because this method
is run for every test, whether that test passed or failed (as long as the setUp method
succeeded), one can put assertions here. This scheme involves the same trade-off as
using Implicit Setup (page 424) for building our test fi xture; it’s less visible but done
automatically. See the sidebar “Using Delta Assertions to Detect Data Leakage”
(page 487) for an example of putting assertions in the tearDown method used by
Implicit Teardown of a superclass to detect when tests leave leftover test objects
in the database.

Verify State or Behavior?

Ultimately, test automation is about verifying the behavior of the SUT. Some
aspects of the SUT’s behavior can be verifi ed directly; the value returned by a
function is a good example. Other aspects of the behavior are more easily veri-
fi ed indirectly by looking at the state of some object. We can verify the actual
behavior of the SUT in our tests in two ways:

1. We can verify the states of various objects affected by the SUT by
extracting each state using an observation point and using assertions
to compare it to the expected state.

2. We can verify the behavior of the SUT directly by using observation
points inserted between the SUT and its depended-on component
(DOC) to monitor its interactions (in the form of the method calls it
makes) and comparing those method calls with what we expected.

State Verifi cation (page 462) is done using assertions and is the simpler of the
two approaches. Behavior Verifi cation (page 468) is more complicated and
builds on the assertion techniques we use for verifying state.

1 The one exception is when we must use a Shared Fixture (page 317); it may be worth-
while to use a Guard Assertion (page 490) to document what the test requires from it and
to produce a test failure if the fi xture is corrupted. We could also do so from within the
Finder Methods (see Test Utility Method) that we use to retrieve the objects in the Shared
Fixture (page 317) we will use in our tests.

www.it-ebooks.info

http://www.it-ebooks.info/

109

State Verifi cation

The “normal” way to verify the expected outcome has occurred is called State
Verifi cation (Figure 10.1). First we exercise the SUT; then we examine the post-
exercise state of the SUT using assertions. We may also examine anything returned
by the SUT as a result of the method call we made to exercise it. What is most
notable is what we do not do: We do not instrument the SUT in any way to detect
how it interacts with other components of the system. That is, we inspect only
direct outputs and we use only direct method calls as our observation points.

Figure 10.1 State Verifi cation. In State Verifi cation, we assert that the SUT and
any objects it returns are in the expected state after we have exercised the SUT.
We “pay no attention to the man behind the curtain.”

State Verifi cation can be done in two slightly different ways. Procedural State
Verifi cation (see State Verifi cation) involves writing a sequence of assertions that
pick apart the end state of the SUT and verify that it is as expected. Expected
Object (see State Verifi cation) is a way of describing the expected state in such a
way that it can be compared with a single Assertion Method call; this approach
minimizes Test Code Duplication and increases test clarity (more on this later
in this chapter). With both strategies, we can use either “built-in” assertions or
Custom Assertions (page 474).

Fixture

SUT

DOC

Exercise

Setup

Exercise

Verify

Teardown

Get State
A C

B

Behavior
(Indirect

 Outputs)

Fixture

SUT

DOC

Exercise

Setup

Exercise

Verify

Teardown

Get State
A C

B

Behavior
(Indirect

 Outputs)

 State Verification

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 10 Result Verification

Using Built-in Assertions

We use the assertions provided by our testing framework to specify what should
be and depend on them to tell us when it isn’t so! But simply using the built-in
assertions is only a small part of the story.

The simplest form of result verifi cation is the assertion in which we specify
what should be true. Most members of the xUnit family support a range of dif-
ferent Assertion Methods, including the following:

• Stated Outcome Assertions (see Assertion Method) such as assertTrue
(aBooleanExpression)

• Simple Equality Assertions such as assertEquals(expected, actual)

• Fuzzy Equality Assertions such as assertEquals(expected, actual, tolerance),
which are used for comparing fl oats

Of course, the test programming language has some infl uence on the nature of
the assertions. In JUnit, SUnit, CppUnit, NUnit, and CsUnit, most of the Equal-
ity Assertions take a pair of Objects as their parameters. Some languages support
“overloading” of method parameter types so we can have different implemen-
tations of an assertion for different types of objects. Some languages—C, for
example—don’t support objects, so we cannot compare objects, only values.

There are several issues to consider when using Assertion Methods. Naturally,
the fi rst priority is the verifi cation of all things that should be true. The better
our assertions, the fi ner our Safety Net (see page 24) and the higher our confi -
dence in our code. The second priority is the documentation value of the asser-
tions. Each test should make it very clear that “When the system is in state S1
and I do X, the result should be R and the system should be in state S2.” We
put the system into state S1 in our fi xture setup logic. “I do X” corresponds to
the exercise SUT phase of the test. “The result is R” and “the system is in state
S2” are implemented using assertions. Thus we want to write our assertions in
such a way that they succinctly describe “R” and “S2.”

Another thing to consider is that when the test fails, we want the failure
message to tell us enough to enable us to identify the problem.2 Therefore, we
should almost always include an Assertion Message (page 370) as the optional
message parameter (assuming our xUnit family member has one!). This tactic
avoids the possibility of us playing Assertion Roulette (page 224), in which we
cannot even tell which assertion is failing without running the test interactively;

2 In his book [TDD-APG], Dave Astels claims he never/rarely used the Eclipse Debugger
while writing the code samples because the assertions always told him enough about
what was wrong. This is what we strive for!

www.it-ebooks.info

http://www.it-ebooks.info/

111

it makes Integration Build [SCM] failures much easier to reproduce and fi x. It
also makes troubleshooting broken tests easier by telling us what should have
happened; the actual outcome tells us what did happen!

When we use a Stated Outcome Assertion (such as JUnit’s assertTrue), the
failure messages tend to be unhelpful (e.g., “Assertion failed”). We can make
the assertion output much more specifi c by using an Argument-Describing Mes-
sage (see Assertion Message) constructed by incorporating useful bits of data
into the message. A good start is to include each of the values in the expression
passed as the Assertion Method’s arguments.

Delta Assertions

When using a Shared Fixture (page 317), we may fi nd that we have Interacting
Tests (see Erratic Test on page 228) because each test adds more objects/rows
into the database and we can never be certain exactly what should be there af-
ter the SUT has been exercised. One way to deal with this uncertainty is to use
Delta Assertions (page 485) to verify only the newly added objects/rows. In this
approach, we take some sort of “snapshot” of the relevant tables/classes at the
beginning of the test; we then remove these tables/classes from the collection
of actual objects/rows produced at the end of the test before comparing them
to the Expected Objects. Although this tactic can introduce signifi cant extra
complexity into the tests, the added complexity can be refactored into Custom
Assertions and/or Verifi cation Methods (see Custom Assertion). The “before”
snapshot may be taken on an in-line basis within the Test Method or in the
setUp method if all setup occurs before the Test Method is invoked [e.g., Implicit
Setup, a Shared Fixture, or a Prebuilt Fixture (page 429)].

External Result Verifi cation

Thus far we have described only conventional “in-memory” verifi cation of the
expected results. In fact, another approach is possible—one that involves storing
the expected and actual results in fi les and using an external comparison pro-
gram to report on any differences. This is, in effect, a form of Custom Assertion
that uses a “deep compare” on two fi le references. The comparison program
often needs to be told which parts of the fi les to ignore (or these parts need to be
stripped out fi rst), effectively making this a Fuzzy Equality Assertion.

External result verifi cation is particularly appropriate for automating accep-
tance tests for regression-testing an application that hasn’t changed very much.
The major disadvantage of this approach is that we almost always end up with a
Mystery Guest (see Obscure Test) from the test reader’s perspective because the

 State Verification

www.it-ebooks.info

http://www.it-ebooks.info/

112 Chapter 10 Result Verification

expected results are not visible inside the test. One way to avoid this problem is
to have the test write the contents of the expected fi le, thereby making the con-
tents visible to the test reader. This step is practical only if the amount of data is
quite small—another argument in favor of a Minimal Fixture (page 302).

Verifying Behavior

Verifying behavior is more complicated than verifying state because behavior is
dynamic. We have to catch the SUT “in the act” as it generates indirect outputs
to the objects it depends on (Figure 10.2). Two basic styles of behavior verifi ca-
tion are worth discussing: Procedural Behavior Verifi cation and Expected
Behavior. Both require a mechanism to access the outgoing method calls of the
SUT (its indirect outputs). This and other uses of Test Doubles (page 522) are
described in more detail in Chapter 11, Using Test Doubles.

Figure 10.2 Behavior Verifi cation. In Behavior Verifi cation, we focus our
assertions on the indirect outputs (outgoing interfaces) of the SUT. This typically
involves replacing the DOC with something that facilitates observing and
verifying the outgoing calls.

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect

 Outputs)

V
er

ify

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect

 Outputs)

V
er

ify

www.it-ebooks.info

http://www.it-ebooks.info/

113

Procedural Behavior Verifi cation

In Procedural Behavior Verifi cation, we capture the behavior of the SUT as it
executes and save that data for later retrieval. The test then compares each out-
put of the SUT (one by one) with the corresponding expected output. Thus, in
Procedural Behavior Verifi cation, the test executes a procedure (a set of steps)
to verify the behavior.

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

The key challenge in Procedural Behavior Verifi cation is capturing the behavior
as it occurs and saving it until the test is ready to use this information. This task
is accomplished by confi guring the SUT to use a Test Spy (page 538) or a Self
Shunt (see Hard-Coded Test Double on page 568)3 instead of the depended-on
class. After the SUT has been exercised, the test retrieves the recording of the
behavior and verifi es it using assertions.

Expected Behavior Specifi cation

If we can build an Expected Object and compare it with the actual object
returned by the SUT for verifying state, can we do something similar for verifying

3 A Test Spy built into the Testcase Class (page 373).

 Verifying Behavior

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 10 Result Verification

behavior? Yes, we can and do. Expected Behavior is often used in conjunction
with layer-crossing tests to verify the indirect outputs of an object or compo-
nent. We confi gure a Mock Object (page 544) with the method calls we expect
the SUT to make to it and install this object before exercising the SUT.

 public void testRemoveFlight_JMock() throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 // mock configuration
 Mock mockLog = mock(AuditLog.class);
 mockLog.expects(once()).method("logMessage")
 .with(eq(helper.getTodaysDateWithoutTime()),
 eq(Helper.TEST_USER_NAME),
 eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
 eq(expectedFlightDto.getFlightNumber()));
 // mock installation
 facade.setAuditLog((AuditLog) mockLog.proxy());
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 // verify() method called automatically by JMock
 }

Reducing Test Code Duplication

One of the most common test smells is Test Code Duplication. With every test
we write, there is a good chance we have introduced some duplication, but
especially if we used “cut and paste” to create a new test from an existing test.
Some will argue that duplication in test code is not nearly as bad as duplication
in production code. Test Code Duplication is bad if it leads to some other smell
such as Fragile Test (page 239), Fragile Fixture (see Fragile Test), or High Test
Maintenance Cost (page 265) because too many tests are too closely coupled to
the Standard Fixture (page 305) or the API of the SUT. In addition, Test Code
Duplication may sometimes be a symptom of another problem—namely, the
intent of the tests being obscured by too much code (i.e., an Obscure Test).

In result verifi cation logic, Test Code Duplication usually shows up as a set
of repeated assertions. Several techniques are available to reduce the number of
assertions in such cases:

www.it-ebooks.info

http://www.it-ebooks.info/

115

• Expected Objects

• Custom Assertions

• Verifi cation Methods

Expected Objects

Often, we will fi nd ourselves doing a series of assertions on different fi elds of
the same object. If we begin repeating this group of assertions (whether multiple
times in a single test or in multiple tests), we should look for a way to reduce the
Test Code Duplication. The next listing shows one Test Method that compares
several attributes of a single object. Many other Test Methods probably require
the same sequence of assertions.

 public void testInvoice_addLineItem7() {
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem.getInv(), actual.getInv());
 assertEquals(expItem.getProd(), actual.getProd());
 assertEquals(expItem.getQuantity(), actual.getQuantity());
 }

The most obvious alternative is to use a single Equality Assertion to compare
two whole objects to each other rather than using many Equality Assertion calls
to compare them fi eld by fi eld. If the values are stored in individual variables, we
may need to create a new object of the appropriate class and initialize its fi elds
with those values. This technique works as long as we have an equals method
that compares only those fi elds and we have the ability to create the Expected
Object at will.

 public void testInvoice_addLineItem8() {
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals("Item", expItem, actual);
 }

But what if we don’t want to compare all the fi elds in an object or the equals
method looks for identity rather than equality? What if we want test-specifi c

 Reducing Test Code Duplication

www.it-ebooks.info

http://www.it-ebooks.info/

116 Chapter 10 Result Verification

equality? What if we cannot create an instance of the Expected Object because
no constructor exists? In this scenario, we have two options: We can implement
a Custom Assertion that defi nes equality the way we want it or we can imple-
ment our test-specifi c equality in the equals method of the class of the Expected
Object we pass to the Assertion Method. This class doesn’t need to be the same
class as that of the actual object; it just needs to implement equals to compare
itself with an instance of the actual object’s class. Therefore, it can be a simple
Data Transfer Object [CJ2EEP] or it can be a Test-Specifi c Subclass (page 579)
of the real (production) class with just the equals method overridden.

Some test automaters don’t think we should ever rely on the equals method
of the SUT when making assertions because it could change, thereby causing
tests that depend on this method to fail (or to miss important differences). I pre-
fer to be pragmatic about this decision. If it seems reasonable to use the equals
defi nition supplied by the SUT, then I do so. If I need something else, I defi ne
a Custom Assertion or a test-specifi c Expected Object class. I also ask myself
how hard it would be to change my strategy if the equals method should later
change. For example, in statically typed languages that support parameter type
overloading (such as Java), we can add a Custom Assertion that uses different
parameter types to override the default implementation when specifi c types are
used. This code can often be retrofi tted quite easily if a change to equals causes
problems at a later date.

Custom Assertions

A Custom Assertion is a domain-specifi c assertion we write ourselves. Custom
Assertions hide the procedure for verifying the results behind a declarative name,
making our result verifi cation logic more intent-revealing. They also prevent
Obscure Tests by eliminating of a lot of potentially distracting code. Another
benefi t of moving the code into a Custom Assertion is that the assertion logic
can now be unit-tested by writing Custom Assertion Tests (see Custom Asser-
tion). The assertions are no longer Untestable Test Code (see Hard-to-Test Code
on page 209)!

 static void assertLineItemsEqual(
 String msg, LineItem exp, LineItem act) {
 assertEquals (msg+" Inv", exp.getInv(), act.getInv());
 assertEquals (msg+" Prod", exp.getProd(), act.getProd());
 assertEquals (msg+" Quan", exp.getQuantity(), act.getQuantity());
 }

There are two ways to create Custom Assertions: (1) by refactoring existing
complex test code to reduce Test Code Duplication and (2) by coding calls to

www.it-ebooks.info

http://www.it-ebooks.info/

117

nonexistent Assertion Methods as we write tests and then fi lling in the method
bodies with the appropriate logic once we land on the suite of Custom Assertions
needed by a set of Test Methods. The latter technique is a good way of reminding
ourselves what we expect the outcome of exercising the SUT to be, even though
we haven’t yet written the code to verify it. Either way, the defi nition of a set
of Custom Assertions is the fi rst step toward creating a Higher-Level Language
(see page 41) for specifying our tests.

When refactoring to Custom Assertions, we simply use Extract Method
[Fowler] on the repeated assertions and give the new method an Intent-Revealing
Name [SBPP]. We pass in the objects used by the existing verifi cation logic as
arguments and include an Assertion Message to differentiate between calls to
the same assertion method.

Outcome-Describing Verifi cation Method

Another technique that is born from ruthless refactoring of test code is the “out-
come-describing” Verifi cation Method. Suppose we fi nd that a group of tests all
have identical exercise SUT and verify outcome sections. Only the setup portion
is different for each test. If we do an Extract Method refactoring on the common
code and give it a meaningful name, we need less code, achieve more understand-
able tests, and produce testable verifi cation logic all at the same time! If this isn’t
a worthwhile reason for refactoring code, then I don’t know what else could be.

 void assertInvoiceContainsOnlyThisLineItem(
 Invoice inv,
 LineItem expItem) {
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("",expItem, actual);
 }

The major difference between a Verifi cation Method and a Custom Assertion
is that the latter only makes assertions, while the former also interacts with
the SUT (typically for the purpose of exercising it). Another difference is that
Custom Assertions typically have a standard Equality Assertion signature:
assertSomething(message, expected, actual). In contrast, Verifi cation Methods may
have completely arbitrary parameters because they require additional param-
eters to pass into the SUT. They are, in essence, halfway between a Custom
Assertion and a Parameterized Test (page 607).

 Reducing Test Code Duplication

www.it-ebooks.info

http://www.it-ebooks.info/

118 Chapter 10 Result Verification

Parameterized and Data-Driven Tests

We can go even further in factoring out the commonality between tests. If the
logic to set up the test fi xture is the same but uses different data, we can extract
the common fi xture setup, exercise SUT, and verify outcome phases of the test
into a new Parameterized Test method. This Parameterized Test is not called
automatically by the Test Automation Framework (page 298) because it requires
arguments; instead, we defi ne very simple Test Methods for each test, which
then call the Parameterized Test and pass in the data required to make this test
unique. This data may include that required for fi xture setup, exercising the
SUT, and the corresponding expected result. In the following tests, the method
generateAndVerifyHtml is the Parameterized Test.

 def test_extref
 sourceXml = "<extref id='abc' />"
 expectedHtml = "abc"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")
 end

 def test_testterm_normal
 sourceXml = "<testterm id='abc'/>"
 expectedHtml = "abc"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<testterm>")
 end

 def test_testterm_plural
 sourceXml = "<testterms id='abc'/>"
 expectedHtml = "abcs"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<plural>")
 end

In a Data-Driven Test (page 288), the test case is completely generic and directly
executable by the framework; it reads the arguments from a test data fi le as it
executes. Think of a Data-Driven Test as a Parameterized Test turned inside out:
A Test Method passes test-specifi c data to a Parameterized Test; a Data-Driven
Test is the Test Method and reads the test-specifi c data from a fi le. The contents
of the fi le are a Higher-Level Language for testing; the Data-Driven Test method
is the Interpreter [GOF] of that language. This scheme is the xUnit equivalent of
a Fit test. A simple example of a Data-Driven Test method is shown in this code
sample written in Ruby:

 def test_crossref
 executeDataDrivenTest "CrossrefHandlerTest.txt"
 end

 def executeDataDrivenTest filename
 dataFile = File.open(filename)

www.it-ebooks.info

http://www.it-ebooks.info/

119

 dataFile.each_line do | line |
 desc, action, part2 = line.split(",")
 sourceXml, expectedHtml, leftOver = part2.split(",")
 if "crossref"==action.strip
 generateAndVerifyHtml sourceXml, expectedHtml, desc
 else # new "verbs" go before here as elsif's
 report_error("unknown action" + action.strip)
 end
 end
 end

Here is the comma-delimited data fi le that the Data-Driven Test method reads:

ID, Action, SourceXml, ExpectedHtml
Extref,crossref,<extref id='abc'/>,abc
TTerm,crossref,<testterm id='abc'/>,abc
TTerms,crossref,<testterms id='abc'/>,abcs

Avoiding Conditional Test Logic

Another thing we want to avoid in our tests is conditional logic. Conditional
Test Logic (page 200) is bad because the same test may execute differently in
different circumstances. Conditional Test Logic reduces our trust in the tests
because the code in our Test Methods is Untestable Test Code. Why is this
important? Because the only way we can verify our Test Method is to manually
edit the SUT so that it produces the error we want to be detected. If the Test
Method has many paths through it, we need to make sure each path is coded
correctly. Isn’t it so much simpler just to have only one possible execution path
through the test? Let us look at some reasons why we might include conditional
logic in our tests:

• We don’t want to execute certain assertions because their execution
doesn’t make sense given what we have already discovered at this point
in the test (typically a failure condition).

• We have to allow for various situations in the actual results that we are
comparing to the expected results.

• We are trying to reuse a Test Method in several different circumstances
(essentially merging several tests into a single Test Method).

The problem with using Conditional Test Logic in the fi rst two cases is that it
makes the code hard to read and may mask cases of reusing test methods via
Flexible Tests (see Conditional Test Logic). The last “reason” is just a bad idea,

 Avoiding Conditional Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

120 Chapter 10 Result Verification

plain and simple. There are much better ways of reusing test logic than trying
to reuse the Test Method itself. We have already seen some of these reuse tech-
niques elsewhere in this chapter (in Reducing Test Code Duplication), and we
will see other ways elsewhere in this book. Just say “no”!

The good news is that it is relatively straightforward to remove all legitimate
uses of Conditional Test Logic from our tests.

Eliminating “if” Statements

What should we do when we don’t want to execute an assertion because we
know it will result in a test error and we would prefer to have a more meaning-
ful test failure message? The normal reaction is to place the assertion inside an
“if” statement, as shown in the following listing. Unfortunately, this approach
results in Conditional Test Logic, which we would dearly like to avoid because
we want exactly the same code to run each time we run the test.

 List lineItems = invoice.getLineItems();
 if (lineItems.size() == 1) {
 LineItem expected =
 new LineItem(invoice, product,5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("invoice", expected, actItem);
 } else {
 fail("Invoice should have exactly one line item");
 }

The preferred solution is to use a Guard Assertion (page 490) as shown in this
revised version of the test code:

 List lineItems = invoice.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem expected =
 new LineItem(invoice, product, 5,
 new BigDecimal("30"),
 new BigDecimal("69.96"));
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("invoice", expected, actItem);

The nice thing about Guard Assertions is that they keep us from hitting the as-
sertion that would cause a test error but without introducing Conditional Test
Logic. Once we get used to them, these assertions are fairly obvious and intuitive
to read. We may even fi nd ourselves wanting to assert the pre-conditions of our
methods in our production code!

www.it-ebooks.info

http://www.it-ebooks.info/

121

Eliminating Loops

Conditional Test Logic may also appear as loops that verify the content of a col-
lection returned by the SUT matches what we expected. Putting loops directly
into the Test Method creates three problems:

• It introduces Untestable Test Code because the looping code, which is part
of the test, cannot be tested with Fully Automated Tests (see page 26).

• It leads to Obscure Tests because all that looping code obscures the real
intent: Does or doesn’t the collection match?

• It can lead to the project-level smell Developers Not Writing
Tests (page 263) because the complexity of writing the loops may dis-
courage the developer from writing the Self-Checking Test.

A better solution is to delegate this logic to a Test Utility Method with an Intent-
Revealing Name, which can be both tested and reused.

Other Techniques

This section outlines some other techniques for writing easy-to-understand tests.

Working Backward, Outside-In

A useful little trick for writing very intent-revealing code is to work backward.
This is an application of Stephen Covey’s idea, “Start with the end in mind.” To
do so, we write the last line of the function or test fi rst. For a function, its whole
reason for existence is to return a value; for a procedure, it is to produce one or
more side effects by modifying something. For a test, the raison d’ tre is to verify
that the expected outcome has occurred (by making assertions).

Working backward means we write these assertions fi rst. We assert on the values
of suitably named local variables to ensure that the assertion is intent-revealing.
The rest of writing the test simply consists of fi lling in whatever is needed to
execute those assertions: We declare variables to hold the assertion arguments
and initialize them with the appropriate content. Because at least one argument
should have been retrieved from the SUT, we must, of course, invoke the SUT.
To do so, we may need some variables to use as SUT arguments. Declaring and
initializing a variable after it has been used forces us to understand the variable
better when we introduce it. This scheme also results in better variable names
and avoids meaningless names like invoice1 and invoice2.

 Other Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

122 Chapter 10 Result Verification

Working “outside-in” (or “top-down” as it is sometimes called) means staying
at a consistent level of abstraction. The Test Method should focus on what we
need to have in place to induce the relevant behavior in the SUT. The mechanics
of how we reach that place should be delegated to a “lower layer” of test soft-
ware. In practice, we code this behavior as calls to Test Utility Methods, which
allows us to stay focused on the requirements of the SUT as we write each Test
Method. We don’t need to worry about how we will create that object or verify
that outcome; we merely need to describe what that object or outcome should
be. The utility method we just used but haven’t yet defi ned acts as a placeholder
for the unfi nished test automation logic.4 We can move on to writing the other
tests we need for this SUT while they are still fresh in our minds. Later, we can
switch to our “toolsmith” hat and implement the Test Utility Methods.

Using Test-Driven Development to Write Test Utility
Methods

Once we are fi nished writing the Test Method(s) that used the Test Utility Method,
we can start the process of writing the Test Utility Method itself. Along the way,
we can take advantage of test-driven development by writing Test Utility Tests
(see Test Utility Method). It doesn’t take very long to write these unit tests that
verify the behavior of our Test Utility Methods and we will have much more
confi dence in them.

We start with the simple case (say, asserting the equality of two identical
collections that hold the same item) and work up to the most complicated case
that the Test Methods actually require (say, two collections that contain the
same two items but in different order). TDD helps us fi nd the minimal implemen-
tation of the Test Utility Method, which may be much simpler than a complete
generic solution. There is no point in writing generic logic that handles cases that
aren’t actually needed but it may be worthwhile to include a Guard Assertion or
two inside the Custom Assertion to fail tests in cases it doesn’t support.

Where to Put Reusable Verifi cation Logic?

Suppose we have decided to use Extract Method refactorings to create some reus-
able Custom Assertions or we have decided to write our tests in an intent-revealing
way using Verifi cation Methods. Where should we put these bits of reusable test

4 We should always give this method an Intent-Revealing Name and stub it out with a call
to the fail assertion to remind ourselves that we still need to write the method’s body.

www.it-ebooks.info

http://www.it-ebooks.info/

123

logic? The most obvious place is in the Testcase Class (page 373) itself. We can
allow this logic to be reused more broadly by using a Pull-Up Method [Fowler]
refactoring to move them up to a Testcase Superclass (page 638) or a Move Method
[Fowler] refactoring to move them into a Test Helper (page 643). This issue is dis-
cussed in more detail in Chapter 12, Organizing Our Tests.

What’s Next?

This discussion of techniques for verifying the expected outcome concludes our
introduction to the basic techniques of automating tests using xUnit. Chapter 11,
Using Test Doubles, introduces some advanced techniques involving the use of
Test Doubles.

 What’s Next?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

125

Chapter 11

Using Test Doubles

About This Chapter

The last few chapters concluding with Chapter 10, Result Verifi cation, intro-
duced the basic mechanisms of running tests using the xUnit family of Test
Automation Frameworks (page 298). For the most part we assumed that the SUT
was designed such that it could be tested easily in isolation of other pieces of soft-
ware. When a class does not depend on any other classes, testing it is relatively
straightforward and the techniques described in this chapter are unnecessary.
When a class does depend on other classes, we have two choices: We can test it
together with all the other classes it depends on or we can try to isolate it from the
other classes so that we can test it by itself. This chapter introduces techniques for
isolating the SUT from the other software components on which it depends.

What Are Indirect Inputs and Outputs?

The problem with testing classes in groups or clusters is that it becomes very hard
to cover all the paths through the code. The depended-on component (DOC) may
return values or throw exceptions that affect the behavior of the SUT, but it may
prove diffi cult or impossible to cause certain cases to occur. The indirect inputs
received from the DOC may be unpredictable (such as the system clock or cal-
endar). In other cases, the DOC may not be available in the test environment or
may not even exist. How can we test dependent classes in these circumstances?

In other cases, we need to verify that certain side effects of executing the
SUT have, indeed, occurred. If it is too diffi cult to monitor these indirect
outputs of the SUT (or if it is too expensive to retrieve them), the effectiveness of
our automated testing may be compromised.

As you will no doubt have guessed from the title of this chapter, the solution
to these problems is often the use of a Test Double (page 522). We will start by

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 11 Using Test Doubles

looking at how we can use Test Doubles to test indirect inputs and outputs. We
will then describe a few other uses of these helpful mechanisms.

Why Do We Care about Indirect Inputs?

Calls to DOCs often return objects or values, update their arguments or even throw
exceptions. Many of the execution paths within the SUT are intended to deal with
these return values and to handle the possible exceptions. Leaving these paths un-
tested leads to Untested Code (see Production Bugs on page 268). These paths can
be the most challenging to test effectively but are also among the most likely to lead
to catastrophic failures if exercised for the very fi rst time in production.

We certainly would rather not have the exception-handling code execute for the
fi rst time in production. What if it was coded incorrectly? Clearly, it would be high-
ly desirable to have automated tests for such code. The testing challenge is to some-
how cause the DOC to throw an exception so that the error path can be tested. The
exception we expect the DOC to throw is a good example of an indirect input test
condition (Figure 11.1). Our means of injecting this input is a control point.

Figure 11.1 An indirect input being received by the SUT from a DOC. Not
all inputs of the SUT come from the test. Some indirect inputs come from other
components called by the SUT in the form of return values, updated parameters,
or exceptions thrown.

Why Do We Care about Indirect Outputs?

The concept of encapsulation often directs us to not care about how some-
thing is implemented. After all, that is the whole purpose of encapsulation—to
alleviate the need for clients of our interface to care about our implementation.

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Indirect
Input

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Indirect
Input

www.it-ebooks.info

http://www.it-ebooks.info/

127

When testing, we try to verify the implementation precisely so our clients do not
have to care about it.

Consider for a moment a component that has a method in its API that
returns nothing—or at least nothing that can be used to determine whether it
has performed its function correctly. In this situation, we have no choice but to
test through the back door. A good example of this is a message logging system.
Calls to the API of a logger rarely return anything that indicates it did its job
correctly. The only way to determine whether the message logging system is
working as expected is to interact with it through some other interface—one
that allows us to retrieve the logged messages.

A client of the logger may specify that the logger be called when certain con-
ditions are met. These calls will not be visible on the client’s interface but would
typically be a requirement that the client needs to satisfy and, therefore, would
be something we want to test. The circumstances that should result in a messag-
ing being logged are indirect output test conditions (Figure 11.2) for which we
need to write tests so that we can avoid having Untested Requirements (see Pro-
duction Bugs). Our means of seeing this output is an observation point.

Figure 11.2 An indirect output being received by the SUT. Not all outputs of
the SUT are directly visible to the test. Some indirect outputs are sent to other
components in the form of method calls or messages.

In other cases, the SUT does produce visible behavior that can be verifi ed
through the front door but also has some expected side effects. Both outputs
need to be verifi ed in our tests. Sometimes this testing is simply a matter of
adding assertions for the indirect outputs to the existing tests to verify the
Untested Requirement.

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Indirect
Output

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Indirect
Output

 What Are Indirect Inputs and Outputs?

www.it-ebooks.info

http://www.it-ebooks.info/

128 Chapter 11 Using Test Doubles

How Do We Control Indirect Inputs?

Testing with indirect inputs is a bit simpler than testing with indirect outputs
because the techniques used to test outputs build on those used to test inputs.
Let’s delve into indirect inputs fi rst.

To test the SUT with indirect inputs, we must be able to control th e DOC
well enough to cause it to return every possible kind of return value. That
implies the availability of a suitable control point.

Examples of the kinds of indirect inputs we want to be able to induce via this
control point include

• Return values of methods/functions

• Values of updatable arguments

• Exceptions that could be thrown

Often, the test can interact with the DOC to set up how it will respond to
requests. For example, if a component provides access to data in a database, then
we can use Back Door Setup (see Back Door Manipulation on page 327) to insert
specifi c values into a database that cause the component to respond in the desired
ways (e.g., no items found, one item found, many items found). (See Figure 11.3.)
In this specifi c case, we can use the database itself as a control point.

Figure 11.3 Using Back Door Manipulation to indirectly control and observe
the SUT. When the SUT stores its state in another component, we may be able
to manipulate that state by having the test interact directly with the other com-
ponent via a “back door.”

In most cases, however, this approach is neither practical nor even possible. We
might not be able to use the real component for the following reasons:

DataFixture

Setup

Exercise

Verify

Teardown

SUT DataFixture

Setup

Exercise

Verify

Teardown

SUT DataFixture

Setup

Exercise

Verify

Teardown

SUT DataFixture

Setup

Exercise

Verify

Teardown

SUT

www.it-ebooks.info

http://www.it-ebooks.info/

129 What Are Indirect Inputs and Outputs?

• The real component cannot be manipulated to produce the desired
indirect input. Only a true software error within the real component
would result in the desired input to the SUT.

• The real component could be manipulated to make the input occur but
doing so would not be cost-effective.

• The real component could be manipulated to make the input occur but
doing so could have unacceptable side effects.

• The real component is not yet available for use.

If we cannot use the real component as a control point, then we have to replace
it with one that we can control. This replacement can be done in a number of
different ways, which are the focus of the section Installing the Test Double
later in this chapter. The most common approach is to confi gure a Test
Stub (page 529) with a set of values to return from its functions and then to
install this Test Stub into the SUT. During execution of the SUT, the Test Stub
receives the calls and returns the previously confi gured responses (Figure 11.4).
It has become our control point.

Figure 11.4 Using a Test Stub as a control point for indirect inputs. One way
to use a control point to inject indirect inputs into the SUT is to install a Test
Stub in place of the DOC. Before exercising the SUT, we tell the Test Stub what
it should return to the SUT when it is called. This strategy allows us to force the
SUT through all its code paths.

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Stub

Return
Values

Indirect
 Input

Installation

Creation

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Stub

Return
Values

Indirect
 Input

Installation

Creation

www.it-ebooks.info

http://www.it-ebooks.info/

130 Chapter 11 Using Test Doubles

How Do We Verify Indirect Outputs?

In normal usage, as the SUT is exercised, it interacts naturally with the component(s)
upon which it depends. To test the indirect outputs, we must be able to observe the
calls that the SUT makes to the API of the DOC (Figure 11.5). Furthermore, if we
need the test to progress beyond that point, we need to be able to control the val-
ues returned (as was discussed in the discussion of indirect inputs).

Figure 11.5 Using Behavior Verifi cation to verify the indirect outputs of the SUT.
When we care about exactly what calls our SUT makes to other components, we
may have to do Behavior Verifi cation rather than simply verifying the post-test state
of the SUT.

In many cases, the test can use the DOC as an observation point to fi nd out how
it has been used. For example:

• We can ask the fi le system for the contents of a fi le that the SUT has writ-
ten to verify that it exists and was written with the expected contents.

• We can ask the database for the contents of a table or specifi c record to
verify that the SUT wrote the expected records to the database.

• We can interact directly with the e-mail sending component to ask
whether the SUT had asked it to send a particular e-mail.

These are all examples of Back Door Verifi cation (see Back Door Manipulation
on page 327). Some DOCs allow us to confi gure their behavior in such a way
that we can use them to keep the test informed of how they are being used:

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect

 Outputs)

V
er

ify

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect

 Outputs)

V
er

ify

www.it-ebooks.info

http://www.it-ebooks.info/

131

• We can ask the fi le system to notify the test whenever a fi le is created or
modifi ed so we can verify its contents.

• We can use a database trigger to notify the test when a record is written
or deleted.

• We can confi gure the e-mail sending component to deliver all outgoing
e-mail to the test.

Sometimes, as we have seen with indirect inputs, it is not practical to use the
real component as an observation point. When all else fails, we may need to
replace the real component with a test-specifi c alternative. For example, we
might need to do this for the following reasons:

• The calls to (or the internal state of) the DOC cannot be queried.

• The real component can be queried but doing so is cost-prohibitive.

• The real component can be queried but doing so has unacceptable side
effects.

• The real component is not yet available for use.

The replacement of the real component can be done in a number of different
ways, as will be discussed in Installing the Test Double.

Two basic styles of indirect output verifi cation are available. Procedural Behav-
ior Verifi cation (see Behavior Verifi cation) captures the calls to a DOC (or their re-
sults) during SUT execution and then compares them with the expected calls after
the SUT has fi nished executing. This verifi cation involves replacing a substitutable
dependency with a Test Spy (page 538). During execution of the SUT, the Test Spy
receives the calls and records them. After the Test Method (page 348) has fi nished
exercising the SUT, it retrieves the actual calls from the Test Spy and uses Assertion
Methods (page 362) to compare them with the expected calls (Figure 11.6).

Expected Behavior (see Behavior Verifi cation) involves building a “behavior
specifi cation” during the fi xture setup phase of the test and then comparing the
actual behavior with this Expected Behavior. It is typically done by loading a
Mock Object (page 544) with a set of expected procedure call descriptions and
installing this object into the SUT (Figure 11.7). During execution of the SUT,
the Mock Object receives the calls and compares them to the previously defi ned
expected calls (the “behavior specifi cation”). As the test proceeds, if the Mock
Object receives an unexpected call, it fails the test immediately. The test failure
traceback will show the exact location in the SUT where the problem occurred
because the Assertion Methods are called from the Mock Object, which is in
turn called by the SUT. We can also see exactly where in the Test Method the
SUT was being exercised.

 What Are Indirect Inputs and Outputs?

www.it-ebooks.info

http://www.it-ebooks.info/

132 Chapter 11 Using Test Doubles

Figure 11.6 Using a Test Spy as an observation point for indirect outputs of
the SUT. One way to implement Behavior Verifi cation is to install a Test Spy in
place of the target of the indirect outputs. After exercising the SUT, the test asks
the Test Spy for information about how it was used and compares that
information to the expected behavior using assertions.

Figure 11.7 Using a Mock Object as an observation point for indirect outputs
of the SUT. Another way to implement Behavior Verifi cation is to install a Mock
Object in place of the target of the indirect outputs. As the SUT makes calls
to the DOC, the Mock Object uses assertions to compare the actual calls and
arguments with the expected calls and arguments.

Fixture

Setup

Exercise

Verify

Teardown

SUTExercise

Test Spy

Installation

Creation

Indirect
 Outputs

Indirect
 Output

DOC
Fixture

Setup

Exercise

Verify

Teardown

SUTExercise

Test Spy

Installation

Creation

Indirect
 Outputs

Indirect
 Output

DOC

Fixture
DOC

SUT

Mock
Object

Final Verification

Exercise

Creation
Setup

Exercise

Verify

Teardown

ExpectationsInstallation
Indirect
Output

V
er

ify
Fixture

DOC

SUT

Mock
Object

Final Verification

Exercise

Creation
Setup

Exercise

Verify

Teardown

ExpectationsInstallation
Indirect
Output

V
er

ify

www.it-ebooks.info

http://www.it-ebooks.info/

133

When we use a Test Spy or a Mock Object, we may also have to employ it as a
control point for any indirect inputs on which the SUT depends after the Test
Spy or Mock Object has been called to allow test execution to continue.

Testing with Doubles

By now you are probably wondering about how to replace those infl exible and
uncooperative real components with something that makes it easier to control
the indirect inputs and to verify the indirect outputs.

As we have seen, to test the indirect inputs, we must be able to control the
DOC well enough to cause it to return every possible kind of return value
(valid, invalid, and exception). To test indirect outputs, we must be able to track
the calls the SUT makes to other components. A Test Double is a type of object
that is much more cooperative and lets us write tests the way we want to.

Types of Test Doubles

A Test Double is any object or component that we install in place of the real
component for the express purpose of running a test. Depending on the reason
why we are using it, a Test Double can behave in one of four ways (summarized
in Figure 11.8):

• A Dummy Object (page 728) is a placeholder object that is passed to
the SUT as an argument (or an attribute of an argument) but is never
actually used.

• A Test Stub is an object that replaces a real component on which the
SUT depends so that the test can control the indirect inputs of the SUT.
It allows the test to force the SUT down paths it might not otherwise
exercise. A Test Spy, which is a more capable version of a Test Stub,
can be used to verify the indirect outputs of the SUT by giving the test a
way to inspect them after exercising the SUT.

• A Mock Object is an object that replaces a real component on which
the SUT depends so that the test can verify its indirect outputs.

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

134 Chapter 11 Using Test Doubles

• A Fake Object (page 551) (or just “Fake” for short) is an object that
replaces the functionality of the real DOC with an alternative imple-
mentation of the same functionality.

Figure 11.8 Several kinds of Test Doubles exist. Dummy Objects are really an
alternative to the value patterns. Test Stubs are used to verify indirect inputs;
Test Spies and Mock Objects are used to verify indirect outputs. Fake objects
emulate the behavior of the real depended-on component, but with test-friendly
characteristics.

Dummy Objects

Dummy Objects are a degenerate form of Test Double. They exist solely so
that they can be passed around from method to method; they are never used.
That is, Dummy Objects are not expected to do anything except exist. Often,
we can get away with using “null” (or “nil” or “nothing”); at other times,
we may be forced to create a real object because the code expects something
non-null. In dynamically typed languages, almost any real object will do; in
statically typed languages, we must make sure that the Dummy Object is
“type-compatible” with the parameter it is being passed as or the variable to
which it is being assigned.

In the following example, we pass an instance of DummyCustomer to the Invoice
constructor to satisfy a mandatory argument. We do not expect the DummyCustomer
to be used by the code we are testing here.

Configurable
Test Double

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Hard-Coded
Test Double

Configurable
Test Double

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

135

 public void testInvoice_addLineItem_DO() {
 final int QUANTITY = 1;
 Product product = new Product("Dummy Product Name",
 getUniqueNumber());
 Invoice inv = new Invoice(new DummyCustomer());
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("", expItem, actual);
 }

Note that a Dummy Object is not the same as a Null Object [PLOPD3]. A
Dummy Object is not used by the SUT, so its behavior is irrelevant. By contrast,
a Null Object is used by the SUT but is designed to do nothing. That’s a small
but very important distinction!

Dummy Objects are in a different league than the other Test Doubles;
they are really an alternative to the attribute value patterns such as Literal
Value (page 714), Generated Value (page 723), and Derived Value (page 718).
Therefore, we don’t need to “confi gure” them or “install” them. In fact, almost
nothing we say about the other Test Doubles applies to Dummy Objects, so we
won’t mention them again in this chapter.

Test Stubs

A Test Stub is an object that acts as a control point to deliver indirect
inputs to the SUT when the Test Stub’s methods are called. Its use allows us to
exercise Untested Code paths in the SUT that might otherwise be impossible to
traverse during testing. A Responder (see Test Stub) is a basic Test Stub that is
used to inject valid and invalid indirect inputs into the SUT via normal returns
from method calls. A Saboteur (see Test Stub) is a special Test Stub that raises
exceptions or errors to inject abnormal indirect inputs into the SUT. Because
procedural programming languages do not support objects, they force us to use
Procedural Test Stubs (see Test Stub).

In the following example, the Saboteur—implemented as an anonymous
inner class in Java—throws an exception when the SUT calls the getTime method
to allow us to verify that the SUT behaves correctly in this case:

 public void testDisplayCurrentTime_exception()
 throws Exception {
 // Fixture setup

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

136 Chapter 11 Using Test Doubles

 // Define and instantiate Test Stub
 TimeProvider testStub = new TimeProvider()
 { // Anonymous inner Test Stub
 public Calendar getTime() throws TimeProviderEx {
 throw new TimeProviderEx("Sample");
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Invalid Time";
 assertEquals("Exception", expectedTimeString, result);
 }

In procedural programming languages, a Procedural Test Stub is either (1) a
Test Stub implemented as a stand-in for an as-yet-unwritten procedure or (2) an
alternative implementation of a procedure linked into the program instead of
the real implementation of the procedure. Traditionally, Procedural Test Stubs
are introduced to allow debugging to proceed while we are waiting for other
code to be ready. They are rarely “swapped in” at runtime—this is hard to do
in most procedural languages. If we do not mind introducing Test Logic in Pro-
duction (page 217) code, we can implement a Procedural Test Stub using Test
Hooks (page 709) such as if testing then ... else in the SUT. This is illustrated
in the following listing:

 public Calendar getTime() throws TimeProviderEx {
 Calendar theTime = new GregorianCalendar();
 if (TESTING) {
 theTime.set(Calendar.HOUR_OF_DAY, 0);
 theTime.set(Calendar.MINUTE, 0);}
 else {
 // just return the calendar
 }
 return theTime;
 };

The key exception occurs in languages that support procedure variables.1 These
variables allow us to implement dynamic binding as long as the client code ac-
cesses the procedure to be replaced via a procedure variable.

1 Also called function pointers.

www.it-ebooks.info

http://www.it-ebooks.info/

137

Test Spies

A Test Spy is an object that can act as an observation point for the indirect
outputs of the SUT. To the capabilities of a Test Stub, it adds the ability to
quietly record all calls made to its methods by the SUT. The verifi cation part
of the test performs Procedural Behavior Verifi cation on those calls by using
a series of assertions to compare the actual calls received by the Test Spy with
the expected calls.

The following example uses the Retrieval Interface (see Test Spy) on the Test
Spy to verify that the correct information was passed as arguments in the call to the
logMessage method by the SUT (the removeFlight method of the facade).

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // Fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // Exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // Verify state
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 // Verify indirect outputs using retrieval interface of spy
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

Mock Objects

A Mock Object is also an object that can act as an observation point for the
indirect outputs of the SUT. Like a Test Stub, it may need to return information
in response to method calls. Also like a Test Spy, a Mock Object pays attention
to how it was called by the SUT. It differs from a Test Spy, however, in that the

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

138 Chapter 11 Using Test Doubles

Mock Object compares actual calls received with the previously defi ned expec-
tations using assertions and fails the test on behalf of the Test Method. As a
consequence, we can reuse the logic employed to verify the indirect outputs of
the SUT across all tests that use the same Mock Object. Mock Objects come in
two basic fl avors:

• A strict Mock Object fails the test if the correct calls are received in a
different order than was specifi ed.

• A lenient2 Mock Object tolerates out-of-order calls. Some lenient Mock
Objects tolerate or even ignore unexpected calls or missed calls. That
is, the Mock Object may verify only those actual calls that correspond
to expected ones.

The following test confi gures a Mock Object with the arguments of the expected
call to logMessage. When the SUT (the removeFlight method) calls logMessage, the
Mock Object asserts that each of the actual arguments equals the expected argu-
ment. If it discovers that any wrong arguments were passed, the test fails.

 public void testRemoveFlight_Mock() throws Exception {
 // Fixture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 // Mock configuration
 ConfigurableMockAuditLog mockLog =
 new ConfigurableMockAuditLog();
 mockLog.setExpectedLogMessage(
 helper.getTodaysDateWithoutTime(),
 Helper.TEST_USER_NAME,
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 expectedFlightDto.getFlightNumber());
 mockLog.setExpectedNumberCalls(1);
 // Mock installation
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 facade.setAuditLog(mockLog);
 // Exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // Verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 mockLog.verify();
 }

2 Lenient Mock Objects are sometimes called “nice,” but “lenient” is a more precise
adjective.

www.it-ebooks.info

http://www.it-ebooks.info/

139

Like Test Stubs, Mock Objects often support confi guration with any indirect inputs
required to allow the SUT to advance to the point where it would generate the
indirect outputs they are verifying.

Fake Objects

A Fake Object is quite different from a Test Stub or a Mock Object in that it is nei-
ther directly controlled nor observed by the test. The Fake Object is used to replace
the functionality of the real DOC in a test for reasons other than verifi cation of indi-
rect inputs and outputs. Typically, a Fake Object implements the same functionality
or a subset of the functionality of the real DOC, albeit in a much simpler way. The
most common reasons for using a Fake Object are that the real DOC has not yet
been built, is too slow, or is not available in the test environment.

The sidebar “Faster Tests without Shared Fixtures” (page 319) describes
how my team encapsulated all database access behind a persistence layer
interface and then replaced the persistence layer component with one that used
in-memory hash tables instead of a real database, thereby making our tests run
50 times faster. To do so, we used a Fake Database (see Fake Object) that was
something like this one:

public class InMemoryDatabase implements FlightDao{
 private List airports = new Vector();
 public Airport createAirport(String airportCode,
 String name, String nearbyCity)
 throws DataException, InvalidArgumentException {
 assertParamtersAreValid(airportCode, name, nearbyCity);
 assertAirportDoesntExist(airportCode);
 Airport result = new Airport(getNextAirportId(),
 airportCode, name, createCity(nearbyCity));
 airports.add(result);
 return result;
 }
 public Airport getAirportByPrimaryKey(BigDecimal airportId)
 throws DataException, InvalidArgumentException {
 assertAirportNotNull(airportId);

 Airport result = null;
 Iterator i = airports.iterator();
 while (i.hasNext()) {
 Airport airport = (Airport) i.next();
 if (airport.getId().equals(airportId)) {
 return airport;
 }
 }
 throw new DataException("Airport not found:"+airportId);
 }

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

140 Chapter 11 Using Test Doubles

Providing the Test Double

There are two approaches to providing a Test Double: a Hand-Built Test Dou-
ble (see Confi gurable Test Double on page 558), which is coded by the test
automater, or a Dynamically Generated Test Double (see Confi gurable Test
Double), which is generated at runtime using a framework or toolkit provided
by some other developer.3 All generated Test Doubles must be, by their very
nature, Confi gurable Test Doubles; these components are covered in more
detail in the next section. Hand-Built Test Doubles, by contrast, tend to be
Hard-Coded Test Doubles (page 568) but can also be made confi gurable with
some additional effort. The following code sample illustrates a hand-coded
Inner Test Double (see Hard-Coded Test Double) that uses Java’s anonymous
inner class construct:

 public void testDisplayCurrentTime_AtMidnight_PS()
 throws Exception {
 // Fixture setup
 // Define and instantiate Test Stub
 TimeProvider testStub = new PseudoTimeProvider()
 { // Anonymous inner stub
 public Calendar getTime(String timeZone) {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Test Stub into SUT
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

We can greatly simplify the development of Hand-Built Test Doubles in
statically typed languages such as Java and C# by providing a set of base classes
called Pseudo-Objects (see Hard-Coded Test Double) from which to create sub-
classes. Pseudo-Objects can reduce the number of methods we need to implement

3 JMock and its ports to other languages are good examples of such toolkits. Other toolkits,
such as EasyMock, implement Statically Generated Test Doubles (see Confi gurable Test
Double) by generating code that is then compiled just like a Hand-Built Test Double.

www.it-ebooks.info

http://www.it-ebooks.info/

141

in each Test Stub, Test Spy, or Mock Object to just the ones we expect to be
called. They are especially helpful when we are using Inner Test Doubles or Self
Shunts (see Hard-Coded Test Double). The class defi nition for the Pseudo-Object
used in the previous example looks like this:

 /**
 * Base class for hand-coded Test Stubs and Mock Objects
 */
public class PseudoTimeProvider implements ComplexTimeProvider {

 public Calendar getTime() throws TimeProviderEx {
 throw new PseudoClassException();
 }

 public Calendar getTimeDifference(Calendar baseTime,
 Calendar otherTime)
 throws TimeProviderEx {
 throw new PseudoClassException();
 }

 public Calendar getTime(String timeZone)
 throws TimeProviderEx {
 throw new PseudoClassException();
 }
}

Confi guring the Test Double

Some Test Doubles (specifi cally, Test Stubs and Mock Objects) need to be told
which values to return and/or which values to expect. A Hard-Coded Test
Double receives these instructions at design time from the test automater;
a Confi gurable Test Double is told this information at runtime by the test
(Figure 11.9). A Test Stub or Test Spy needs to be confi gured only with the
values that will be returned by the methods that the SUT is expected to
invoke. A Mock Object also needs to be confi gured with the names and
arguments of all methods we expect the SUT to invoke on it. In all cases, the
test automater ultimately decides with which values to confi gure the Test
Double. Not surprisingly, the primary considerations when making this deci-
sion are the understandability of the test and the potential reusability of the
Test Double code.

Fake Objects do not need to be “confi gured” at runtime because they are just
used by the SUT; later outputs depend on the earlier calls by the SUT. Similarly,
Dummy Objects do not need to be “confi gured” because they should never be

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

142 Chapter 11 Using Test Doubles

executed.4 Procedural Test Stubs are typically built as Hard-Coded Test Doubles.
That is, they are hard-coded to return a particular value when the function is
called—thus they are the simplest form of Test Double.

Figure 11.9 A Test Double being confi gured by the test. We can avoid a
proliferation of Hard-Coded Test Doubles classes by passing return values or
expectation to the Confi gurable Test Double at runtime.

A Confi gurable Test Double can provide either a Confi guration Interface (see
Confi gurable Test Double) or a Confi guration Mode (see Confi gurable Test
Double) that the test can use to confi gure the Test Double with the values to
return or expect. As a consequence, Confi gurable Test Doubles are reusable
across many tests. Use of these Confi gurable Test Doubles also makes tests
more understandable because the values used by the Test Double are visible
within the test, thus avoiding the smell of a Mystery Guest (see Obscure Test
on page 186).

So where should this confi guration take place? The installation of the Test
Double should be treated just like any other part of fi xture setup. Alternatives
such as In-line Setup (page 408), Implicit Setup (page 424), and Delegated
Setup (page 411) are all available.

4 A Dummy Object can be used as an observation point to verify that it was never used by
ensuring that the Dummy Object throws an exception if any of its methods are called.

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation Expectations

Configuration

Expectations,
Return Values

Return
Values

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation Expectations

Configuration

Expectations,
Return Values

Return
Values

www.it-ebooks.info

http://www.it-ebooks.info/

143

Installing the Test Double

Before we exercise the SUT, we need to “install” any Test Doubles on which
our test depends. The term “install” here serves as a generic way to describe the
process of telling the SUT to use our Test Double, regardless of the exact details
regarding how we do it. The normal sequence is to instantiate the Test Double,
confi gure it if it is a Confi gurable Test Double, and then tell the SUT to use the
Test Double either before or as we exercise the SUT. There are several distinct
ways to “install” the Test Double, and the choice between them may be as much
a matter of style as of necessity if we are designing the SUT for testability. Our
choices may be much more constrained, however, when we try to retrofi t our
tests to an existing design.

The basic choices boil down to Dependency Injection (page 678), in which the
client software tells the SUT which DOC to use; Dependency Lookup (page 686),
in which the SUT delegates the construction or retrieval of the DOC to another
object; and Test Hook, in which the DOC or the calls to it within the SUT
are modifi ed.

If an inversion of control framework is available in our language, our tests
can substitute dependencies without much additional work on our part. This
removes the need for building in the Dependency Injection or Dependency
Lookup mechanism.

Dependency Injection

Dependency Injection is a class of design decoupling in which the client tells the
SUT which DOC to use at runtime (Figure 11.10). The test-driven development
(TDD) movement has greatly increased its popularity because Dependency Injec-
tion makes for more easily tested designs. This pattern also makes it possible to
reuse the SUT more broadly because it removes knowledge of the dependency
from the SUT; often the SUT will be aware of only a generic interface that the
DOC must implement. Dependency Injection comes in several specifi c fl avors,
with the choice between them being largely a matter of taste:

• Setter Injection (see Dependency Injection): The SUT accesses the
DOC through a public attribute (i.e., a variable or property). The test
explicitly sets the attribute after instantiating the SUT to installing the
Test Double. The SUT may have previously initialized the attribute
with the real DOC in its constructor (in which case the test is replac-
ing it) or the SUT may use Lazy Initialization [SBPP] to initialize the
attribute (in which case the SUT will not bother to install the real
DOC).

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

144 Chapter 11 Using Test Doubles

Figure 11.10 A Test Double being “injected” into the SUT by a test. Using Test
Doubles requires a means to replace the DOC. Using Dependency Injection involves
having the caller supply the dependency to the SUT before or as it is used.

• Constructor Injection (see Dependency Injection): The SUT accesses
the DOC through a private attribute. The test passes the Test Dou-
ble to the SUT via a constructor that takes the DOC to be used as
an explicit argument and initializes the attribute from it. This may be
the primary constructor used by production code clients or it may be
an alternative constructor. In the latter case, the primary constructor
should call this constructor, passing the default DOC to it as an
argument.

• Parameter Injection (see Dependency Injection): The SUT receives
the DOC as a method parameter. The test passes in a Test Double,
whereas the production code passes in the real object.5 This approach
works well when the API of the SUT takes as a parameter the object
we need to replace. Although Mock Object afi cionados might argue
that designing APIs in this way improves the design of the SUT, it is
not always possible or practical to pass everything required to each
method.

Dependency Lookup

When software is not designed for testability or when Dependency Injection is
not appropriate, we may fi nd it convenient to use Dependency Lookup. This
pattern also removes the knowledge of exactly which DOC should be used from

5 This approach was advocated in the original paper on Mock Objects [ET]. In this paper,
Mock Objects passed as parameters to methods are called “Smart Handlers.”

DOC

Test
Double

Creation

Creation

SUT Usage

Client

Exercise

Setup
Exercise

Verify
Teardown

Usage

DOC

Test
Double

Creation

Creation

SUT Usage

Client

Exercise

Setup
Exercise

Verify
Teardown

Usage

www.it-ebooks.info

http://www.it-ebooks.info/

145

the SUT, but it does so by having the SUT ask another piece of software to create
or fi nd the DOC on its behalf (Figure 11.11). This opens the door to changing
the DOC at runtime without modifying the SUT’s code. We do have to modify
the behavior of the intermediary somehow, and this is where the specifi c variants
of Dependency Lookup differ from one another:

Figure 11.11 A Service Locator being “confi gured” by a test to return a Test
Double to the SUT. Using Test Doubles requires a means to replace the DOC.
Using Dependency Lookup involves having the SUT ask a well-known object to
provide a reference to the DOC; the test can provide the Service Locator with a
Test Double to return.

• Object Factory (see Dependency Lookup): The SUT creates the DOC
by calling a Factory Method [GOF] on a well-known object instead of
using an object constructor to create the DOC directly. The test explic-
itly tells the Object Factory to create a Test Double instead of a normal
DOC whenever this method is called .

• Service Locator (see Dependency Lookup): The SUT retrieves a previ-
ously created service object by asking a well-known Registry [PEAA]
object for it. The test confi gures the Service Locator to return the Test
Double when the SUT requests the DOC.

The line between these two patterns can become quite blurry when we use Lazy
Initialization to create the object being returned by a Service Locator. Should it
be called an Object Factory instead? Does it really matter which label we apply?
Probably not—hence the generic name of Dependency Lookup.

DOC

Test
Double

Creation

Creation

SUT
UsageClient

Setup

Exercise

Verify

Teardown

Usage

Exercise
or

Configuration
with Test Double

Usage

Find or Create

DOC

Test
Double

Creation

Creation

SUT
UsageClient

Setup

Exercise

Verify

Teardown

Usage

Exercise
or

Configuration
with Test Double

Usage

Find or Create

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

146 Chapter 11 Using Test Doubles

Retrofi tting Testability Using a Test-Specifi c Subclass

Even when none of these mechanisms is built into the SUT, we may be able to
retrofi t them relatively easily by using a Test-Specifi c Subclass.

The use of Singletons [GOF] specifi cally to act as an Object Factory or Service
Locator is common. If the Singleton has hard-coded behavior, we may have to
turn it into a Substitutable Singleton (see Test-Specifi c Subclass on page 579) to
enable overriding the normally returned DOC with our Test Double. The use of
Singletons can be avoided through the use of an IOC tool or a manually coded
Dependency Injection mechanism. Both of these choices are preferable because
they make the test’s dependency on a Test Double more obvious. Singletons
used for other purposes almost always cause headaches when we are writing
tests and should be avoided if possible.

Our test can instantiate a Test-Specifi c Subclass of the SUT to add a Depen-
dency Injection mechanism or to replace other methods of the SUT with test-spe-
cifi c behavior; see Figure 11.12. We can override any logic used to access a DOC,
thereby making it possible to return a Test Double instead of the normal DOC
without modifying the production code. We can also replace the implementations
of any methods being called from the method we are testing with Test Stub-like
behavior, thereby turning the SUT into its own Subclassed Test Double (see Test-
Specifi c Subclass). This is one way to inject indirect inputs into the SUT.

Figure 11.12 Using a Test-Specifi c Subclass of the SUT. When all else fails, we
can always try subclassing the SUT to change or expose functionality we need
to enable testing

Setup

Exercise

Verify

Teardown

Get State

SUT
Method Under Test

Internal Method

Test-
Specific

Subclass
Internal Method

Overridden
Self Call

Set State

Create

Exercise

Setup

Exercise

Verify

Teardown

Get State

SUT
Method Under Test

Internal Method

Test-
Specific

Subclass
Internal Method

Overridden
Self Call

Set State

Create

Exercise

www.it-ebooks.info

http://www.it-ebooks.info/

147

The main prerequisite of using a Test-Specifi c Subclass of the SUT is that the
SUT must use Self-Calls [WWW] to nonprivate methods that implement any
functionality we need to override from the test. Small, single-purpose methods
rule! The main drawback of this approach is that it is possible to accidentally
override parts of the behavior we are intending to test.

We can also subclass the DOC to insert test-specifi c behavior, effectively
turning it into a Subclassed Test Double (Figure 11.13). This strategy is some-
what safer than subclassing the SUT because it avoids the possibility of acci-
dentally overriding those parts of the SUT that we are testing. The trick,
however, is to get the SUT to use the Test-Specifi c Subclass instead of the DOC.
In practice, this implies that we must use one of the Dependency Injection or
Dependency Lookup techniques, unless the DOC is a Singleton. When the SUT
uses a Singleton by calling a static soleInstance method on a hard-coded class
name, the test can cause the soleInstance method to return an instance of a Test
Double by subclassing the Singleton class and initializing the real Singleton’s
soleInstance class variable to hold an instance of the Test Double. The returned
Test Double may need to be a Subclassed Test Double if the type of the vari-
able used to hold the Singleton’s sole instance is hard-coded as the Singleton’s
class. Although we often use this technique to get a Service Locator to return a
different service, but we can also use a Subclassed Test Double directly with-
out an intermediary Service Locator.

Figure 11.13 Using A Test Double subclassed from the DOC. One way to build
a Test Double is to subclass the real class and override the implementation of any
methods we need to control the indirect inputs or verify indirect outputs.

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Sub-
classed

Test
Double

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Sub-
classed

Test
Double

 Testing with Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

148 Chapter 11 Using Test Doubles

Other Ways of Retrofi tting Testability

All is not lost when none of the techniques described thus far can be used to
introduce testability. We still have a few tricks left up our sleeves.

Test Hooks are the “elephant in the room” that no one wants to talk about
because they may lead to Test Logic in Production. Test Hooks, however, are
a perfectly legitimate way to get legacy code under test when it is too hard or
dangerous to introduce one of the techniques described earlier. They are best
used as a “transition” strategy to allow Scripted Tests (page 285) or Recorded
Tests (page 278) to be automated to provide a Safety Net (see page 24) while
large-scale refactoring is undertaken to improve testability. Ideally, once the
code has been made more testable, better tests can be prepared using the tech-
niques described earlier and the Test Hooks can be removed.

Michael Feathers [WEwLC] has described several other techniques to
replace dependencies with test-specifi c code under the general heading of fi nd-
ing “object seams.” For example, we can replace a depended-on library with
a library designed specifi cally for testing. A seemingly hard-coded dependency
can be broken this way. Most of these techniques are less applicable when we
need to dynamically replace dependencies within individual tests than either
Dependency Injection or Dependency Lookup because they require changes to
the environment. Object seams are, however, an excellent way to place legacy
code under test so that it can be refactored to introduce either of the previously
mentioned dependency-breaking techniques.

We can use aspect-oriented programming (AOP) to install the Test
Double behavior by defi ning a test point-cut that matches the place where
the SUT calls the DOC and we would rather have it call the Test Double.
Although we need an AOP-enabled development environment to do this, we
do not need to deploy the AOP-generated code into a production environ-
ment. As a consequence, this technique may be used even in AOP-hostile
environments.

Other Uses of Test Doubles

So far, we have covered the testing of indirect inputs and indirect outputs. Now
let’s look at some other uses of Test Doubles.

www.it-ebooks.info

http://www.it-ebooks.info/

149

Endoscopic Testing

Tim Mackinnon et al. introduced the concept of endoscopic testing [ET] in their
initial Mock Objects paper. Endoscopic testing focuses on testing the SUT from
the inside by passing in a Mock Object as an argument to the method under test.
This allows verifi cation of certain internal behaviors of the SUT that may not
always be visible from the outside.

The classic example that Mackinnon and colleagues cite is the use of a mock
collection class preloaded with all of the expected members of the collection.
When the SUT tries to add an unexpected member, the mock collection’s asser-
tion fails. The full stack trace of the internal call stack then becomes visible in
the xUnit failure report. If our IDE supports breaking on specifi ed exceptions,
we can also inspect the local variables at the point of failure.

Need-Driven Development

A refi nement of endoscopic testing is “need-driven development” [MRNO], in
which the dependencies of the SUT are defi ned as the tests are written. This
“outside-in” approach to writing and testing software combines the conceptual
elegance of the traditional “top-down” approach to writing code with modern
TDD techniques supported by Mock Objects. It allows us to build and test the
software layer by layer, starting at the outermost layer before we have imple-
mented the lower layers.

Need-driven development combines the benefi ts of test-driven development
(specifying all software with tests before we build them) with a highly incre-
mental approach to design that removes the need for any speculation about
how a depended-on class might be used.

Speeding Up Fixture Setup

Another application of Test Doubles is to reduce the runtime cost of Fresh Fix-
ture (page 311) setup. When the SUT needs to interact with other objects that
are diffi cult to create because they have many dependencies, a single Test Dou-
ble can be created instead of the complex network of objects. When applied to
networks of entity objects, this technique is called Entity Chain Snipping (see
Test Stub).

 Other Uses of Test Doubles

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 11 Using Test Doubles

Speeding Up Test Execution

Test Doubles may also be used to speed up tests by replacing slow compo-
nents with faster ones. Replacing a relational database with an in-memory Fake
Object, for example, can reduce test execution times by an order of magnitude!
The extra effort required to code the Fake Database is more than offset by the re-
duced waiting time and the quality improvement due to the more timely feedback
that comes from running the tests more frequently. Refer to the sidebar “Faster
Tests without Shared Fixtures” on page 319 for a more detailed discussion of
this issue.

Other Considerations

Because many of our tests will involve replacing a real DOC with a Test
Double, how do we know that the production code will work properly when
it uses the real DOC? Of course, we would expect our customer tests to verify
behavior with the real DOCs in place (except, possibly, when the real DOCs are
interfaces to other systems that need to be stubbed out during single-system
testing). We should write a special form of Constructor Test (see Test Method)—
a “substitutable initialization test”—to verify that the real DOC is installed
properly. The trigger for writing this test is performing the fi rst test that
replaces the DOC with a Test Double—that point is often when the Test
Double installation mechanism is introduced.

Finally, we want to be careful that we don’t fall into the “new hammer
trap.”6 Overuse of Test Doubles (and especially Mock Objects or Test Stubs) can
lead to Overspecifi ed Software (see Fragile Test on page 239) by encoding
implementation-specifi c information about the design in our tests. The design
may be then much more diffi cult to change if many tests are affected by the
change simply because they use a Test Double that has been affected by the
design change.

6 “When you have a new hammer, everything looks like a nail.”

www.it-ebooks.info

http://www.it-ebooks.info/

151

What’s Next?

In this chapter, we examined techniques for testing software with indirect inputs
and indirect outputs. In particular, we explored the concept of Test Doubles
and various techniques for installing them. In Chapter 12, Organizing Our
Tests, we will turn our attention to strategies for organizing the test code into
Test Methods and Test Utility Methods (page 599) implemented on Testcase
Classes (page 373) and Test Helpers (page 643).

What’s Next?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

153

Chapter 12

Organizing Our Tests

About This Chapter

In the chapters concluding with Chapter 11, Using Test Doubles, we looked at
various techniques for interacting with the SUT for the purpose of verifying its
behavior. In this chapter, we turn our attention to the question of how to orga-
nize the test code to make it easy to fi nd and understand.

The basic unit of test code organization is the Test Method (page 348).
Deciding what to put in the Test Method and where to put it is central to the topic
of test organization. When we have only a few tests, how we organize them isn’t
terribly important. By contrast, when we have hundreds of tests, test organization
becomes a critical factor in keeping our tests easy to understand and fi nd.

This chapter begins by discussing what we should and should not include in
a Test Method. Next, it explores how we can decide on which Testcase Classes
(page 373) to put our Test Methods. Test naming depends heavily on how we
have organized our tests, so we will talk about this issue next. We will then
consider how to organize the Testcase Classes into test suites and where to put
test code. The fi nal topic is test code reuse—specifi cally, where to put reusable
test code.

Basic xUnit Mechanisms

The xUnit family of Test Automation Frameworks (page 298) provides a num-
ber of features to help us organize our tests. The basic question, “Where do I
code my tests?”, is answered by putting our test code into a Test Method on a
Testcase Class. We then use either Test Discovery (page 393) or Test Enumera-
tion (page 399) to create a Test Suite Object (page 387) containing all the tests
from the Testcase Class. The Test Runner (page 377) invokes a method on the
Test Suite Object to run all the Test Methods.

www.it-ebooks.info

http://www.it-ebooks.info/

154 Chapter 12 Organizing Our Tests

Right-Sizing Test Methods

A test condition is something we need to prove the SUT really does; it can be
described in terms of what the starting state of the SUT is, how we exercise the
SUT, how we expect the SUT to respond, and what the ending state of the SUT
is expected to be. A Test Method is a sequence of statements in our test scripting
language that exercises one or more test conditions (Figure 12.1). What should
we include in a single Test Method?

Figure 12.1 The four phases of a typical test. Each Test Method implements a
Four-Phase Test (page 358) that ideally verifi es a single test condition. Not all
phases of the Four-Phase Test need be in the Test Method.

Many xUnit purists prefer to Verify One Condition per Test (see page 45)
because it gives them good Defect Localization (see page 22). That is, when a
test fails, they know exactly what is wrong in the SUT because each test verifi es
exactly one test condition. This is very much in contrast with manual testing,
where one tends to build long, involved multiple-condition tests because of the
overhead involved in setting up each test’s pre-conditions. When creating xUnit-
based automated tests, we have many ways of dealing with this frequently re-
peated fi xture setup (as described in Chapter 8, Transient Fixture Management),
so we tend to Verify One Condition per Test. We call a test that verifi es too many
test conditions an Eager Test (see Assertion Roulette on page 224) and consider
it a code smell.

A test that verifi es a single test condition executes a single code path through
the SUT and it should execute exactly the same path each time it runs; that
is what makes it a Repeatable Test (see page 26). Yes, that means we need as

Testcase
Class

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Setup

Exercise

Verify

Teardown

Testcase
Class

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Setup

Exercise

Verify

Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

155

many test methods as we have paths through the code—but how else can we
expect to achieve full code coverage? What makes this pattern manageable is
that we Isolate the SUT (see page 43) when we write unit tests for each class so
we only have to focus on paths through a single object. Also, because each test
should verify only a single path through the code, each test method should con-
sist of strictly sequential statements that describe what should happen on that
one path.1 Another reason we Verify One Condition per Test (see page 45) is to
Minimize Test Overlap (see page 44) so that we have fewer tests to modify if we
later modify the behavior of the SUT.

Brian Marrick has developed an interesting compromise that I call “While
We’re at It,”2 which leverages the test fi xture we already have set up to run
some additional checks and assertions. Marrick clearly marks these elements
with comments to indicate that if changes to the SUT obsolete that part of the
test, they can be easily deleted. This strategy minimizes the effort needed to
maintain the extra test code.

Test Methods and Testcase Classes

A Test Method needs to live on a Testcase Class. Should we put all our Test
Methods onto a single Testcase Class for the application? Or should we create a
Testcase Class for each Test Method? Of course, the right answer lies somewhere
between these two extremes, and it will change over the life of our project.

Testcase Class per Class

When we write our fi rst few Test Methods, we can put them all onto a single
Testcase Class. As the number of Test Methods increases, we will likely want to
split the Testcase Class so that one Testcase Class per Class (page 617) is tested,
which reduces the number of Test Methods per class (Figure 12.2). As those
Testcase Classes get too big, we usually split the classes further. In that case, we
need to decide which Test Methods to include in each Testcase Class.

1 A Test Method that contains Conditional Test Logic (page 200) is a sign of a test trying
to accommodate different circumstances because it does not have control of all indirect
inputs of the SUT or because it is trying to verify complex expected states on an in-line
basis within the Test Method.
2 He calls it “Just for Laughs” but I don’t fi nd that name very intent-revealing.

Test Methods and Testcase Classes

www.it-ebooks.info

http://www.it-ebooks.info/

156 Chapter 12 Organizing Our Tests

Figure 12.2 A production class with a single Testcase Class. With the Testcase
Class per Class pattern, a single Testcase Class holds all the Test Methods for
all the behavior of our SUT class. Each Test Method may need to create a
different fi xture either in-line or by delegating that task to a Creation Method
(page 415).

Testcase Class per Feature

One school of thought is to put all Test Methods that verify a particular feature of
the SUT—where a “feature” is defi ned as one or more methods and attributes that
collectively implement some capability of the SUT—into a single Testcase Class
(Figure 12.3). This makes it easy to see all test conditions for that feature. (Use of
appropriate Test Naming Conventions helps achieve this clarity.) It can, however,
result in similar fi xture setup code being required in each Testcase Class.

Testcase Class per Fixture

The opposing view is that one should group all Test Methods that require the same
test fi xture (same pre-conditions) into one Testcase Class per Fixture (page 631; see
Figure 12.4). This facilitates putting the test fi xture setup code into the setUp method
(Implicit Setup; see page 424) but can result in scattering of the test conditions for
each feature across many Testcase Classes.

TestcaseClass

Fixture B

Fixture A

SUT Class

testMethod_B_1

testMethod_B_2

testMethod_A_1

testMethod_A_2
feature_1

feature_2Exercise

Exercise

Creation

Creation

TestcaseClass

Fixture B

Fixture A

SUT Class

testMethod_B_1

testMethod_B_2

testMethod_A_1

testMethod_A_2
feature_1

feature_2Exercise

Exercise

Creation

Creation

www.it-ebooks.info

http://www.it-ebooks.info/

157

Figure 12.3 A production class with one Testcase Class for each feature. With
the Testcase Class per Feature pattern, we have one Testcase Class for each
major capability or feature supported by our SUT class. The Test Methods on
that test class exercise various aspects of that feature after building whatever test
fi xture they require.

Figure 12.4 A production class with one Testcase Class for each fi xture. With
the Testcase Class per Fixture pattern, we have one Testcase Class for each
possible test fi xture (test pre-condition) of our SUT class. The Test Methods on
that test class exercise various features from the common starting point.

Fixture B

Fixture A

SUT Class

Feature2TestcaseClass

testMethod_A

testMethod_B

Feature1TestcaseClass

testMethod_A

testMethod_B

Creation

feature_1

feature_2

Creation

Exercise

Exercise

Fixture B

Fixture A

SUT Class

Feature2TestcaseClass

testMethod_A

testMethod_B

Feature1TestcaseClass

testMethod_A

testMethod_B

Creation

feature_1

feature_2

Creation

Exercise

Exercise

Fixture B

Fixture A

SUT Class

FixtureBTestcaseClass

testMethod_1

testMethod_2

FixtureATestcaseClass

testMethod_2

setUp

setUp

feature_1

feature_2

Creation

Creation

Exercise

Exercise

FixtureATestcaseClass

testMethod_1

Fixture B

Fixture A

SUT Class

FixtureBTestcaseClass

testMethod_1

testMethod_2

FixtureATestcaseClass

testMethod_2

setUp

setUp

feature_1

feature_2

Creation

Creation

Exercise

Exercise

FixtureATestcaseClass

testMethod_1

Test Methods and Testcase Classes

www.it-ebooks.info

http://www.it-ebooks.info/

158 Chapter 12 Organizing Our Tests

Choosing a Test Method Organization Strategy

Clearly, there is no single “best practice” we can always follow; the best prac-
tice is the one that is most appropriate for the particular circumstance. Testcase
Class per Fixture is commonly used when we are writing unit tests for stateful
objects and each method needs to be tested in each state of the object. Testcase
Class per Feature (page 624) is more appropriate when we are writing customer
tests against a Service Facade [CJ2EEP]; it enables us to keep all the tests for
a customer-recognizable feature together. This pattern is also more commonly
used when we rely on a Prebuilt Fixture (page 429) because fi xture setup logic
is not required in each test. When each test needs a slightly different fi xture, the
right answer may be to select the Testcase Class per Feature pattern and use a
Delegated Setup (page 411) to facilitate setting up the fi xtures.

Test Naming Conventions

The names we give to our Testcase Classes and Test Methods are crucial in mak-
ing our tests easy to fi nd and understand. We can make the test coverage more
obvious by naming each Test Method systematically based on which test condi-
tion it verifi es. Regardless of which test method organization scheme we use, we
would like the combination of the names of the test package, the Testcase Class,
and the Test Method to convey at least the following information:

• The name of the SUT class

• The name of the method or feature being exercised

• The important characteristics of any input values related to the exercising
of the SUT

• Anything relevant about the state of the SUT or its dependencies

These items are the “input” part of the test condition. Obviously, this is a lot
to communicate in just two names but the reward is high if we can achieve it:
We can tell exactly what test conditions we have tests for merely by looking at
the names of the classes and methods in an outline view of our IDE. Figure 12.5
provides an example.

www.it-ebooks.info

http://www.it-ebooks.info/

159

Figure 12.5 A production class with one Testcase Class for each test fi xture.
When we use the Testcase Class per Fixture pattern, the class name can describe
the fi xture, leaving the method name available for describing the inputs and
expected outputs.

Figure 12.5 also shows how useful it is to include the “expectations” side of the
test condition:

• The outputs (responses) expected when exercising the SUT

• The expected post-exercise state of the SUT and its dependencies

This information can be included in the name of the Test Method prefi xed by
“should.” If this nomenclature makes the names too long,3 we can always access
the expected outcome by looking at the body of the Test Method.

3 Many xUnit variants “encourage” us to start all our Test Method names with “test”
so that these methods can be automatically detected and added to the Test Suite Object.
This constrains our naming somewhat compared to variants that indicate test methods
via method attributes or annotations.

Test Naming Conventions

www.it-ebooks.info

http://www.it-ebooks.info/

160 Chapter 12 Organizing Our Tests

Organizing Test Suites

The Testcase Class acts as a Test Suite Factory (see Test Enumeration) when it
returns a Test Suite Object containing a collection of Testcase Objects (page 382),
each representing a Test Method (Figure 12.6). This is the default organization
mechanism provided by xUnit. Most Test Runners allow any class to act as a
Test Suite Factory by implementing a Factory Method [GOF], which is typi-
cally called suite.

Figure 12.6 A Testcase Class acting as a Test Suite Factory. By default, the
Testcase Class acts as a Test Suite Factory to produce the Test Suite Object that
the Test Runner requires to execute our tests. We can also enumerate a specifi c
set of tests we want to run by providing a Test Suite Factory that returns a Test
Suite Object containing only the desired tests.

Running Groups of Tests

We often want to run groups of tests (i.e., a test suite) but we don’t want this
decision to constrain how we organize them. A popular convention is to create
a special Test Suite Factory called AllTests for each package of tests. We don’t
need to stop there, however: We can create Named Test Suites (page 592) for
any collection of tests we want to run together. A good example is a Subset Suite
(see Named Test Suite) that allows us to run just those tests that need software

Fixture

Testcase Class

Testcase Object
Implicit setUp

Implicit tearDown

Testcase Object
Implicit setUp

Implicit tearDown

SUTTest
Suite

Object

testMethod_1

testMethod_n

Test
Suite

Factory
Creation

Fixture

Testcase Class

Testcase Object
Implicit setUp

Implicit tearDown

Testcase Object
Implicit setUp

Implicit tearDown

SUTTest
Suite

Object

testMethod_1

testMethod_n

Test
Suite

Factory
Creation

www.it-ebooks.info

http://www.it-ebooks.info/

161

deployed to the Web server (or not deployed to the Web server!). We usually
have at least a Subset Suite for all the unit tests and another Subset Suite for
just the customer tests (they often take a long time to execute). Some variants of
xUnit support Test Selection (page 403), which we can use instead of defi ning
Subset Suites.

Such runtime groupings of tests often refl ect the environment in which they
need to run. For example, we might have one Subset Suite that includes all tests
that can be run without the database and another Subset Suite that includes
all tests that depend on the database. Likewise, we might have separate Subset
Suites for tests that do, and do not, rely on the Web server. If our test package
includes these various kinds of test suites, we can defi ne AllTests as a Suite of
Suites (see Test Suite Object) composed of these Subset Suites. Then any test
that is added to one of the Subset Suites will also be run in AllTests without
incurring extra test maintenance effort.

Running a Single Test

Suppose a Test Method fails in our Testcase Class. We decide to put a break-
point on a particular method—but that method is called in every test. Our
fi rst reaction might be to just muddle through by clicking “Go” each time
the breakpoint is hit until we are being called from the test of interest. One
possibility is to disable (by commenting out) the other Test Methods so they
are not run. Another option is to rename the other Test Methods so that the
xUnit Test Discovery mechanism will not recognize them as tests. In variants
of xUnit that use method attributes or annotations, we can add the “Ignore”
attribute to a test method instead. Each of these approaches introduces the
potential problem of a Lost Test (see Production Bugs on page 268), although
the “Ignore” approach does remind us that some tests are being ignored. In
members of the xUnit family that provide a Test Tree Explorer (see Test Run-
ner), we can simply select a single test to be run from the hierarchy view of the
test suite, as shown in Figure 12.7.

When none of these options is available, we can use a Test Suite Factory to
run a single test. Wait a minute! Aren’t test suites all about running groups of
tests that live in different Testcase Classes? Well, yes, but that doesn’t mean
we can’t use them for other purposes. We can defi ne a Single Test Suite4 (see
Named Test Suite) that runs a particular test. To do so, we call the constructor
of the Testcase Class with the specifi c Test Method’s name as an argument.

4 I usually call it MyTest.

 Organizing Test Suites

www.it-ebooks.info

http://www.it-ebooks.info/

162 Chapter 12 Organizing Our Tests

Figure 12.7 A Test Tree Explorer showing the structure of the tests in our suite.
We can use the Test Tree Explorer to drill down into the runtime structure of the
test suite and run individual tests or subsuites.

Test Code Reuse

Test Code Duplication (page 213) can signifi cantly increase the cost of writing
and maintaining tests. Luckily, a number of techniques for reusing test logic
are available to us. The most important consideration is that any reuse not
compromise the value of the Tests as Documentation (see page 23). I don’t
recommend reuse of the actual Test Method in different circumstances (e.g.,
with different fi xtures), as this kind of reuse is typically a sign of a Flexible
Test (see Conditional Test Logic on page 200) that tests different things in dif-
ferent circumstances. Most test code reuse is achieved either through Implicit
Setup or Test Utility Methods (page 599). The major exception is the reuse
of Test Doubles (page 522) by many tests; we can treat these Test Double
classes as a special kind of Test Helper (page 643) when thinking about where
to put them.

www.it-ebooks.info

http://www.it-ebooks.info/

163

Test Utility Method Locations

Figure 12.8 The various places we can put Test Utility Methods. The primary
decision-making criterion is the desired scope of reusability of the Test Methods.

Many variants of xUnit provide a special Testcase Superclass (page 638)—typically
called “TestCase”—from which all Testcase Classes should (and, in some cases,
must) inherit either directly or indirectly (Figure 12.8). If we have useful utility
methods on our Testcase Class that we want to reuse in other Testcase Classes,
we may fi nd it helpful to create one or more Testcase Superclasses from which to
inherit instead of “TestCase.” If we take this step, we need to be careful if those
methods need to see types or classes that reside in various packages within the
SUT—our root Testcase Superclass should not depend on those types or classes
directly, as that is likely to result in a cyclical dependency graph. We may be able
to create a Testcase Superclass for each test package to keep our test class de-
pendencies noncyclic. The alternative is to create a Test Helper for each domain
package and put the various Test Helpers in the appropriate test packages. This
way, a Testcase Class is not forced to choose a single Testcase Superclass; it can
merely “use” the appropriate Test Helpers.

TestCase Inheritance and Reuse

The most commonly used reason for inheriting methods from a Testcase Super-
class is to access Test Utility Methods. Another use is when testing frameworks

Fixture

SUT

Test Helper

Test Utility
Method

Testcase
Class

testMethod_1

testMethod_n

Test Utility
Method

Testcase
Superclass

Test Utility
Method

Fixture

SUT

Test Helper

Test Utility
Method

Testcase
Class

testMethod_1

testMethod_n

Test Utility
Method

Testcase
Superclass

Test Utility
Method

 Test Code Reuse

www.it-ebooks.info

http://www.it-ebooks.info/

164 Chapter 12 Organizing Our Tests

and their plug-ins; it can be useful to create a conformance test that specifi es the
general behavior of the plug-in via a Template Method [GOF] that calls meth-
ods provided by a subclass specifi c to the kind of plug-in being tested to check
specifi c details of the plug-in. This scenario is rare enough that I won’t describe
it further here; please refer to [FaT] for a more complete description.

Test File Organization

Now we face a new question: Where should we put our Testcase Classes?
Obviously, these classes should be stored in the source code repository [SCM]
along with the production code. Beyond that criterion, we have quite a range
of choices. The test packaging strategy we choose will very much depend on
our environment—many IDEs include constraints that make certain strate-
gies unworkable. The key issue is to Keep Test Logic Out of Production Code
(see page 45) and yet to be able to fi nd the corresponding test for each piece of
code or functionality.

Built-in Self-Test

With a built-in self-test, the tests are included with the production code and can
be run at any time. No provision is made for keeping them separate. Many orga-
nizations want to Keep Test Logic Out of Production Code so built-in self-tests
may not be a good option for them. This consideration is particularly important
in memory-constrained environments where we don’t want test code taking up
valuable space.

Some development environments encourage us to keep the tests and the pro-
duction code together. For example, SAP’s ABAP Unit supports the keyword
“For Testing,” which tells the system to disable the tests when the code is trans-
ported into the production environment.

Test Packages

If we decide to put the Testcase Classes into separate test packages, we can
organize them in several ways. We can keep the tests separate by putting them
into one or more test packages while keeping them in the same source tree, or
we can put the tests into the same logical package but physically store them in
a parallel source tree. The latter approach is frequently used in Java because it
avoids the problem of tests not being able to see “package-protected” methods

www.it-ebooks.info

http://www.it-ebooks.info/

165

on the SUT.5 Some IDEs may reject using this approach by insisting that a pack-
age be wholly contained within a single folder or project. When we use test
packages under each production code package, we may need to use a build-time
test stripper to exclude them from production builds.

Test Dependencies

However we decide to store and manage the source code, we need to ensure that
we eliminate any Test Dependency in Production (see Test Logic in Production
on page 217) because even a test stripper cannot remove the tests if production
code needs them to be present to run. This requirement makes paying attention to
our class dependencies important. We also don’t want to have any Test Logic in
Production because it means we aren’t testing the same code that we will eventu-
ally run in production. This issue is discussed in more detail in Chapter 6, Test
Automation Strategy.

What’s Next?

Now that we’ve looked at how to organize our test code, we should become
familiar with a few more testing patterns. These patterns are introduced in
Chapter 13, Testing with Databases.

5 Java offers another way to get around the visibility issue: We can defi ne our own test
Security Manager to allow tests to access all methods on the SUT, not just the “package-
protected” ones. This approach solves the problem in a general way but requires a
good understanding of Java class loaders. Other languages may not have the equivalent
functionality (or problem!).

What’s Next?

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

167

Chapter 13

Testing with Databases

About This Chapter

In Chapter 12, Organizing Our Tests, we looked at techniques for organizing
our test code. In this chapter, we explore the issues that arise when our appli-
cation includes a database. Applications with databases present some special
challenges when writing automated tests. Databases are much slower than
the processors used in modern computers. As a result, tests that interact with
databases tend to run much, much more slowly than tests that can run entirely
in memory.

Even ignoring the potential for Slow Tests (page 253), databases are a ripe
source for many test smells in our automated test suites. Some of these smells are
a direct consequence of the persistent nature of the database, while others result
from our choice to share the fi xture instance between tests. These smells were
introduced in Chapter 9, Persistent Fixture Management. This chapter expands
on them and provides a more focused treatment of testing with databases.

Testing with Databases

Here is my fi rst, and most critical, piece of advice on this subject:

When there is any way to test without a database, test without the
database!

This seems like pretty strong advice but it is phrased this way for a reason. Data-
bases introduce all sorts of complications into our applications and especially into
our tests. Tests that require a database run, on average, two orders of magnitude
slower than the same tests that run without a database.

www.it-ebooks.info

http://www.it-ebooks.info/

168 Chapter 13 Testing with Databases

Why Test with Databases?

Many applications include a database to persist objects or data into longer-term
storage. The database is a necessary part of the application, so verifying that the
database is used properly is a necessary part of building the application. Therefore,
the use of a Database Sandbox (page 650) to isolate developers and testers from
production (and each other) is a fundamental practice on almost every project
(Figure 13.1).

Figure 13.1 A Database Sandbox for each developer. Sharing a Database
Sandbox among developers is false economy. Would you make a plumber and
an electrician work in the same wall at the same time?

Issues with Databases

A database introduces a number of issues that complicate test automation. Many
of these issues relate to the fact that the fi xture is persistent. These issues were
introduced in Chapter 9, Persistent Fixture Management, and are summarized
briefl y here.

Persistent Fixtures

Applications with databases present some special challenges when we are
writing automated tests. Databases are much slower than the processors used
in modern computers. As a consequence, tests that interact with a database
tend to run much more slowly than tests that can run entirely in memory. But
even ignoring the Slow Tests issue, databases are a prime source of test smells
in our automated test suites. Commonly encountered smells include Erratic

SUT
Setup

Exercise
Verify

Teardown

Database

Fixture

Developer 1

Database

SUT
Setup

Exercise
Verify

Teardown

Fixture

Developer 2

SUT
Setup

Exercise
Verify

Teardown

Database

Fixture

Developer 1

Database

SUT
Setup

Exercise
Verify

Teardown

Fixture

Developer 2

www.it-ebooks.info

http://www.it-ebooks.info/

169

Tests (page 228) and Obscure Tests (page 186). Because the data in a database
may potentially persist long after we run our test, we must pay special atten-
tion to this data to avoid creating tests that can be run only once or tests that
interact with one another. These Unrepeatable Tests (see Erratic Test) and
Interacting Tests (see Erratic Test) are a direct consequence of the persistence
of the test fi xture and can result in more expensive maintenance of our tests as
the application evolves.

Shared Fixtures

Persistence of the fi xture is one thing; choosing to share it is another. Deliberate
sharing of the fi xture can result in Lonely Tests (see Erratic Test) if some tests
depend on other tests to set up the fi xture for them—a situation called Chained
Tests (page 454). If we haven’t provided each developer with his or her own
Database Sandbox, we might spark a Test Run War (see Erratic Test) between
developers. This problem arises when the tests being run from two or more Test
Runners (page 377) interact by virtue of their accessing the same fi xture objects
in the shared database instance. Each of these behavior smells is a direct conse-
quence of the decision to share the test fi xture. The degree of persistence and the
scope of fi xture sharing directly affect the presence or absence of these smells.

General Fixtures

Another problem with tests that rely on databases is that databases tend to evolve
into a large General Fixture (see Obscure Test) that many tests use for different pur-
poses. This outcome is particularly likely when we use a Prebuilt Fixture (page 429)
to avoid setting up the fi xture in each test. It can also result from the decision to use
a Standard Fixture (page 305) when we employ a Fresh Fixture (page 311) strategy.
This approach makes it diffi cult to determine exactly what each test is specifying.
In effect, the database appears as a Mystery Guest (see Obscure Test) in all of the
tests.

Testing without Databases

Modern layered software architecture [DDD, PEAA, WWW] opens up the pos-
sibility of testing the business logic without using the database at all. We can
test the business logic layer in isolation from the other layers of the system by
using Layer Tests (page 337) and replacing the data access layer with a Test
Double (page 522); see Figure 13.2.

 Testing without Databases

www.it-ebooks.info

http://www.it-ebooks.info/

170 Chapter 13 Testing with Databases

Figure 13.2 A pair of Layer Tests, each of which tests a different layer of the
system. Layer Tests allow us to build each layer independently of the other
layers. They are especially useful when the persistence layer can be replaced
by a Test Double that reduces the Context Sensitivity (see Fragile Test on
page 239) of the tests.

If our architecture is not suffi ciently layered to allow for Layer Tests, we may still
be able to test without a real database by using either a Fake Database (see Fake
Object on page 551) or an In-Memory Database (see Fake Object). An In-Memory
Database is a database but stores its tables in memory; this structure makes it run
much faster than a disk-based database. A Fake Database isn’t really a database at
all; it is a data access layer that merely pretends to be one. As a rule, it is easier to
ensure independence of tests by using a Fake Database because we typically cre-
ate a new one as part of our fi xture setup logic, thereby implementing a Transient
Fresh Fixture (see Fresh Fixture) strategy. Nevertheless, both of these strategies
allow our tests to run at in-memory speeds, thereby avoiding Slow Tests. We don’t
introduce too much knowledge of the SUT’s structure as long as we continue to
write our tests as round-trip tests.

Replacing the database with a Test Double works well as long as we use the
database only as a data repository. Things get more interesting if we use any
vendor-specifi c functionality, such as sequence number generation or stored pro-
cedures. Replacing the database then becomes a bit more challenging because it
requires more attention to creating a design for testability. The general strategy
is to encapsulate all database interaction within the data access layer. Where the

DOC

Layer n

LayernTestcaseClass
testMethod_1

testMethod_2

Layer1TestcaseClass
testMethod_1

testMethod_2

Layer 1
Test Double

Test Double

DOC

Layer n

LayernTestcaseClass
testMethod_1

testMethod_2

Layer1TestcaseClass
testMethod_1

testMethod_2

Layer 1
Test Double

Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

171

data access layer provides data access functionality, we can simply delegate these
duties to the “database object.” We must provide test-specifi c implementations
for any parts of the data access layer interface that implement the vendor-specifi c
functionality—a task for which a Test Stub (page 529) fi ts the bill nicely.

If we are taking advantage of vendor-specifi c database features such as sequence
number generation, we will need to provide this functionality when executing the
tests in memory. Typically, we will not need to substitute a Test Double for any
functionality-related object because the functionality happens behind the scenes
within the database. We can add this functionality into the in-memory version of
the application using a Strategy [GOF] object, which by default is initialized to
a null object [PLOPD3]. When run in production, the null object does nothing;
when run in memory, the strategy object provides the missing functionality. As
an added benefi t, we will fi nd it easier to change to a different database vendor
once we have taken this step because the hooks to provide this functionality al-
ready exist.1

Replacing the database (or the data access layer) via an automated test implies
that we have a way to instruct the SUT to use the replacement object. This is com-
monly done in one of two ways: through direct Dependency Injection (page 678)
or by ensuring that the business logic layer uses Dependency Lookup (page 686)
to fi nd the data access layer.

Testing the Database

Assuming we have found ways to test most of our software without using a
database, then what? Does the need to test the database disappear? Of course not!
We should ensure that the database functions correctly, just like any other soft-
ware we write. We can, however, focus our testing of the database logic so as to
reduce the number and kinds of tests we need to write. Because tests that involve
the database will run much more slowly than our in-memory tests, we want to
keep the number of these tests to the bare minimum.

What kinds of database tests will we require? The answer to this question
depends on how our application uses the database. If we have stored proce-
dures, we should write unit tests to verify their logic. If a data access layer hides
the database from the business logic, we should write tests for the data access
functionality.

1 Just one more example of how design for testability improves the design of our
applications.

 Testing the Database

www.it-ebooks.info

http://www.it-ebooks.info/

172 Chapter 13 Testing with Databases

Testing Stored Procedures

We can write tests for stored procedures in one of two ways. A Remote Stored
Procedure Test (see Stored Procedure Test on page 654) is written in the same
programming language and framework as we write all of our other unit tests. It
accesses the stored procedure via the same invocation mechanism as used within
the application logic (i.e., by some sort of Remote Proxy [GOF], Facade [GOF],
or Command object [GOF]). Alternatively, we can write In-Database Stored
Procedure Tests (see Stored Procedure Test) in the same language as the stored
procedure itself; these tests will run inside the database (Figure 13.3). xUnit fam-
ily members are available for several of the most common stored procedure
languages; utPLSQL is just one example.

Figure 13.3 Testing a stored procedure using Self-Checking Tests (see page 26).
There is great value in having automated regression test for stored procedures,
but we must take care to make them repeatable and robust.

Testing the Data Access Layer

We also want to write some unit tests for the data access layer. For the most part,
these data access layer tests can be round-trip tests. Nevertheless, it is useful to
have a few layer-crossing tests to ensure that we are putting information into
the correct columns. This can be done using xUnit framework extensions for

Application Environment

Database

Stored
Procedure

Proxy

Stored
Procedure

Testcase Class

testMethod_1

testMethod_2

Testcase Class

testMethod_1

testMethod_2

Application Environment

Database

Stored
Procedure

Proxy

Stored
Procedure

Testcase Class

testMethod_1

testMethod_2

Testcase Class

testMethod_1

testMethod_2

www.it-ebooks.info

http://www.it-ebooks.info/

173

database testing (e.g., DbUnit for Java) to insert data directly into the database
(for “Read” tests) or to verify the post-test contents of the database (for “Cre-
ate/Update/Delete” tests).

A useful trick for keeping our fi xture from becoming persistent during data
access layer testing is to use Transaction Rollback Teardown (page 668). To
do so, we rely on the Humble Transaction Controller (see Humble Object on
page 695) DFT pattern when constructing our data access layer. That is, the
code that reads or writes the database should never commit a transaction; this
allows the code to be exercised by a test that rolls back the transaction to pre-
vent any of the changes made by the SUT from being applied.

Another way to tear down any changes made to the database during the
fi xture setup and exercise SUT phases of the test is Table Truncation Tear-
down (page 661). This “brute force” technique for deleting data works only
when each developer has his or her own Database Sandbox and we want to
clear out all the data in one or more tables.

Ensuring Developer Independence

Testing the database means we need to have the real database available for
running these tests. During this testing process, every developer needs to have
his or her ownDatabase Sandbox. Trying to share a single sandbox among several
or all developers is a false economy; the developers will simply end up tripping
over one another and wasting a lot of time.2 I have heard many different excuses
for not giving each developer his or her own sandbox, but frankly none of them
holds water. The most legitimate concern relates to the cost of a database license
for each developer—but even this obstacle can be surmounted by choosing
one of the “virtual sandbox” variations. If the database technology supports it,
we can use a DB Schema per TestRunner (see Database Sandbox); otherwise,
we have to use a Database Partitioning Scheme (see Database Sandbox).

Testing with Databases (Again!)

Suppose we have done a good job layering our system and achieved our goal of
running most of our tests without accessing the real database. Now what kinds
of tests should we run against the real database? The answer is simple: “As few
as possible, but no fewer!” In practice, we want to run at least a representative
sample of our customer tests against the database to ensure that the SUT behaves

2 Can you image asking a team of carpenters to share a single hammer?

 Testing with Databases (Again!)

www.it-ebooks.info

http://www.it-ebooks.info/

174

the same way with a database as without one. These tests need not access the busi-
ness logic via the user interface unless some particular user interface functionality
depends on the database; Subcutaneous Tests (see Layer Test) should be adequate
in most circumstances.

What’s Next?

In this chapter, we looked at special techniques for testing with databases. This
discussion has merely scratched the surface of the interactions between agile
software development and databases.3 Chapter 14, A Roadmap to Effective Test
Automation, summarizes the material we have covered thus far and makes some
suggestions about how a project team should come up to speed on developer test
automation.

3 For a more complete treatment of the topic, refer to [RDb].

Chapter 13 Testing with Databases

www.it-ebooks.info

http://www.it-ebooks.info/

175

Chapter 14

A Roadmap to Effective Test
Automation

About This Chapter

Chapter 13, Testing with Databases, introduced a set of patterns specifi c to testing
applications that have a database. These patterns built on the techniques described
in Chapter 6, Test Automation Strategy; Chapter 9, Persistent Fixture Manage-
ment; and Chapter 11, Using Test Doubles. This was a lot of material to become
familiar with before we could test effectively with and without databases!

This raises an important point: We don’t become experts in test automa-
tion overnight—these skills take time to develop. It also takes time to learn the
various tools and patterns at our disposal. This chapter provides something of
a roadmap for how to learn the patterns and acquire the skills. It introduces
the concept of “test automation maturity,” which is loosely based on the SEI’s
Capability Maturity Model (CMM).

Test Automation Diffi culty

Some kinds of tests are harder to write than others. This diffi culty arises partly
because the techniques are more involved and partly because they are less well
known and the tools to do this kind of test automation are less readily avail-
able. The following common kinds of tests are listed in approximate order of
diffi culty, from easiest to most diffi cult:

1. Simple entity objects (Domain Model [PEAA])

• Simple business classes with no dependencies

• Complex business classes with dependencies

www.it-ebooks.info

http://www.it-ebooks.info/

176 Chapter 14 A Roadmap to Effective Test Automation

2. Stateless service objects

• Individual components via component tests

• The entire business logic layer via Layer Tests (page 337)

3. Stateful service objects

• Customer tests via a Service Facade [CJ2EEP] using Subcutaneous
Tests (see Layer Test)

• Stateful components via component tests

4. “Hard-to-test” code

• User interface logic exposed via Humble Dialog (see Humble
Object on page 695)

• Database logic

• Multi-threaded software

5. Object-oriented legacy software (software built without any tests)

6. Non-object-oriented legacy software

As we move down this list, the software becomes increasingly more challenging to
test. The irony is that many teams “get their feet wet” by trying to retrofi t tests onto
an existing application. This puts them in one of the last two categories in this list,
which is precisely where the most experience is required. Unfortunately, many teams
fail to test the legacy software successfully, which may then prejudice them against
trying automated testing, with or without test-driven development. If you fi nd your-
self trying to learn test automation by retrofi tting tests onto legacy software, I have
two pieces of advice for you: First, hire someone who has done it before to help you
through this process. Second, read Michael Feathers’ excellent book [WEwLC]; he
covers many techniques specifi cally applicable to retrofi tting tests.

Roadmap to Highly Maintainable Automated Tests

Given that some kinds of tests are much harder to write than others, it makes
sense to focus on learning to write the easier tests fi rst before we move on to the
more diffi cult kinds of tests. When teaching automated testing to developers, I
introduce the techniques in the following sequence. This roadmap is based on
Maslow’s hierarchy of needs [HoN], which says that we strive to meet the higher-
level needs only after we have satisfi ed the lower-level needs.

www.it-ebooks.info

http://www.it-ebooks.info/

177

1. Exercise the happy path code

• Set up a simple pre-test state of the SUT

• Exercise the SUT by calling the method being tested

2. Verify direct outputs of the happy path

• Call Assertion Methods (page 362) on the SUT’s responses

• Call Assertion Methods on the post-test state

3. Verify alternative paths

• Vary the SUT method arguments

• Vary the pre-test state of the SUT

• Control indirect inputs of the SUT via a Test Stub (page 529)

4. Verify indirect output behavior

• Use Mock Objects (page 544) or Test Spies (page 538) to intercept
and verify outgoing method calls

5. Optimize test execution and maintainability

• Make the tests run faster

• Make the tests easy to understand and maintain

• Design the SUT for testability

• Reduce the risk of missed bugs

This ordering of needs isn’t meant to imply that this is the order in which we
might think about implementing any specifi c test.1 Rather, it is likely to be the
order in which a project team might reasonably expect to learn about the tech-
niques of test automation.

Let’s look at each of these points in more detail.

Exercise the Happy Path Code

To run the happy path through the SUT, we must automate one Simple Success
Test (see Test Method on page 348) as a simple round-trip test through the SUT’s
API. To get this test to pass, we might simply hard-code some of the logic in the

1 Although it can also be used that way, I fi nd it better to write the assertions fi rst and
then work back from there.

 Roadmap to Highly Maintainable Automated Tests

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 14 A Roadmap to Effective Test Automation

SUT, especially where it might call other components to retrieve information it
needs to make decisions that would drive the test down the happy path. Before
exercising the SUT, we need to set up the test fi xture by initializing the SUT to
the pre-test state. As long as the SUT executes without raising any errors, we
consider the test as having passed; at this level of maturity we don’t check the
actual results against the expected results.

Verify Direct Outputs of the Happy Path

Once the happy path is executing successfully, we can add result verifi cation logic
to turn our test into a Self-Checking Test (see page 26). This involves adding calls
to Assertion Methods to compare the expected results with what actually oc-
curred. We can easily make this change for any objects or values returned to the
test by the SUT (e.g., “return values,” “out parameters”). We can also call other
methods on the SUT or use public fi elds to access the post-test state of the SUT;
we can then call Assertion Methods on these values as well.

Verify Alternative Paths

At this point the happy path through the code is reasonably well tested. The
alternative paths through the code are still Untested Code (see Production Bugs
on page 268) so the next step is to write tests for these paths (whether we have
already written the production code or we are striving to automate the tests that
would drive us to implement them). The question to ask here is “What causes the
alternative paths to be exercised?” The most common causes are as follows:

• Different values passed in by the client as arguments

• Different prior state of the SUT itself

• Different results of invoking methods on components on which the
SUT depends

The fi rst case can be tested by varying the logic in our tests that calls the SUT
methods we are exercising and passing in different values as arguments. The
second case involves initializing the SUT with a different starting state. Neither
of these cases requires any “rocket science.” The third case, however, is where
things get interesting.

Controlling Indirect Inputs

Because the responses from other components are supposed to cause the SUT
to exercise the alternative paths through the code, we need to get control

www.it-ebooks.info

http://www.it-ebooks.info/

179

over these indirect inputs. We can do so by using a Test Stub that returns the
value that should drive the SUT into the desired code path. As part of fi xture
setup, we must force the SUT to use the stub instead of the real component.
The Test Stub can be built two ways: as a Hard-Coded Test Stub (see Test
Stub), which contains hand-written code that returns the specifi c values, or
as a Confi gurable Test Stub (see Test Stub), which is confi gured by the test to
return the desired values. In both cases, the SUT must use the Test Stub instead
of the real component.

Many of these alternative paths result in “successful” outputs from the SUT;
these tests are considered Simple Success Tests and use a style of Test Stub called
a Responder (see Test Stub). Other paths are expected to raise errors or excep-
tions; they are considered Expected Exception Tests (see Test Method) and use
a style of stub called a Saboteur (see Test Stub).

Making Tests Repeatable and Robust

The act of replacing a real depended-on component (DOC) with a Test Stub has
a very desirable side effect: It makes our tests both more robust and more repeat-
able.2 By using a Test Stub, we replace a possibly nondeterministic component
with one that is completely deterministic and under test control. This is a good
example of the Isolate the SUT principle (see page 43).

Verify Indirect Output Behavior

Thus far we have focused on getting control of the indirect inputs of the SUT
and verifying readily visible direct outputs by inspecting the post-state test of the
SUT. This kind of result verifi cation is known as State Verifi cation (page 462).
Sometimes, however, we cannot confi rm that the SUT has behaved correctly
simply by looking at the post-test state. That is, we may still have some Untested
Requirements (see Production Bugs) that can only be verifi ed by doing Behavior
Verifi cation (page 468).

We can build on what we already know how to do by using one of the close
relatives of the Test Stub to intercept the outgoing method calls from our SUT.
A Test Spy “remembers” how it was called so that the test can later retrieve the
usage information and use Assertion Method calls to compare it to the expected
usage. A Mock Object can be loaded with expectations during fi xture setup,
which it subsequently compares with the actual calls as they occur while the
SUT is being exercised.

2 See Robust Test (see page 29) and Repeatable Test (see page 26) for a more detailed
description.

 Roadmap to Highly Maintainable Automated Tests

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 A Roadmap to Effective Test Automation

Optimize Test Execution and Maintenance

At this point we should have automated tests for all the paths through our code.
We may, however, have less than optimal tests:

• We may have Slow Tests (page 253).

• The tests may contain Test Code Duplication (page 213) that makes
them hard to understand.

• We may have Obscure Tests (page 186) that are hard to understand
and maintain.

• We may have Buggy Tests (page 260) that are caused by unreliable Test
Utility Methods (page 599) or Conditional Test Logic (page 200).

Make the Tests Run Faster

Slow Tests is often the fi rst behavior smell we need to address. To make tests run
faster, we can reuse the test fi xture across many tests—for example, by using some
form of Shared Fixture (page 317). Unfortunately, this tactic typically produces
its own share of problems. Replacing a DOC with a Fake Object (page 551)
that is functionally equivalent but executes much faster is almost always a better
solution. Use of a Fake Object builds on the techniques we learned for verifying
indirect inputs and outputs.

Make the Tests Easy to Understand and Maintain

We can make Obscure Tests easier to understand and remove a lot of Test Code
Duplication by refactoring our Test Methods to call Test Utility Methods that
contain any frequently used logic instead of doing everything on an in-line basis.
Creation Methods (page 415), Custom Assertions (page 474), Finder Methods
(see Test Utility Method), and Parameterized Tests (page 607) are all examples
of this approach.

If our Testcase Classes (page 373) are getting too big to understand, we can
reorganize these classes around fi xtures or features. We can also better commu-
nicate our intent by using a systematic way of naming Testcase Classes and Test
Methods that exposes the test conditions we are verifying in them.

Reduce the Risk of Missed Bugs

If we are having problems with Buggy Tests or Production Bugs, we can reduce
the risk of false negatives (tests that pass when they shouldn’t) by encapsulating
complex test logic. When doing so, we should use intent-revealing names for our

180

www.it-ebooks.info

http://www.it-ebooks.info/

Test Utility Methods. We should verify the behavior of nontrivial Test Utility
Methods using Test Utility Tests (see Test Utility Method).

What’s Next?

This chapter concludes Part I, The Narratives. Chapters 1–14 have provided
an overview of the goals, principles, philosophies, patterns, smells, and coding
idioms related to writing effective automated tests. Part II, The Test Smells, and
Part III, The Patterns, contain detailed descriptions of each of the smells and
patterns introduced in these narrative chapters, complete with code samples.

 What’s Next? 181

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

The Test Smells

The Test
Smells

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

185

Chapter 15

Code Smells

Smells in This Chapter

Obscure Test . 186

Conditional Test Logic . 200

Hard-to-Test Code . 209

Test Code Duplication . 213

Test Logic in Production . 217

Code Smells

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 15 Code Smells

Obscure Test

It is diffi cult to understand the test at a glance.

Automated tests should serve at least two purposes. First, they should act as
documentation of how the system under test (SUT) should behave; we call this
Tests as Documentation (see page 23). Second, they should be a self-verifying
executable specifi cation. These two goals are often contradictory because the
level of detail needed for tests to be executable may make the test so verbose as
to be diffi cult to understand.

Symptoms

We are having trouble understanding what behavior a test is verifying.

Impact

The fi rst issue with an Obscure Test is that it makes the test harder to understand
and therefore maintain. It will almost certainly preclude achieving Tests as Doc-
umentation, which in turn can lead to High Test Maintenance Cost (page 265).

The second issue with an Obscure Test is that it may allow bugs to slip
through because of test coding errors hidden in the Obscure Test. This can re-
sult in Buggy Tests (page 260). Furthermore, a failure of one assertion in an
Eager Test may hide many more errors that simply aren’t run, leading to a loss
of test debugging data.

Causes

Paradoxically, an Obscure Test can be caused by either too much information
in the Test Method (page 348) or too little information. Mystery Guest is an
example of too little information; Eager Test and Irrelevant Information are
examples of too much information.

The root cause of an Obscure Test is typically a lack of attention to keeping
the test code clean and simple. Test code is just as important as the production
code, and it needs to be refactored just as often. A major contributor to an
Obscure Test is a “just do it in-line” mentality when writing tests. Putting code
in-line results in large, complex Test Methods because some things just take a
lot of code to do.

The fi rst few causes of Obscure Test discussed here relate to having the
wrong information in the test:

Also known as:
Long Test,

Complex Test,
Verbose Test

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

187

• Eager Test: The test verifi es too much functionality in a single Test
Method.

• Mystery Guest: The test reader is not able to see the cause and effect
between fi xture and verifi cation logic because part of it is done outside
the Test Method.

The general problem of Verbose Tests—tests that use too much code to say what
they need to say—can be further broken down into a number of root causes:

• General Fixture: The test builds or references a larger fi xture than is
needed to verify the functionality in question.

• Irrelevant Information: The test exposes a lot of irrelevant details about
the fi xture that distract the test reader from what really affects the be-
havior of the SUT.

• Hard-Coded Test Data: Data values in the fi xture, assertions, or argu-
ments of the SUT are hard-coded in the Test Method, obscuring cause–
effect relationships between inputs and expected outputs.

• Indirect Testing: The Test Method interacts with the SUT indirectly via
another object, thereby making the interactions more complex.

Cause: Eager Test

The test verifi es too much functionality in a single Test Method.

Symptoms

The test goes on and on verifying this, that, and “everything but the kitchen
sink.” It is hard to tell which part is fi xture setup and which part is exercising
the SUT.

 public void testFlightMileage_asKm2() throws Exception {
 // set up fixture
 // exercise constructor
 Flight newFlight = new Flight(validFlightNumber);
 // verify constructed object
 assertEquals(validFlightNumber, newFlight.number);
 assertEquals("", newFlight.airlineCode);
 assertNull(newFlight.airline);
 // set up mileage
 newFlight.setMileage(1122);
 // exercise mileage translator
 int actualKilometres = newFlight.getMileageAsKm();
 // verify results
 int expectedKilometres = 1810;

Obscure
Test

 Obscure Test

www.it-ebooks.info

http://www.it-ebooks.info/

188 Chapter 15 Code Smells

 assertEquals(expectedKilometres, actualKilometres);
 // now try it with a canceled flight
 newFlight.cancel();
 try {
 newFlight.getMileageAsKm();
 fail("Expected exception");
 } catch (InvalidRequestException e) {
 assertEquals("Cannot get cancelled flight mileage",
 e.getMessage());
 }
 }

Root Cause

When executing tests manually, it makes sense to chain a number of logically
distinct test conditions into a single test case to reduce the setup overhead of
each test. This works because we have liveware (an intelligent human being)
executing the tests, and this person can decide at any point whether it makes
sense to keep going or whether the failure of a step is severe enough to abandon
the execution of the test.

Possible Solution

When the tests are automated, it is better to have a suite of independent Single-
Condition Tests (see page 45) as these provide much better Defect Localization
(see page 22).

Cause: Mystery Guest

The test reader is not able to see the cause and effect between fi xture and verifi -
cation logic because part of it is done outside the Test Method.

Symptoms

Tests invariably require passing data to the SUT. The data used in the fi xture
setup and exercise SUT phases of the Four-Phase Test (page 358) defi ne the pre-
conditions of the SUT and infl uence how it should behave. The post-conditions
(the expected outcomes) are refl ected in the data passed as arguments to the
Assertion Methods (page 362) in the verify outcome phase of the test.

When either the fi xture setup or the result verifi cation part of a test depends
on information that is not visible within the test and the test reader fi nds it dif-
fi cult to understand the behavior that is being verifi ed without fi rst fi nding and
inspecting the external information, we have a Mystery Guest on our hands.
Here’s an example where we cannot tell what the fi xture looks like, making it
diffi cult to relate the expected outcome to the pre-conditions of the test:

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

189

 public void testGetFlightsByFromAirport_OneOutboundFlight_mg()
 throws Exception {
 loadAirportsAndFlightsFromFile("test-flights.csv");
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirportCode("YYC");
 // Verify Outcome
 assertEquals(1, flightsAtOrigin.size());
 FlightDto firstFlight = (FlightDto) flightsAtOrigin.get(0);
 assertEquals("Calgary", firstFlight.getOriginCity());
 }

Impact

The Mystery Guest makes it hard to see the cause–effect relationship between
the test fi xture (the pre-conditions of the test) and the expected outcome of
the test. As a consequence, the tests don’t fulfi ll the role of Tests as Docu-
mentation. Even worse, someone may modify or delete the external resource
without realizing the impact this action will have when the tests are run. This
behavior smell has its own name: Resource Optimism (see Erratic Test on
page 228)!

If the Mystery Guest is a Shared Fixture (page 317), it may also lead to Erratic
Tests if other tests modify it.

Root Cause

A test depends on mysterious external resources, making it diffi cult to under-
stand the behavior that it is verifying. Mystery Guests may take many forms:

• A fi lename of an existing external fi le is passed to a method of the SUT;
the contents of the fi le should determine the behavior of the SUT.

• The contents of a database record identifi ed by a literal key are read
into an object that is then used by the test or passed to the SUT.

• The contents of a fi le are read and used in calls to Assertion Methods to
verify the expected outcome.

• A Setup Decorator (page 447) is used to create a Shared Fixture, and
objects in this fi xture are then referenced via variables within the result
verifi cation logic.

• A General Fixture is set up using Implicit Setup (page 424), and the Test
Methods then access them via instance variables or class variables.

All of these scenarios share a common outcome: It is hard to see the cause–effect
relationship between the test fi xture and the expected outcome of the test because

 Obscure Test

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

190 Chapter 15 Code Smells

the relevant data are not visible in the tests. If the contents of the data are not
clearly described by the names we give to the variables and fi les that contain
them, we have a Mystery Guest.

Possible Solution

Using a Fresh Fixture (page 311) built using In-line Setup (page 408) is the
obvious solution for a Mystery Guest. When applied to the fi le example, this
would involve creating the contents of the fi le as a string within our test so
that the contents are visible and then writing them out to the fi le system
[Setup External Resource (page 772) refactoring] or putting it into a fi le sys-
tem Test Stub (page 529) as part of the fi xture setup.1 To avoid Irrelevant
Information, we may want to hide the details of the construction behind one
or more evocatively named Creation Methods (page 415) that append to the
fi le’s contents.

If we must use a Shared Fixture or Implicit Setup, we should consider using
evocatively named Finder Methods (see Test Utility Method on page 599) to
access the objects in the fi xture. If we must use external resources such as fi les,
we should put them into a special folder or directory and give them names that
make it obvious what kind of data they hold.

Cause: General Fixture

The test builds or references a larger fi xture than is needed to verify the func-
tionality in question.

Symptoms

There seems to be a lot of test fi xture being built—much more than would appear
to be necessary for any particular test. It is hard to understand the cause–effect
relationship between the fi xture, the part of the SUT being exercised, and the
expected outcome of a test.

Consider the following set of tests:

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome

1 See In-line Resource (page 736) refactoring for details.

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

191

 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

From reading the exercise SUT and verifi ng outcome parts of the tests, it would
appear that they need very different fi xtures. Even though these tests are using a
Fresh Fixture setup strategy, they are using the same fi xture setup logic by calling
the setupStandardAirportsAndFlights method. The name of the method is a clue to
this classic but easily recognized example of a General Fixture. A more diffi cult
case to diagnose would be if each test created the Standard Fixture (page 305)
in-line or if each test created a somewhat different fi xture but each fi xture con-
tained much more than was needed by each individual test.

We may also be experiencing Slow Tests (page 253) or a Fragile Fixture (see
Fragile Test on page 239).

Root Cause

The most common cause of this problem is a test that uses a fi xture that is designed
to support many tests. Examples include the use of Implicit Setup or a Shared Fix-
ture across many tests with different fi xture requirements. This problem results in
the fi xture becoming large and diffi cult to understand. The fi xture may also grow
larger over time. The root cause is that both approaches rely on a Standard Fix-
ture that must meet the requirements of all tests that use it. The more diverse the
needs of those tests, the more likely we are to create a General Fixture.

Impact

When the test fi xture is designed to support many different tests, it can be very
diffi cult to understand how each test uses the fi xture. This complexity reduces the
likelihood of using Tests as Documentation and can result in a Fragile Fixture as
people alter the fi xture so that it can handle new tests. It can also result in Slow

 Obscure Test

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

192 Chapter 15 Code Smells

Tests because a larger fi xture takes more time to build, especially if a fi le system
or database is involved.

Possible Solution

We need to move to a Minimal Fixture (page 302) to address this problem. To
do so, we can use a Fresh Fixture for each test. If we must use a Shared Fixture,
we should consider applying the Make Resource Unique (page 737) refactoring
to create a virtual Database Sandbox (page 650) for each test.2

Cause: Irrelevant Information

The test exposes a lot of irrelevant details about the fi xture that distract the test
reader from what really affects the behavior of the SUT.

Symptoms

As test readers, we fi nd it hard to determine which of the values passed to
objects actually affect the expected outcome:

 public void testAddItemQuantity_severalQuantity_v10(){
 // Set Up Fixture
 Address billingAddress =
 createAddress("1222 1st St SW", "Calgary", "Alberta",
 "T2N 2V2", "Canada");
 Address shippingAddress =
 createAddress("1333 1st St SW", "Calgary", "Alberta",
 "T2N 2V2", "Canada");
 Customer customer =
 createCustomer(99, "John", "Doe", new BigDecimal("30"),
 billingAddress, shippingAddress);
 Product product =
 createProduct(88,"SomeWidget",new BigDecimal("19.99"));
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, 5);
 // Verify Outcome
 LineItem expected =
 new LineItem(invoice, product,5, new BigDecimal("30"),
 new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }

2 Switching to an Immutable Shared Fixture (see Shared Fixture) does not fully address
the core of this problem because it does not help us determine which parts of the fi xture
are needed by each test; only the parts that are modifi ed are so identifi ed!

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

193

Fixture setup logic may seem very long and complicated as it weaves together
many interrelated objects. This makes it hard to determine what the test is veri-
fying because the reader doesn’t understand the pre-conditions of the test:

 public void testGetFlightsByOriginAirport_TwoOutboundFlights()
 throws Exception {
 FlightDto expectedCalgaryToSanFran = new FlightDto();
 expectedCalgaryToSanFran.setOriginAirportId(calgaryAirportId);
 expectedCalgaryToSanFran.setOriginCity(CALGARY_CITY);
 expectedCalgaryToSanFran.setDestinationAirportId(sanFranAirportId);
 expectedCalgaryToSanFran.setDestinationCity(SAN_FRAN_CITY);
 expectedCalgaryToSanFran.setFlightNumber(
 facade.createFlight(calgaryAirportId,sanFranAirportId));
 FlightDto expectedCalgaryToVan = new FlightDto();
 expectedCalgaryToVan.setOriginAirportId(calgaryAirportId);
 expectedCalgaryToVan.setOriginCity(CALGARY_CITY);
 expectedCalgaryToVan.
 setDestinationAirportId(vancouverAirportId);
 expectedCalgaryToVan.setDestinationCity(VANCOUVER_CITY);
 expectedCalgaryToVan.setFlightNumber(facade.createFlight(
 calgaryAirportId, vancouverAirportId));

The code that verifi es the expected outcome of a test can also be too complicated
to understand:

 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 2);
 // verify first item
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem1.getInv(), actual.getInv());
 assertEquals(expItem1.getProd(), actual.getProd());
 assertEquals(expItem1.getQuantity(), actual.getQuantity());
 // verify second item
 actual = (LineItem)lineItems.get(1);
 assertEquals(expItem2.getInv(), actual.getInv());
 assertEquals(expItem2.getProd(), actual.getProd());
 assertEquals(expItem2.getQuantity(), actual.getQuantity());
 }

Root Cause

A test contains a lot of data, either as Literal Values (page 714) or as variables.
Irrelevant Information often occurs in conjunction with Hard-Coded Test Data
or a General Fixture but can also arise because we make visible all data the
test needs to execute rather than focusing on the data the test needs to be un-
derstood. When writing tests, the path of least resistance is to use whatever
methods are available (on the SUT and other objects) and to fi ll in all parameters
with values, whether or not they are relevant to the test.

 Obscure Test

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 15 Code Smells

Another possible cause is when we include all the code needed to verify
the outcome using Procedural State Verifi cation (see State Verifi cation on
page 462) rather than using a much more compact “declarative” style to spec-
ify the expected outcome.

Impact

It is hard to achieve Tests as Documentation if the tests contain many seemingly
random bits of Obscure Test that don’t clearly link the pre-conditions with the
post-conditions. Likewise, wading through many steps of fi xture setup or result
verifi cation logic can result in High Test Maintenance Cost and can increase the
likelihood of Production Bugs (page 268) or Buggy Tests.

Possible Solution

The best way to get rid of Irrelevant Information in fi xture setup logic is to
replace direct calls to the constructor or Factory Methods [GOF] with calls to
Parameterized Creation Methods (see Creation Method) that take only the rel-
evant information as parameters. Fixture values that do not matter to the test
(i.e., those that do not affect the expected outcome) should be defaulted within
Creation Methods or replaced by Dummy Objects (page 728). In this way we
say to the test reader, “The values you don’t see don’t affect the expected out-
come.” We can replace fi xture values that appear in both the fi xture setup and
outcome verifi cation parts of the test with suitably initialized named constants
as long as we are using a Fresh Fixture approach to fi xture setup.

To hide Irrelevant Information in result verifi cation logic, we can use asser-
tions on entire Expected Objects (see State Verifi cation), rather than asserting
on individual fi elds, and we can create Custom Assertions (page 474) that hide
complex procedural verifi cation logic.

Cause: Hard-Coded Test Data

Data values in the fi xture, assertions, or arguments of the SUT are hard-coded
in the Test Method, obscuring cause–effect relationships between inputs and
expected outputs.

Symptoms

As test readers, we fi nd it diffi cult to determine how various hard-coded (i.e.,
literal) values in the test are related to one another and which values should
affect the behavior of the SUT. We may also encounter behavior smells such as
Erratic Tests.

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

195

 public void testAddItemQuantity_severalQuantity_v12(){
 // Set Up Fixture
 Customer cust = createACustomer(new BigDecimal("30"));
 Product prod = createAProduct(new BigDecimal("19.99"));
 Invoice invoice = createInvoice(cust);
 // Exercise SUT
 invoice.addItemQuantity(prod, 5);
 // Verify Outcome
 LineItem expected = new LineItem(invoice, prod, 5,
 new BigDecimal("30"), new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }

This specifi c example isn’t so bad because there aren’t very many literal values. If
we aren’t good at doing math in our heads, however, we might miss the relation-
ship between the unit price ($19.99), the item quantity (5), the discount (30%),
and the total price ($69.96).

Root Cause

Hard-Coded Test Data occurs when a test contains a lot of seemingly unrelated
Literal Values. Tests invariably require passing data to the SUT. The data used in
the fi xture setup and exercise SUT phases of the Four-Phase Test defi ne the pre-
conditions of the SUT and infl uence how it should behave. The post-conditions
(the expected outcomes) are refl ected in the data passed as arguments to the
Assertion Methods in the verify outcome phase of the test. When writing tests,
the path of least resistance is to use whatever methods are available (on the SUT
and other objects) and to fi ll in all parameters with values, whether or not they
are relevant to the test.

When we use “cut-and-paste” reuse of test logic, we fi nd ourselves replicat-
ing the literal values to the derivative tests.

Impact

It is hard to achieve Tests as Documentation if the tests contain many seemingly
random bits of Obscure Test that don’t clearly link the pre-conditions with the
post-conditions. A few literal parameters might not seem like a bad thing—after
all, they don’t require us to make that much more effort to understand a test. As
the number of literal values grows, however, it can become much more diffi cult
to understand a test. This is especially true when the signal-to-noise ratio drops
dramatically because the majority of the values are irrelevant to the test.

The second major impact occurs when collisions between tests occur because
the tests are using the same values. This situation happens only when we use a
Shared Fixture because a Fresh Fixture strategy shouldn’t litter the scene with
any objects with which a subsequent test can collide.

 Obscure Test

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 15 Code Smells

Possible Solution

The best way to get rid of the Obscure Test smell is to replace the literal constants
with something else. Fixture values that determine which scenario is being ex-
ecuted (e.g., type codes) are probably the only ones that are reasonable to leave as
literals—but even these values can be converted to named constants.

Fixture values that do not matter to the test (i.e., those that do not affect the
expected outcome) should be defaulted within Creation Methods. In this way
we say to the test reader, “The values you don’t see don’t affect the expected
outcome.” We can replace fi xture values that appear in both the fi xture setup
and outcome verifi cation parts of the test with suitably initialized named con-
stants as long as we are using a Fresh Fixture approach to fi xture setup.

Values in the result verifi cation logic that are based on values used in the fi x-
ture or that are used as arguments of the SUT should be replaced with Derived
Values (page 718) to make those calculations obvious to the test reader.

If we are using any variant of Shared Fixture, we should try to use Distinct
Generated Values (see Generated Value on page 723) to ensure that each
time a test is run, it uses a different value. This consideration is especially
important for fi elds that serve as unique keys in databases. A common way of
encapsulating this logic is to use Anonymous Creation Methods (see Creation
Method).

Cause: Indirect Testing

The Test Method interacts with the SUT indirectly via another object, thereby
making the interactions more complex.

Symptoms

A test interacts primarily with objects other than the one whose behavior it
purports to verify. The test must construct and interact with objects that contain
references to the SUT rather than with the SUT itself. Testing business logic
through the presentation layer is a common example of Indirect Testing.

 private final int LEGAL_CONN_MINS_SAME = 30;
 public void testAnalyze_sameAirline_LessThanConnectionLimit()
 throws Exception {
 // setup
 FlightConnection illegalConn =
 createSameAirlineConn(LEGAL_CONN_MINS_SAME - 1);
 // exercise
 FlightConnectionAnalyzerImpl sut =
 new FlightConnectionAnalyzerImpl();

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

197

 String actualHtml =
 sut.getFlightConnectionAsHtmlFragment(
 illegalConn.getInboundFlightNumber(),
 illegalConn.getOutboundFlightNumber());
 // verification
 StringBuffer expected = new StringBuffer();
 expected.append("");
 expected.append("Connection time between flight ");
 expected.append(illegalConn.getInboundFlightNumber());
 expected.append(" and flight ");
 expected.append(illegalConn.getOutboundFlightNumber());
 expected.append(" is ");
 expected.append(illegalConn.getActualConnectionTime());
 expected.append(" minutes.");
 assertEquals("html", expected.toString(), actualHtml);
 }

Impact

It may not be possible to test “anything that could possibly break” in the SUT
via the intermediate object. Indeed, such tests are unlikely to be very clear or
understandable. They certainly will not result in Tests as Documentation.

Indirect Testing may result in Fragile Tests because changes in the intermediate
objects may require modifi cation of the tests even when the SUT is not modifi ed.

Root Cause

The SUT may be “private” to the class being used to access it from the test. It
may not be possible to create the SUT directly because the constructors them-
selves are private. This problem is just one sign that the software is not designed
for testability.

It may be that the actual outcome of exercising the SUT cannot be observed
directly. In such a case, the expected outcome of the test must be verifi ed through
an intermediate object.

Possible Solution

It may be necessary to improve the design-for-testability of the SUT to remove this
smell. We might be able to expose the SUT directly to the test by using an Extract
Testable Component refactoring (a variant of the Sprout Class [WEwLC] refac-
toring). This approach may result in an untestable Humble Object (page 695) and
an easily tested object that contains most or all of the actual logic.

 public void testAnalyze_sameAirline_EqualsConnectionLimit()
 throws Exception {
 // setup
 Mock flightMgntStub = mock(FlightManagementFacade.class);

 Obscure Test

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 15 Code Smells

 Flight firstFlight = createFlight();
 Flight secondFlight = createConnectingFlight(
 firstFlight, LEGAL_CONN_MINS_SAME);
 flightMgntStub.expects(once()).method("getFlight")
 .with(eq(firstFlight.getFlightNumber()))
 .will(returnValue(firstFlight));
 flightMgntStub.expects(once()).method("getFlight")
 .with(eq(secondFlight.getFlightNumber()))
 .will(returnValue(secondFlight));
 // exercise
 FlightConnAnalyzer theConnectionAnalyzer =
 new FlightConnAnalyzer();
 theConnectionAnalyzer.facade =
 (FlightManagementFacade)flightMgntStub.proxy();
 FlightConnection actualConnection =
 theConnectionAnalyzer.getConn(
 firstFlight.getFlightNumber(),
 secondFlight.getFlightNumber());
 // verification
 assertNotNull("actual connection", actualConnection);
 assertTrue("IsLegal", actualConnection.isLegal());
 }

Sometimes we may be forced to interact with the SUT indirectly because we
cannot refactor the code to expose the logic we are trying to test. In these cases,
we should encapsulate the complex logic forced by Indirect Testing behind suit-
ably named Test Utility Methods. Similarly, fi xture setup can be hidden behind
Creation Methods and result verifi cation can be hidden by Verifi cation Methods
(see Custom Assertion). Both are examples of SUT API Encapsulation (see Test
Utility Method).

 public void testAnalyze_sameAirline_LessThanConnLimit()
 throws Exception {
 // setup
 FlightConnection illegalConn =
 createSameAirlineConn(LEGAL_CONN_MINS_SAME - 1);
 FlightConnectionAnalyzerImpl sut =
 new FlightConnectionAnalyzerImpl();
 // exercise SUT
 String actualHtml =
 sut.getFlightConnectionAsHtmlFragment(
 illegalConn.getInboundFlightNumber(),
 illegalConn.getOutboundFlightNumber());
 // verification
 assertConnectionIsIllegal(illegalConn, actualHtml);
 }

The following Custom Assertion hides the ugliness of extracting the business
result from the presentation noise. It was created by doing a simple Extract Method
[Fowler] refactoring on the test. Of course, this example would be more robust

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

199

if it searched inside the HTML for key strings rather than building up the entire
expected string and comparing it all at once. Other Presentation Layer Tests (see
Layer Test on page 337) might then verify that the presentation logic is format-
ting the HTML string properly.

 private void assertConnectionIsIllegal(FlightConnection conn,
 String actualHtml) {
 // set up expected value
 StringBuffer expected = new StringBuffer();
 expected.append("");
 expected.append("Connection time between flight ");
 expected.append(conn.getInboundFlightNumber());
 expected.append(" and flight ");
 expected.append(conn.getOutboundFlightNumber());
 expected.append(" is ");
 expected.append(conn.getActualConnectionTime());
 expected.append(" minutes.");
 // verification
 assertEquals("html", expected.toString(), actualHtml);
 }

Solution Patterns

A good test strategy helps keep the test code understandable. Nevertheless, just
as “no battle plan survives the fi rst contact with the enemy,” no test infrastruc-
ture can anticipate all needs of all tests. We should expect the test infrastructure
to evolve as the software matures and our test automation skills improve.

We can reuse test logic for several scenarios by having several tests call Test
Utility Methods or by asking a common Parameterized Test (page 607) to pass
in the already built test fi xture or Expected Objects.

Writing tests in an “outside-in” way can minimize the likelihood of produc-
ing an Obscure Test that might then need to be refactored. This approach starts
by outlining the Four-Phase Test using calls to nonexistent Test Utility Meth-
ods. Once we are satisfi ed with these tests, we can write the utility methods
needed to run them. By writing the tests fi rst, we gain a better understanding of
what the utility methods need to do for us to make writing the tests as simple
as possible. The “test-infected” will, of course, write Test Utility Tests (see Test
Utility Method) before writing the Test Utility Methods.

 Obscure Test

Obscure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 15 Code Smells

Conditional Test Logic

A test contains code that may or may not be executed.

A Fully Automated Test (see page 26) is just code that verifi es the behavior of
other code. But if this code is complicated, how do we verify that it works prop-
erly? We could write tests for our tests—but when would this recursion stop?
The simple answer is that Test Methods (page 348) must be simple enough to
not need tests.

Conditional Test Logic is one factor that makes tests more complicated than
they really should be.

Symptoms

As a code smell, Conditional Test Logic may not produce any behavioral symp-
toms but its presence should be reasonably obvious to the test reader. View
any control structures within a Test Method with extreme suspicion! The test
reader may also wonder which code path is the one that is being executed. The
following is an example of Conditional Test Logic that involves both looping
and if statements:

 // verify Vancouver is in the list
 actual = null;
 i = flightsFromCalgary.iterator();
 while (i.hasNext()) {
 FlightDto flightDto = (FlightDto) i.next();
 if (flightDto.getFlightNumber().equals(
 expectedCalgaryToVan.getFlightNumber()))
 {
 actual = flightDto;
 assertEquals("Flight from Calgary to Vancouver",
 expectedCalgaryToVan,
 flightDto);
 break;
 }
 }
 }

This code begs the question, “What is this test code doing and how do we
know that it is doing it correctly?” One behavioral symptom may be the pres-
ence of the related project-level smell High Test Maintenance Cost (page 265),
which may be caused by the complexity introduced by the Conditional Test
Logic.

Also known as:
Indented Test

Code

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

201

Impact

Conditional Test Logic makes it diffi cult to know exactly what a test is going
to do when it really matters. Code that has only a single execution path al-
ways executes in exactly the same way. Code that has multiple execution paths
presents much greater challenges and does not inspire as much confi dence
about its outcome.

To increase our confi dence in production code, we can write Self-Checking
Tests (see page 26) that exercise the code. How can we increase our confi dence
in the test code if it executes differently each time we run it? It is hard to know
(or prove) that the test is verifying the behavior we want it to verify. A test that
has branches or loops, or that uses different values each time it is run, can be
very diffi cult to debug simply because it isn’t completely deterministic.

A related issue is that Conditional Test Logic makes writing the test correctly
a more diffi cult task. Because the test itself cannot be tested easily, how do we
know that it will actually detect the bugs it is intended to catch? [This is a gen-
eral problem with Obscure Tests (page 186); they are more likely to result in
Buggy Tests (page 260) than simple code.]

Causes

Test automaters may introduce Conditional Test Logic for several reasons:

• They may use if statements to steer execution to a fail statement or to
avoid executing certain pieces of test code when the SUT fails to return
valid data.

• They may use loops to verify the contents of collections of objects
(Conditional Verifi cation Logic). This may also result in an Obscure
Test.

• They may use Conditional Test Logic to verify complex objects or
polymorphic data structures (another form of Conditional Verifi cation
Logic). This is just a Foreign Method [Fowler] implementation of the
equals method.

• They may use Conditional Test Logic to initialize the test fi xture or
Expected Object (see State Verifi cation on page 462) so they can reuse
a single test to verify several different cases (Flexible Test).

• They may use if statements to avoid tearing down nonexistent fi xture
objects (Complex Teardown).

 Conditional Test Logic

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 Code Smells

Some of these causes are worth examining in more detail.

Cause: Flexible Test

The test code verifi es different functionality depending on when or where it is
run.

Symptoms

The test contains conditional logic that does different things depending on the
current environment. Most commonly this functionality takes the form of Con-
ditional Test Logic to build different versions of the expected results based on
some factor external to the test.

Consider the following test, which gets the current time so that it can deter-
mine what the output of the SUT should be:

 public void testDisplayCurrentTime_whenever() {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify outcome
 Calendar time = new DefaultTimeProvider().getTime();
 StringBuffer expectedTime = new StringBuffer();
 expectedTime.append("");

 if ((time.get(Calendar.HOUR_OF_DAY) == 0)
 && (time.get(Calendar.MINUTE) <= 1)) {
 expectedTime.append("Midnight");
 } else if ((time.get(Calendar.HOUR_OF_DAY) == 12)
 && (time.get(Calendar.MINUTE) == 0)) { // noon
 expectedTime.append("Noon");
 } else {
 SimpleDateFormat fr = new SimpleDateFormat("h:mm a");
 expectedTime.append(fr.format(time.getTime()));
 }
 expectedTime.append("");

 assertEquals(expectedTime, result);
 }

Root Cause

A Flexible Test is caused by a lack of control of the environment. The test
automater probably wasn’t able to decouple the SUT from its dependencies and
decided to adapt the test logic based on the state of the environment.

Conditional
Test Logic

202

www.it-ebooks.info

http://www.it-ebooks.info/

203

Impact

The fi rst issue is that using a Flexible Test makes the test harder to understand
and therefore to maintain. The second issue is that we don’t know which test
scenarios are actually being exercised and whether all scenarios are, in fact,
exercised regularly. For example, in our sample test, is the midnight scenario
ever exercised? How often? Probably rarely, if ever, because the test would have
to be run at exactly midnight—an unlikely event, even if we timed the nightly
build such that it ran over midnight.

Possible Solution

A Flexible Test is best addressed by decoupling the SUT from whatever depen-
dencies prompted the test automater to make the test fl exible. This involves
refactoring the SUT to support substitutable dependency. We can then replace
the dependency with a Test Double (page 522), such as a Test Stub (page 529) or
Mock Object (page 544), and write separate tests for each circumstance previ-
ously covered by the Flexible Test.

Cause: Conditional Verifi cation Logic

Conditional Test Logic (page 200) may also create problems when it is used to
verify the expected outcome. This issue usually arises when the tester tries to pre-
vent the execution of assertions if the SUT fails to return the right objects or uses
loops to verify the contents of collections returned by the SUT.

 // verify Vancouver is in the list
 actual = null;
 i = flightsFromCalgary.iterator();
 while (i.hasNext()) {
 FlightDto flightDto = (FlightDto) i.next();
 if (flightDto.getFlightNumber().equals(
 expectedCalgaryToVan.getFlightNumber()))
 {
 actual = flightDto;
 assertEquals("Flight from Calgary to Vancouver",
 expectedCalgaryToVan,
 flightDto);
 break;
 }
 }
 }

Possible Solution

We can replace the if statements that steer execution to a call to fail with a Guard
Assertion (page 490) that causes the test to fail before we reach the code we don’t

 Conditional Test Logic

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

204 Chapter 15 Code Smells

want to execute. This works well unless the test is an Expected Exception Test (see
Test Method.) In the latter case, we should use the standard Expected Exception
Test coding idiom for the xUnit family member and language.

We can replace Conditional Test Logic for verifi cation of complex objects
with an Equality Assertion (see Assertion Method on page 362) on an Expected
Object. If the production code’s equals method is too strict, we can use a Custom
Assertion (page 474) to defi ne test-specifi c equality.

We should move any loops in the verifi cation logic to a Custom Assertion.
We can then verify this assertion’s behavior by using Custom Assertion Tests
(see Custom Assertion).

We can reuse test logic in several tests by calling a Test Utility Method (page 599)
or a common Parameterized Test (page 607) that passes in the already built test
fi xture and Expected Objects.

Cause: Production Logic in Test

Symptoms

Some forms of Conditional Test Logic are found in the result verifi cation section
of our tests. Let us look more closely inside the loops of this test:

 public void testCombinationsOfInputValues() {
 // Set up fixture
 Calculator sut = new Calculator();
 int expected; // TBD inside loops

 for (int i = 0; i < 10; i++) {
 for (int j = 0; j < 10; j++) {
 // Exercise SUT
 int actual = sut.calculate(i, j);

 // Verify result
 if (i==3 & j==4) // special case
 expected = 8;
 else
 expected = i+j;

 assertEquals(message(i,j), expected, actual);
 }
 }
 }

 private String message(int i, int j) {
 return "Cell(" + String.valueOf(i)+ ","
 + String.valueOf(j) + ")";
}

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

205

The nested loops in this Loop-Driven Test (see Parameterized Test) exercise the
SUT with various combinations of values of i and j as inputs. Here we will focus
on the Conditional Test Logic inside the loop.

Root Cause

This Production Logic in Test is a direct result of wanting to verify multiple
test conditions in a single Test Method. Given that multiple input values are
passed to the SUT, we should also have multiple expected results. It is hard to
enumerate the expected result for each set of inputs if we pass in many com-
binations of several input arguments to the SUT in nested loops. A common
solution to this problem is to use a Calculated Value (see Derived Value on
page 718) based on the inputs. The potential downfall (as we see here) is that
we fi nd ourselves replicating the expected SUT logic inside our test to calculate
the expected values for assertions.

Possible Solution

If at all possible, it is better to enumerate the sets of precalculated values with
which to test the SUT. The following example tests the same logic using a
(smaller) set of enumerated values:

 public void testMultipleValueSets() {
 // Set Up Fixture
 Calculator sut = new Calculator();
 TestValues[] testValues = {
 new TestValues(1,2,3),
 new TestValues(2,3,5),
 new TestValues(3,4,8), // special case!
 new TestValues(4,5,9)
 };

 for (int i = 0; i < testValues.length; i++) {
 TestValues values = testValues[i];
 // Exercise SUT
 int actual = sut.calculate(values.a, values.b);
 // Verify Result
 assertEquals(message(i), values.expectedSum, actual);
 }
 }

 private String message(int i) {
 return "Row "+ String.valueOf(i);
 }

 Conditional Test Logic

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 15 Code Smells

Cause: Complex Teardown

Symptoms

Complex fi xture teardown code is more likely to leave the test environment cor-
rupted if it does not clean up after itself correctly. It is hard to verify that tear-
down code has been written correctly, and such code can easily result in “data
leaks” that may later cause this or other tests to fail for no apparent reason.
Consider this example:

 public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
 throws Exception {
 // Set Up Fixture
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = null;
 FlightDto expFlightDto = null;
 try {
 inboundAirport = createTestAirport("1IF");
 expFlightDto =
 createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 try {
 facade.removeFlight(expFlightDto.getFlightNumber());
 } finally {
 try {
 facade.removeAirport(inboundAirport);
 } finally {
 facade.removeAirport(outboundAirport);
 }
 }
 }
 }

Root Cause

Teardown is typically required only when we use persistent resources that are
beyond the reach of our garbage collection system. Complex Teardown occurs
when many such resources are used in the same Test Method.

Possible Solution

To avoid complex teardown logic, we should use Implicit Teardown (page 516),
which will make the code both reusable and testable, or Automated Tear-
down (page 503), which can be verifi ed with automated unit tests. We can

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

207

also eliminate the need to tear down any fi xture objects by using a Fresh
Fixture (page 311) strategy and by avoiding the use of any persistent objects
in our tests by using some sort of Test Double.

Cause: Multiple Test Conditions

Symptoms

A test tries to apply the same test logic to many sets of input values, each with
its own corresponding expected result. In the following example, the test iterates
over a collection of test values and applies the test logic to each set:

 public void testMultipleValueSets() {
 // Set Up Fixture
 Calculator sut = new Calculator();
 TestValues[] testValues = {
 new TestValues(1,2,3),
 new TestValues(2,3,5),
 new TestValues(3,4,8), // special case!
 new TestValues(4,5,9)
 };

 for (int i = 0; i < testValues.length; i++) {
 TestValues values = testValues[i];
 // Exercise SUT
 int actual = sut.calculate(values.a, values.b);
 // Verify Outcome
 assertEquals(message(i), values.expectedSum, actual);
 }
 }

 private String message(int i) {
 return "Row "+ String.valueOf(i);
 }

Root Cause

The test automater is trying to test many test conditions using the same test logic in
a single Test Method. In the preceding example, it is fairly simple Conditional Test
Logic. Matters could be a lot worse if the code contained multiple nested loops and
maybe even if statements to calculate different cases of the expected values.

Possible Solution

Of all sources of Conditional Test Logic, Multiple Test Conditions is prob-
ably the most innocuous. Other than scaring the test reader, the main impact
of such a test is that it stops executing at the fi rst failure and doesn’t provide
Defect Localization (see page 22) when a bug is introduced into the code. The

 Conditional Test Logic

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

208 Chapter 15 Code Smells

readability issue can easily be addressed by using an Extract Method [Fowler]
refactoring to create a Parameterized Test call from within the loop. The lack
of Defect Localization can be addressed by calling the Parameterized Test
from a separate Test Method for each test condition. For large sets of values,
a Data-Driven Test (page 288) might be a better solution.

Conditional
Test Logic

www.it-ebooks.info

http://www.it-ebooks.info/

209

Hard-to-Test Code

Code is diffi cult to test.

Automated testing is a powerful tool that helps us develop software quickly even
when we have a large code base to maintain. Of course, it provides these benefi ts
only if most of our code is protected by Fully Automated Tests (see page 26). The
effort of writing these tests must be added to the effort of writing the product
code they verify. Not surprisingly, we would prefer to make it easy to write the
automated tests.3

Hard-to-Test Code is one factor that makes it diffi cult to write complete,
correct automated tests in a cost-effi cient manner.

Symptoms

Some kinds of code are inherently diffi cult to test—GUI components, multi-
threaded code, and test code, for example. It may be diffi cult to get at the code
to be tested because it is not visible to a test. It may be problematic to compile
a test because the code is too highly coupled to other classes. It may be hard to
create an instance of the object because the constructors don’t exist, are private,
or take too many other objects as parameters.

Impact

Whenever we have Hard-to-Test Code, we cannot easily verify the quality of
that code in an automated way. While manual quality assessment is often pos-
sible, it doesn’t scale very well because the effort to perform this assessment after
each code change usually means it doesn’t get done. Nor is this strategy readily
repeated without a large test documentation cost.

Solution Patterns

A better solution is to make the code more amenable to testing. This topic is big
enough that it warrants a whole chapter of its own, but this section covers a few
of the highlights.

3 We would also like to recoup this cost by reducing effort somewhere else. The best way
to achieve this is to avoid Frequent Debugging (page 248) by writing the tests fi rst and
achieving Defect Localization (see page 22).

 Hard-to-Test Code

Hard-to-Test
Code

www.it-ebooks.info

http://www.it-ebooks.info/

210 Chapter 15 Code Smells

Causes

There are a number of reasons for Hard-to-Test Code; the most common causes
are discussed here.

Cause: Highly Coupled Code

Symptoms

A class cannot be tested without also testing several other classes.

Impact

Code that is highly coupled to other code is very diffi cult to unit test because it
won’t execute in isolation.

Root Cause

Highly Coupled Code can be caused by many factors, including poor design,
lack of object-oriented design experience, and lack of a reward structure that
encourages decoupling.

Possible Solution

The key to testing overly coupled code is to break the coupling. This happens
naturally when we are doing test-driven development.

A technique that we often use to decouple code for the purpose of testing is
a Test Double (page 522) or, more specifi cally, a Test Stub (page 529) or Mock
Object (page 544). This topic is covered in much more detail in Chapter 11,
Using Test Doubles.

Retrofi tting tests onto existing code is a more challenging task, especially
when we are dealing with a legacy code base. This is a big enough topic that
Michael Feathers wrote a whole book on techniques for doing this, titled Work-
ing Effectively with Legacy Code [WEwLC].

Cause: Asynchronous Code

Symptoms

A class cannot be tested via direct method calls. The test must start an execut-
able (such as a thread, process, or application) and wait until its start-up has
fi nished before interacting with the executable.

Hard-to-Test
Code

Also known as:
Hard-Coded
Dependency

www.it-ebooks.info

http://www.it-ebooks.info/

211

Impact

Code that has an asynchronous interface is hard to test because the tests of these
elements must coordinate their execution with that of the SUT. This requirement
can add a lot of complexity to the tests and causes them to take much, much
longer to run. The latter issue is a major concern with unit tests, which must run
very quickly to ensure that developers will run them frequently.

Root Cause

The code that implements the algorithm we wish to test is highly coupled to the
active object in which it normally executes.

Possible Solution

The key to testing asynchronous code is to separate the logic from the asynchronous
access mechanism. The design-for-testability pattern Humble Object (page 695;
including Humble Dialog and Humble Executable) is a good example of a way
to restructure otherwise asynchronous code so it can be tested in a synchronous
manner.

Cause: Untestable Test Code

Symptoms

The body of a Test Method (page 348) is obscure enough (Obscure Test; see
page 186) or contains enough Conditional Test Logic (page 200) that we wonder
whether the test is correct.

Impact

Any Conditional Test Logic within a Test Method has a higher probability of
producing Buggy Tests (page 260) and will likely result in High Test Mainte-
nance Cost (page 265). Too much code in the test method body can make the
test hard to understand and hard to construct correctly.

Root Cause

The code within the body of the Test Method is inherently hard to test using a
Self-Checking Test (see page 26). To do so, we would have to replace the SUT
with a Test Double that injects the target error and then run the test method
inside another Expected Exception Test (see Test Method) method—much too
much trouble to bother with in all but the most unusual circumstances.

 Hard-to-Test Code

Hard-to-Test
Code

www.it-ebooks.info

http://www.it-ebooks.info/

212 Chapter 15 Code Smells

Possible Solution

We can remove the need to test the body of a Test Method by making it
extremely simple and relocating any Conditional Test Logic from it into Test
Utility Methods (page 599), for which we can easily write Self-Checking Tests.

Hard-to-Test
Code

www.it-ebooks.info

http://www.it-ebooks.info/

213

Test Code Duplication

The same test code is repeated many times.

Many of the tests in a suite need to do similar things. For example, tests often
exercise scenarios that are variations on the same theme. Tests may require simi-
lar fi xture setup or result verifi cation logic. In some cases, even the exercise SUT
phase of many tests involves repeating the same nontrivial logic.

The need for tests to do similar things often results in Test Code Duplication.

Symptoms

Several tests may contain a common subset of essentially the same statements,
as in the following example:

 public void testInvoice_addOneLineItem_quantity1_b() {
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 // Verify only item
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem.getInv(), actual.getInv());
 assertEquals(expItem.getProd(), actual.getProd());
 assertEquals(expItem.getQuantity(), actual.getQuantity());
 }

 public void testRemoveLineItemsForProduct_oneOfTwo() {
 // Set up
 Invoice inv = createAnonInvoice();
 inv.addItemQuantity(product, QUANTITY);
 inv.addItemQuantity(anotherProduct, QUANTITY);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.removeLineItemForProduct(anotherProduct);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem.getInv(), actual.getInv());
 assertEquals(expItem.getProd(), actual.getProd());
 assertEquals(expItem.getQuantity(), actual.getQuantity());
 }

 Test Code Duplication

Test Code
Duplication

www.it-ebooks.info

http://www.it-ebooks.info/

214 Chapter 15 Code Smells

A single test may also contain repeated groups of similar statements:

 public void testInvoice_addTwoLineItems_sameProduct() {
 Invoice inv = createAnonInvoice();
 LineItem expItem1 = new LineItem(inv, product, QUANTITY1);
 LineItem expItem2 = new LineItem(inv, product, QUANTITY2);
 // Exercise
 inv.addItemQuantity(product, QUANTITY1);
 inv.addItemQuantity(product, QUANTITY2);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 2);
 // Verify first item
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem1.getInv(), actual.getInv());
 assertEquals(expItem1.getProd(), actual.getProd());
 assertEquals(expItem1.getQuantity(), actual.getQuantity());
 // Verify second item
 actual = (LineItem)lineItems.get(1);
 assertEquals(expItem2.getInv(), actual.getInv());
 assertEquals(expItem2.getProd(), actual.getProd());
 assertEquals(expItem2.getQuantity(), actual.getQuantity());
 }

Both of the preceding examples exhibit Test Code Duplication that is easily noticed.
By comparison, it is more challenging to identify duplication when it occurs across
Test Methods (page 348) that reside in different Testcase Classes (page 373).

Impact

“Cut and paste” often results in many copies of the same code. This code must
be maintained every time the SUT is modifi ed in a way that affects the seman-
tics (e.g., number of arguments, argument attributes, returned object attributes,
calling sequences) of its methods. This necessity can greatly increase the cost
to introduce new functionality (High Test Maintenance Cost; see page 265)
because of the effort involved in updating all tests that contain copies of the
affected code.

Causes

Cause: Cut-and-Paste Code Reuse

“Cut and paste” is a powerful tool for writing code fast but it results in many
copies of the same code, each of which must be maintained in parallel.

Test Code
Duplication

www.it-ebooks.info

http://www.it-ebooks.info/

215

Root Cause

Cut-and-Paste Code Reuse is often the default way to reuse logic. Developers
who focus on details of “how” to do something will often repeat the same code
many times because they cannot (or do not take the time to) focus on the big
picture (the intent) of the test.

A contributing factor may be a lack of refactoring skills or refactoring expe-
rience that keeps developers from extracting the big picture from the detailed
code they have written. Of course, time pressure may also be the culprit that
keeps the refactoring from occurring. As a result, test code grows more compli-
cated over time rather than becoming simpler.

Possible Solution

Once Test Code Duplication has occurred, the best solution is to use an Extract
Method [Fowler] refactoring to create a Test Utility Method (page 599) from
one of the examples and then to generalize that method to handle each of the
copies. When the Test Code Duplication consists of fi xture setup logic, we
end up with Creation Methods (page 415) or Finder Methods (see Test Utility
Method). When the logic carries out result verifi cation, we end up with Custom
Assertions (page 474) or Verifi cation Methods (see Custom Assertion).

We can use an Introduce Parameter [JBrains] refactoring to convert any lit-
eral constants inside the extracted method into parameters that can be passed in
to customize the method’s behavior for each test that calls it.

More simply, we can avoid most Test Code Duplication by writing the Test
Methods in an “outside-in” manner, focusing on their intent. Whenever we need
to do something that involves several lines of code, we simply call a nonexis-
tent Test Utility Method to do it. We write all our tests this way and then fi ll in
implementations of the Test Utility Methods to get the tests to compile and run.
(Modern IDEs facilitate this process by providing automatic method skeleton
generation at a click of the mouse.)

Cause: Reinventing the Wheel

While Cut-and-Paste Code Reuse deliberately makes copies of existing code to
reduce the effort of writing tests, it is also possible to accidentally write the same
sequence of statements in different tests.

Root Cause

This problem is primarily caused by a lack of awareness of which Test Utility
Methods are available. It can also be caused by a predisposition to write one’s
own code rather than reuse code written by others.

 Test Code Duplication

Test Code
Duplication

www.it-ebooks.info

http://www.it-ebooks.info/

216 Chapter 15 Code Smells

Possible Solution

The technical solution is largely the same as for Cut-and-Paste Code Reuse
but the process solution is somewhat different. The test automater must look
around more places to discover which Test Utility Methods are available before
reinventing the wheel (i.e., writing new code).

Further Reading

Test Code Duplication was fi rst described in a paper at XP2001 called “Refac-
toring Test Code” [RTC].

Test Code
Duplication

www.it-ebooks.info

http://www.it-ebooks.info/

217

Test Logic in Production

The code that is put into production contains logic that should be exercised
only during tests.

The SUT may contain logic that cannot be run in a test environment. Tests may
require the SUT to behave in specifi c ways to allow full test coverage.

Symptoms

The logic in the SUT is there solely to support testing. This logic may be “extra
stuff” that the tests require to gain access to the SUT’s internal state for fi xture
setup or result verifi cation purposes. It may also consist of changes that the logic
of the system undergoes when it detects that it is being tested.

Impact

We would prefer not to end up with Test Logic in Production, as it can make
the SUT more complex and opens the door to additional kinds of bugs that
we would like to avoid. A system that behaves one way in the test lab and an
entirely different way in production is a recipe for disaster!

Causes

Cause: Test Hook

Conditional logic within the SUT determines whether the “real” code or test-
specifi c logic is run.

Symptoms

With this code smell, either there may be no behavioral symptoms or something
may go wrong in production. We may see snippets of code in the SUT that look
something like this:

if (testing) {
 return hardCodedCannedData;
} else { // the real logic ...
 return gatheredData;
}

 Test Logic in Production

Test
Logic in
Production

www.it-ebooks.info

http://www.it-ebooks.info/

218 Chapter 15 Code Smells

Ariane

The maiden fl ight of the Ariane 5 rocket was a complete disaster: The
rocket blew up only 37 seconds after takeoff. The culprit was a seem-
ingly innocuous bit of code that was used only while the rocket was on
the ground but unfortunately was left running for the fi rst 40 seconds of
fl ight. When it tried to assign a 64-bit number representing the sideways
velocity of the rocket to a 16-bit fi eld, the navigation computer decided
that the rocket was going the wrong way! It tried to correct the course,
but the sudden change in direction tore the booster rocket apart. While
this is not quite an example of Test Logic in Production (page 217), it
certainly does illustrate the risks associated with this type of error.

Could this disaster have been prevented by use of automated tests? While
it is diffi cult to say with certainty, and one could certainly claim that any
number of process changes could have detected this problem before it
occurred, it is conceivable that automated tests could have averted this
catastrophe.

In particular, a test should have addressed the boundary condition—
namely, what happens when a number exceeds the maximum value stor-
able. Such a test would have prevented an exception from occurring for
the fi rst time ever in production.

In addition, the presence of the tests from the Ariane 4 version of the
rocket would have documented the maximum down-range velocity. It is
quite possible that these tests would have been updated when the Ariane
5 software was being developed and that the new tests would have failed
because of the new rocket’s higher speed.

For a slightly more detailed (and very interesting) description of “the
little bug that could,” visit http://www.around.com/ariane.html.

Impact

Code that was not designed to work in production and that has not been veri-
fi ed to work properly in the production environment could accidentally be run
in production and create serious problems.

The Ariane 5 rocket blew up 37 seconds after takeoff on its maiden fl ight
because a piece of code that was used only while the rocket was on the ground
was left running for the fi rst 40 seconds of fl ight. This code tried to assign
a 64-bit number representing the sideways velocity of the rocket to a 16-bit

Test
Logic in

Production

www.it-ebooks.info

http://www.around.com/ariane.html
http://www.it-ebooks.info/

219

fi eld—an operation that convinced the rocket’s navigation computer that it
was going the wrong way. (See the sidebar on Ariane on page 218 for more
details.) While we believe the Test Hook would never be exercised in produc-
tion, do we really want to take this kind of chance?

Root Cause

In some cases, the Test Logic in Production is introduced to make the behavior
of the SUT more deterministic by returning known (hard-coded) values. In other
cases, the Test Logic in Production may have been introduced to avoid execut-
ing code that cannot be run in a test environment. Unfortunately, this approach
can result in failure to execute that code in the production environment if some-
thing is misconfi gured.

In some cases, tests may require that the SUT execute additional code that
would otherwise be executed by a depended-on component. For example, code
run from a trigger in a database will not run if the database is replaced by a
Fake Database (see Fake Object on page 551); thus the test needs to ensure that
the equivalent logic is executed from somewhere within the SUT.

Possible Solution

Instead of adding test logic into the production code directly, we can move logic
into a substitutable dependency. We can put code that should be run in only pro-
duction into a Strategy [GOF] object that is installed by default and replaced by a
Null Object [PLOPD3] when running our tests. In contrast, code that should be
run only during tests can be put into a Strategy [GOF] object that is confi gured
as a Null Object by default. Then, when we want the SUT to execute extra code
during testing, we can replace this Strategy object with a test-specifi c version. To
ensure this mechanism is confi gured properly, we should have a Constructor Test
(see Test Method on page 348) to verify that any variables holding references to
Strategy objects are initialized correctly when they are not overridden by the test.

It may also be possible to override specifi c methods of the SUT in a Test-
Specifi c Subclass (page 579) if the production logic we want to circumvent is
localized in overridable methods. This ability is enabled by Self-Calls [WWW].

Cause: For Tests Only

Code exists in the SUT strictly for use by tests.

Symptoms

Some of the methods of the SUT are used only by tests. Some of the attributes
are public when they really should be private.

 Test Logic in Production

Test
Logic in
Production

www.it-ebooks.info

http://www.it-ebooks.info/

220 Chapter 15 Code Smells

Impact

Software that is added to the SUT For Tests Only makes the SUT more complex.
It can confuse potential clients of the software’s interface by introducing addi-
tional methods that should not be used by any code other than the tests. These
methods may have been tested only in very specifi c circumstances, so they might
not work in the typical usage patterns used by real client software.

Root Cause

The test automater may need to add methods to a class that expose information
needed by the test or methods that provide greater control over initialization
(such as for the installation of a Test Double; see page 522). Test-driven devel-
opment will lead to the creation of these additional methods even though they
aren’t really needed by clients. When retrofi tting tests onto legacy code, the test
automater may need access to information or functionality that is not already
exposed.

For Tests Only can also result when a SUT is used asymmetrically in real life.
Automated tests (especially round-trip tests) typically use software in a more
symmetric fashion and hence may need methods that the real software clients
do not need.

Possible Solution

We can assure that tests have access to private information by creating a Test-
Specifi c Subclass of the SUT, which then provides methods to expose the needed
attributes or initialization logic. A test needs to be able to create instances of the
subclass instead of the SUT class for this approach to work.

If for some reason the extra methods cannot be moved to a Test-Specifi c Sub-
class, they should be clearly labeled For Tests Only. This can be done by adopt-
ing a naming convention such as starting the names with “FTO_”.

Cause: Test Dependency in Production

Production executables depend on test executables.

Symptoms

We cannot build only the production code; some test code must be included
in the build to allow the production code to compile. Alternatively, we might
notice that we cannot run the production code if the test executables are not
present.

Test
Logic in

Production

www.it-ebooks.info

http://www.it-ebooks.info/

221

Impact

Even if the production modules do not contain any test code, problems can arise
if any of these modules depends on a test module. At minimum, this dependency
increases the size of the executable even if none of the test code is actually used
in production scenarios. It also opens the door to accidental execution of test
code during production.

Root Cause

Test Dependency in Production is usually caused by a lack of attention to
inter-module dependencies. It may also arise when a built-in self-test requires
access to parts of the test automation infrastructure, such as Test Utility
Methods (page 599) or the Test Automation Framework (page 298), to report
test results.

Possible Solution

We must manage our dependencies carefully to ensure that no production code
depends on test code even for innocuous things such as type defi nitions.

Anything required by both test and production code should live in a production
module or class that is accessible to both.

Cause: Equality Pollution

Another cause of Test Logic in Production is the implementation of test-specifi c
equality in the equals method of the SUT.

Symptoms

Equality Pollution can be diffi cult to spot once it has occurred—what is notable
is that the SUT doesn’t actually need the equals method to be implemented. In
other cases, behavioral symptoms may appear, such as test failure when the
equals method is modifi ed to support the specifi c needs of a test or when the defi -
nition of equals changes within the SUT as part of a new feature or user story.

Impact

We may write unnecessary equals methods simply to satisfy tests. We may
also change the defi nition of equals so that it no longer satisfi es the business
requirements.

Equality Pollution may make it diffi cult to introduce the equals logic pre-
scribed by some new requirement if it already exists to support test-specifi c
equality for another test.

 Test Logic in Production

Test
Logic in
Production

www.it-ebooks.info

http://www.it-ebooks.info/

222 Chapter 15 Code Smells

Root Cause

Equality Pollution is caused by a lack of awareness of the concept of test-specifi c
equality. Some early versions of dynamic Mock Object (page 544) generation tools
forced us to use the SUT’s defi nition of equals, which led to Equality Pollution.

Possible Solution

When a test requires test-specifi c equality, we should use a Custom Asser-
tion (page 474) instead of modifying the equals method just so that we can use a
built-in Equality Assertion (see Assertion Method on page 362).

When using dynamic Mock Object generation tools, we should use a Com-
parator [WWW] rather than relying on the equals method supplied by the SUT.
We can also implement the equals method on a Test-Specifi c Subclass of an
Expected Object (see State Verifi cation on page 462) to avoid adding it to a
production class directly.

Further Reading

For Tests Only and Equality Pollution were fi rst introduced in a paper at XP2001
called “Refactoring Test Code” [RTC].

Test
Logic in

Production

www.it-ebooks.info

http://www.it-ebooks.info/

223

Chapter 16

Behavior Smells

Smells in This Chapter

Assertion Roulette . 224

Erratic Test . 228

Fragile Test . 239

Frequent Debugging . 248

Manual Intervention. 250

Slow Tests. 253

Behavior
Smells

www.it-ebooks.info

http://www.it-ebooks.info/

224

Assertion Roulette

It is hard to tell which of several assertions within the same
test method caused a test failure.

Symptoms

A test fails. Upon examining the output of the Test Runner (page 377), we cannot
determine exactly which assertion failed.

Impact

When a test fails during an automated Integration Build [SCM], it may be hard
to tell exactly which assertion failed. If the problem cannot be reproduced on
a developer’s machine (as may be the case if the problem is caused by environ-
mental issues or Resource Optimism; see Erratic Test on page 228) fi xing the
problem may be diffi cult and time-consuming.

Causes

Cause: Eager Test

A single test verifi es too much functionality.

Symptoms

A test exercises several methods of the SUT or calls the same method several
times interspersed with fi xture setup logic and assertions.

 public void testFlightMileage_asKm2() throws Exception {
 // set up fixture
 // exercise constructor
 Flight newFlight = new Flight(validFlightNumber);
 // verify constructed object
 assertEquals(validFlightNumber, newFlight.number);
 assertEquals("", newFlight.airlineCode);
 assertNull(newFlight.airline);
 // set up mileage
 newFlight.setMileage(1122);
 // exercise mileage translator
 int actualKilometres = newFlight.getMileageAsKm();
 // verify results
 int expectedKilometres = 1810;
 assertEquals(expectedKilometres, actualKilometres);

Chapter 16 Behavior Smells

Assertion
Roulette

www.it-ebooks.info

http://www.it-ebooks.info/

225

 // now try it with a canceled flight
 newFlight.cancel();
 try {
 newFlight.getMileageAsKm();
 fail("Expected exception");
 } catch (InvalidRequestException e) {
 assertEquals("Cannot get cancelled flight mileage",
 e.getMessage());
 }
 }

Another possible symptom is that the test automater wants to modify the Test
Automation Framework (page 298) to keep going after an assertion has failed
so that the rest of the assertions can be executed.

Root Cause

An Eager Test is often caused by trying to minimize the number of unit tests
(whether consciously or unconsciously) by verifying many test conditions
in a single Test Method (page 348). While this is a good practice for manu-
ally executed tests that have “liveware” interpreting the results and adjusting
the tests in real time, it just doesn’t work very well for Fully Automated Tests
(see page 26).

Another common cause of Eager Tests is using xUnit to automate customer
tests that require many steps, thereby verifying many aspects of the SUT in
each test. These tests are necessarily longer than unit tests but care should be
taken to keep them as short as possible (but no shorter!).

Possible Solution

For unit tests, we break up the test into a suite of Single-Condition Tests (see
page 45) by teasing apart the Eager Test. It may be possible to do so by using
one or more Extract Method [Fowler] refactorings to pull out independent
pieces into their own Test Methods. Sometimes it is easier to clone the test once
for each test condition and then clean up each Test Method by removing any
code that is not required for that particular test conditions. Any code required
to set up the fi xture or put the SUT into the correct starting state can be ex-
tracted into a Creation Method (page 415). A good IDE or compiler will then
help us determine which variables are no longer being used.

If we are automating customer tests using xUnit, and this effort has resulted
in many steps in each test because the work fl ows require complex fi xture setup,
we could consider using some other way to set up the fi xture for the latter parts
of the test. If we can use Back Door Setup (see Back Door Manipulation on
page 327) to create the fi xture for the last part of the test independently of the

 Assertion Roulette

Assertion
Roulette

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 16 Behavior Smells

fi rst part, we can break one test into two, thereby improving our Defect Local-
ization (see Goals of Test Automation). We should repeat this process as many
times as it takes to make the tests short enough to be readable at a single glance
and to Communicate Intent (see page 41) clearly.

Cause: Missing Assertion Message

Symptoms

A test fails. Upon examining the output of the Test Runner, we cannot deter-
mine exactly which assertion failed.

Root Cause

This problem is caused by the use of Assertion Method (page 362) calls with
identical or missing Assertion Messages (page 370). It is most commonly
encountered when running tests using a Command-Line Test Runner (see Test
Runner) or a Test Runner that is not integrated with the program text editor or
development environment.

In the following test, we have a number of Equality Assertions (see Assertion
Method):

 public void testInvoice_addLineItem7() {
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem.getInv(), actual.getInv());
 assertEquals(expItem.getProd(), actual.getProd());
 assertEquals(expItem.getQuantity(), actual.getQuantity());
 }

When an assertion fails, will we know which one it was? An Equality Assertion
typically prints out both the expected and the actual values—but it may prove
diffi cult to tell which assertion failed if the expected values are similar or print
out cryptically. A good rule of thumb is to include at least a minimal Assertion
Message whenever we have more than one call to the same kind of Assertion
Method.

Possible Solution

If the problem occurred while we were running a test using a Graphical Test
Runner (see Test Runner) with IDE integration, we should be able to click on
the appropriate line in the stack traceback to have the IDE highlight the failed

Assertion
Roulette

www.it-ebooks.info

http://www.it-ebooks.info/

227

assertion. Failing this, we can turn on the debugger and single-step through the
test to see which assertion statement fails.

If the problem occurred while we were running a test using a Command-
Line Test Runner, we can try running the test from a Graphical Test Runner
with IDE integration to determine the offending assertion. If that doesn’t work,
we may have to resort to using line numbers (if available) or apply a process of
elimination to deduce which of the assertions it couldn’t be to narrow down the
possibilities. Of course, we could just bite the bullet and add a unique Assertion
Message (even just a number!) to each call to an Assertion Method.

Further Reading

Assertion Roulette and Eager Test were fi rst described in a paper presented at
XP2001 called “Refactoring Test Code” [RTC].

 Assertion Roulette

Assertion
Roulette

www.it-ebooks.info

http://www.it-ebooks.info/

228 Chapter 16 Behavior Smells

Erratic Test

One or more tests behave erratically; sometimes they pass
and sometimes they fail.

Symptoms

We have one or more tests that run but give different results depending on when
they are run and who is running them. In some cases, the Erratic Test will con-
sistently give the same results when run by one developer but fail when run by
someone else or in a different environment. In other cases, the Erratic Test will
give different results when run from the same Test Runner (page 377).

Impact

We may be tempted to remove the failing test from the suite to “keep the bar
green” but this would result in an (intentional) Lost Test (see Production Bugs
on page 268). If we choose to keep the Erratic Test in the test suite despite the
failures, the known failure may obscure other problems, such as another issue
detected by the same tests. Just having a test fail can cause us to miss additional
failures because it is much easier to see the change from a green bar to a red bar
than to notice that two tests are failing instead of just the one we expected.

Troubleshooting Advice

Erratic Tests can be challenging to troubleshoot because so many potential causes
exist. If the cause cannot be easily determined, it may be necessary to collect data
systematically over a period of time. Where (in which environments) did the
tests pass, and where did they fail? Were all the tests being run or just a subset
of them? Did any change in behavior occur when the test suite was run several
times in a row? Did any change in behavior occur when it was run from several
Test Runners at the same time?

Once we have some data, it should be easier to match up the observed symp-
toms with those listed for each of the potential causes and to narrow the list of
possibilities to a handful of candidates. Then we can collect some more data
focusing on differences in symptoms between the possible causes. Figure 16.1
summarizes the process for determining which cause of an Erratic Test we are
dealing with.

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

229

Figure 16.1 Troubleshooting an Erratic Test.

Causes

Tests may behave erratically for a number of reasons. The underlying cause can
usually be determined through some persistent sleuthing by paying attention to
patterns regarding how and when the tests fail. Some of the causes are common
enough to warrant giving them names and specifi c advice for rectifying them.

Cause: Interacting Tests

Tests depend on other tests in some way. Note that Interacting Test Suites and
Lonely Test are specifi c variations of Interacting Tests.

Symptoms

A test that works by itself suddenly fails in the following circumstances:

• Another test is added to (or removed from) the suite.

• Another test in the suite fails (or starts to pass).

• The test (or another test) is renamed or moved in the source fi le.

• A new version of the Test Runner is installed.

Root Cause

Interacting Tests usually arise when tests use a Shared Fixture (page 317), with
one test depending in some way on the outcome of another test. The cause of
Interacting Tests can be described from two perspectives:

Results
Vary for Tests

vs. Suites?

Different
Results Every

Run?

No

Probably
Unrepeatable

Test

Yes

Gets
Worse with

Time?

No

Probably
Interacting

Tests or Suites

Happens
When Test Run

Alone?

No

No

Probably
Lonely Test

Yes

Yes

Probably
Resource
Leakage

Yes

Probably
Resource
Optimism

Only with
Multiple Test

Runners?

No

Probably Test
Run War

Yes
Different

Results for First
Run?

No

Probably Non-
Deterministic

Test

Yes
Results
Vary by

Location?

No

Yes

Hire an
xUnit

Expert!

Results
Vary for Tests

vs. Suites?

Different
Results Every

Run?

No

Probably
Unrepeatable

Test

Yes

Gets
Worse with

Time?

No

Probably
Interacting

Tests or Suites

Happens
When Test Run

Alone?

No

No

Probably
Lonely Test

Yes

Yes

Probably
Resource
Leakage

Yes

Probably
Resource
Optimism

Only with
Multiple Test

Runners?

No

Probably Test
Run War

Yes
Different

Results for First
Run?

No

Probably Non-
Deterministic

Test

Yes
Results
Vary by

Location?

No

Yes

Hire an
xUnit

Expert!

 Erratic Test

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

230 Chapter 16 Behavior Smells

• The mechanism of interaction

• The reason for interaction

The mechanism for interaction could be something blatantly obvious—for
example, testing an SUT that includes a database—or it could be more subtle.
Anything that outlives the lifetime of the test can lead to interactions; static
variables can be depended on to cause Interacting Tests and, therefore, should
be avoided in both the SUT and the Test Automation Framework (page 298)!
See the sidebar “There’s Always an Exception” on page 384 for an exam-
ple of the latter problem. Singletons [GOF] and Registries [PEAA] are good
examples of things to avoid in the SUT if at all possible. If we must use them,
it is best to include a mechanism to reinitialize their static variables at the
beginning of each test.

Tests may interact for a number of reasons, either by design or by accident:

• Depending on the fi xture constructed by the fi xture setup phase of
another test

• Depending on the changes made to the SUT during the exercise SUT
phase of another test

• A collision caused by some mutually exclusive action (which may be
either of the problems mentioned above) between two tests run in the
same test run

The dependencies may suddenly cease to be satisfi ed if the depended-on test

• Is removed from the suite,

• Is modifi ed to no longer change the state of the SUT,

• Fails in its attempt to change the state of the SUT, or

• Is run after the test in question (because it was renamed or moved to a
different Testcase Class; see page 373).

Similarly, collisions may start occurring when the colliding test is

• Added to the suite,

• Passes for the fi rst time, or

• Runs before the dependent test.

In many of these cases, multiple tests will fail. Some of the tests may fail for a
good reason—namely, the SUT is not doing what it is supposed to do. Depen-
dent tests may fail for the wrong reason—because they were coded to depend

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

231

on other tests’ success. As a result, they may be giving a “false-positive” (false-
failure) indication.

In general, depending on the order of test execution is not a wise approach
because of the problems described above. Most variants of the xUnit frame-
work do not make any guarantees about the order of test execution within a
test suite. (TestNG, however, promotes interdependencies between tests by pro-
viding features to manage the dependencies.)

Possible Solution

Using a Fresh Fixture (page 311) is the preferred solution for Interacting Tests; it
is almost guaranteed to solve the problem. If we must use a Shared Fixture, we
should consider using an Immutable Shared Fixture (see Shared Fixture) to pre-
vent the tests from interacting with one another through changes in the fi xture
by creating from scratch those parts of the fi xture that they intend to modify.

If an unsatisfi ed dependency arises because another test does not create
the expected objects or database data, we should consider using Lazy Setup
(page 435) to create the objects or data in both tests. This approach ensures
that the fi rst test to execute creates the objects or data for both tests. We can
put the fi xture setup code into a Creation Method (page 415) to avoid Test
Code Duplication (page 213). If the tests are on different Testcase Classes, we
can move the fi xture setup code to a Test Helper (page 643).

Sometimes the collision may be caused by objects or database data that are
created in our test but not cleaned up afterward. In such a case, we should con-
sider implementing Automated Fixture Teardown (see Automated Teardown on
page 503) to remove them safely and effi ciently.

A quick way to fi nd out whether any tests depend on one another is to run
the tests in a different order than the normal order. Running the entire test
suite in reverse order, for example, would do the trick nicely. Doing so regularly
would help avoid accidental introduction of Interacting Tests.

Cause: Interacting Test Suites

In this special case of Interacting Tests, the tests are in different test suites.

Symptoms

A test passes when it is run in its own test suite but fails when it is run within a
Suite of Suites (see Test Suite Object on page 387).

Suite1.run()--> Green
Suite2.run()--> Green
Suite(Suite1,Suite2).run()--> Test C in Suite2 fails

 Erratic Test

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

232 Chapter 16 Behavior Smells

Root Cause

Interacting Test Suites usually occur when tests in separate test suites try to cre-
ate the same resource. When they are run in the same suite, the fi rst one succeeds
but the second one fails while trying to create the resource.

The nature of the problem may be obvious just by looking at the test failure
or by reading the failed Test Method (page 348). If it is not, we can try remov-
ing other tests from the (nonfailing) test suite, one by one. When the failure
stops occurring, we simply examine the last test we removed for behaviors that
might cause the interactions with the other (failing) test. In particular, we need
to look at anything that might involve a Shared Fixture, including all places
where class variables are initialized. These locations may be within the Test
Method itself, within a setUp method, or in any Test Utility Methods (page 599)
that are called.

Warning: There may be more than one pair of tests interacting in the same test
suite! The interaction may also be caused by the Suite Fixture Setup (page 441)
or Setup Decorator (page 447) of several Testcase Classes clashing rather than
by a confl ict between the actual Test Methods!

Variants of xUnit that use Testcase Class Discovery (see Test Discovery on
page 393), such as NUnit, may appear to not use test suites. In reality, they
do—they just don’t expect the test automaters to use a Test Suite Factory (see
Test Enumeration on page 399) to identify the Test Suite Object to the Test
Runner.

Possible Solution

We could, of course, eliminate this problem entirely by using a Fresh Fixture.
If this solution isn’t within our scope, we could try using an Immutable Shared
Fixture to prevent the tests’ interaction.

If the problem is caused by leftover objects or database rows created by one
test that confl ict with the fi xture being created by a later test, we should con-
sider using Automated Teardown to eliminate the need to write error-prone
cleanup code.

Cause: Lonely Test

A Lonely Test is a special case of Interacting Tests. In this case, a test can be run
as part of a suite but cannot be run by itself because it depends on something in a
Shared Fixture that was created by another test (e.g., Chained Tests; see page 454)
or by suite-level fi xture setup logic (e.g., a Setup Decorator).

We can address this problem by converting the test to use a Fresh Fixture or
by adding Lazy Setup logic to the Lonely Test to allow it to run by itself.

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

233

Cause: Resource Leakage

Tests or the SUT consume fi nite resources.

Symptoms

Tests run more and more slowly or start to fail suddenly. Reinitializing the Test
Runner, SUT, or Database Sandbox (page 650) clears up the problem—only to
have it reappear over time.

Root Cause

Tests or the SUT consume fi nite resources by allocating those resources and
failing to free them afterward. This practice may make the tests run more
slowly. Over time, all the resources are used up and tests that depend on them
start to fail.

This problem can be caused by one of two types of bugs:

• The SUT fails to clean up the resources properly. The sooner we detect
this behavior, the sooner we can track it down and fi x it.

• The tests themselves cause the resource leakage by allocating resources
as part of fi xture setup and failing to clean them up during fi xture
teardown.

Possible Solution

If the problem lies in the SUT, then the tests have done their job and we can fi x
the bug. If the tests are causing the resource leakage, then we must eliminate the
source of the leaks. If the leaks are caused by failure to clean up properly when
tests fail, we may need to ensure that all tests do Guaranteed In-line Teardown (see
In-line Teardown on page 509) or convert them to use Automated Teardown.

In general, it is a good idea to set the size of all resource pools to 1. This
choice will cause the tests to fail much sooner, allowing us to more quickly
determine which tests are causing the leak(s).

Cause: Resource Optimism

A test that depends on external resources has nondeterministic results depending
on when or where it is run.

Symptoms

A test passes when it is run in one environment and fails when it is run in
another environment.

 Erratic Test

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

234 Chapter 16 Behavior Smells

Root Cause

A resource that is available in one environment is not available in another
environment.

Possible Solution

If possible, we should convert the test to use a Fresh Fixture by creating the
resource as part of the test’s fi xture setup phase. This approach ensures that the
resource exists wherever it is run. It may necessitate the use of relative address-
ing of fi les to ensure that the specifi c location in the fi le system exists regardless
of where the SUT is executed.

If an external resource must be used, the resources should be stored in
the source code repository [SCM] so that all Test Runners run in the same en-
vironment.

Cause: Unrepeatable Test

A test behaves differently the fi rst time it is run compared with how it behaves
on subsequent test runs. In effect, it is interacting with itself across test runs.

Symptoms

Either a test passes the fi rst time it is run and fails on all subsequent runs, or it
fails the fi rst time and passes on all subsequent runs. Here’s an example of what
“Pass-Fail-Fail” might look like:

Suite.run()--> Green
Suite.run()--> Test C fails
Suite.run()--> Test C fails
User resets something
Suite.run()--> Green
Suite.run()--> Test C fails

Here’s an example of what “Fail-Pass-Pass” might look like:

Suite.run()--> Test C fails
Suite.run()--> Green
Suite.run()--> Green
User resets something
Suite.run()--> Test C fails
Suite.run()--> Green

Be forewarned that if our test suite contains several Unrepeatable Tests, we may
see results that look more like this:

Suite.run()--> Test C fails
Suite.run()--> Test X fails
Suite.run()--> Test X fails

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

235

User resets something
Suite.run()--> Test C fails
Suite.run()--> Test X fails

Test C exhibits the “Fail-Pass-Pass” behavior, while test X exhibits the “Pass-
Fail-Fail” behavior at the same time. It is easy to miss this problem because we
see a red bar in each case; we notice the difference only if we look closely to see
which tests fail each time we run them.

Root Cause

The most common cause of an Unrepeatable Test is the use—either deliberate
or accidental—of a Shared Fixture. A test may be modifying the test fi xture such
that, during a subsequent run of the test suite, the fi xture is in a different state.
Although this problem most commonly occurs with a Prebuilt Fixture (see Shared
Fixture), the only true prerequisite is that the fi xture outlasts the test run.

The use of a Database Sandbox may isolate our tests from other developers’
tests but it won’t prevent the tests we run from colliding with themselves or
with other tests we run from the same Test Runner.

The use of Lazy Setup to initialize a fi xture holding class variable can result
in the test fi xture not being reinitialized on subsequent runs of the same test
suite. In effect, we are sharing the test fi xture between all runs started from the
same Test Runner.

Possible Solution

Because a persistent Shared Fixture is a prerequisite for an Unrepeatable Test,
we can eliminate the problem by using a Fresh Fixture for each test. To fully
isolate the tests, we must make sure that no shared resource, such as a Database
Sandbox, outlasts the lifetimes of the individual tests. One option is to replace
a database with a Fake Database (see Fake Object on page 551). If we must
work with a persistent data store, we should use Distinct Generated Values (see
Generated Value on page 723) for all database keys to ensure that we create
different objects for each test and test run. The other alternative is to implement
Automated Teardown to remove all newly created objects and rows safely and
effi ciently.

Cause: Test Run War

Test failures occur at random when several people are running tests
simultaneously.

 Erratic Test

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

236 Chapter 16 Behavior Smells

Symptoms

We are running tests that depend on some shared external resource such as a
database. From the perspective of a single person running tests, we might see
something like this:

Suite.run() --> Test 3 fails
Suite.run() --> Test 2 fails
Suite.run() --> All tests pass
Suite.run() --> Test 1 fails

Upon describing our problem to our teammates, we discover that they are
having the same problem at the same time. When only one of us runs tests, all
of the tests pass.

Impact

A Test Run War can be very frustrating because the probability of it occurring
increases the closer we get to a code cutoff deadline. This isn’t just Murphy’s law
kicking in: It really does happen more often at this point! We tend to commit
smaller changes at more frequent intervals as the deadline approaches (think
“last-minute bug fi xing”!). This, in turn, increases the likelihood that someone
else will be running the test suite at the same time, which itself increases the like-
lihood of test collisions between test runs occurring at the same time.

Root Cause

A Test Run War can happen only when we have a globally Shared Fixture that
various tests access and sometimes modify. This shared fi xture could be a fi le
that must be opened or read by either a test or the SUT, or it could consist of the
records in a test database.

Database contention can be caused by the following activities:

• Trying to update or delete a record while another test is also updating
the same record

• Trying to update or delete a record while another test has a read lock
(pessimistic locking) on the same record

File contention can be caused by an attempt to access a fi le that has already been
opened by another instance of the test running from a different Test Runner.

Possible Solution

Using a Fresh Fixture is the preferred solution for a Test Run War. An even sim-
pler solution is to give each Test Runner his or her own Database Sandbox. This

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

237

should not involve making any changes to the tests but will completely eliminate
the possibility of a Test Run War. It will not, however, eliminate other sources of
Erratic Tests because the tests can still interact through the Shared Fixture (the
Database Sandbox). Another option is to switch to an Immutable Shared Fixture
by having each test create new objects whenever it plans to change those objects.
This approach does require changes to the Test Methods.

If the problem is caused by leftover objects or database rows created by one
test that pollutes the fi xture of a later test, another solution is using Automated
Teardown to clean up after each test safely and effi ciently. This measure, by
itself, is unlikely to completely eliminate a Test Run War but it might reduce its
frequency.

Cause: Nondeterministic Test

Test failures occur at random, even when only a single Test Runner is running
tests.

Symptoms

We are running tests and the results vary each time we run them, as shown here:

Suite.run() --> Test 3 fails
Suite.run() --> Test 3 crashes
Suite.run() --> All tests pass
Suite.run() --> Test 3 fails

After comparing notes with our teammates, we rule out a Test Run War either
because we are the only person running tests or because the test fi xture is not
shared between users or computers.

As with an Unrepeatable Test, having multiple Nondeterministic Tests in
the same test suite can make it more diffi cult to detect the failure/error pat-
tern: It looks like different tests are failing rather than a single test producing
different results.

Impact

Debugging Nondeterministic Tests can be very time-consuming and frustrating
because the code executes differently each time. Reproducing the failure can
be problematic, and characterizing exactly what causes the failure may require
many attempts. (Once the cause has been characterized, it is often a straight-
forward process to replace the random value with a value known to cause the
problem.)

 Erratic Test

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

238 Chapter 16 Behavior Smells

Root Cause

Nondeterministic Tests are caused by using different values each time a test is
run. Sometimes, of course, it is a good idea to use different values each time the
same test is run. For example, Distinct Generated Values may legitimately be
used as unique keys for objects stored in a database. Use of generated values as
input to an algorithm where the behavior of the SUT is expected to differ for
different values can cause Nondeterministic Tests, however, as in the following
examples:

• Integer values where negative (or even zero) values are treated differ-
ently by the system, or where there is a maximum allowable value. If
we generate a value at random, the test could fail in some test runs and
pass on others.

• String values where the length of a string has minimum or maximum
allowed values. This problem often occurs accidentally when we gener-
ate a random or unique numeric value and then convert it to a string
representation without using an explicit format that guarantees the
length is constant.

It might seem like a good idea to use random values because they would improve
our test coverage. Unfortunately, this tactic decreases our understanding of the
test coverage and the repeatability of our tests (which violates the Repeatable Test
principle; see page 26).

Another potential cause of Nondeterministic Tests is the use of Conditional
Test Logic (page 200) in our tests. Its inclusion can result in different code
paths being executed on different test runs, which in turn makes our tests non-
deterministic. A common “reason” cited for doing so is the Flexible Test (see
Conditional Test Logic). Anything that makes the tests less than completely
deterministic is a bad idea!

Possible Solution

The fi rst step is to make our tests repeatable by ensuring that they execute in a
completely linear fashion by removing any Conditional Test Logic. Then we can
go about replacing any random values with deterministic values. If this results in
poor test coverage, we can add more tests for the interesting cases we aren’t cov-
ering. A good way to determine the best set of input values is to use the bound-
ary values of the equivalence classes. If their use results in a lot of Test Code
Duplication, we can extract a Parameterized Test (page 607) or put the input val-
ues and the expected results into a fi le read by a Data-Driven Test (page 288).

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/

239

Fragile Test

A test fails to compile or run when the SUT is changed in ways that
do not affect the part the test is exercising.

Symptoms

We have one or more tests that used to run and pass but now either fail
to compile and run or fail when they are run. When we have changed the
behavior of the SUT in question, such a change in test results is expected.
When we don’t think the change should have affected the tests that are fail-
ing or we haven’t changed any production code or tests, we have a case of
Fragile Tests.

Past efforts at automated testing have often run afoul of the “four sensitivities”
of automated tests. These sensitivities are what cause Fully Automated Tests (see
page 26) that previously passed to suddenly start failing. The root cause for tests
failing can be loosely classifi ed into one of these four sensitivities. Although each
sensitivity may be caused by a variety of specifi c test coding behaviors, it is useful
to understand the sensitivities in their own right.

Impact

Fragile Tests increase the cost of test maintenance by forcing us to visit many
more tests each time we modify the functionality of the system or the fi xture.
They are particularly deadly when projects rely on highly incremental delivery,
as in agile development (such as eXtreme Programming).

Troubleshooting Advice

We need to look for patterns in how the tests fail. We ask ourselves, “What do
all of the broken tests have in common?” The answer to this question should
help us understand how the tests are coupled to the SUT. Then we look for ways
to minimize this coupling.

Figure 16.2 summarizes the process for determining which sensitivity we are
dealing with.

 Fragile Test

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

240 Chapter 16 Behavior Smells

Figure 16.2 Troubleshooting a Fragile Test.

The general sequence is to fi rst ask ourselves whether the tests are failing to
compile; if so, Interface Sensitivity is likely to blame. With dynamic languages
we may see type incompatibility test errors at runtime—another sign of Interface
Sensitivity.

If the tests are running but the SUT is providing incorrect results, we must
ask ourselves whether we have changed the code. If so, we can try backing out
of the latest code changes to see if that fi xes the problem. If that tactic stops the
failing tests,1 then we had Behavior Sensitivity.

If the tests still fail with the latest code changes backed out, then something
else must have changed and we must be dealing with either Data Sensitiv-
ity or Context Sensitivity. The former occurs only when we use a Shared Fix-
ture (page 317) or we have modifi ed fi xture setup code; otherwise, we must
have a case of Context Sensitivity.

While this sequence of asking questions isn’t foolproof, it will give the right
answer probably nine times out of ten. Caveat emptor!

Causes

Fragile Tests may be the result of several different root causes. They may be
a sign of Indirect Testing (see Obscure Test on page 186)—that is, using the
objects we modifi ed to access other objects—or they may be a sign that we have
Eager Tests (see Assertion Roulette on page 224) that are verifying too much
functionality. Fragile Tests may also be symptoms of overcoupled software that
is hard to test in small pieces (Hard-to-Test Code; see page 209) or our lack of
experience with unit testing using Test Doubles (page 522) to test pieces in isola-
tion (Overspecifi ed Software).

1 Other tests may fail because we have removed the code that made them pass—but
at least we have established which part of the code they depend on.

Has Some
Code Changed?

Are the Tests
Compiling?

No Probably Interface
Sensitivity

Yes

Have the Failing
Tests Changed?

No

Probably Context
Sensitivity

Has the Test
Data Changed? No

No

Probably Data
Sensitivity

Yes

Yes
Probably Behavior

Sensitivity

Yes
Possibly Not
Fragile Test

Are the Tests
Erroring?

No

Possibly Interface
Sensitivity

Yes

Has Some
Code Changed?

Are the Tests
Compiling?

No Probably Interface
Sensitivity

Yes

Have the Failing
Tests Changed?

No

Probably Context
Sensitivity

Has the Test
Data Changed? No

No

Probably Data
Sensitivity

Yes

Yes
Probably Behavior

Sensitivity

Yes
Possibly Not
Fragile Test

Are the Tests
Erroring?

No

Possibly Interface
Sensitivity

Yes

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

241

Regardless of their root cause, Fragile Tests usually show up as one of the
four sensitivities. Let’s start by looking at them in a bit more detail; we’ll
then examine some more detailed examples of how specifi c causes change test
output.

Cause: Interface Sensitivity

Interface Sensitivity occurs when a test fails to compile or run because some part
of the interface of the SUT that the test uses has changed.

Symptoms

In statically typed languages, Interface Sensitivity usually shows up as a failure
to compile. In dynamically typed languages, it shows up only when we run the
tests. A test written in a dynamically typed language may experience a test error
when it invokes an application programming interface (API) that has been modi-
fi ed (via a method name change or method signature change). Alternatively, the
test may fail to fi nd a user interface element it needs to interact with the SUT via
a user interface. Recorded Tests (page 278) that interact with the SUT through
a user interface2 are particularly prone to this problem.

Possible Solution

The cause of the failures is usually reasonably apparent. The point at which the
test fails (to compile or execute) will usually point out the location of the prob-
lem. It is rare for the test to continue to run beyond the point of change—after
all, it is the change itself that causes the test error.

When the interface is used only internally (within the organization or applica-
tion) and by automated tests, SUT API Encapsulation (see Test Utility Method
on page 599) is the best solution for Interface Sensitivity. It reduces the cost
and impact of changes to the API and, therefore, does not discourage necessary
changes from being made. A common way to implement SUT API Encapsula-
tion is through the defi nition of a Higher-Level Language (see page 41) that is
used to express the tests. The verbs in the test language are translated into the
appropriate method calls by the encapsulation layer, which is then the only soft-
ware that needs to be modifi ed when the interface is altered in somewhat back-
ward-compatible ways. The “test language” can be implemented in the form
of Test Utility Methods such as Creation Methods (page 415) and Verifi cation
Methods (see Custom Assertion on page 474) that hide the API of the SUT
from the test.

2 Often called “screen scraping.”

 Fragile Test

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

242 Chapter 16 Behavior Smells

The only other way to avoid Interface Sensitivity is to put the interface
under strict change control. When the clients of the interface are external
and anonymous (such as the clients of Windows DLLs), this tactic may be
the only viable alternative. In these cases, a protocol usually applies to mak-
ing changes to interfaces. That is, all changes must be backward compatible;
before older versions of methods can be removed, they must be deprecated,
and deprecated methods must exist for a minimum number of releases or
elapsed time.

Cause: Behavior Sensitivity

Behavior Sensitivity occurs when changes to the SUT cause other tests to fail.

Symptoms

A test that once passed suddenly starts failing when a new feature is added to
the SUT or a bug is fi xed.

Root Cause

Tests may fail because the functionality they are verifying has been modifi ed.
This outcome does not necessarily signal a case of Behavior Sensitivity because it
is the whole reason for having regression tests. It is a case of Behavior Sensitivity
in any of the following circumstances:

• The functionality the regression tests use to set up the pre-test state of
the SUT has been modifi ed.

• The functionality the regression tests use to verify the post-test state of
the SUT has been modifi ed.

• The code the regression tests use to tear down the fi xture has been
changed.

If the code that changed is not part of the SUT we are verifying, then we are
dealing with Context Sensitivity. That is, we may be testing too large a SUT. In
such a case, what we really need to do is to separate the SUT into the part we
are verifying and the components on which that part depends.

Possible Solution

Any newly incorrect assumptions about the behavior of the SUT used during
fi xture setup may be encapsulated behind Creation Methods. Similarly, assump-
tions about the details of post-test state of the SUT can be encapsulated in Cus-
tom Assertions or Verifi cation Methods. While these measures won’t eliminate

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

243

the need to update test code when the assumptions change, they certainly do
reduce the amount of test code that needs to be changed.

Cause: Data Sensitivity

Data Sensitivity occurs when a test fails because the data being used to test the
SUT has been modifi ed. This sensitivity most commonly arises when the con-
tents of the test database change.

Symptoms

A test that once passed suddenly starts failing in any of the following circum-
stances:

• Data is added to the database that holds the pre-test state of the SUT.

• Records in the database are modifi ed or deleted.

• The code that sets up a Standard Fixture (page 305) is modifi ed.

• A Shared Fixture is modifi ed before the fi rst test that uses it.

In all of these cases, we must be using a Standard Fixture, which may be either
a Fresh Fixture (page 311) or a Shared Fixture such as a Prebuilt Fixture (see
Shared Fixture).

Root Cause

Tests may fail because the result verifi cation logic in the test looks for data that
no longer exists in the database or uses search criteria that accidentally include
newly added records. Another potential cause of failure is that the SUT is being
exercised with inputs that reference missing or modifi ed data and, therefore, the
SUT behaves differently.

In all cases, the tests make assumptions about which data exist in the data-
base—and those assumptions are violated.

Possible Solution

In those cases where the failures occur during the exercise SUT phase of the test,
we need to look at the pre-conditions of the logic we are exercising and make
sure they have not been affected by recent changes to the database.

In most cases, the failures occur during result verifi cation. We need to
examine the result verifi cation logic to ensure that it does not make any un-
reasonable assumptions about which data exists. If it does, we can modify the
verifi cation logic.

 Fragile Test

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

244 Chapter 16 Behavior Smells

Why Do We Need 100 Customers?

A software development coworker of mine was working on a project
as an analyst. One day, the manager she was working for came into her
offi ce and asked, “Why have you requested 100 unique customers be cre-
ated in the test database instance?”

As a systems analyst, my coworker was responsible for helping the busi-
ness analysts defi ne the requirements and the acceptance tests for a large,
complex project. She wanted to automate the tests but had to overcome
several hurdles. One of the biggest hurdles was the fact that the SUT got
much of its data from an upstream system—it was too complex to try to
generate this data manually.

The systems analyst came up with a way to generate XML from tests
captured in spreadsheets. For the fi xture setup part of the tests, she trans-
formed the XML into QaRun (a Record and Playback Test tool—see
Recorded Test on page 278) scripts that would load the data into the
upstream system via the user interface. Because it took a while to run
these scripts and for the data to make its way downstream to the SUT, the
systems analyst had to run these scripts ahead of time. This meant that
a Fresh Fixture (page 311) strategy was unachievable; a Prebuilt Fix-
ture (page 429) was the best she could do. In an attempt to avoid the
Interacting Tests (see Erratic Test on page 228) that were sure to result
from a Shared Fixture (page 317), the systems analyst decided to imple-
ment a virtual Database Sandbox (page 650) using a Database Partition-
ing Scheme based on a unique customer number for each test. This way,
any side effects of one test couldn’t affect any other tests.

Given that she had about 100 tests to automate, the systems analyst
needed about 100 test customers defi ned in the database. And that’s
what she told her manager.

The failure can show up in the result verifi cation logic even if the problem is that
the inputs of the SUT refer to nonexistent or modifi ed data. This may require ex-
amining the “after” state of the SUT (which differs from the expected post-test
state) and tracing it back to discover why it does not match our expectations.
This should expose the mismatch between SUT inputs and the data that existed
before the test started executing.

The best solution to Data Sensitivity is to make the tests independent of
the existing contents of the database—that is, to use a Fresh Fixture. If this
is not possible, we can try using some sort of Database Partitioning Scheme

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

245

(see Database Sandbox on page 650) to ensure that the data modifi ed for one
test does not overlap with the data used by other tests. (See the sidebar “Why
Do We Need 100 Customers?” on page 244 for an example.)

Another solution is to verify that the right changes have been made to the
data. Delta Assertions (page 485) compare before and after “snapshots” of the
data, thereby ignoring data that hasn’t changed. They eliminate the need to
hard-code knowledge about the entire fi xture into the result verifi cation phase
of the test.

Cause: Context Sensitivity

Context Sensitivity occurs when a test fails because the state or behavior of the
context in which the SUT executes has changed in some way.

Symptoms

A test that once passed suddenly starts failing for mysterious reasons. Unlike
with an Erratic Test (page 228), the test produces consistent results when run
repeatedly over a short period of time. What is different is that it consistently
fails regardless of how it is run.

Root Cause

Tests may fail for two reasons:

• The functionality they are verifying depends in some way on the time
or date.

• The behavior of some other code or system(s) on which the SUT
depends has changed.

A major source of Context Sensitivity is confusion about which SUT we are
intending to verify. Recall that the SUT is whatever piece of software we are intend-
ing to verify. When unit testing, it should be a very small part of the overall system
or application. Failure to isolate the specifi c unit (e.g., class or method) is bound
to lead to Context Sensitivity because we end up testing too much software all at
once. Indirect inputs that should be controlled by the test are then left to chance. If
someone then modifi es a depended-on component (DOC), our tests fail.

To eliminate Context Sensitivity, we must track down which indirect input to
the SUT has changed and why. If the system contains any date- or time-related
logic, we should examine this logic to see whether the length of the month or
other similar factors could be the cause of the problem.

If the SUT depends on input from any other systems, we should examine these
inputs to see if anything has changed recently. Logs of previous interactions

 Fragile Test

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

246 Chapter 16 Behavior Smells

with these other systems are very useful for comparison with logs of the failure
scenarios.

If the problem comes and goes, we should look for patterns related to when
it passes and when it fails. See Erratic Test for a more detailed discussion of
possible causes of Context Sensitivity.

Possible Solution

We need to control all the inputs of the SUT if our tests are to be deterministic.
If we depend on inputs from other systems, we may need to control these inputs
by using a Test Stub (page 529) that is confi gured and installed by the test. If the
system contains any time- or date-specifi c logic, we need to be able to control the
system clock as part of our testing. This may necessitate stubbing out the system
clock with a Virtual Clock [VCTP] that gives the test a way to set the starting
time or date and possibly to simulate the passage of time.

Cause: Overspecifi ed Software

A test says too much about how the software should be structured or behave.
This form of Behavior Sensitivity (see Fragile Test on page 239) is associated with
the style of testing called Behavior Verifi cation (page 468). It is characterized by
extensive use of Mock Objects (page 544) to build layer-crossing tests. The main
issue is that the tests describe how the software should do something, not what it
should achieve. That is, the tests will pass only if the software is implemented in
a particular way. This problem can be avoided by applying the principle Use the
Front Door First (see page 40) whenever possible to avoid encoding too much
knowledge about the implementation of the SUT into the tests.

Cause: Sensitive Equality

Objects to be verifi ed are converted to strings and compared with an expected
string. This is an example of Behavior Sensitivity in that the test is sensitive
to behavior that it is not in the business of verifying. We could also think of
it as a case of Interface Sensitivity where the semantics of the interface have
changed. Either way, the problem arises from the way the test was coded;
using the string representations of objects for verifying them against expected
values is just asking for trouble.

Cause: Fragile Fixture

When a Standard Fixture is modifi ed to accommodate a new test, several other
tests fail. This is an alias for either Data Sensitivity or Context Sensitivity
depending on the nature of the fi xture in question.

Also known as:
Overcoupled

Test

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

247

Further Reading

Sensitive Equality and Fragile Fixture were fi rst described in [RTC], which was
the fi rst paper published on test smells and refactoring test code. The four sen-
sitivities were fi rst described in [ARTRP], which also described several ways to
avoid Fragile Tests in Recorded Tests.

 Fragile Test

Fragile Test

www.it-ebooks.info

http://www.it-ebooks.info/

248 Chapter 16 Behavior Smells

Frequent Debugging

Manual debugging is required to determine the cause of most test failures.

Symptoms

A test run results in a test failure or a test error. The output of the Test Run-
ner (page 377) is insuffi cient for us to determine the problem. Thus we have to
use an interactive debugger (or sprinkle print statements throughout the code)
to determine where things are going wrong.

If this case is an exception, we needn’t worry about it. If most test fail-
ures require this kind of debugging, however, we have a case of Frequent
Debugging.

Causes

Frequent Debugging is caused by a lack of Defect Localization (see page 22) in
our suite of automated tests. The failed tests should tell us what went wrong either
through their individual failure messages (see Assertion Message on page 370)
or through the pattern of test failures. If they don’t:

• We may be missing the detailed unit tests that would point out a logic
error inside an individual class.

• We may be missing the component tests for a cluster of classes (i.e., a
component) that would point out an integration error between the indi-
vidual classes. This can happen when we use Mock Objects (page 544)
extensively to replace depended-on objects but the unit tests of the
depended-on objects don’t match the way the Mock Objects are pro-
grammed to behave.

I’ve encountered this problem most frequently when I wrote higher-level (func-
tional or component) tests but failed to write all the unit tests for the individual
methods. (Some people would call this approach storytest-driven development
to distinguish it from unit test-driven development, in which every little bit of
code is pulled into existence by a failing unit test.)

Frequent Debugging can also be caused by Infrequently Run Tests (see Pro-
duction Bugs on page 268). If we run our tests after every little change we
make to the software, we can easily remember what we changed since the last
time we ran the tests. Thus, when a test fails, we don’t have to spend a lot

Also known as:
Manual

Debugging

Frequent
Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

249

of time troubleshooting the software to discover where the bug is—we know
where it is because we remember putting it there!

Impact

Manual debugging is a slow, tedious process. It is easy to overlook subtle indi-
cations of a bug and spend many hours tracking down a single logic error. Fre-
quent Debugging reduces productivity and makes development schedules much
less predictable because a single manual debugging session could extend the time
required to develop the software by half a day or more.

Solution Patterns

If we are missing the customer tests for a piece of functionality and manual user
testing has revealed a problem not exposed by any automated tests, we probably
have a case of Untested Requirements (see Production Bugs). We can ask our-
selves, “What kind of automated test would have prevented the manual debug-
ging session?” Better yet, once we have identifi ed the problem, we can write a
test that exposes it. Then we can use the failing test to do test-driven bug fi xing.
If we suspect this to be a widespread problem, we can create a development task
to identify and write any additional tests that would be required to fi ll the gap
we just exposed.

Doing true test-driven development is the best way to avoid the circumstances
that lead to Frequent Debugging. We should start as close as possible to the
skin of the application and do storytest-driven development—that is, we should
write unit tests for individual classes as well as component tests for the collec-
tions of related classes to ensure we have good Defect Localization.

 Frequent Debugging

Frequent
Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

250 Chapter 16 Behavior Smells

Manual Intervention

A test requires a person to perform some manual action
each time it is run.

Symptoms

The person running the test must do something manually either before the test
is run or partway through the test run; otherwise, the test fails. The Test Runner
may need to verify the results of the test manually.

Impact

Automated tests are all about getting early feedback on problems introduced
into the software. If the cost of getting that feedback is too high—that is, if it
takes the form of Manual Intervention—we likely won’t run the tests very often
and we won’t get the feedback very often. If we don’t get that feedback very
often, we’ll probably introduce lots of problems between test runs, which will
ultimately lead to Frequent Debugging (page 248) and High Test Maintenance
Cost (page 265).

Manual Intervention also makes it impractical to have a fully automated
Integration Build [SCM] and regression test process.

Causes

The causes of Manual Intervention are as varied as the kinds of things our soft-
ware does or encounters. The following are some general categories of the kinds
of issues that require Manual Intervention. This list is by no means exhaustive,
though.

Cause: Manual Fixture Setup

Symptoms

A person has to set up the test environment manually before the automated tests
can be run. This activity may take the form of confi guring servers, starting server
processes, or running scripts to set up a Prebuilt Fixture (page 429).

Root Cause

This problem is typically caused by a lack of attention to automating the fi xture
setup phase of the test. It may also be caused by excessive coupling between

Manual
Intervention

www.it-ebooks.info

http://www.it-ebooks.info/

251

components in the SUT that prevents us from testing a majority of the code in
the system inside the development environment.

Possible Solution

We need to make sure that we are writing Fully Automated Tests. This may
require opening up test-specifi c APIs to allow tests to set up the fi xture. Where
the issue is related to an inability to run the software in the development envi-
ronment, we may need to refactor the software to decouple the SUT from the
steps that would otherwise need to be done manually.

Cause: Manual Result Verifi cation

Symptoms

We can run the tests but they almost always pass—even when we know that the
SUT is not returning the correct results.

Root Cause

If the tests we write are not Self-Checking Tests (see page 26), we can be given a
false sense of security because tests will fail only if an error/exception is thrown.

Possible Solution

We can ensure that our tests are all self-checking by including result verifi ca-
tion logic such as calls to Assertion Methods (page 362) within the Test Meth-
ods (page 348).

Cause: Manual Event Injection

Symptoms

A person must intervene during test execution to perform some manual action
before the test can proceed.

Root Cause

Many events in a SUT are hard to generate under program control. Examples
include unplugging network cables, bringing down database connections, and
clicking buttons on a user interface.

Impact

If a person needs to do something manually, it both increases the effort to run
the test and ensures that the test cannot be run unattended. This torpedoes any
attempt to do a fully automated build-and-test cycle.

 Manual Intervention

Manual
Intervention

www.it-ebooks.info

http://www.it-ebooks.info/

252 Chapter 16 Behavior Smells

Possible Solution

The best solution is to fi nd ways to test the software that do not require a real
person to do the manual actions. If the events are reported to the SUT through
asynchronous events, we can have the Test Method invoke the SUT directly,
passing it a simulated event object. If the SUT experiences the situation as a syn-
chronous response from some other part of the system, we can get control of the
indirect inputs by replacing some part of the SUT with a Test Stub (page 529)
that simulates the circumstances to which we want to expose the SUT.

Further Reading

Refer to Chapter 11, Using Test Doubles, for a much more detailed description
of how to get control of the indirect inputs of the SUT.

Manual
Intervention

www.it-ebooks.info

http://www.it-ebooks.info/

253

Slow Tests

The tests take too long to run.

Symptoms

The tests take long enough to run that developers don’t run them every time they make
a change to the SUT. Instead, the developers wait until the next coffee break or another
interruption before running them. Or, whenever they run the tests, they walk around
and chat with other team members (or play Doom or surf the Internet or . . .).

Impact

Slow Tests obviously have a direct cost: They reduce the productivity of the
person running the test. When we are test driving the code, we’ll waste precious
seconds every time we run our tests; when it is time to run all the tests before we
commit our changes, we’ll have an even more signifi cant wait time.

Slow Tests also have many indirect costs:

• The bottleneck created by holding the “integration token” longer because
we need to wait for the tests to run after merging all our changes.

• The time during which other people are distracted by the person wait-
ing for his or her test run to fi nish.

• The time spent in debuggers fi nding a problem that was inserted
sometime after the last time we ran the test. The longer it has been
since the test was run, the less likely we are to remember exactly what
we did to break the test. This cost is a result of the breakdown of the
rapid feedback that automated unit tests provide.

A common reaction to Slow Tests is to immediately go for a Shared Fix-
ture (page 317). Unfortunately, this approach almost always results in other
problems, including Erratic Tests (page 228). A better solution is to use a Fake
Object (page 551) to replace slow components (such as the database) with faster
ones. However, if all else fails and we must use some kind of Shared Fixture, we
should make it immutable if at all possible.

Troubleshooting Advice

Slow Tests can be caused either by the way the SUT is built and tested or by
the way the tests are designed. Sometimes the problem is obvious—we can just

 Slow Tests

Slow Tests

www.it-ebooks.info

http://www.it-ebooks.info/

254 Chapter 16 Behavior Smells

watch the green bar grow as we run the tests. There may be notable pauses in the
execution; we may see explicit delays coded in a Test Method (page 348). If the
cause is not obvious, however, we can run different subsets (or subsuites) of tests
to see which ones run quickly and which ones take a long time to run.

A profi ling tool can come in handy to see where we are spending the extra
time in test execution. Of course, xUnit gives us a simple means to build our
own mini-profi ler: We can edit the setUp and tearDown methods of our Testcase
Superclass (page 638). We then write out the start/end times or test duration
into a log fi le, along with the name of the Testcase Class (page 373) and Test
Method. Finally, we import this fi le into a spreadsheet, sort by duration, and
voila—we have found the culprits. The tests with the longest execution times
are the ones on which it will be most worthwhile to focus our efforts.

Causes

The specifi c cause of the Slow Tests could lie either in how we built the SUT or
in how we coded the tests themselves. Sometimes, the way the SUT was built
forces us to write our tests in a way that makes them slow. This is particularly a
problem with legacy code or code that was built with a “test last” perspective.

Cause: Slow Component Usage

A component of the SUT has high latency.

Root Cause

The most common cause of Slow Tests is interacting with a database in many of
the tests. Tests that have to write to a database to set up the fi xture and read a
database to verify the outcome (a form of Back Door Manipulation; see page 327)
take about 50 times longer to run than the same tests that run against in-memory
data structures. This is an example of the more general problem of using slow
components.

Possible Solution

We can make our tests run much faster by replacing the slow components with
a Test Double (page 522) that provides near-instantaneous responses. When the
slow component is the database, the use of a Fake Database (see Fake Object)
can make the tests run on average 50 times faster! See the sidebar “Faster Tests
Without Shared Fixtures” on page 319 for other ways to skin this cat.

Slow Tests

www.it-ebooks.info

http://www.it-ebooks.info/

255

Cause: General Fixture

Symptoms

Tests are consistently slow because each test builds the same over-engineered
fi xture.

Root Cause

Each test constructs a large General Fixture each time a Fresh Fixture (page 311)
is built. Because a General Fixture contains many more objects than a Mini-
mal Fixture (page 302), it naturally takes longer to construct. Fresh Fixture
involves setting up a brand-new instance of the fi xture for each Testcase Object
(page 382), so multiply “longer” by the number of tests to get an idea of the
magnitude of the slowdown!

Possible Solution

Our fi rst inclination is often to implement the General Fixture as a Shared Fix-
ture to avoid rebuilding it for each test. Unless we can make this Shared Fixture
immutable, however, this approach is likely to lead to Erratic Tests and should
be avoided. A better solution is to reduce the amount of fi xture setup performed
by each test.

Cause: Asynchronous Test

Symptoms

A few tests take inordinately long to run; those tests contain explicit delays.

Root Cause

Delays included within a Test Method slow down test execution considerably.
This slow execution may be necessary when the software we are testing spawns
threads or processes (Asynchronous Code; see Hard-to-Test Code on page 209)
and the test needs to wait for them to launch, run, and verify whatever side ef-
fects they were expected to have. Because of the variability in how long it takes
for these threads or processes to be started, the test usually needs to include
a long delay “just in case”—that is, to ensure it passes consistently. Here’s an
example of a test with delays:

 Slow Tests

Slow Tests

www.it-ebooks.info

http://www.it-ebooks.info/

256 Chapter 16 Behavior Smells

public class RequestHandlerThreadTest extends TestCase {
 private static final int TWO_SECONDS = 3000;

 public void testWasInitialized_Async() = throws InterruptedException {
 // Setup
 RequestHandlerThread sut = new RequestHandlerThread();
 // Exercise
 sut.start();
 // Verify
 Thread.sleep(TWO_SECONDS);
 assertTrue(sut.initializedSuccessfully());
 }

 public void testHandleOneRequest_Async()
 throws InterruptedException {
 // Setup
 RequestHandlerThread sut = new RequestHandlerThread();
 sut.start();
 // Exercise
 enqueRequest(makeSimpleRequest());
 // Verify
 Thread.sleep(TWO_SECONDS);
 assertEquals(1, sut.getNumberOfRequestsCompleted());
 assertResponseEquals(makeSimpleResponse(), getResponse());
 }
}

Impact

A two-second delay might not seem like a big deal. But consider what happens
when we have a dozen such tests: It would take almost half a minute to run these
tests. In contrast, we can run several hundred normal tests each second.

Possible Solution

The best way to address this problem is to avoid asynchronicity in tests by test-
ing the logic synchronously. This may require us to do an Extract Testable Com-
ponent (page 767) refactoring to implement a Humble Executable (see Humble
Object on page 695).

Cause: Too Many Tests

Symptoms

There are so many tests that they are bound to take a long time to run regardless
of how fast they execute.

Slow Tests

www.it-ebooks.info

http://www.it-ebooks.info/

257

Root Cause

The obvious cause of this problem is having so many tests. Perhaps we have such
a large system that the large number of tests really is necessary, or perhaps we
have too much overlap between tests.

The less obvious cause is that we are running too many of the tests too fre-
quently!

Possible Solution

We don’t have to run all the tests all the time! The key is to ensure that all tests
are run regularly. If the entire suite is taking too long to run, consider creating
a Subset Suite (see Named Test Suite on page 592) with a suitable cross section
of tests; run this subsuite before every commit operation. The rest of the tests
can be run regularly, albeit less often, by scheduling them to run overnight or at
some other convenient time. Some people call this technique a “build pipeline.”
For more on this and other ideas, see the sidebar “Faster Tests Without Shared
Fixtures” on page 319.

If the system is large in size, it is a good idea to break it into a number
of fairly independent subsystems or components. This allows teams work-
ing on each component to work independently and to run only those tests
specific to their own component. Some of those tests should act as proxies
for how the other components would use the component; they must be kept
up-to-date if the interface contract changes. Hmmm, Tests as Documenta-
tion (see page 23); I like it! Some end-to-end tests that exercise all the com-
ponents together (likely a form of storytests) would be essential, but they
don’t need to be included in the pre-commit suite.

 Slow Tests

Slow Tests

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

259

Chapter 17

Project Smells

Smells in This Chapter

Buggy Tests. 260

Developers Not Writing Tests . 263

High Test Maintenance Cost . 265

Production Bugs . 268

Project
Smells

www.it-ebooks.info

http://www.it-ebooks.info/

260 Chapter 17 Project Smells

Buggy Tests

Bugs are regularly found in the automated tests.

Fully Automated Tests (see page 26) are supposed to act as a “safety net”
for teams doing iterative development. But how can we be sure the safety net
actually works?

Buggy Tests is a project-level indication that all is not well with our auto-
mated tests.

Symptoms

A build fails, and a failed test is to blame. Upon closer inspection, we discover
that the code being testing works correctly, but the test indicated it was broken.

We encountered Production Bugs (page 268) despite having tests that verify
the specifi c scenario in which the bug was found. Root-cause analysis indicates
the test contains a bug that precluded catching the error in the production code.

Impact

Tests that give misleading results are dangerous! Tests that pass when they
shouldn’t (a false negative, as in “nothing wrong here”) give a false sense of
security. Tests that fail when they shouldn’t (a false positive) discredit the tests.
They are like the little boy who cried, “Wolf!”; after a few occurrences, we tend
to ignore them.

Causes

Buggy Tests can have many causes. Most of these problems also show up as
code or behavior smells. As project managers, we are unlikely to see these un-
derlying smells until we specifi cally look for them.

Cause: Fragile Test

Buggy Tests may just be project-level symptoms of a Fragile Test (page 239). For
false-positive test failures, a good place to start is the “four sensitivities”: Interface
Sensitivity (see Fragile Test), Behavior Sensitivity (see Fragile Test), Data Sensi-
tivity (see Fragile Test), and Context Sensitivity (see Fragile Test). Each of these
sensitivities could be the change that caused the test to fail. Removing the sensi-
tivities by using Test Doubles (page 522) and refactoring can be challenging but
ultimately it will make the tests much more dependable and cost-effective.

Buggy Tests

www.it-ebooks.info

http://www.it-ebooks.info/

261

Cause: Obscure Test

A common cause of false-negative test results (tests that pass when they shouldn’t)
is an Obscure Test (page 186), which is diffi cult to get right—especially when
we are modifying existing tests that were broken by a change we made. Because
automated tests are hard to test, we don’t often verify that a modifi ed test still
catches all the bugs it was initially designed to trap. As long as we see a green
bar, we think we are “good to go.” In reality, we may have created a test that
never fails.

Obscure Tests are best addressed through refactoring of tests to focus on
the reader of the tests. The real goal is Tests as Documentation (see page 23)—
anything less will increase the likelihood of Buggy Tests.

Cause: Hard-to-Test Code

Another common cause of Buggy Tests, especially with “legacy software”
(i.e., any software that doesn’t have a complete suite of automated tests), is that the
design of the software is not conducive to automated testing. This Hard-to-Test
Code (page 209) may force us to use Indirect Testing (see Obscure Test), which
in turn may result in a Fragile Test.

The only way Hard-to-Test Code will become easy to test is if we refactor the
code to improve its testability. (This transformation is described in Chapter 6,
Test Automation Strategy, and Chapter 11, Using Test Doubles.) If this is not an
option, we may be able to reduce the amount of test code affected by a change
by applying SUT API Encapsulation (see Test Utility Method on page 599).

Troubleshooting Advice

When we have Buggy Tests, it is important to ask lots of questions. We must ask
the “fi ve why’s” [TPS] to get to the bottom of the problem—that is, we must
determine exactly which code and/or behavior smells are causing the Buggy
Tests and fi nd the root cause of each smell.

Solution Patterns

The solution depends very much on why the Buggy Tests occurred. Refer to the
underlying behavior and code smells for possible solutions.

As with all “project smells,” we should look for project-level causes. These
include not giving developers enough time to perform the following activities:

 Buggy Tests

Buggy Tests

www.it-ebooks.info

http://www.it-ebooks.info/

262 Chapter 17 Project Smells

• Learn to write the tests properly

• Refactor the legacy code to make test automation easier and more robust

• Write the tests fi rst

Failure to address these project-level causes guarantees that the problems will
recur in the near future.

Buggy Tests

www.it-ebooks.info

http://www.it-ebooks.info/

263

Developers Not Writing Tests

Developers aren’t writing automated tests.

Symptoms

We hear that our developers aren’t writing tests. Or maybe we have observed
Production Bugs (page 268) and asked, “Why are so many bugs getting
through?”, only to be told, “Because we aren’t writing tests to cover that part
of the software.”

Impact

If the team isn’t writing automated tests for every piece of software “that could
possibly break,” it is mortgaging its future. The current pace of software develop-
ment will not be sustainable over the long haul because the system will be in test
debt. It will take longer and longer to add new functionality, and refactoring the
code to improve its design will be fraught with peril (so it will happen less and
less frequently). This problem marks the beginning of a trip down the proverbial
“slippery slope” to traditional paranoid, non-agile development. If that is where
we aspire to be, we should stay the course. Otherwise, it is time to take action.

Causes

Cause: Not Enough Time

Developers may have trouble writing tests in the time they are given to do
the development. This problem could be caused by an overly aggressive devel-
opment schedule or supervisors/team leaders who instruct developers, “Don’t
waste time writing tests.” Alternatively, developers may not have the skills
needed to write tests effi ciently and may not be allocated the time required to
work their way up the learning curve.

If time is what the developers need, managers need to adjust the proj-
ect schedule to give them that time. This extension need be only a temporary
adjustment while the developers learn the skills and test automation infrastructure
that will enable them to write the tests more quickly. In my experience, once
developers have internalized the process, they can write the tests and the code in
the same amount of time it once took them to write and debug just the code.
The time spent writing the tests is more than compensated for by the time not
spent in the debugger.

 Developers Not Writing Tests

Developers
Not Writing
Tests

www.it-ebooks.info

http://www.it-ebooks.info/

264 Chapter 17 Project Smells

Cause: Hard-to-Test Code

A common cause of Developers Not Writing Tests, especially with “legacy soft-
ware” (i.e., any software that doesn’t have a complete suite of automated tests), is
that the design of the software is not conducive to automated testing. This situa-
tion is described in more detail in its own smell, Hard-to-Test Code (page 209).

Cause: Wrong Test Automation Strategy

Another cause of Developers Not Writing Tests may be a test environment
or test automation strategy that leads to Fragile Tests (page 239) or Obscure
Tests (page 186) that take too long to write. We need to ask the “fi ve why’s”
[TPS] to fi nd the root causes. Then we can address those causes and get the ship
back on course.

Troubleshooting Advice

Project-level smells such as Developers Not Writing Tests are more likely to be
detected by a project manager, scrum master, or team leader than by a developer.
As managers, we may not know how to fi x the problem, but our awareness
and recognition of it is what matters. This unique perspective allows managers
to ask the development team questions about why they aren’t writing tests, in
which circumstances, and how long it takes to write tests when they do so. Then
managers can encourage and empower the developers to come up with ways of
addressing the root causes so that they write all the necessary tests.

Of course, managers must give the developers their full support in carrying
out whatever improvement plan they come up with. That support must include
enough time to learn the requisite skills and build or set up the necessary test
infrastructure. And managers shouldn’t expect things to turn around overnight.
They might set a process improvement goal for each iteration, such as “20%
reduction in code not tested” or “20% improvement in code coverage.” These
goals should be reasonable and at a high-enough level that they encourage the
right behavior, as opposed to just making the numbers look good. (A goal of 205
more tests written, for example, could be achieved without increasing the test
coverage one iota simply by splitting tests into smaller pieces or cloning tests.)

Developers
Not Writing

Tests

www.it-ebooks.info

http://www.it-ebooks.info/

265

High Test Maintenance Cost

Too much effort is spent maintaining existing tests.

Test code needs to be maintained along with the production code it verifi es. As
an application evolves, we will likely have to revisit our tests on a regular basis
whenever we change the SUT classes to add new functionality or whenever we
refactor the tests to simplify those classes. High Test Maintenance Cost occurs
when the tests become overly diffi cult to understand and maintain.

Symptoms

Development of new functionality slows down. Every time we add some new
functionality, we need to make extensive changes to the existing tests. Develop-
ers or test automaters may tell the project manager or coach that they need a
“test refactoring/cleanup iteration.”

If we have been tracking the amount of time we spend writing the new tests
and modifying existing tests separately from the time we spend implementing
the code to make the tests pass, we notice that most of the time is spent modify-
ing the existing tests.

Most test maintainability issues are accompanied by other smells, such as the
following:

• A Fragile Test (page 239) indicates that tests are too closely coupled to
the SUT.

• A Fragile Fixture (see Fragile Test) signals that too many tests depend
on the same fi xture design (Standard Fixture on page 305), which leads
to High Test Maintenance Cost.

• An Erratic Test (page 228) may be a sign that a Shared Fixture (page 317)
is causing our problem.

Impact

Team productivity drops signifi cantly because the tests take so much effort to main-
tain. Developers may be agitating to “cut and run” (remove the affected tests from
the test suites). While writing the production code is mandatory, maintaining the
tests is completely optional (at least to the uninformed). If nothing is done about this
problem, the entire test automation effort may be wasted when the team or manage-
ment decides that test automation just “doesn’t work” and abandons the tests.

 High Test Maintenance Cost

High Test
Maintenance
Cost

www.it-ebooks.info

http://www.it-ebooks.info/

266 Chapter 17 Project Smells

Causes

The root cause of High Test Maintenance Cost is failing to pay attention to
the principles described in Chapter 5, Principles of Test Automation. A more
immediate cause is often too much Test Code Duplication (page 213) and tests
that are too closely coupled to the API of the SUT.

Cause: Fragile Test

Tests that fail because minor changes were made to the SUT are called Fragile
Tests. They result in High Test Maintenance Cost because they need to be revis-
ited and “giggled” after all manner of minor changes that really shouldn’t affect
them.

The root cause of this failure can be any of the “four sensitivities”: Inter-
face Sensitivity (see Fragile Test), Behavior Sensitivity (see Fragile Test), Data
Sensitivity (see Fragile Test), and Context Sensitivity (see Fragile Test). We can
reduce the High Test Maintenance Cost by protecting the tests against as many
of these sensitivities as possible through the use of Test Doubles (page 522)
and by refactoring the system into smaller components and classes that can be
tested individually.

Cause: Obscure Test

Obscure Tests (page 186) are a major contributor to High Test Maintenance
Cost because they take longer to understand each time they are visited. When
they need to be modifi ed, they take more effort to adjust and are much less likely
to “work the fi rst time,” resulting in more debugging of tests. Obscure Tests are
also more likely to end up not catching conditions they were intended to detect,
which can lead to Buggy Tests (page 260).

Obscure Tests are best addressed by refactoring tests to focus on the reader
of the tests. The real goal is Tests as Documentation (see page 23)—anything
less will increase the likelihood of High Test Maintenance Cost.

Cause: Hard-to-Test Code

“Legacy software” (i.e., any software that doesn’t have a complete suite of auto-
mated tests) can be hard to test because we typically write the tests “last” (after
the software already exists). If the design of the software is not conducive to
automated testing, we may be forced to use Indirect Testing (see Obscure Test)
via awkward interfaces that involve a lot of accidental complexity; that effort
may result in Fragile Tests.

High Test
Maintenance

Cost

www.it-ebooks.info

http://www.it-ebooks.info/

267

It will take both time and effort to refactor the code to improve its testability.
Nevertheless, that time and effort are well spent if they eliminate the High Test
Maintenance Cost. If refactoring is not an option, we may be able to reduce
the amount of test code affected by a change by doing SUT API Encapsulation
(see Test Utility Method on page 599) using Test Utility Methods. For example,
Creation Methods (page 415) encapsulate the constructors, thereby rendering
the tests less susceptible to changes in constructor signatures or semantics.

Troubleshooting Advice

As a project-level smell, High Test Maintenance Cost is as likely to be detected
by a project manager, scrum master, or team leader as by a developer. While
managers may not have the technical depth needed to troubleshoot and fi x the
problem, the fact that they become aware of it is what is important. This aware-
ness allows the manager to question the development team about how long it is
taking to maintain tests, how often test maintenance occurs, and why it is neces-
sary. Then the manager can challenge the developers to fi nd a better way—one
that won’t result in such High Test Maintenance Costs!

Of course, the developers will need the manager’s support to carry out
whatever improvement plan they come up with. That support must include
time to conduct the investigations (spikes), learning/training time, and time to
do the actual work. Managers can make time for this activity by having “test
refactoring stories,” adjusting the velocity to reduce the new functionality com-
mitted to the customer, or other means. Regardless of how managers carve out
this time, they must remember that if they don’t give the development team the
resources needed to fi x the problem now, the problem will simply get worse and
become even more challenging to fi x in the future when the team has twice as
many tests.

 High Test Maintenance Cost

High Test
Maintenance
Cost

www.it-ebooks.info

http://www.it-ebooks.info/

268 Chapter 17 Project Smells

Production Bugs

We fi nd too many bugs during formal tests or in production.

Symptoms

We have put a lot of effort into writing automated tests, yet the number of bugs
showing up in formal (i.e., system) testing or production remains too high.

Impact

It takes longer to troubleshoot and fi x bugs found in formal testing than those
found in development, and even longer to troubleshoot and fi x bugs found in
production. We may be forced to delay shipping the product or putting the
application into production to allow time for the bug fi xes and retesting. This
time and effort translate directly into monetary costs and consume resources
that might otherwise be used to add more functionality to the product or to
build other products. The delay may also damage the organization’s credibility
in the eyes of its customers. Poor quality has an indirect cost as well, in that it
lowers the value of the product or service we are supplying.

Causes

Bugs may slip through to production for several reasons, including Infrequently
Run Tests or Untested Code. The latter problem may result from Missing Unit
Tests or Lost Tests.

By specifying that “enough tests” be run, we mean the test coverage should
be adequate, rather than that some specifi c number of tests must be carried out.
Changes to Untested Code are more likely to result in Production Bugs because
there are no automated tests to tell the developers when they have introduced
problems. Untested Requirements aren’t being verifi ed every time the tests are
run, so we don’t know for sure what is working. Both of these problems are
related to Developers Not Writing Tests (page 263).

Cause: Infrequently Run Tests

Symptoms

We hear that our developers aren’t running the tests very often. When we ask some
questions, we discover that running the tests takes too long(Slow Tests; see page 253)
or produces too many extraneous failures (Buggy Tests; see page 260).

Production
Bugs

www.it-ebooks.info

http://www.it-ebooks.info/

269

We see test failures in the daily Integration Build [SCM]. When we dig deeper,
we fi nd that developers often commit their code without running the tests on
their own machines.

Root Cause

Once they’ve seen the benefi ts of working with the safety net of automated tests,
most developers will continue using these tests unless something gets in the way.
The most common impediments are Slow Tests that slow down the pre-integration
regression testing or Unrepeatable Tests (see Erratic Test on page 228) that force
developers to restart their test environment or do Manual Intervention (page 250)
before running the tests.

Possible Solution

If the root cause is Unrepeatable Tests, we can try switching to a Fresh Fix-
ture (page 311) strategy to make the tests more deterministic. If the cause is Slow
Tests, we must put more effort into speeding up the test run.

Cause: Lost Test

Symptoms

The number of tests being executed in a test suite has declined (or has not
increased as much as expected). We may notice this directly if we are paying
attention to test counts. Alternatively, we may fi nd a bug that should have been
caused by a test that we know exists but, upon poking around, we discover that
the test has been disabled.

Root Cause

Lost Tests can be caused by either a Test Method (page 348) or a Testcase
Class (page 373) that has been disabled or has never been added to the AllTests
Suite (see Named Test Suite on page 592).

Tests can be accidentally left out (i.e., never run) of test suite in the following
circumstances:

• We forget to add the [test] attribute to the Test Method, or we acci-
dentally use a method name that doesn’t match the naming convention
used by the Test Discovery (page 393) mechanism.

• We forget to add a call to suite.addTest to add the Test Method to the Test
Suite Object (page 387) when we are automating tests in a Test Automation
Framework (page 298) that supports only Test Enumeration (page 399).

 Production Bugs

Production
Bugs

www.it-ebooks.info

http://www.it-ebooks.info/

270 Chapter 17 Project Smells

• We forget to add a call to the Test Method explicitly in the Test Suite
Procedure (see Test Suite Object) in procedural-language variations of
xUnit.

• We forget to add the test suite to the Suite of Suites (see Test Suite Object)
or forget to add the [Test Fixture] attribute to the Testcase Class.

Tests that ran in the past may have been disabled in any of the following ways:

• We renamed the Test Method to not match the pattern that causes Test
Discovery to include the test in the test suite (e.g., the method name
starts with “test . . .”).

• We added an [Ignore] attribute in variants of xUnit that use method
attributes to indicate Test Methods.

• We commented out (or deleted) the code that adds the test (or suite) to
the suite explicitly.

Typically, a Lost Test occurs when a test is failing and someone disables it to
avoid having to wade through the failing tests when running other tests. It may
also occur accidentally, of course.

Possible Solution

There are a number of ways to avoid introducing Lost Tests.
We can use a Single Test Suite (see Named Test Suite) to run a single Test

Method instead of disabling the failing or slow test. We can use the Test Tree
Explorer (see Test Runner on page 377) to drill down and run a single test
from within a test suite. Both of these techniques are made diffi cult by Chained
Tests (page 454)—a deliberate form of Interacting Tests (see Erratic Test)—so
this is just one more reason to avoid them.

If our variant of xUnit supports it, we can use the provided mechanism to
ignore1 a test. It will typically remind us of the number of tests not being run
so we don’t forget to re-enable them. We can also confi gure our continuous
integration tool to fail the build if the number of tests “ignored” exceeds a
certain threshold.

We can compare the number of tests we have after check-in with the number
of tests that existed in the code branch immediately before we started integra-
tion. We simply verify that this count has increased by the number of tests we
have added.

1 For example, NUnit lets us put the attribute [Ignore] on a Test Method to keep it from
being run.

Production
Bugs

www.it-ebooks.info

http://www.it-ebooks.info/

271

We can implement or take advantage of Test Discovery if our programming
language supports refl ection.

We can use a different strategy for fi nding the tests to run in the Integration
Build. Some build tools (such as Ant) let us fi nd all fi les that match a name pat-
tern (e.g., those ending in “Test”). We won’t lose entire test suites if we use this
capability to pick up all the tests.

Cause: Missing Unit Test

Symptoms

All the unit tests pass but a customer test continues to fail. At some point, the
customer test passed—but no unit tests were written to verify the behavior of the
individual classes. Then, a subsequent code change modifi ed the behavior of one of
the classes, which broke its functionality.

Root Cause

Missing Unit Tests often happen when a team focuses on writing the customer
tests but fails to do test-driven development using unit tests. The team members
may have built enough functionality to pass the customer tests, but a subsequent
refactoring broke it. Unit tests would likely have prevented the code change
from reaching the Integration Build.

Missing Unit Tests can also arise during test-driven development when devel-
opers get ahead of themselves and write some code without having a failing test
to guide them.

Possible Solution

The trite answer is to write more unit tests. Of course, this is easier said than
done, and it isn’t always effective. Doing true test-driven development is the
best way to avoid having Missing Unit Tests without writing unnecessary tests
merely to get the test count up.

Cause: Untested Code

Symptoms

We may just “know” that some piece of code in the SUT is not being exercised
by any tests. Perhaps we have never seen that code execute, or perhaps we used
code coverage tools to prove this fact beyond a doubt. In the following example,
how can we test that when timeProvider throws an exception, this exception is
handled correctly?

 Production Bugs

Production
Bugs

www.it-ebooks.info

http://www.it-ebooks.info/

272 Chapter 17 Project Smells

 public String getCurrentTimeAsHtmlFragment()
 throws TimeProviderEx {
 Calendar currentTime;
 try {
 currentTime = getTimeProvider().getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.

Root Cause

The most common cause of Untested Code is that the SUT includes code paths
that react to particular ways that a depended-on component (DOC) behaves
and we haven’t found a way to exercise those paths. Typically, the DOC is
being called synchronously and either returns certain values or throws excep-
tions. During normal testing, only a subset of the possible equivalence classes
of indirect inputs are actually encountered.

Another common cause of Untested Code is incompleteness of the test suite
caused by incomplete characterization of the functionality exposed via the
SUT’s interface.

Possible Solution

If the Untested Code is caused by an inability to control the indirect inputs of
the SUT, the most common solution is to use a Test Stub (page 529) to feed the
various kinds of indirect inputs into the SUT to cover all the code paths. Other-
wise, it may be suffi cient to confi gure the DOC to cause it to return the various
indirect inputs required to fully test the SUT.

Cause: Untested Requirement

Symptoms

We may just “know” that some piece of functionality is not being tested. Alter-
natively, we may be trying to test a piece of software but cannot see any visible
functionality that can be tested via the public interface of the software. All the
tests we have written pass, however.

When doing test-driven development, we know we need to add some
code to handle a requirement. However, we cannot fi nd a way to express the
need for code to log the action in a Fully Automated Test (see page 26) such
as this:

Production
Bugs

www.it-ebooks.info

http://www.it-ebooks.info/

273

 public void testRemoveFlight() throws Exception {
 // set up
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight should not exist after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 }

Note that this test does not verify that the correct logging action has been done.
It will pass regardless of whether the logging was implemented correctly—or
even at all. Here’s the code that this test is verifying, complete with the indirect
output of the SUT that has not been implemented correctly:

 public void removeFlight(BigDecimal flightNumber)
 throws FlightBookingException {
 System.out.println(" removeFlight("+flightNumber+")");
 dataAccess.removeFlight(flightNumber);
 logMessage("CreateFlight", flightNumber); // Bug!
 }

If we plan to depend on the information captured by logMessage when maintain-
ing the application in production, how can we ensure that it is correct? Clearly,
it is desirable to have automated tests verify this functionality.

Impact

Part of the required behavior of the SUT could be accidentally disabled without
causing any tests to fail. Buggy software could be delivered to the customer. The
fear of introducing bugs could discourage ruthless refactoring or deletion of
code suspected to be unneeded (i.e., dead code).

Root Cause

The most common cause of Untested Requirements is that the SUT includes
behavior that is not visible through its public interface. It may have expected
“side effects” that cannot be observed directly by the test (such as writing out
a fi le or record or calling a method on another object or component)—in other
words, it may have indirect outputs.

When the SUT is an entire application, the Untested Requirement may be a
result of not having a full suite of customer tests that verify all aspects of the
visible behavior of the SUT.

 Production Bugs

Production
Bugs

www.it-ebooks.info

http://www.it-ebooks.info/

274 Chapter 17 Project Smells

Production
Bugs

Possible Solution

If the problem is missing customer tests, we need to write at least enough cus-
tomer tests to ensure that all components are integrated properly. This may
require improving the design-for-testability of the application by separating the
presentation layer from the business logic layer.

When we have indirect outputs that we need to verify, we can do Behavior
Verifi cation (page 468) through the use of Mock Objects (page 544). Testing of
indirect outputs is covered in Chapter 11, Using Test Doubles.

Cause: Neverfail Test

Symptoms

We may just “know” that some piece of functionality is not working, even
though the tests for that functionality pass. When doing test-driven develop-
ment, we have added a test for functionality we have not yet written but we
cannot get the test to fail.

Impact

If a test won’t fail even when the code to implement the functionality doesn’t
exist, how useful is it for Defect Localization (see page 22)? Not very!

Root Cause

This problem can be caused by improperly coded assertions such as assertTrue-
(aVariable, true) instead of assertEquals(aVariable, true) or just assertTrue(aVariable).
Another cause is more sinister: When we have asynchronous tests, failures thrown
in the other thread or process may not be seen or reported by the Test Runner.

Possible Solution

We can implement cross-thread failure detection mechanisms to ensure that
asynchronous tests do, indeed, fail. An even better solution is to refactor the
code to support a Humble Executable (see Humble Object on page 695).

www.it-ebooks.info

http://www.it-ebooks.info/

PART III

The Patterns

The
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

277

Chapter 18

Test Strategy Patterns

Patterns in This Chapter

Test Automation Strategy

Recorded Test. 278

Scripted Test . 285

Data-Driven Test . 288

Test Automation Framework . 298

Test Fixture Strategy

Minimal Fixture . 302

Standard Fixture. 305

Fresh Fixture . 311

Shared Fixture . 317

SUT Interaction Strategy

Back Door Manipulation . 327

Layer Test. 337

Test Strategy
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Recorded Test

How do we prepare automated tests for our software?

We automate tests by recording interactions with the application and
playing them back using a test tool.

Automated tests serve several purposes. They can be used for regression testing
software after it has been changed. They can help document the behavior of the
software. They can specify the behavior of the software before it has been writ-
ten. How we prepare the automated test scripts affects which purposes they can
be used for, how robust they are to changes in the SUT, and how much skill and
effort it takes to prepare them.

Recorded Tests allow us to rapidly create regression tests after the SUT has
been built and before it is changed.

How It Works

We use a tool that monitors our interactions with the SUT as we work with
it. This tool keeps track of most of what the SUT communicates to us and our
responses to the SUT. When the recording session is done, we can save the ses-
sion to a fi le for later playback. When we are ready to run the test, we start up

Fixture

Test
Script 1

Test
Script 2

Test
Script n

Test Script Repository

Test
Recorder

SUT

OutputsInputs

Inputs

Outputs

Inputs

Outputs

Fixture

Test
Script 1

Test
Script 2

Test
Script n

Test Script Repository

Test
Recorder

SUT

OutputsInputs

Inputs

Outputs

Inputs

Outputs

Also known as:
Record and

Playback Test,
Robot User

Test, Capture/
Playback Test

Recorded
Test

Chapter 18 Test Strategy Patterns278

www.it-ebooks.info

http://www.it-ebooks.info/

279

the “playback” part of the tool and point it at the recorded session. It starts up
the SUT and feeds it our recorded inputs in response to the SUT’s outputs. It may
also compare the SUT’s outputs with the SUT’s responses during the recording
session. A mismatch may be cause for failing the test.

Some Recorded Test tools allow us to adjust the sensitivity of the compari-
sons that the tool makes between what the SUT said during the recording ses-
sion and what it said during the playback. Most Recorded Test tools interact
with the SUT through the user interface.

When to Use It

Once an application is up and running and we don’t expect a lot of changes
to it, we can use Recorded Tests to do regression testing. We could also use
Recorded Tests when an existing application needs to be refactored (in anticipa-
tion of modifying the functionality) and we do not have Scripted Tests (page 285)
available to use as regression tests. It is typically much quicker to produce a set
of Recorded Tests than to prepare Scripted Tests for the same functionality. In
theory, the test recording can be done by anyone who knows how to operate
the application; very little technical expertise should be required. In practice,
many of the commercial tools have a steep learning curve. Also, some technical
expertise may be required to add “checkpoints,” to adjust the sensitivity of the
playback tool, or to adjust the test script if the recording tool became confused
and recorded the wrong information.

Most Recorded Test tools interact with the SUT through the user interface. This
approach makes them particularly prone to fragility if the user interface of the
SUT is evolving (Interface Sensitivity; see Fragile Test on page 239). Even small
changes such as changing the internal name of a button or fi eld may be enough
to cause the playback tool to stumble. The tools also tend to record information
at a very low and detailed level, making the tests hard to understand (Obscure
Test; page 186); as a result, they are also diffi cult to repair by hand if they are
broken by changes to the SUT. For these reasons, we should plan on rerecording
the tests fairly regularly if the SUT will continue to evolve.

If we want to use the Tests as Documentation (see page 23) or if we want to
use the tests to drive new development, we should consider using Scripted Tests.
These goals are diffi cult to address with commercial Recorded Test tools because
most do not let us defi ne a Higher-Level Language (see page 41) for the test
recording. This issue can be addressed by building the Recorded Test capability
into the application itself or by using Refactored Recorded Test.

 Recorded Test

Recorded
Test

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Refactored Recorded Test

A hybrid of the two strategies is to use the “record, refactor, playback”1 sequence
to extract a set of “action components” or “verbs” from the newly Recorded
Tests and then rewire the test cases to call these “action components” instead
of having detailed in-line code. Most commercial capture/replay tools provide
the means to turn Literal Values (page 714) into parameters that can be passed
into the “action component” by the main test case. When a screen changes, we
simply rerecord the “action component”; all the test cases continue to function
by automatically using the new “action component” defi nition. This strategy is
effectively the same as using Test Utility Methods (page 599) to interact with the
SUT in unit tests. It opens the door to using the Refactored Recorded Test com-
ponents as a Higher-Level Language in Scripted Tests. Tools such as Mercury
Interactive’s BPT2 use this paradigm for scripting tests in a top-down manner;
once the high-level scripts are developed and the components required for the
test steps are specifi ed, more technical people can either record or hand-code the
individual components.

Implementation Notes

We have two basic choices when using a Recorded Test strategy: We can either
acquire third-party tools that record the communication that occurs while we
interact with the application or we can build a “record and playback” mecha-
nism right into our application.

Variation: External Test Recording

Many test recording tools are available commercially, each of which has its own
strengths and weaknesses. The best choice will depend on the nature of the user
interface of the application, our budget, the complexity of the functionality to
be verifi ed, and possibly other factors.

If we want to use the tests to drive development, we need to pick a tool that
uses a test-recording fi le format that is editable by hand and easily understood.
We’ll need to handcraft the contents—this situation is really an example of a
Scripted Test even if we are using a “record and playback” tool to execute the
tests.

1 The name “record, refactor, playback” was coined by Adam Geras.
2 BPT is short for “Business Process Testing.”

Recorded
Test

280 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Built-In Test Recording

It is also possible to build a Recorded Test capability into the SUT. In such a
case, the test scripting “language” can be defi ned at a fairly high level—high
enough to make it possible to hand-script the tests even before the system is
built. In fact, it has been reported that the VBA macro capability of Microsoft’s
Excel spreadsheet started out as a mechanism for automated testing of Excel.

Example: Built-In Test Recording

On the surface, it doesn’t seem to make sense to provide a code sample for a
Recorded Test because this pattern deals with how the test is produced, not
how it is represented. When the test is played back, it is in effect a Data-Driven
Test (page 288). Likewise, we don’t often refactor to a Recorded Test because it
is often the fi rst test automation strategy attempted on a project. Nevertheless,
we might introduce a Recorded Test after attempting Scripted Tests if we discover
that we have too many Missing Tests (page 268) because the cost of manual auto-
mation is too high. In that case, we would not be trying to turn existing Scripted
Tests into Recorded Tests; we would just record new tests.

Here’s an example of a test recorded by the application itself. This test was
used to regression-test a safety-critical application after it was ported from C on
OS2 to C++ on Windows. Note how the recorded information forms a domain-
specifi c Higher-Level Language that is quite readable by a user.

<interaction-log>
 <commands>
 <!-- more commands omitted -->
 <command seqno="2" id="Supply Create">
 <field name="engineno" type="input">
 <used-value>5566</used-value>
 <expected></expected>
 <actual status="ok"/>
 </field>
 <field name="direction" type="selection">
 <used-value>SOUTH</used-value>
 <expected>
 <value>SOUTH</value>
 <value>NORTH</value>
 </expected>
 <actual>
 <value status="ok">SOUTH</value>
 <value status="ok">NORTH</value>
 </actual>
 </field>
 </command>
 <!-- more commands omitted -->
 </commands>
</interaction-log>

 Recorded Test

Recorded
Test

281

www.it-ebooks.info

http://www.it-ebooks.info/

This sample depicts the output of having played back the tests. The actual elements
were inserted by the built-in playback mechanism. The status attributes indicate
whether these elements match the expected values. We applied a style sheet to these
fi les to format them much like a Fit test with color-coded results. The business users
on the project then handled the recording, replaying, and result analysis.

This recording was made by inserting hooks in the presentation layer of the
software to record the lists of choices offered the user and the user’s responses.
An example of one of these hooks follows:

if (playback_is_on()) {
 choice = get_choice_for_playback(dialog_id, choices_list);
} else {
 choice = display_dialog(choices_list, row, col, title, key);
}

if (recording_is_on()) {
 record_choice(dialog_id, choices_list, choice, key);
}

The method get_choice_for_playback retrieves the contents of the used-value element
instead of asking the user to pick from the list of choices. The method record_choice
generates the actual element and makes the “assertions” against the expected
elements, recording the result in the status attribute of each element. Note that
recording_is_on() returns true whenever we are in playback mode so that the test
results can be recorded.

Example: Commercial Record and Playback Test Tool

Almost every commercial testing tool uses a “record and playback” metaphor.
Each tool also defi nes its own Recorded Test fi le format, most of which are
very verbose. The following is a “short” excerpt from a test recorded using
Mercury Interactive’s QuickTest Professional [QTP] tool. It is shown in “Expert
View,” which exposes what is really recorded: a VbScript program! The example
includes comments (preceded by “@@”) that were inserted manually to clarify
what this test is doing; these comments would be lost if the test were rerecorded
after a change to the application caused the test to no longer run.

@@
@@ GoToPageMaintainTaxonomy()
@@
Browser("Inf").Page("Inf").WebButton("Login").Click
Browser("Inf").Page("Inf_2").Check CheckPoint("Inf_2")
Browser("Inf").Page("Inf_2"").Link("TAXONOMY LINKING").Click
Browser("Inf").Page("Inf_3").Check CheckPoint("Inf_3")
Browser("Inf").Page("Inf_3").Link("MAINTAIN TAXONOMY").Click
Browser("Inf").Page("Inf_4").Check CheckPoint("Inf_4")
@@

Recorded
Test

282 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

@@ AddTerm("A","Top Level", "Top Level Definition")
@@
Browser("Inf").Page("Inf_4").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf").Check CheckPoint("Inf_5")
Browser("Inf_2").Page("Inf").WebEdit("childCodeSuffix").Set "A"
Browser("Inf_2").Page("Inf").
 WebEdit("taxonomyDto.descript").Set "Top Level"
Browser("Inf_2").Page("Inf").
 WebEdit("taxonomyDto.definiti").Set "Top Level Definition"
Browser("Inf_2").Page("Inf").WebButton("Save").Click
wait 4
Browser("Inf").Page("Inf_5").Check CheckPoint("Inf_5_2")
@@
@@ SelectTerm("[A]-Top Level")
@@
Browser("Inf").Page("Inf_5").
 WebList("selectedTaxonomyCode").Select "[A]-Top Level"
@@
@@ AddTerm("B","Second Top Level", "Second Top Level Definition")
@@
Browser("Inf").Page("Inf_5").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf_2").Check CheckPoint("Inf_2_2")
 infofile_;_Inform_Alberta_21.inf_;_hightlight id_;
 _Browser("Inf_2").Page("Inf_2")_;_
@@
@@ and it goes on, and on, and on

Note how the test describes all inputs and outputs in terms of the user interface
of the application. It suffers from two main issues: Obscure Tests (caused by the
detailed nature of the recorded information) and Interface Sensitivity (resulting
in Fragile Tests).

Refactoring Notes

We can make this test more useful as documentation, reduce or avoid High Test
Maintenance Cost (page 265), and support composition of other tests from a
Higher-Level Language by using a series of Extract Method [Fowler] refactorings.

Example: Refactored Commercial Recorded Test

The following example shows the same test refactored to Communicate Intent
(see page 41):

GoToPage_MaintainTaxonomy()
AddTerm("A","Top Level", "Top Level Definition")
SelectTerm("[A]-Top Level")
AddTerm("B","Second Top Level", "Second Top Level Definition")

 Recorded Test

Recorded
Test

283

www.it-ebooks.info

http://www.it-ebooks.info/

Note how much more intent revealing this test has become. The Test Utility
Methods we extracted look like this:

Method GoToPage_MaintainTaxonomy()
 Browser("Inf").Page("Inf").WebButton("Login").Click
 Browser("Inf").Page("Inf_2").Check CheckPoint("Inf_2")
 Browser("Inf").Page("Inf_2").Link("TAXONOMY LINKING").Click
 Browser("Inf").Page("Inf_3").Check CheckPoint("Inf_3")
 Browser("Inf").Page("Inf_3").Link("MAINTAIN TAXONOMY").Click
 Browser("Inf").Page("Inf_4").Check CheckPoint("Inf_4")
End

Method AddTerm(code, name, description)
 Browser("Inf").Page("Inf_4").Link("Add").Click
 wait 4
 Browser("Inf_2").Page("Inf").Check CheckPoint("Inf_5")
 Browser("Inf_2").Page("Inf").
 WebEdit("childCodeSuffix").Set code
 Browser("Inf_2").Page("Inf").
 WebEdit("taxonomyDto.descript").Set name
 Browser("Inf_2").Page("Inf").
 WebEdit("taxonomyDto.definiti").Set description
 Browser("Inf_2").Page("Inf").WebButton("Save").Click
 wait 4
 Browser("Inf").Page("Inf_5").Check CheckPoint("Inf_5_2")
end

Method SelectTerm(path)
 Browser("Inf").Page("Inf_5").
 WebList("selectedTaxonomyCode").Select path
 Browser("Inf").Page("Inf_5").Link("Add").Click
 wait 4
end

This example is one I hacked together to illustrate the similarities to what we do
in xUnit. Don’t try running this example at home—it is probably not syntactically
correct.

Further Reading

The paper “Agile Regression Testing Using Record and Playback” [ARTRP]
describes our experiences building a Recorded Test mechanism into an applica-
tion to facilitate porting it to another platform.

Recorded
Test

Chapter 18 Test Strategy Patterns284

www.it-ebooks.info

http://www.it-ebooks.info/

Scripted Test

How do we prepare automated tests for our software?

We automate the tests by writing test programs by hand.

Automated tests serve several purposes. They can be used for regression testing
software after it has been changed. They can help document the behavior of the
software. They can specify the behavior of the software before it has been written.
How we prepare the automated test scripts affects which purpose they can be
used for, how robust they are to changes in the SUT, and how much skill and
effort it takes to prepare them.

Scripted Tests allow us to prepare our tests before the software is developed
so they can help drive the design.

How It Works

We automate our tests by writing test programs that interact with the SUT for the
purpose of exercising its functionality. Unlike Recorded Tests (page 278), these
tests can be either customer tests or unit tests. These test programs are often
called “test scripts” to distinguish them from the production code they test.

Fixture

Test Script Repository

Test
Development

SUT

Test
Script 1

Test
Script 2

Test
Script n

Expected
OutputsInputs

Inputs

Outputs

Fixture

Test Script Repository

Test
Development

SUT

Test
Script 1

Test
Script 2

Test
Script n

Expected
OutputsInputs

Inputs

Outputs

Also known as:
Hand-Written
Test, Hand-
Scripted Test,
Programmatic
Test, Automated
Unit Test

 Scripted Test

Scripted
Test

285

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use It

We almost always use Scripted Tests when preparing unit tests for our software.
This is because it is easier to access the individual units directly from software
written in the same programming language. It also allows us to exercise all the
code paths, including the “pathological” cases.

Customer tests are a slightly more complicated picture; we should use a
Scripted Test whenever we use automated storytests to drive the develop-
ment of software. Recorded Tests don’t serve this need very well because
it is diffi cult to record tests without having an application from which to
record them. Preparing Scripted Tests takes programming experience as well
as experience in testing techniques. It is unlikely that most business users on
a project would be interested in learning how to prepare Scripted Tests. An
alternative to scripting tests in a programming language is to defi ne a Higher-
Level Language (see page 41) for testing the SUT and then to implement
the language as a Data-Driven Test (page 288) Interpreter [GOF]. An open-
source framework for defi ning Data-Driven Tests is Fit and its wiki-based
cousin, FitNesse. Canoo WebTest is another tool that supports this style
of testing.

In case of an existing legacy application,3 we can consider using Recorded
Tests as a way of quickly creating a suite of regression tests that will protect us
while we refactor the code to introduce testability. We can then prepare Scripted
Tests for our now testable application.

Implementation Notes

Traditionally, Scripted Tests were written as “test programs,” often using a spe-
cial test scripting language. Nowadays, we prefer to write Scripted Tests using
a Test Automation Framework (page 298) such as xUnit in the same language
as the SUT. In this case, each test program is typically captured in the form
of a Test Method (page 348) on a Testcase Class (page 373). To minimize Manual
Intervention (page 250), each test method should implement a Self-Checking
Test (see page 26) that is also a Repeatable Test (see page 26).

3 Among test drivers, a legacy application is any system that lacks a safety net of auto-
mated tests.

Scripted
Test

286 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Scripted Test

The following is an example of a Scripted Test written in JUnit:

 public void testAddLineItem_quantityOne(){
 final BigDecimal BASE_PRICE = UNIT_PRICE;
 final BigDecimal EXTENDED_PRICE = BASE_PRICE;
 // Set Up Fixture
 Customer customer = createACustomer(NO_CUST_DISCOUNT);
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(PRODUCT, QUAN_ONE);
 // Verify Outcome
 LineItem expected =
 createLineItem(QUAN_ONE, NO_CUST_DISCOUNT,
 EXTENDED_PRICE, PRODUCT, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

 public void testChangeQuantity_severalQuantity(){
 final int ORIGINAL_QUANTITY = 3;
 final int NEW_QUANTITY = 5;
 final BigDecimal BASE_PRICE =
 UNIT_PRICE.multiply(new BigDecimal(NEW_QUANTITY));
 final BigDecimal EXTENDED_PRICE =
 BASE_PRICE.subtract(BASE_PRICE.multiply(
 CUST_DISCOUNT_PC.movePointLeft(2)));
 // Set Up Fixture
 Customer customer = createACustomer(CUST_DISCOUNT_PC);
 Invoice invoice = createInvoice(customer);
 Product product = createAProduct(UNIT_PRICE);
 invoice.addItemQuantity(product, ORIGINAL_QUANTITY);
 // Exercise SUT
 invoice.changeQuantityForProduct(product, NEW_QUANTITY);
 // Verify Outcome
 LineItem expected = createLineItem(NEW_QUANTITY,
 CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

About the Name

Automated test programs are traditionally called “test scripts,” probably due
to the heritage of such test programs—originally they were implemented in
interpreted test scripting languages such as Tcl. The downside of calling them
Scripted Tests is that this nomenclature opens the door to confusion with the
kind of script a person would follow during manual testing as opposed to
unscripted testing such as exploratory testing.

Further Reading

Many books have been written about the process of writing Scripted Tests and
using them to drive the design of the SUT. A good place to start would be [TDD-BE]
or [TDD-APG].

 Scripted Test

Scripted
Test

287

www.it-ebooks.info

http://www.it-ebooks.info/

Data-Driven Test

How do we prepare automated tests for our software?
How do we reduce Test Code Duplication?

We store all the information needed for each test in a data fi le and write an
interpreter that reads the fi le and executes the tests.

Testing can be very repetitious not only because we must run the same test
over and over again, but also because many of the tests differ only slightly. For
example, we might want to run essentially the same test with slightly different
system inputs and verify that the actual output varies accordingly. Each of these
tests would consist of exactly the same steps. While having so many tests is an
excellent way to ensure good coverage of functionality, it is not so good for test
maintainability because any change made to the algorithm of one of these tests
must be propagated to all of the similar tests.

A Data-Driven Test is one way to get excellent coverage while minimizing
the amount of test code we need to write and maintain.

How It Works

We write a Data-Driven Test interpreter that contains all the common logic
from the tests. We put the data that varies from test to test into the Data-Driven
Test fi le that the interpreter reads to execute the tests. For each test it performs
the same sequence of actions to implement the Four-Phase Test (page 358). First,

data

Fixture

Setup

Exercise

Verify

Teardown

SUT

Test 1
Data

Test 2
Data

Test n
Data

data

Fixture

Setup

Exercise

Verify

Teardown

SUT

Test 1
Data

Test 2
Data

Test n
Data

Data-Driven
Test

Chapter 18 Test Strategy Patterns288

www.it-ebooks.info

http://www.it-ebooks.info/

the interpreter retrieves the test data from the fi le and sets up the test fi xture us-
ing the data from the fi le. Second, it exercises the SUT with whatever arguments
the fi le specifi es. Third, it compares the actual results produced by the SUT (e.g.,
returned values, post-test state) with the expected results from the fi le. If the
results don’t match, it marks the test as failed; if the SUT throws an exception,
it catches the exception and marks the test accordingly and continues. Fourth,
the interpreter does any fi xture teardown that is necessary and then moves on to
the next test in the fi le.

A test that might otherwise require a series of complex steps can be reduced
to a single line of data in the Data-Driven Test fi le. Fit is a popular example of
a framework for writing Data-Driven Tests.

When to Use It

A Data-Driven Test is an alternative strategy to a Recorded Test (page 278) and
a Scripted Test (page 285). It can also be used as part of a Scripted Test strategy,
however, and Recorded Tests are, in fact, Data-Driven Tests when they are played
back. A Data-Driven Test is an ideal strategy for getting business people involved
in writing automated tests. By keeping the format of the data fi le simple, we make
it possible for the business person to populate the fi le with data and execute the
tests without having to ask a technical person to write test code for each test.

We can consider using a Data-Driven Test as part of a Scripted Test strategy
whenever we have a lot of different data values with which we wish to exercise
the SUT where the same sequence of steps must be executed for each data value.
Usually, we discover this similarity over time and refactor fi rst to a Parameterized
Test (page 607) and then to a Data-Driven Test. We may also want to arrange a
standard set of steps in different sequences with different data values much like
in an Incremental Tabular Test (see Parameterized Test). This approach gives us
the best coverage with the least amount of test code to maintain and makes it
very easy to add more tests as they are needed.

Another consideration when deciding whether to use Data-Driven Tests is
whether the behavior we are testing is hard-coded or driven by confi guration
data. If we automate tests for data-driven behavior using Scripted Tests, we must
update the test programs whenever the confi guration data changes. This behavior
is just plain unnatural because it implies that we must commit changes to our
source code repository [SCM] whenever we change the data in our confi guration
database.4 By making the tests data-driven, changes to the confi guration data or

4 Of course, we should be managing our test data in a version-controlled Repository,
too—but that topic could fi ll another book; see [RDb] for details.

 Data-Driven Test

Data-Driven
Test

289

www.it-ebooks.info

http://www.it-ebooks.info/

meta-objects are then driven by changes to the Data-Driven Tests—a much more
natural relationship.

Implementation Notes

Our implementation options depend on whether we are using a Data-Driven
Test as a distinct test strategy or as part of an xUnit-based strategy. Using a
Data-Driven Test as a stand-alone test strategy typically involves using open-
source tools such as Fit or commercial Recorded Test tools such as QTP. Using
a Data-Driven Test as part of a Scripted Test strategy may involve implementing a
Data-Driven Test interpreter within xUnit.

Regardless of which strategy we elect to follow, we should use the appropri-
ate Test Automation Framework (page 298) if one is available. By doing so, we
effectively convert our tests into two parts: the Data-Driven Test interpreter
and the Data-Driven Test fi les. Both of these assets should be kept under ver-
sion control so that we can see how they have evolved over time and to allow
us to back out any misguided changes. It is particularly important to store the
Data-Driven Test fi les in some kind of Repository, even though this concept may
be foreign to business users. We can make this operation transparent by provid-
ing the users with a Data-Driven Test fi le-authoring tool such as FitNesse, or we
can set up a “user-friendly” Repository such as a document management system
that just happens to support version control as well.

It is also important to run these tests as part of the continuous integration
process to confi rm that tests that once passed do not suddenly begin to fail.
Failing to do so can result in bugs creeping into the software undetected and
signifi cant troubleshooting effort once the bugs are detected. Including the cus-
tomer tests in the continuous integration process requires some way to keep
track of which customer tests were already passing, because we don’t insist that
all customer tests pass before any code is committed. One option is to keep
two sets of input fi les, migrating tests that pass from the “still red” fi le into the
“all green” fi le that is used for regression testing as part of the automatic build
process.

Variation: Data-Driven Test Framework (Fit)

We should consider using a prebuilt Data-Driven Test framework when we are
using Data-Driven Tests as a test strategy. Fit is a framework originally conceived
by Ward Cunningham as a way of involving business users in the automation
of tests. Although Fit is typically used to automate customer tests, it can also
be used for unit tests if the number of tests warrants building the necessary fi x-
tures. Fit consists of two parts: the framework and a user-created fi xture. The Fit

Data-Driven
Test

Chapter 18 Test Strategy Patterns290

www.it-ebooks.info

http://www.it-ebooks.info/

291

Framework is a generic Data-Driven Test interpreter that reads the input fi le and
fi nds all tables in it. It looks in the top-left cell of each table for a fi xture classname
and then searches our test executable for that class. When it fi nds a class, it creates
an instance of the class and passes control to that instance as it reads each row and
column of the table. We can override methods defi ned by the framework to specify
what should happen for each cell in the table. A Fit fi xture, then, is an adapter that
Fit calls to interpret a table of data and invoke methods on the SUT.

The Fit table can also contain expected results from the SUT. Fit compares
the specifi ed values with the actual values returned by the SUT. Unlike Asser-
tion Methods (page 362) in xUnit, however, Fit does not abandon a test at the
fi rst value that does not match the expected value. Instead, it colors in each cell
in the table, with green cells indicating actual values that matched the expected
values and red cells indicating wrong or unexpected values.

Using Fit offers several advantages:

• There is much less code to write than when we build our own test
Interpreter [GOF].

• The output makes sense to a business person, not just a technical person.

• The tests don’t stop at the fi rst failed assertion. Fit has a way of com-
municating multiple failures/errors in a way that allows us to see the
failure patterns very easily.

• There are a plethora of fi xture types available to subclass or use as is.

So why wouldn’t we use Fit for all our unit testing instead of xUnit? The main
disadvantages of using Fit are described here:

• The test scenarios need to be very well understood before we can build
the Fit fi xture. We then need to translate each test’s logic into a tabular
representation; this isn’t always a good fi t, especially for developers who
are used to thinking procedurally. While it may be appropriate to have
testers who can write the Fit fi xtures for customer tests, this approach
wouldn’t be appropriate for true unit tests unless we had close to a 1:1
tester-to-developer ratio.

• The tests need to employ the same SUT interaction logic in each test.5 To
run several different styles of tests, we would probably have to build one
or more different fi xtures for each style of test. Building a new fi xture
is typically more complex than writing a few Test Methods (page 348).

5 The tabular data must be injected into the SUT during the fi xture setup or exercise SUT
phases or retrieved from the SUT during the result verifi cation phase.

 Data-Driven Test

Data-Driven
Test

www.it-ebooks.info

http://www.it-ebooks.info/

Although many different fi xture types are available to subclass or use
as is, their use in this way is yet another thing that developers would be
required to learn to do their jobs. Even then, not all unit tests are ame-
nable to automation using Fit.

• Fit tests aren’t normally integrated into developers’ regression tests that
are run via xUnit. Instead, these tests must be run separately—which
introduces the possibility that they will not be run at each check-in.
Some teams include Fit tests as part of their continuous integration
build process to partially mitigate this issue. Other teams have reported
great success having a second “customer” build service or server that
runs all the customer tests.

Each of these issues is potentially surmountable, of course. In general, xUnit is
a more appropriate framework for unit testing than Fit; the reverse is true for
customer tests.

Variation: Naive xUnit Test Interpreter

When we have a small number of Data-Driven Tests that we wish to run as part
of an xUnit-based Scripted Test strategy, the simplest implementation is to write
a Test Method containing a loop that reads one set of input data values from the
fi le along with the expected results. This is the equivalent of converting a single
Parameterized Test and all its callers into a Tabular Test (see Parameterized
Test). As with a Tabular Test, this approach to building the Data-Driven Test
interpreter will result in a single Testcase Object (page 382) with many asser-
tions. This has several ramifi cations:

• The entire set of Data-Driven Tests will count as a single test. Hence,
converting a set of Parameterized Tests into a single Data-Driven Test
will reduce the count of tests executed.

• We will stop executing the Data-Driven Test on the fi rst failure or
error. As a consequence, we will lose a lot of our Defect Localization
(see page 22). Some variants of xUnit do allow us to specify that failed
assertions shouldn’t abort execution of the Test Method.

• We need to make sure our assertion failures tell us which subtest we
were executing when the failure occurred.

We could address the last two issues by including a try/catch statement inside the
loop but surrounding the test logic and then continuing the code’s execution.
Nevertheless, we still need to fi nd a way to report the test results in a meaningful
way (e.g., “Failed subtests 1, 3, and 6 with . . .”).

Data-Driven
Test

Chapter 18 Test Strategy Patterns292

www.it-ebooks.info

http://www.it-ebooks.info/

To make it easier to extend the Data-Driven Test interpreter to handle sev-
eral different kinds of tests in the same data fi le, we can include a “verb” or
“action word” as part of each entry in the data fi le. The interpreter can then
dispatch to a different Parameterized Test based on the action word.

Variation: Test Suite Object Generator

We can avoid the “stop on fi rst failure” problem associated with a Naive xUnit
Test Interpreter by having the suite method on the Test Suite Factory (see Test
Enumeration on page 399) fabricate the same Test Suite Object (page 387)
structure as the built-in mechanism for Test Discovery (page 393). To do so,
we build a Testcase Object for each entry in the Data-Driven Test fi le and ini-
tialize each object with the test data for the particular test.6 That object knows
how to execute the Parameterized Test with the data loaded into it when the
test suite was built. This ensures that the Data-Driven Test continues execut-
ing even after the fi rst Testcase Object encounters an assertion failure. We can
then let the Test Runner (page 377) count the tests, errors, and failures in the
normal way.

Variation: Test Suite Object Simulator

An alternative to building the Test Suite Object is to create a Testcase Object
that behaves like one. This object reads the Data-Driven Test fi le and iterates
over all the tests when asked to run. It must catch any exceptions thrown by
the Parameterized Test and continue executing the subsequent tests. When
fi nished, the Testcase Object must report the correct number of tests, failures,
and errors back to the Test Runner. It also needs to implement any other meth-
ods on the standard test interface on which the Test Runner depends, such as
returning the number of tests in the “suite,” returning the name and status of
each test in the suite (for the Graphical Test Tree Explorer, see Test Runner),
and so forth.

Motivating Example

Let’s assume we have a set of tests as follows:
 def test_extref
 sourceXml = "<extref id='abc' />"
 expectedHtml = "abc"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")

6 This is very similar to how xUnit’s built-in Test Method Discovery (see Test Discovery)
mechanism works, except that we are passing in the test data in addition to the Test
Method name.

 Data-Driven Test

Data-Driven
Test

293

www.it-ebooks.info

http://www.it-ebooks.info/

 end

 def test_testterm_normal
 sourceXml = "<testterm id='abc'/>"
 expectedHtml = "abc"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<testterm>")
 end

 def test_testterm_plural
 sourceXml = "<testterms id='abc'/>"
 expectedHtml = "abcs"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<plural>")
 end

The succinctness of these tests is made possible by defi ning the Parameterized
Test as follows:

 def generateAndVerifyHtml(sourceXml, expectedHtml,
 message, &block)
 mockFile = MockFile.new
 sourceXml.delete!("\t")
 @handler = setupHandler(sourceXml, mockFile)
 block.call unless block == nil
 @handler.printBodyContents
 actual_html = mockFile.output
 assert_equal_html(expectedHtml,
 actual_html,
 message + "html output")
 actual_html
 end

The main problem with these tests is that they are still written in code when, in
fact, the only difference between them is the data used as input.

Refactoring Notes

The solution, of course, is to extract the common logic of the Parameterized
Tests into a Data-Driven Test interpreter and to collect all sets of parameters
into a single data fi le that can be edited by anyone. We need to write a “main”
test that knows which fi le to read the test data from and a bit of logic to read
and parse the test fi le. This logic can call our existing Parameterized Test logic
and let xUnit keep track of the test execution statistics for us.

Example: xUnit Data-Driven Test with XML Data File

In this example, we will use XML as our fi le representation. Each test consists of
a test element with three main parts:

Data-Driven
Test

294 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

• An action that tells the Data-Driven Test interpreter which test logic to
run (e.g., crossref)

• The input to be passed to the SUT—in this case, the sourceXml element

• The HTML we expect the SUT to produce (in the expectedHtml element)

These three components are wrapped up in a testsuite element.

<testsuite id="CrossRefHandlerTest">
 <test id="extref">
 <action>crossref</action>
 <sourceXml>
 <extref id='abc'/>
 </sourceXml>
 <expectedHtml>
 abc
 </expectedHtml>
 </test>
 <test id="TestTerm">
 <action>crossref</action>
 <sourceXml>
 <testterm id='abc'/>
 </sourceXml>
 <expectedHtml>
 abc
 </expectedHtml>
 </test>
 <test id="TestTerm Plural">
 <action>crossref</action>
 <sourceXml>
 <testterms id='abc'/>
 </sourceXml>
 <expectedHtml>
 abcs
 </expectedHtml>
 </test>
</testsuite>

This XML fi le could be edited by anyone with an XML editor without any concern
for introducing test logic errors. All the logic for verifying the expected outcome
is encapsulated by the Data-Driven Test interpreter in much the same way as it
would be by a Parameterized Test. For viewing purposes we could hide the XML
structure from the user by defi ning a style sheet. In addition, many XML editors
will turn the XML into a form-based input to simplify editing.

To avoid dealing with the complexities of manipulating XML, the interpreter
can also use a CSV fi le as input.

 Data-Driven Test

Data-Driven
Test

295

www.it-ebooks.info

http://www.it-ebooks.info/

Example: xUnit Data-Driven Test with CSV Input File

The test in the previous example would look like this as a CSV fi le:

ID, Action, SourceXml, ExpectedHtml
Extref,crossref,<extref id='abc'/>,abc
TTerm,crossref,<testterm id='abc'/>,abc
TTerms,crossref,<testterms id='abc'/>,abcs

The interpreter is relatively simple and is built on the logic we had already devel-
oped for our Parameterized Test. This version reads the CSV fi le and uses Ruby’s
split function to parse each line.

 def test_crossref
 executeDataDrivenTest "CrossrefHandlerTest.txt"
 end

 def executeDataDrivenTest filename
 dataFile = File.open(filename)
 dataFile.each_line do | line |
 desc, action, part2 = line.split(",")
 sourceXml, expectedHtml, leftOver = part2.split(",")
 if "crossref"==action.strip
 generateAndVerifyHtml sourceXml, expectedHtml, desc
 else # new "verbs" go before here as elsif's
 report_error("unknown action" + action.strip)
 end
 end
 end

Unless we changed the implementation of generateAndVerifyHtml to catch assertion
failures and increment a failure counter, this Data-Driven Test will stop executing
at the fi rst failed assertion. While this behavior would be acceptable for regres-
sion testing, it would not provide very good Defect Localization.

Example: Data-Driven Test Using Fit Framework

If we wanted to have even more control over what the user can do, we could
create a Fit “column fi xture” with the columns “id,” “action,” “source XML,”
and “expected Html()” and let the user edit an HTML Web page instead
(Figure 18.1).

Data-Driven
Test

Chapter 18 Test Strategy Patterns296

www.it-ebooks.info

http://www.it-ebooks.info/

[Figure 18.1: ‘CrossrefHandlerFitTest.vsd’]

Figure 18.1 A Data-Driven test built using the Fit framework.

When using Fit, the test interpreter is the Fit framework extended by the Fit
fi xture class specifi c to the test:

public class CrossrefHandlerFixture extends ColumnFixture {
 // Input columns
 public String id;
 public String action;
 public String sourceXML;

 // Output columns
 public String expectedHtml() {
 return generateHtml(sourceXML);
 }
}

The methods of this fi xture class are called by the Fit framework for each cell
in each line in the Fit table based on the column headers. Simple names are
interpreted as the instance variable of the fi xture (e.g., “id,” “source XML”).
Column names ending in “()” signify a function that Fit calls and then compares
its result with the contents of the cell.

The resulting output is shown in Figure 18.2. This colored-in table allows us
to get an overview of the results of running one fi le of tests at a single glance.

Figure 18.2 The results of executing the Fit test.

 Data-Driven Test

Data-Driven
Test

297

www.it-ebooks.info

http://www.it-ebooks.info/

Test Automation Framework

How do we make it easy to write and run tests written by different people?

We use a framework that provides all the mechanisms needed to run the test logic
so the test writer needs to provide only the test-specifi c logic.

Writing and running automated tests involves several steps, but many of these
steps are the same for every test. If every test had to include an implementation
of these steps, writing automated tests would be very tedious, time-consuming,
prone to errors, and expensive.

Using a Test Automation Framework is a way to minimize the effort of writing
Fully Automated Tests (see page 26).

How It Works

We build a framework that implements all the mechanisms required to run suites
of tests and record the results. These mechanisms include the ability to fi nd in-
dividual tests, assemble them into a test suite, execute each test in turn, verify
expected outcomes, collect and report any test failures or errors, and clean up
when failures or errors do occur. The framework provides a way to plug in and
run the test-specifi c behavior that test automaters write.

Test Automation Infrastructure

Fixture

SUT

Test
Script 1

Test
Script 2

Test
Script n

Exercise

Inputs

Test Runner
Setup

Verify

Expected
Outputs

Test Automation Framework

Test Automation Infrastructure

Fixture

SUT

Test
Script 1

Test
Script 2

Test
Script n

Exercise

Inputs

Test Runner
Setup

Verify

Expected
Outputs

Test Automation Framework

Test
Automation
Framework

Chapter 18 Test Strategy Patterns298

www.it-ebooks.info

http://www.it-ebooks.info/

Why We Do This

Building Fully Automated Tests that are repeatable and robust is a much more
complicated process than just writing a test script that invokes the SUT. We need
to handle success cases and error cases, both expected and unexpected. We need
to set up and tear down test fi xtures. We need to specify which test(s) to run. We
also need to report on the results after we have run a suite of tests.

The amount of effort required to build Fully Automated Tests can act as
a serious deterrent to automation of tests. We can reduce the cost of getting
started signifi cantly by providing a framework that implements the most com-
mon functionality—the only entry cost is then incurred while learning to use
the framework. This cost, in turn, can be reduced if the framework implements
a common protocol such as xUnit that makes it easier for us to learn a second
or third framework once we have experience with the fi rst.

Using a framework also helps isolate the implementation of the logic re-
quired to run the tests from the logic of the tests. This approach can help reduce
Test Code Duplication (page 213) and minimize the occurrence of Obscure
Tests (page 186). It also ensures that test written by different test automaters
can be run easily in a single test run with a single report on the test results.

Implementation Notes

Many kinds of Test Automation Frameworks are available, from both com-
mercial vendors and open-source resources. They can be classifi ed into two
main categories: “robot user” test tools and Scripted Tests (page 285). The
latter category can be further subdivided into the xUnit and Data-Driven
Tests (page 288) families of Test Automation Frameworks.

Variation: Robot User Test Frameworks

A large number of third-party test automation tools are designed to test applica-
tions via the user interface. Most of them use the “record and playback” test
metaphor. This metaphor leads to some very seductive marketing materials,
because it makes test automation seem as simple as running some tests manu-
ally while recording the test session. Such a robot user test tool consists of two
major parts: the “test recorder,” which monitors and records the interactions
between the user and the SUT, and the “test runner,” which executes the Recorded
Tests (page 278). Most of these test automation tools are also frameworks that
support a number of “widget recognizer” plug-ins. Most commercial tools come
with a gaggle of built-in widget recognizers.

 Test Automation Framework

Test
Automation
Framework

299

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: The xUnit Family of Test Automation Frameworks

Most unit-testing tools belong to the xUnit family of testing frameworks
designed for automating Hand-Scripted Tests (see Scripted Test). xUnit has
been ported to (or developed from scratch for) most current programming
languages. The xUnit family of unit-testing frameworks consists of several
major components. The most visible is the Test Runner (page 377), which can
be invoked either from the command line or as a Graphical Test Runner (see
Test Runner). It builds the Testcase Objects (page 382), collects them into Test
Suite Objects (page 387), and invokes each of the Test Methods (page 348).
The other major component of the xUnit frameworks is the library of built-in
Assertion Methods (page 362) that are used within the Test Methods to specify
the expected outcome of each test.

Variation: Data-Driven Test Frameworks

A Data-Driven Test framework provides a way to plug in interpreters that know
how to execute a specifi c kind of test step. This fl exibility, in effect, extends the
format of the input fi le with new “verbs” and objects. Such a framework also
provides a test runner that reads in the fi le, passes control to the plug-ins when
their corresponding data formats are encountered, and keeps track of statistics
for the test run. The most notable member of the Data-Driven Test Frameworks
family is Fit, which enables test automaters to write tests in tabular form and to
“plug in” fi xture classes that know how to interpret specifi c formats of tables.

Example: Test Automation Framework

The Test Automation Framework looks somewhat different for each of the
possible ways to automate tests. To see these variations, refer to Recorded Test,
Scripted Test, and Data-Driven Test for examples of the respective Test Auto-
mation Frameworks.

Further Reading

Some of the more popular examples of Test Automation Frameworks for xUnit
are JUnit (Java), SUnit (Smalltalk), CppUnit (C++), NUnit (all .NET languages),
runit (Ruby), PyUnit (Python), and VbUnit (Visual Basic). A more complete and
up-to-date list can be found at http://xprogramming.com, along with a list of the
available extensions (e.g., HttpUnit, Cactus).

Test
Automation
Framework

Chapter 18 Test Strategy Patterns300

www.it-ebooks.info

http://xprogramming.com
http://www.it-ebooks.info/

Other open-source Test Automation Frameworks include Fit, Canoo Web-
Test, and Watir. Commercial Test Automation Frameworks include QTP, BPT,
and eCATT, among many others.

In Test-Driven Development—By Example [TDD-BE], Kent Beck illustrates
TDD by building a Test Automation Framework in Python. In an approach he
likens to “doing brain surgery on yourself,” he uses the emerging Test Automa-
tion Framework to run the tests he writes for each new capability. This applica-
tion is a very good example of both TDD and bootstrapping.

 Test Automation Framework

Test
Automation
Framework

301

www.it-ebooks.info

http://www.it-ebooks.info/

Minimal Fixture

Which fi xture strategy should we use?

We use the smallest and simplest fi xture possible for each test.

Every test needs some kind of test fi xture. A key part of understanding a test
is understanding the test fi xture and recognizing how it infl uences the expected
outcome of the test. Tests are much easier to understand if the fi xture is small
and simple.

Why We Do This

A Minimal Fixture is important for achieving Tests as Documentation
(see page 23) and for avoiding Slow Tests (page 253). A test that uses a Minimal
Fixture will always be easier to understand than one that uses a fi xture contain-
ing unnecessary or irrelevant information. This is true whether we are using a
Fresh Fixture (page 311) or a Shared Fixture (page 317), although the effort to
build a Minimal Fixture is typically higher with a Shared Fixture because it must
be designed to handle several tests. Defi ning a Minimal Fixture is much easier
for a Fresh Fixture because it need serve only a single test.

Fixture

Fixture

SUT

Testcase Class

setUp

test_1

test_2

test_n

Fixture

Fixture

SUT

Testcase Class

setUp

test_1

test_2

test_n

Also known as:
Minimal
Context

Minimal
Fixture

302 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Implementation Notes

We design a fi xture that includes only those objects that are absolutely necessary
to express the behavior that the test verifi es. Another way to phrase this is “If
the object is not important to understand the test, it is important not to include
it in the fi xture.”

To build a Minimal Fixture, we ruthlessly remove anything from the fi xture
that does not help the test communicate how the SUT should behave. Two
forms of “minimization” can be considered:

• We can eliminate objects entirely. That is, we don’t even build the
objects as part of the fi xture. If the object isn’t necessary to prove
something about how the SUT behaves, we don’t include it at all.

• We can hide unnecessary attributes of the object when they don’t con-
tribute to the understanding of the expected behavior.

A simple way to fi nd out whether an object is necessary as part of the fi xture
is to remove it. If the test fails as a result, the object was probably necessary
in some way. Of course, it may have been necessary only as an argument to
some method we are not interested in or as an attribute that is never used (even
though the object to which the attribute belongs is required for some reason).
Including these kinds of objects as part of fi xture setup defi nitely contributes to
Obscure Tests (page 186). We can eliminate these unnecessary objects in one of
two ways: (1) by hiding them or (2) by eliminating the need for them by passing
in Dummy Objects (page 728) or using Entity Chain Snipping (see Test Stub
on page 529). If the SUT actually accesses the object as it is executing the logic
under test, however, we may be forced to include the object as part of the test
fi xture.

Having determined that the object is necessary for the execution of the test,
we must now ask whether the object is helpful in understanding the test. If we
were to initialize it “off-stage,” would that make it harder to understand the
test? Would the object lead to an Obscure Test by acting as a Mystery Guest
(see Obscure Test)? If so, we want to keep the object visible. Boundary values
are a good example of a case in which we do want to keep the objects and at-
tributes that take on the boundary values visible.

If we have established that the object or attribute isn’t necessary for
understanding the test, we should make every effort to eliminate it from the
Test Method (page 348), albeit not necessarily from the test fi xture. Creation
Methods (page 415) are a common way of achieving this goal. We can hide
the attributes of objects that don’t affect the outcome of the test but that are
needed for construction of the object by using Creation Methods to fi ll in all

 Minimal Fixture

Minimal
Fixture

303

www.it-ebooks.info

http://www.it-ebooks.info/

the “don’t care” attributes with meaningful default values. We can also hide
the creation of necessary depended-on objects within the Creation Methods.
A good example of this occurs when we write tests that require badly formed
objects as input (for testing the SUT with invalid inputs). In this case we don’t
want to confuse the issue by showing all valid attributes of the object being
passed to the SUT; there could be many of these extraneous attributes.
Instead, we want to focus on the invalid attribute. To do so, we can use the One
Bad Attribute pattern (see Derived Value on page 718) to build malformed
objects with a minimum of code by calling a Creation Method to construct a
valid object and then replacing a single attribute with the invalid value that
we want to verify the SUT will handle correctly.

Minimal
Fixture

Chapter 18 Test Strategy Patterns304

www.it-ebooks.info

http://www.it-ebooks.info/

Standard Fixture

Which fi xture strategy should we use?

We reuse the design of the text fi xture across the many tests.

To execute an automated test, we require a text fi xture that is well understood
and completely deterministic. Designing a custom test fi xture for each test requires
extra effort. A Standard Fixture offers a way to reuse the same fi xture design in
several tests without necessarily sharing the same fi xture instance.

How It Works

A Standard Fixture is more about attitude than about technology. It requires us
to decide early on in the testing process that we will design a Standard Fixture
that can be used by several or many tests rather than mining a common fi xture
from tests that were designed independently. In a sense, a Standard Fixture is the
result of “Big Design Upfront” of the test fi xture for a whole suite of tests. We
then defi ne our specifi c tests using this common test fi xture design.

The choice of a Standard Fixture is independent of the choice between a
Fresh Fixture (page 311) and a Shared Fixture (page 317). A Shared Fixture
is, by defi nition, a Standard Fixture. The reverse is not true, however, because
a Standard Fixture focuses on reuse of the fi xture’s design—not the time when
the fi xture is built or its visibility. Having chosen to use a Standard Fixture, we
still need to decide whether each test will build its own instance of the Standard

Fixture
Setup

Exercise

Verify

Teardown

SUT

Fixture
Setup

Exercise

Verify

Teardown

SUT

Standard Fixture
Setup Logic

Fixture
Setup

Exercise

Verify

Teardown

SUT

Fixture
Setup

Exercise

Verify

Teardown

SUT

Standard Fixture
Setup Logic

Also known as:
Standard
Context

 Standard Fixture

Standard
Fixture

305

www.it-ebooks.info

http://www.it-ebooks.info/

Fixture (a Fresh Fixture) or whether we will build it once as a Shared Fixture
and reuse it across many tests.

When to Use It

When I was reviewing an early draft of this book with Series Editor Martin
Fowler, he asked me, “Do people actually do this?” This question exemplifi es
the philosophical divide of fi xture design. Coming from an agile background,
Martin lets each test pull a fi xture into existence. If several tests happen to need
the same fi xture, then it makes sense to factor it out into the setUp method and
split the class into one Testcase Class per Fixture (page 631). It doesn’t even occur
to Martin to design a Standard Fixture that all tests can use. So who uses them?

Standard Fixtures are something of a tradition in the testing (quality assess-
ment) community. It is very commonplace to defi ne a large Standard Fixture that
is then used as a test bed for testing activities. This approach makes a lot of sense
in the context of manual execution of many customer tests because it eliminates
the need for each tester to spend a lot of time setting up the test environment for
each customer test and it allows several testers to work in the same test environ-
ment at the same time. Some test automaters also use Standard Fixtures when
defi ning their automated customer tests. This strategy is especially prevalent
when test automaters use a Shared Fixture, for obvious reasons.

In the xUnit community, use of a Standard Fixture simply to avoid designing a
Minimal Fixture (page 302) for each test is considered undesirable and has been
given the name General Fixture (see Obscure Test on page 186). A more accepted
example is the use of Implicit Setup (page 424) in conjunction with Testcase
Class per Fixture because only a few Test Methods (page 348) share the design
of the fi xture and they do so because they need the same design. As we make a
Standard Fixture more reusable across many tests with disparate needs, it tends
to grow larger and more complex. This trend can lead to a Fragile Fixture (see
Fragile Test on page 239) as the needs of new tests introduce changes that break
existing clients of the Standard Fixture. Depending on how we go about building
the Standard Fixture, we may also fi nd ourselves entertaining a Mystery Guest
(see Obscure Test) if the cause–effect relationships between the fi xture and out-
come are not easy to discern either because the fi xture setup is hidden from the
test or because it is not clear which characteristics of the referenced part of the
Standard Fixture serve as pre-conditions for the test.

A Standard Fixture will also take longer to build than a Minimal Fixture
because there is more fi xture to construct. When we are building a Fresh Fixture
for each Testcase Object (page 382), this effort can lead to Slow Tests (page 253),
especially if the fi xture setup involves a database. (See the sidebar “Unit Test Rulz”

Standard
Fixture

306 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Test Rulz

Michael Feathers of Object Mentor writes:

I’ve used these rules with a large number of teams. They encour-
age good design and rapid feedback and they seem to help teams
avoid a lot of trouble.

A test is not a unit test if:

• It talks to the database.

• It communicates across the network.

• It touches the fi le system.

• It can’t run correctly at the same time as any of your other unit
tests.

• You have to do special things to your environment (such as
editing confi g fi les) to run it.

Tests that do these things aren’t bad. Often they are worth writ-
ing, and they can be written in a unit test harness. However, it is
important to be able to separate them from true unit tests so that
we can keep a set of tests that we can run fast whenever we make
our changes.

http://www.objectmentor.com

for an opinion about what kinds of behavior are acceptable for a unit test.) For
these reasons, we may be better off using a Minimal Fixture to avoid the extra
fi xture setup overhead associated with creating objects that are only needed in
other tests.

Implementation Notes

As mentioned earlier, we can use a Standard Fixture as either a Fresh Fixture or
a Shared Fixture, and we can set it up using either Implicit Setup or Delegated
Setup (page 411).7 When using it as a Fresh Fixture, we can defi ne a Test Utility
Method (page 599) (function or procedure) that builds the Standard Fixture; we
can then call the Test Utility Method from each test that needs this particular design
of fi xture. Alternatively, we can take advantage of xUnit support for Implicit Setup
by putting all of the fi xture construction logic in the setUp method.

7 Doing it with In-line Setup (page 408) would be silly—we would have to copy the code
to construct the Standard Fixture to every Test Method.

 Standard Fixture

Standard
Fixture

307

www.it-ebooks.info

http://www.objectmentor.com
http://www.it-ebooks.info/

When building a Standard Fixture for use as a Shared Fixture, we can employ
any of the Shared Fixture setup patterns including Suite Fixture Setup (page 441),
Lazy Setup (page 435), and Setup Decorator (page 447).

Motivating Example

As mentioned earlier, we are most likely to end up using a Standard Fixture
because we started that way—and we probably started that way as the result
of the background of one of the project participants. We probably would not
refactor our tests to use a Standard Fixture when those tests are already written
to use a Minimal Fixture unless we were refactoring to create a Testcase Class
per Fixture. For the sake of illustration, let’s assume that we did want to get to
“here” from “there.” The following example uses Creation Methods (page 415)
to build a custom Fresh Fixture for each test:

 public void testGetFlightsByFromAirport_OneOutboundFlight_c()
 throws Exception {
 FlightDto outboundFlight = createOneOutboundFlightDto();
 // Exercise System
 List flightsAtOrigin =
 facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights_c()
 throws Exception {
 FlightDto[] outboundFlights =
 createTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

To keep this test short, we have used Delegated Setup to populate the SUT with
the Minimal Fixture needed for each test. We could have included the fi xture
setup code in-line in each method, but that choice would take us down the road
toward an Obscure Test.

Standard
Fixture

Chapter 18 Test Strategy Patterns308

www.it-ebooks.info

http://www.it-ebooks.info/

Refactoring Notes

Technically speaking, converting a pile of tests to a Standard Fixture isn’t really a
“refactoring” because we actually change the behavior of these tests. The biggest
challenge is designing the reusable Standard Fixture in such a way that each Test
Method can fi nd some part of the fi xture that serves its needs. This means synthe-
sizing all of the individual purpose-built Minimal Fixtures into a single “jack of
all trades” fi xture. Not surprisingly, this reworking of the code can be a nontrivial
exercise when we have a lot of tests.

The easy and mechanical part of the refactoring is to convert the logic in
each test that constructs the fi xture into calls to Finder Methods (see Test Utility
Method) that retrieve the appropriate part of the Standard Fixture. This transfor-
mation is most easily done as a series of steps. First, we extract the in-line fi xture
construction logic in each Test Method into one or more Creation Methods with
Intent-Revealing Names [SBPP]. Next, we do a global replace on the “create” part
of each call to “fi nd.” Finally, we generate (either manually or using our IDE’s
“quick fi x” capability) the Finder Methods needed to get the calls to compile.
Inside each Finder Methods we add in code to return the relevant part of the
Standard Fixture.

Example: Standard Fixture

Here’s the example given earlier converted to use a Standard Fixture:

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome

 Standard Fixture

Standard
Fixture

309

www.it-ebooks.info

http://www.it-ebooks.info/

 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

To make the use of a Standard Fixture really obvious, this example shows a
Fresh Fixture that is created explicitly in each test by calling the same Creation
Method to set up the Standard Fixture (i.e., using Delegated Setup). We could
have achieved the same effect by putting the fi xture construction logic into the
setUp method, thus using Implicit Setup. The resulting test would look identical
to one that uses a Shared Fixture.

Standard
Fixture

Chapter 18 Test Strategy Patterns310

www.it-ebooks.info

http://www.it-ebooks.info/

Fresh Fixture

Which fi xture strategy should we use?

Each test constructs its own brand-new test fi xture for its
own private use.

Every test needs a test fi xture. It defi nes the state of the test environment before
the test. The choice of whether to build the fi xture from scratch each time the
test is run or to reuse a fi xture built earlier is a key test automation decision.

When each test creates a Fresh Fixture, Erratic Tests (page 228) are less
likely and the testing effort is more likely to result in Tests as Documentation
(see page 23).

How It Works

We design and build the test fi xture such that only a single run of a single test will
use it. We construct the fi xture as part of running the test and tear down the fi xture
when the test has fi nished. We do not reuse any fi xture left over by other tests or
other test runs. This way, we start and end every test with a “clean slate.”

Fixture
Setup

Exercise

Verify

Teardown

SUTFixture
Setup

Exercise

Verify

Teardown

SUT

Fixture
Setup

Exercise

Verify

Teardown

SUTFixture
Setup

Exercise

Verify

Teardown

SUT

Also known as:
Fresh Context,
Private Fixture

 Fresh Fixture

Fresh
Fixture

311

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use It

We should use a Fresh Fixture whenever we want to avoid any interdependencies
between tests that can result in Erratic Tests such as Lonely Tests (see Erratic Test)
or Interacting Tests (see Erratic Test). If we cannot use a Fresh Fixture because it
slows the tests down too much, we should consider using an Immutable Shared
Fixture (see Shared Fixture on page 317) before resorting to a Shared Fixture.
Note that using a Database Partitioning Scheme (see Database Sandbox on page
650) to create a private Database Sandbox for the test that no other tests will
touch does not result in a Fresh Fixture because subsequent test runs could use
the same fi xture.

Implementation Notes

A fi xture is considered a Fresh Fixture if we intend to use it a single time. Whether
the Fresh Fixture is transient or persistent depends on the nature of the SUT and
how the tests are written (Figure 18.3). While the intent is the same, the implemen-
tation considerations are somewhat different when the Fresh Fixture is persistent.
Fixture setup is largely unaffected, so it is discussed as a feature common to all
such fi xtures. Fixture teardown is specifi c to the particular variation.

Figure 18.3 Test fi xture strategies. A fi xture can be either Fresh, Shared, or a
combination of the two (the immutable Shared Fixture) based on whether some,
or all, of it persists between tests.

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

Fresh
Fixture

Chapter 18 Test Strategy Patterns312

www.it-ebooks.info

http://www.it-ebooks.info/

Why Does a Fixture Persist?

The fi xture we construct may hang around after the Test Method (page 348)
has fi nished executing for one of two reasons. First, if the fi xture primarily
consists of the state of some other objects or components on which the SUT
depends, its persistence is determined by whether those other objects are them-
selves persistent. A database is one such beast. That’s because as soon as some
code persists the fi xture objects into a database, the objects “hang around”
long after our test is done. Their existence in the database opens the door
to collisions between multiple runs of our own test (Unrepeatable Test; see
Erratic Test). Other tests may also be able to access those objects, which can
result in other forms of Erratic Tests such as Interacting Tests and Test Run
Wars. If we must use a database or other form of object persistence, we should
take extra steps to keep the fi xture private. In addition, we should tear down
the fi xture after each Test Method.

The second reason that a fi xture might persist lies within the control of our
tests—namely, which kind of variable we choose to hold the reference to the
fi xture. Local variables naturally go out of scope when the Test Method fi nishes
executing; therefore any fi xture held in a local variable will be destroyed by
garbage collection. Instance variables go out of scope when the Testcase Object
is destroyed8 and require explicit teardown only if the xUnit framework doesn’t
recreate the Testcase Objects during each test run. By contrast, class variables
usually result in persistent fi xtures that can outlive a single test method or even
a test run and should therefore be avoided when using a Fresh Fixture.

In practice, our fi xture will not normally be persistent in unit tests9 unless
we have tightly coupled our application logic to the database. A fi xture is more
likely to be persistent when we are writing customer tests or possibly compo-
nent tests.

Fresh Fixture Setup

Construction of the fi xture is largely unaffected by whether it is persistent or tran-
sient. The primary consideration is the location of the code to set up the fi xture. We
can use In-line Setup (page 408) if the fi xture setup is relatively simple. For more
complex fi xtures, we generally prefer using Delegated Setup (page 411) when our

8 Most members of the xUnit family create a separate Testcase Object (page 382) for
each Test Method. A few do not, however. This difference can trip up unwary test
automaters when they fi rst start using these members of the family because instance
variables may unexpectedly act like class variables. For a detailed description of this
issue, see the sidebar “There’s Always an Exception” (page 384).
9 The sidebar “Unit Test Rulz” (page 307) explains what constitutes a unit test.

 Fresh Fixture

Fresh
Fixture

313

www.it-ebooks.info

http://www.it-ebooks.info/

Test Methods are organized using Testcase Class per Class (page 617) or Testcase
Class per Feature (page 624). We can use Implicit Setup (page 424) to build the
fi xture if we have used the Testcase Class per Fixture (page 631) organization.

Variation: Transient Fresh Fixture

If we need to refer to the fi xture from several places in the test, we should use
only local variables or instance variables to refer to the fi xture. In most cases we
can depend on Garbage-Collected Teardown (page 500) to destroy the fi xture
without any effort on our part.

Note that a Standard Fixture (page 305) can also be a Fresh Fixture if the
fi xture is built from scratch before each Test Method is run. This approach reuses
the design of the fi xture rather than the instance. It is commonly encountered
when we use Implicit Setup but we are not using Testcase Class per Fixture to
organize our Test Methods.

Variation: Persistent Fresh Fixture

If we do end up using a Persistent Fresh Fixture, either we need to tear down the
fi xture or we need to take special measures to avoid the need for its teardown.
We can tear down the fi xture using In-line Teardown (page 509), Implicit Tear-
down (page 516), Delegated Teardown (see In-line Teardown), or Automated
Teardown (page 503) to leave the test environment in the same state as when
we entered it.

To avoid fi xture teardown, we can use a Distinct Generated Value (see
Generated Value on page 723) for each fi xture object that must be unique.
This strategy can become the basis of a Database Partitioning Scheme that
seeks to isolate the tests and test runners from one another. It would prevent
Resource Leakage (see Erratic Test) in case our teardown process fails. We can
also combine this approach with one of the teardown patterns to be doubly
sure that no Unrepeatable Tests or Interacting Tests exist.

Not surprisingly, this additional work has some drawbacks: It makes tests
more complicated to write and it often leads to Slow Tests (page 253). A natural
reaction is to take advantage of the persistence of the fi xture by reusing it across
many tests, thereby avoiding the overhead of setting it up and tearing it down.
Unfortunately, this choice has many undesirable ramifi cations because it violates
one of our major principles: Keep Tests Independent (see page 42). The result-
ing Shared Fixture invariably leads to Interacting Tests and Unrepeatable Tests,
if not immediately, then at some point down the road. We should not venture
down this road without fully understanding the consequences!

Fresh
Fixture

Chapter 18 Test Strategy Patterns314

www.it-ebooks.info

http://www.it-ebooks.info/

Motivating Example

Here’s an example of a Shared Fixture:

 static Flight flight;
 public void setUp() {
 if (flight == null) { // Lazy SetUp
 Airport departAirport = new Airport("Calgary", "YYC");
 Airport destAirport = new Airport("Toronto", "YYZ");
 flight = new Flight(flightNumber,
 departAirport,
 destAirport);
 }
 }

 public void testGetStatus_inital_S() {
 // implicit setup
 // exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // teardown
 }
 public void testGetStatus_cancelled() {
 // implicit setup partially overridden
 flight.cancel();
 // exercise SUT and verify outcome
 assertEquals(FlightState.CANCELLED, flight.getStatus());
 // teardown
 }

Based on the code that actually sets up the fi xture as shown here, it is a normal
Shared Fixture, but we could have just as easily used a Prebuilt Fixture (page 429)
for this motivating example. Either way, these tests could start interacting at any
time.

Refactoring Notes

Suppose we are using a Shared Fixture (same design, single copy) and decide to
refactor it to use a Fresh Fixture. We can start by refactoring the test to use a
fresh Standard Fixture (same design, many copies). Then we can decide whether
we want to further evolve the test so that it builds a Minimal Fixture (page 302)
by pruning the fi xture setup logic to the bare minimum using a Minimize
Data (page 738) refactoring. This point would also be good time to group Test
Methods that need the same type of test fi xture into a Testcase Class per Fixture
and use Implicit Setup; this use of a Standard Fixture would reduce the number
of Minimal Fixtures we need to design and build.

 Fresh Fixture

Fresh
Fixture

315

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Fresh Fixture

Here’s the same test converted to a Fresh Fixture to avoid any possibility of
Interacting Tests:

 public void testGetStatus_inital() {
 // setup
 Flight flight = createAnonymousFlight();
 // exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // teardown
 // garbage-collected
 }

 public void testGetStatus_cancelled2() {
 // setup
 Flight flight = createAnonymousCancelledFlight();
 // exercise SUT and verify outcome
 assertEquals(FlightState.CANCELLED, flight.getStatus());
 // teardown
 // garbage-collected
 }

Note the use of Anonymous Creation Methods (see Creation Method on page 415)
to construct the appropriate state Flight object in each test.

Fresh
Fixture

316 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

317

Shared Fixture

How can we avoid Slow Tests?
Which fi xture strategy should we use?

We reuse the same instance of the test fi xture across many tests.

To execute an automated test, we require a text fi xture that is well understood
and completely deterministic. Setting up a Fresh Fixture (page 311) can be time-
consuming, especially when we are dealing with complex system state stored in
a test database.

We can make our tests run faster by reusing the same fi xture for several or
many tests.

How It Works

The basic concept is pretty simple: We create a Standard Fixture (page 305) fi xture
that outlasts the lifetime of a single Testcase Object (page 382). This approach
allows multiple tests to reuse the same test fi xture without destroying that fi xture
and recreating it between tests. A Shared Fixture can be either a Prebuilt Fixture
that is reused by one or more tests in many test runs or a fi xture that is created by
one test and reused by another test within the same test run. In either case, the key
consideration is that many tests do not create their own fi xtures but rather reuse a
fi xture “left over” from some other activity. The tests run faster because they have
less fi xture setup to perform, which may result in the test automater having to do
less work to defi ne the fi xture for each test.

Setup

Exercise

Verify

Teardown

Fixture

Exercise

Verify

Teardown

SUT

Setup

Exercise

Verify

Teardown

Fixture

Exercise

Verify

Teardown

SUT

Also known as:
Shared Context,
Leftover Fixture,
Reused Fixture,
Stale Fixture

 Shared Fixture

Shared
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use It

Regardless of why we use them, Shared Fixtures come with some baggage that
we should understand before we head down this path. The major issue with a
Shared Fixture is that it can lead to interactions between tests, possibly resulting
in Erratic Tests (page 228) if some tests depend on the outcomes of other tests.
Another potential problem is that a fi xture designed to serve many tests is bound
to be much more complicated than the Minimal Fixture (page 302) needed for a
single test. This greater complexity will typically take more effort to design and
can lead to a Fragile Fixture (see Fragile Test on page 239) later on down the
road when we need to modify the fi xture.

A Shared Fixture will often result in an Obscure Test (page 186) because
the fi xture is not constructed inside the test. This potential disadvantage can be
mitigated by using Finder Methods (see Test Utility Method on page 599) with
Intent-Revealing Names [SBPP] to access the relevant parts of the fi xture.

There are some valid reasons for using a Shared Fixture and some misguided
ones. Many of the variations have been devised primarily to mitigate the negative
consequences of using a Shared Fixture. So, what are good reasons for using a
Shared Fixture?

Variation: Slow Tests

We can use a Shared Fixture when we cannot afford to build a new Fresh Fixture
for each test. Typically, this scenario will occur when it takes too much processing
to build a new fi xture for each test, which often leads to Slow Tests (page 253).
It most commonly occurs when we are testing with real test databases due to
the high cost of creating each of the records. This growth in overhead tends to
be exacerbated when we use the API of the SUT to create the reference data,
because the SUT often does a lot of input validation, which may involve reading
some of the just-written records.

A better solution is to make the tests run faster by not interacting with the
database at all. For a more complete list of options, see the solutions to Slow
Tests and the sidebar “Faster Tests Without Shared Fixtures” (page 319).

Shared
Fixture

318 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Faster Tests Without Shared Fixtures

The fi rst reaction to Slow Tests (page 253) is often to switch to a Shared
Fixture (page 317) approach. Several other solutions are available, how-
ever. This sidebar describes some experiences on several projects.

Fake Database
On one of our early XP projects, we wrote a lot of tests that accessed
the database. At fi rst we used a Shared Fixture. When we encountered
Interacting Tests (see Erratic Test on page 228) and later Test Run Wars
(see Erratic Test), however, we changed to a Fresh Fixture (page 311)
approach. Because these tests needed a fair bit of reference data, they
were taking a long time to run. On average, for every read or write the
SUT did to or from the database, each test did several more. It was tak-
ing 15 minutes to run the full test suite of several hundred tests, which
greatly impeded our ability to integrate our work quickly and often.

At the time, we were using a data access layer to keep the SQL out of
our code. We soon discovered that it allowed us to replace the real data-
base with a functionally equivalent Fake Database (see Fake Object on
page 551). We started out by using simple HashTables to store the objects
against a key. This approach allowed us to run many of our simpler tests
“in memory” rather than against the database. And that bought us a sig-
nifi cant drop in test execution time.

Our persistence framework supported an object query interface. We were
able to build an interpreter of the object queries that ran against our
HashTable database implementation and that allowed the majority of our
tests to work entirely in memory. On average, our tests ran about 50 times
faster in memory than with the database. For example, a test suite that took
10 minutes to run with the database took 10 seconds to run in memory.

This approach was so successful that we have reused the same testing
infrastructure on many of our subsequent projects. Using the faked-out
persistence framework also means we don’t have to bother with building
a “real database” until our object models stabilize, which can be several
months into the project.

Incremental Speedups
Ted O’Grady and Joseph King are agile team leads on a large (50-plus
developers, subject matter experts, and testers) eXtreme Programming
project. Like many project teams building database-centric applications,

 Shared Fixture

Shared
Fixture

319

Continued...

www.it-ebooks.info

http://www.it-ebooks.info/

they suffered from Slow Tests. But they found a way around this problem:
As of late 2005, their check-in test suite ran in less than 8 minutes com-
pared to 8 hours for a full test run against the database. That is a pretty
impressive speed difference. Here is their story:

Currently we have about 6,700 tests that we run on a regular
basis. We’ve actually tried a few things to speed up the tests and
they’ve evolved over time.

In January 2004, we were running our tests directly against a
database via Toplink.

In June 2004, we modifi ed the application so we could run tests
against an in-memory, in-process Java database (HSQL). This cut
the time to run in half.

In August 2004, we created a test-only framework that allowed
Toplink to work without a database at all. That cut the time to
run all the tests by a factor of 10.

In July 2005, we built a shared “check-in” test execution server
that allowed us to run tests remotely. This didn’t save any time at
fi rst but it has proven to be quite useful nonetheless.

In July 2005, we also started using a clustering framework that al-
lowed us to run tests distributed across a network. This cut the
time to run the tests in half.

In August 2005, we removed the GUI and Master Data (reference data
crud) tests from the “check-in suite” and ran them only from Cruise
Control. This cut the time to run by approximately 15% to 20%.

Since May 2004, we have also had Cruise Control run all the tests
against the database at regular intervals. The time it takes Cruise
Control to complete [the build and run the tests] has grown with
the number of tests from an hour to nearly 8 hours now.

When a threshold has been met that prevents the developers from
(a) running [the tests] frequently when developing and (b) creat-
ing long check-in queues as people wait for the token to check in,
we have adapted by experimenting with new techniques. As a rule
we try to keep the running of the tests under 5 minutes, with any-
thing over 8 minutes being a trigger to try something new.

We have resisted thus far the temptation to run only a subset of
the tests and instead focused on ways to speed up running all the
tests—although as you can see, we have begun removing the tests

Shared
Fixture

320 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

developers must run continuously (e.g., Master Data and GUI
test suites are not required to check in, as they are run by Cruise
Control and are areas that change infrequently).

Two of the most interesting solutions recently (aside from the in-
memory framework) are the test server and the clustering frame-
work.

The test server (named the “check-in” box here) is actually quite
useful and has proven to be reliable and robust. We bought an
Opteron box that is roughly twice as fast as the development
boxes (really, the fastest box we could fi nd). The server has an
account set up for each development machine in the pit. Using
the UNIX tool rsynch, the Eclipse workspace is synchronized
with the user’s corresponding server account fi le system. A series
of shell scripts then recreates the database on the server for the
remote account and runs all the development tests. When the tests
have completed, a list of times to run each test is dumped to the
console, along with a MyTestSuite.java class containing all the
test failures, which the developer can use to run locally to fi x any
tests that have broken. The biggest advantage the remote server
has provided is that it makes running a large number of tests feel
fast again, because the developer can continue working while he
or she waits for the results of the test server to come back.

The clustering framework (based on Condor) was quite fast but had
the defect that it had to ship the entire workspace (11MB) to all the
nodes on the network (×20), which had a signifi cant cost, especially
when a dozen pairs are using it. In comparison, the test server uses
rsynch, which copies only the fi les that are new or different in the
developer’s workspace. The clustering framework also proved to be
less reliable than the server solution, frequently not returning any
status of the test run. There were also some tests that would not run
reliably on the framework. Since it gave us roughly the same perfor-
mance as the “check-in” test server, we have put this solution on the
back burner.

Further Reading
A more detailed description of the fi rst experience can be found at http://
FasterTestsPaper.gerardmeszaros.com.

 Shared Fixture

Shared
Fixture

321

www.it-ebooks.info

http://FasterTestsPaper.gerardmeszaros.com
http://FasterTestsPaper.gerardmeszaros.com
http://www.it-ebooks.info/

Variation: Incremental Tests

We may also use Shared Fixtures when we have a long, complex sequence of
actions, each of which depends on the previous actions. In customer tests, this
may show up as a work fl ow; in unit tests, it may be a sequence of method calls
on the same object. This case might be tested using a single Eager Test (see As-
sertion Roulette on page 224). The alternative is to put each distinct action into
a separate Test Method (page 348) that builds upon the actions of a previous test
operating on a Shared Fixture. This approach, which is an example of Chained
Tests (page 454), is how testers in the “testing” (i.e., QA) community often
operate: They set up a fi xture and then run a sequence of tests, each of which
builds upon the fi xture. The testers do have one signifi cant advantage over our
Fully Automated Tests (see page 26): When a test partway through the chain
fails, they are available to make decisions about how to recover or whether it is
worth proceeding at all. In contrast, our automated tests just keep running, and
many of them will generate test failures or errors because they did not fi nd the
fi xture as expected and, therefore, the SUT behaved (probably correctly) differ-
ently. The resulting test results can obscure the real cause of the failure in a sea
of red. With some experience it is often possible to recognize the failure pattern
and deduce the root cause.10

This troubleshooting can be made simpler by starting each Test Method with
one or more Guard Assertions (page 490) that document the assumptions the
Test Method makes about the state of the fi xture. When these assertions fail,
they tell us to look elsewhere—either at tests that failed earlier in the test suite
or at the order in which the tests were run.

Implementation Notes

A key implementation question with Shared Fixtures is, How do tests know about
the objects in the Shared Fixture so they can (re)use them? Because the point of
a Shared Fixture is to save execution time and effort by having multiple tests use
the same instance of the test fi xture, we’ll need to keep a reference to the fi xture
we create. That way, we can fi nd the fi xture if it already exists and we can inform
other tests that it now exists once we have constructed it. We have more choices
available to us with Per-Run Fixtures because we can “remember” the fi xture we
set up in code more easily than a Prebuilt Fixture (page 429) set up by a different
program. Although we could just hard-code the identifi ers (e.g., database keys) of
the fi xture objects into all our tests, that technique would result in a Fragile Fix-
ture. To avoid this problem, we need to keep a reference to the fi xture when we
create it and we need to make it possible for all tests to access that reference.

10 It may not be as simple as looking at the fi rst test that failed.

Shared
Fixture

Chapter 18 Test Strategy Patterns322

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Per-Run Fixture

The simplest form of Shared Fixture is the Per-Run Fixture, in which we set up
the fi xture at the beginning of a test run and allow it to be shared by the tests
within the run. Ideally, the fi xture won’t outlive the test run and we don’t have
to worry about interactions between test runs such as Unrepeatable Tests (a
cause of Erratic Tests). If the fi xture is persistent, such as when it is stored in a
database, we may need to do explicit fi xture teardown.

If a Per-Run Fixture is shared only within a single Testcase Class (page 373),
the simplest solution is to use a class variable for each fi xture object we need to
hold a reference to and then use either Lazy Setup (page 435) or Suite Fixture
Setup (page 441) to initialize the objects just before we run the fi rst test in the
suite. If we want to share the test fi xture between many Testcase Classes, we’ll
need to use a Setup Decorator (page 447) to hold the setUp and tearDown methods
and a Test Fixture Registry (see Test Helper on page 643) (which could just be
the test database) to access the fi xture.

Variation: Immutable Shared Fixture

The problem with Shared Fixtures is that they lead to Erratic Tests if tests modify
the Shared Fixture (page 317). Shared Fixtures violate the Independent Test prin-
ciple (see page 42). We can avoid this problem by making the Shared Fixture
immutable; that is, we partition the fi xture needed by tests into two logical parts.
The fi rst part is the stuff every test needs to have present but is never modifi ed by
any tests—that is, the Immutable Shared Fixture. The second part is the objects
that any test needs to modify or delete; these objects should be built by each test
as Fresh Fixtures.

The most diffi cult part of applying an Immutable Shared Fixture is deciding
what constitutes a change to an object. The key guideline is this: If any test per-
ceives something done by another test as a change to an object in the Immutable
Shared Fixture, then that change shouldn’t be allowed in any test with which it
shares the fi xture. Most commonly, the Immutable Shared Fixture consists of
reference data that is needed by the actual per-test fi xtures. The per-test fi xtures
can then be built as Fresh Fixtures on top of the Immutable Shared Fixture.

Motivating Example

The following example shows a Testcase Class setting up the test fi xture via
Implicit Setup (page 424). Each Test Method uses an instance variable to access
the contents of the fi xture.

 Shared Fixture

Shared
Fixture

323

www.it-ebooks.info

http://www.it-ebooks.info/

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

Note that the setUp method is run once for each Test Method. If the fi xture setup
is fairly complex and involves accessing a database, this approach could result
in Slow Tests.

Refactoring Notes

To convert a Testcase Class from a Standard Fixture to a Shared Fixture, we
simply convert the instance variables into class variables to make the fi xture
outlast the creating Testcase Object. We then need to initialize the class vari-
ables just once to avoid recreating them for each Test Method; Lazy Setup is an
easy way to accomplish this task. Of course, other ways to set up the Shared
Fixture are also possible, such as Setup Decorator or Suite Fixture Setup.

Example: Shared Fixture

This example shows the fi xture converted to a Shared Fixture set up using Lazy
Setup.

 protected void setUp() throws Exception {
 if (sharedFixtureInitialized) {
 return;

Shared
Fixture

324 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 facade = new FlightMgmtFacadeImpl();
 setupStandardAirportsAndFlights();
 sharedFixtureInitialized = true;
 }

 protected void tearDown() throws Exception {
 // We cannot delete any objects because we don't know
 // whether this is the last test
 }

The Lazy Initialization [SBPP] logic in the setUp method ensures that the Shared
Fixture is created whenever the class variable is uninitialized. The Test Methods
have also been modifi ed to use a Finder Method to access the contents of the
fi xture:

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

The details of how the Test Utility Methods such as setupStandardAirportsAndFlights
are implemented are not shown here, because they are not important for under-
standing this example. It should be enough to understand that these methods
create the airports and fl ights and store references to them in static variables
so that all Test Methods can access the same fi xture either directly or via Test
Utility Methods.

 Shared Fixture

Shared
Fixture

325

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Immutable Shared Fixture

Here’s an example of Shared Fixture “pollution”:

 public void testCancel_proposed_p()throws Exception {
 // shared fixture
 BigDecimal proposedFlightId = findProposedFlight();
 // exercise SUT
 facade.cancelFlight(proposedFlightId);
 // verify outcome
 try{
 assertEquals(FlightState.CANCELLED,
 facade.findFlightById(proposedFlightId));
 } finally {
 // teardown
 // try to undo the damage; hope this works!
 facade.overrideStatus(proposedFlightId,
 FlightState.PROPOSED);
 }
 }

We can avoid this problem by making the Shared Fixture immutable; that is, we
partition the fi xture needed by tests into two logical parts. The fi rst part is the
stuff every test needs to have present but is never modifi ed by any tests—that is,
the Immutable Shared Fixture. The second part is the objects that any test needs
to modify or delete; these objects should be built by each test as Fresh Fixtures.

Here’s the same test modifi ed to use an Immutable Shared Fixture. We simply
created our own mutableFlight within the test.

 public void testCancel_proposed() throws Exception {
 // fixture setup
 BigDecimal mutableFlightId =
 createFlightBetweenInsigificantAirports();
 // exercise SUT
 facade.cancelFlight(mutableFlightId);
 // verify outcome
 assertEquals(FlightState.CANCELLED,
 facade.findFlightById(mutableFlightId));
 // teardown
 // None required because we let the SUT create
 // new IDs for each flight. We might need to clean out
 // the database eventually.
 }

Note that we don’t need any fi xture teardown logic in this version of the test because
the SUT uses a Distinct Generated Value (see Generated Value on page 723)—that
is, we do not supply a fl ight number. We also use the predefi ned dummyAirport1 and
dummyAirport2 to avoid changing the number of fl ights for airports used by other
tests. Therefore, the mutable fl ights can accumulate in the database trouble-free.

Shared
Fixture

326 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Back Door Manipulation

How can we verify logic independently when we cannot use
a round-trip test?

We set up the test fi xture or verify the outcome by going through a back door
(such as direct database access).

Every test requires a starting point (the test fi xture) and an expected fi nishing
point (the expected results). The “normal” approach is to set up the fi xture and
verify the outcome by using the API of the SUT itself. In some circumstances this
is either not possible or not desirable.

In some situations we can use Back Door Manipulation to set up the fi xture
and/or verify the SUT’s state.

How It Works

The state of the SUT comes in many fl avors. It can be stored in memory, on disk
as fi les, in a database, or in other applications with which the SUT interacts.
Whatever form it takes, the pre-conditions of a test typically require that the
state of the SUT is not just known but is a specifi c state. Likewise, at the end of
the test we often want to do State Verifi cation (page 462) of the SUT’s state.

If we have access to the state of the SUT from outside the SUT, the test can
set up the pre-test state of the SUT by bypassing the normal API of the SUT
and interacting directly with whatever is holding that state via a “back door.”
When exercising of the SUT has been completed, the test can similarly access

DataFixture

Setup

Exercise

Verify

Teardown

SUT DataFixture

Setup

Exercise

Verify

Teardown

SUT

 Back Door Manipulation

Back Door
Manipulation

327

Also known as:
Layer-Crossing
Test

www.it-ebooks.info

http://www.it-ebooks.info/

the post-test state of the SUT via a back door to compare it with expected
outcome. For customer tests, the back door is most commonly a test database,
but it could also be some other component on which the SUT depends, including
a Registry [PEAA] object or even the fi le system. For unit tests, the back
door is some other class or object or an alternative interface of the SUT (or a
Test-Specifi c Subclass; page 579) that exposes the state in a way “normal” clients
wouldn’t use. We can also replace a depended-on component (DOC) with a
suitably confi gured Test Double (page 522) instead of using the real thing if
that makes the job easier.

When to Use It

We might choose to use Back Door Manipulation for several reasons which we’ll
examine in more detail shortly. A prerequisite for using this technique is that some
sort of back door to the state of the system must exist. The main drawback of
Back Door Manipulation is that our tests—or the Test Utility Methods (page 599)
they call—become much more closely coupled to the design decisions we make
about how to represent the state of the SUT. If we need to change those decisions,
we may encounter Fragile Tests (page 239). We need to decide whether this price
is acceptable on a case-by-case basis. We can greatly reduce the impact of the close
coupling by encapsulating all Back Door Manipulation in Test Utility Methods.

Using Back Door Manipulation can also lead to Obscure Tests (page 186) by
hiding the relationship of the test outcome to the test fi xture. We can avoid this
problem by including the test data being passed to the Back Door Manipulation
mechanism within the Testcase Class (page 373), or at least mitigate it by using
Finder Methods (see Test Utility Method) to refer to the objects in the fi xture
via intent-revealing names.

A common application of Back Door Manipulation involves testing basic
CRUD (Create, Read, Update, Delete) operations on the SUT’s state. In such a
case, we want to verify that the information persisted and can be recovered in the
same form. It is diffi cult to write round-trip tests for “Read” without also testing
“Create”; likewise, it is diffi cult to test “Update” or “Delete” without testing both
“Create” and “Read.” We can certainly test these operations by using round-trip
tests, but this kind of testing won’t detect certain types of systemic problems, such
as putting information into the wrong database column. One solution is to con-
duct layer-crossing tests that use Back Door Manipulation to set up or verify the
contents of the database directly. For a “Read” test, the test sets up the contents
of the database using Back Door Setup and then asks the SUT to read the data.
For a “Write” test, the test asks the system to write certain objects and then uses
Back Door Verifi cation on the contents of the database.

Back Door
Manipulation

Chapter 18 Test Strategy Patterns328

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Back Door Setup

One reason for doing Back Door Manipulation is to make tests run faster. If a
system does a lot of processing before putting data into its data store, the time it
takes for a test to set up the fi xture via the SUT’s API could be quite signifi cant.
One way to make the tests run faster is to determine what those data stores
should look like and then create a means to set them up via the back door
rather than through the API. Unfortunately, this technique introduces its own
problem: Because Back Door Setup bypasses enforcement of the object creation
business rules, we may fi nd ourselves creating fi xtures that are not realistic and
possibly even invalid. This problem may creep in over time as the business rules
are modifi ed in response to changing business needs. At the same time, this ap-
proach may allow us to create test scenarios that the SUT will not let us set up
through its API.

When we share a database between our SUT and another application, we
need to verify that we are using the database correctly and that we can handle
all possible data confi gurations the other applications might create. Back Door
Setup is a good way to establish these confi gurations—and it may be the only
way if the SUT either doesn’t write those tables or writes only specifi c (and
valid) data confi gurations. Back Door Setup lets us create those “impossible”
confi gurations easily so we can verify how the SUT behaves in these situations.

Variation: Back Door Verifi cation

Back Door Verifi cation involves sneaking in to do State Verifi cation of the SUT’s
post-exercise state via a back door; it is mostly applicable to customer tests (or
functional tests, as they are sometimes called). The back door is typically an
alternative way to examine the objects in the database, usually through a stan-
dard API such as SQL or via data exports that can then be examined with a fi le
comparison utility program.

As mentioned earlier, Back Door Manipulation can make tests run faster. If
the only way to get at the SUT’s state is to invoke an expensive operation (such
as a complex report) or an operation that further modifi es the SUT’s state, we
may be better off using Back Door Manipulation.

Another reason for doing Back Door Manipulation is that other systems
expect the SUT to store its state in a specifi c way, which they can then access
directly. This is a form of indirect output. In this situation, standard round-trip
tests cannot prove that the SUT’s behavior is correct because they cannot
detect a systematic problem if the “Write” and “Read” operations make the
same mistake, such as putting information into the wrong database column.
The solution is a layer-crossing test that looks at the contents of the database

 Back Door Manipulation

Back Door
Manipulation

329

www.it-ebooks.info

http://www.it-ebooks.info/

directly to verify that the information is stored correctly. For a “Write” test,
the test asks the system to write certain objects and then inspects the contents
of the database via the back door.

Variation: Back Door Teardown

We can also use Back Door Manipulation to tear down a Fresh Fixture (page 311)
that is stored in a test database. This ability is especially benefi cial if we can use
bulk database commands to wipe clean whole tables, as in Table Truncation
Teardown (page 661) or Transaction Rollback Teardown (page 668).

Implementation Notes

How we implement Back Door Manipulation depends on where the fi xture lives
and how easily we can access the state of the SUT. It also depends on why we
are doing Back Door Manipulation. This section lists the most common imple-
mentations, but feel free to use your imagination and come up with other ways
to use this pattern.

Variation: Database Population Script

When the SUT stores its state in a database that it accesses as it runs, the easiest
way to do Back Door Manipulation is to load data directly into that database
before invoking the SUT. This approach is most commonly required when we
are writing customer tests, but it may also be required for unit tests if the classes
we are testing interact directly with the database. We must fi rst determine the
pre-conditions of the test and, from that information, identify the data that the
test requires for its fi xture. We then defi ne a database script that inserts the cor-
responding records directly into the database bypassing the SUT logic. We use
this Database Population Script whenever we want to set up the test fi xture—a
decision that depends on which test fi xture strategy we have chosen. (See Chap-
ter 6, Test Automation Strategy, for more on that topic.)

When deciding to use a Database Population Script, we will need to maintain
both the Database Population Script and the fi les it takes as input whenever we
modify either the structure of the SUT’s data stores or the semantics of the data
in them. This requirement can increase the maintenance cost of the tests.

Variation: Data Loader

A Data Loader is a special program that loads data into the SUT’s data store.
It differs from a Database Population Script in that the Data Loader is written
in a programming language rather than a database language. This gives us a bit

Back Door
Manipulation

Chapter 18 Test Strategy Patterns330

www.it-ebooks.info

http://www.it-ebooks.info/

more fl exibility and allows us to use the Data Loader even when the system state
is stored somewhere other than a relational database.

If the data store is external to the SUT, such as in a relational database, the
Data Loader can be “just another application” that writes to that data store.
It would use the database in much the same way as the SUT but would get its
inputs from a fi le rather than from wherever the SUT normally gets its inputs
(e.g., other “upstream” programs). When we are using an object relational
mapping (ORM) tool to access the database from our SUT, a simple way to
build the Data Loader is to use the same domain objects and mappings in our
Data Loader. We just create the desired objects in memory and commit the
ORM’s unit of work to save them into the database.

If the SUT stores data in internal data structures (e.g., in memory), the Data
Loader may need to be an interface provided by the SUT itself. The following
characteristics differentiate it from the normal functionality provided by the SUT:

• It is used only by the tests.

• It reads the data from a fi le rather than wherever the SUT normally gets
the data.

• It bypasses a lot of the “edit checks” (input validation) normally done
by the SUT.

The input fi les may be simple fl at fi les containing comma- or tab-delimited text,
or they could be structured using XML. DbUnit is an extension of JUnit that
implements Data Loader for fi xture setup.

Variation: Database Extraction Script

When the SUT stores its state in a database that it accesses as it runs, we can
take advantage of this structure to do Back Door Verifi cation. We simply use a
database script to extract data from the test database and verify that it contains
the right data either by comparing it to previously prepared “extract” fi les or by
ensuring that specifi c queries return the right number of records.

Variation: Data Retriever

A Data Retriever is the analog of a Data Loader that retrieves the state from the
SUT when doing Back Door Verifi cation. Like a trusty dog, it “fetches” the data
so that we can compare it with our expected results within our tests. DbUnit is an
extension of JUnit that implements Data Retriever to support result verifi cation.

 Back Door Manipulation

Back Door
Manipulation

331

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Test Double as Back Door

So far, all of the implementation techniques described here have involved inter-
acting with a DOC of the SUT to set up or tear down the fi xture or to verify the
expected outcome. Probably the most common form of Back Door Manipula-
tion involves replacing the DOC with a Test Double. One option is to use a
Fake Object (page 551) that we have preloaded with some data as though the
SUT had already been interacting with it; this strategy allows us to avoid using
the SUT to set up the SUT’s state. The other option is to use some kind of Con-
fi gurable Test Double (page 558), such as a Mock Object (page 544) or a Test
Stub (page 529). Either way, we can completely avoid Obscure Tests by making
the state of the Test Double visible within the Test Method (page 348).

When we want to perform Behavior Verifi cation (page 468) of the calls made
by the SUT to one or more DOCs, we can use a layer-crossing test that replaces
the DOC with a Test Spy (page 538) or a Mock Object. When we want to
verify that the SUT behaves a specifi c way when it receives indirect inputs from
a DOC (or when in some specifi c external state), we can replace the DOC with
a Test Stub.

Motivating Example

The following round-trip test verifi es the basic functionality of removing a fl ight
by interacting with the SUT only via the front door. But it does not verify the
indirect outputs of the SUT—namely, that the SUT is expected to call a logger to
log each time a fl ight is removed along with the day/time when the request was
made and the user ID of the requester. In many systems, this would be an ex-
ample of “layer-crossing behavior”: The logger is part of a generic infrastructure
layer, while the SUT is an application-specifi c behavior.

 public void testRemoveFlight() throws Exception {
 // setup
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight should not exist after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 }

Back Door
Manipulation

Chapter 18 Test Strategy Patterns332

www.it-ebooks.info

http://www.it-ebooks.info/

Refactoring Notes

We can convert this test to use Back Door Verifi cation by adding result verifi cation
code to access and verify the logger’s state. We can do so either by reading that state
from the logger’s database or by replacing the logger with a Test Spy that saves the
state for easy access by the tests.

Example: Back Door Result Verifi cation Using a Test Spy

Here’s the same test converted to use a Test Spy to access the post-test state of
the logger:

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

This approach would be the better way to verify the logging if the logger’s data-
base contained so many entries that it wasn’t practical to verify the new entries
using Delta Assertions (page 485).

Example: Back Door Fixture Setup

The next example shows how we can set up a fi xture using the database as a
back door to the SUT. The test inserts a record into the EmailSubscription table
and then asks the SUT to fi nd it. It then makes assertions on various fi elds of the
object returned by the SUT to verify that the record was read correctly.

 Back Door Manipulation

Back Door
Manipulation

333

www.it-ebooks.info

http://www.it-ebooks.info/

 static final String TABLE_NAME = "EmailSubscription";
 static final BigDecimal RECORD_ID = new BigDecimal("111");

 static final String LOGIN_ID = "Bob";
 static final String EMAIL_ID = "bob@foo.com";

 public void setUp() throws Exception {
 String xmlString =
 "<?xml version='1.0' encoding='UTF-8'?>" +
 "<dataset>" +
 " <" + TABLE_NAME +
 " EmailSubscriptionId='" + RECORD_ID + "'" +
 " UserLoginId='" + LOGIN_ID + "'" +
 " EmailAddress='" + EMAIL_ID + "'" +
 " RecordVersionNum='62' " +
 " CreateByUserId='MappingTest' " +
 " CreateDateTime='2004-03-01 00:00:00.0' " +
 " LastModByUserId='MappingTest' " +
 " LastModDateTime='2004-03-01 00:00:00.0'/>" +
 "</dataset>";
 insertRowsIntoDatabase(xmlString);
 }

 public void testRead_Login() throws Exception {
 // exercise
 EmailSubscription subs =
 EmailSubscription.findInstanceWithId(RECORD_ID);
 // verify
 assertNotNull("Email Subscription", subs);
 assertEquals("User Name", LOGIN_ID, subs.getUserName());
 }

 public void testRead_Email() throws Exception {
 // exercise
 EmailSubscription subs =
 EmailSubscription.findInstanceWithId(RECORD_ID);
 // verify
 assertNotNull("Email Subscription", subs);
 assertEquals("Email Address",
 EMAIL_ID,
 subs.getEmailAddress());
 }

The XML document used to populate the database is built within the Testcase
Class so as to avoid the Mystery Guest (see Obscure Test) that would have been
created if we had used an external fi le for loading the database [the discussion of
the In-line Resource (page 736) refactoring explains this approach]. To make the
test clearer, we call intent-revealing methods that hide the details of how we use
DbUnit to load the database and clean it out at the end of the test using Table
Truncation Teardown. Here are the bodies of the Test Utility Methods used in
this example:

Back Door
Manipulation

334 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

 private void insertRowsIntoDatabase(String xmlString)
 throws Exception {
 IDataSet dataSet = new FlatXmlDataSet(new StringReader(xmlString));
 DatabaseOperation.CLEAN_INSERT.
 execute(getDbConnection(), dataSet);
 }

 public void tearDown() throws Exception{
 emptyTable(TABLE_NAME);
 }

 public void emptyTable(String tableName) throws Exception {
 IDataSet dataSet = new DefaultDataSet(new DefaultTable(tableName));
 DatabaseOperation.DELETE_ALL.
 execute(getDbConnection(), dataSet);
 }

Of course, the implementations of these methods are specifi c to DbUnit; we
must change them if we use some other member of the xUnit family.

Some other observations on these tests: To avoid an Eager Test (see Assertion
Roulette on page 224), the assertion on each fi eld appears in a separate
test. This structure could result in Slow Tests (page 253) because these tests
interact with a database. We could use Lazy Setup (page 435) or Suite Fixture
Setup (page 441) to avoid setting up the fi xture more than once as long as the
resulting Shared Fixture (page 317) was not modifi ed by any of the tests. (I
chose not to further complicate this example by taking this tack.)

Further Reading

See the sidebar “Database as SUT API?” on page 336 for an example of when
the back door is really a front door.

 Back Door Manipulation

Back Door
Manipulation

335

www.it-ebooks.info

http://www.it-ebooks.info/

Database as SUT API?

A common technique for setting up test fi xtures is Back Door Setup (see
Back Door Manipulation on page 327); for verifying test outcomes, Back
Door Verifi cation (see Back Door Manipulation) is a popular option. But
when is a test that interacts directly with the database behind a SUT not
considered to be going through the back door?

On a recent project, some friends were struggling with this very question,
though at fi rst they didn’t realize it. One of their analysts (who was also a
power user) seemed overly focused on the database schema. At fi rst, they
put this narrow focus down to the analyst’s Powerbuilder background
and tried to break him of the habit. That didn’t work. The analyst just
dug in his heels. The developers tried explaining that on agile projects it
was important not to try to defi ne the whole data schema at the begin-
ning of the project; instead, the schema evolved as the requirements were
implemented.

Of course, the analyst complained every time they modifi ed the database
schema because the changes broke all his queries. As the project unfold-
ed, the other team members slowly started to understand that the analyst
really did need a stable database against which to run queries. It was his
way to verify the correctness of the data generated by the system.

Once they recognized this requirement, the developers were able to treat the
query schema as a formal interface provided by the system. Customer tests
were written against this interface and developers had to ensure that those
tests still passed whenever they changed the database. To minimize the
impact of database refactorings, they defi ned a set of query views that
implemented this interface. This approach allowed them to refactor the
database as needed.

When might you fi nd yourself in this situation? Any time your customer
applies reporting tools (such as Crystal Reports) to your database, an
argument can be made as to whether part of the requirements is a stable
reporting interface. Similarly, if the customer uses scripts (such as DTS
or SQL) to load data into the database, there may be a requirement for a
stable data loading interface.

Back Door
Manipulation

Chapter 18 Test Strategy Patterns336

www.it-ebooks.info

http://www.it-ebooks.info/

Layer Test

How can we verify logic independently when it is part of
a layered architecture?

We write separate tests for each layer of the layered architecture.

It is diffi cult to obtain good test coverage when testing an entire application in
a top-to-bottom fashion; we are bound to end up doing Indirect Testing (see
Obscure Test on page 186) on some parts of the application. Many applications
use a Layered Architecture [DDD, PEAA, WWW] to separate the major technical
concerns. Most applications have some kind of presentation (user interface) lay-
er, a business logic layer or domain layer, and a persistence layer. Some layered
architectures have even more layers.

An application with a layered architecture can be tested more effectively by
testing each layer in isolation.

How It Works

We design the SUT using a layered architecture that separates the presentation
logic from the business logic and from any persistence mechanism or interfaces

DOC

Layer n

LayernTestcaseClass
testMethod_1

testMethod_2

Layer1TestcaseClass
testMethod_1

testMethod_2

Layer 1
Test Double

Test Double

DOC

Layer n

LayernTestcaseClass
testMethod_1

testMethod_2

Layer1TestcaseClass
testMethod_1

testMethod_2

Layer 1
Test Double

Test Double

 Layer Test

Layer Test

337

Also known as:
Single
Layer Test,
Testing by
Layers,
Layered Test

www.it-ebooks.info

http://www.it-ebooks.info/

to other systems.11 We put all business logic into a Service Layer [PEAA] that
exposes the application functionality to the presentation layer as an API. We
treat each layer of the architecture as a separate SUT. We write component tests
for each layer independent of the other layers of the architecture. That is, for
layer n of the architecture, the tests will take the place of layer n+1; we may op-
tionally replace layer n-1 with a Test Double (page 522).

When to Use It

We can use a Layer Test whenever we have a layered architecture and we want
to provide good test coverage of the logic in each layer. It can be much simpler
to test each layer independently than it is to test all the layers at once. This is
especially true when we want to do defensive coding for return values of calls
across the layer boundary. In software that is working correctly, these errors
“should never happen”; in real life, they do. To make sure our code handles
these errors, we can inject these “never happen” scenarios as indirect inputs
to our layer.

Layer Tests are very useful when we want to divide up the project team into
subteams based on the technology in which the team members specialize. Each
layer of an architecture tends to require different knowledge and often uses
different technologies; therefore, the layer boundaries serve as natural team
boundaries. Layer Tests can be a good way to nail down and document the
semantics of the layer interfaces.

Even when we choose to use a Layer Test strategy, it is a good idea to include
a few “top-to-bottom” tests just to verify that the various layers are integrated
correctly. These tests need to cover only one or two basic scenarios; we don’t
need to test every business test condition because all of them have already been
tested in the Layer Tests for at least one of the layers.

Most of the variations on this pattern refl ect which layer is being tested inde-
pendently of the other layers.

Variation: Presentation Layer Test

One could write a whole book just on patterns of presentation layer testing. The
specifi c patterns depend on the nature of the presentation layer technology (e.g.,
graphical user interface, traditional Web interface, “smart” Web interface, Web
services). Regardless of the technology, the key is to test the presentation logic
separately from the business logic so that we don’t have to worry about changes

11 Not all presentation logic relates to the user interface; this logic can also appear in a
messaging interface used by another application.

Layer Test

Chapter 18 Test Strategy Patterns338

www.it-ebooks.info

http://www.it-ebooks.info/

in the underlying logic affecting our presentation layer tests. (They are hard
enough to automate well as it is!)

Another consideration is to design the presentation layer so that its logic can
be tested independently of the presentation framework. Humble Dialog (see
Humble Object on page 695) is the key design-for-testability pattern to apply
here. In effect, we are defi ning sublayers within the presentation layer; the layer
containing the Humble Dialogs is the “presentation graphic layer” and the layer
we have made testable is the “presentation behavior layer.” This separation of
layers allows us to verify that buttons are activated, menu items are grayed out,
and so on, without instantiating any of the real graphical objects.

Variation: Service Layer Test

The Service Layer is where most of our unit tests and component tests are
traditionally concentrated. Testing the business logic using customer tests is
a bit more challenging because testing the Service Layer via the presentation
layer often involves Indirect Testing and Sensitive Equality (see Fragile Test on
page 239), either of which can lead to Fragile Tests and High Test Maintenance
Cost (page 265). Testing the Service Layer directly helps avoid these problems.

To avoid Slow Tests (page 253), we usually replace the persistence layer with
a Fake Database (see Fake Object on page 551) and then run the tests. In fact,
most of the impetus behind a layered architecture is to isolate this code from the
other, harder-to-test layers. Alistair Cockburn puts an interesting spin on this
idea in his description of a Hexagonal Architecture at http://alistair.cockburn.us
[WWW].

The Service Layer may come in handy for other uses. It can be used to run the
application in “headless” mode (without a presentation layer attached), such as
when using macros to automate frequently done tasks in Microsoft Excel.

Variation: Persistence Layer Test

The persistence layer also needs to be tested. Round-trip tests will often suffi ce
if the application is the only one that uses the data store. But these tests won’t
catch one kind of programming error: when we accidentally put information
into the wrong columns. As long as the data type of the interchanged columns is
compatible and we make the same error when reading the data, our round-trip
tests will pass! This kind of bug won’t affect the operation of our application but
it might make support more diffi cult and it will cause problems in interactions
with other applications.

When other applications also use the data store, it is highly advisable to imple-
ment at least a few layer-crossing tests that verify information is put into the

 Layer Test

Layer Test

339

www.it-ebooks.info

http://alistair.cockburn.us
http://www.it-ebooks.info/

correct columns of tables. We can use Back Door Manipulation (page 327) to
either set up the database contents or to verify the post-test database contents.

Variation: Subcutaneous Test

A Subcutaneous Test is a degenerate form of Layer Test that bypasses the pre-
sentation layer of the system to interact directly with the Service Layer. In most
cases, the Service Layer is not isolated from the layer(s) below; therefore, we
test everything except the presentation. Use of a Subcutaneous Test does not
require as strict a separation of concerns as does a Service Layer Test, which
makes Subcutaneous Test easier to use when we are retrofi tting tests onto an
application that wasn’t designed for testability. We should use a Subcutaneous
Test whenever we are writing customer tests for an application and we want
to ensure our tests are robust. A Subcutaneous Test is much less likely to be
broken by changes to the application12 because it does not interact with the
application via the presentation layer; as a consequence, a whole category of
changes won’t affect it.

Variation: Component Test

A Component Test is the most general form of Layer Test, in that we can think
of the layers being made up of individual components that act as “micro-layers.”
Component Tests are a good way to specify or document the behavior of indi-
vidual components when we are doing component-based development and some
of the components must be modifi ed or built from scratch.

Implementation Notes

We can write our Layer Tests as either round-trip tests or layer-crossing tests.
Each has advantages. In practice, we typically mix both styles of tests. The
round-trip tests are easier to write (assuming we already have a suitable Fake
Object available to use for layer n-1). We need to use layer-crossing tests, how-
ever, when we are verifying the error-handling logic in layer n.

Round-Trip Tests

A good starting point for Layer Tests is the round-trip test, as it should be
suffi cient for most Simple Success Tests (see Test Method on page 348). These
tests can be written such that they do not care whether we have fully isolated
the layer of interest from the layers below. We can either leave the real com-
ponents in place so that they are exercised indirectly, or we can replace them

12 Less likely than a test that exercises the logic via the presentation layer, that is.

Layer Test

340 Chapter 18 Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

with Fake Objects. The latter option is particularly useful when by a database
or asynchronous mechanisms in the layer below lead to Slow Tests.

Controlling Indirect Inputs

We can replace a lower layer of the system with a Test Stub (page 529) that
returns “canned” results based on what the client layer passes in a request (e.g.,
Customer 0001 is a valid customer, 0002 is a dormant customer, 0003 has three
accounts). This technique allows us to test the client logic with well-understood
indirect inputs from the layer below. It is particularly useful when we are auto-
mating Expected Exception Tests (see Test Method) or when we are exercising
behavior that depends on data that arrives from an upstream system.13 The
alternative is to use Back Door Manipulation to set up the indirect inputs.

Verifying Indirect Outputs

When we want to verify the indirect outputs of the layer of interest, we can use
a Mock Object (page 544) or Test Spy (page 538) to replace the components in
the layer below the SUT. We can then compare the actual calls made to the DOC
with the expected calls. The alternative is to use Back Door Manipulation to
verify the indirect outputs of the SUT after they have occurred.

Motivating Example

When trying to test all layers of the application at the same time, we must verify
the correctness of the business logic through the presentation layer. The following
test is a very simple example of testing some trivial business logic through a
trivial user interface:

 private final int LEGAL_CONN_MINS_SAME = 30;
 public void testAnalyze_sameAirline_LessThanConnectionLimit()
 throws Exception {
 // setup
 FlightConnection illegalConn =
 createSameAirlineConn(LEGAL_CONN_MINS_SAME - 1);
 // exercise
 FlightConnectionAnalyzerImpl sut =
 new FlightConnectionAnalyzerImpl();
 String actualHtml =
 sut.getFlightConnectionAsHtmlFragment(
 illegalConn.getInboundFlightNumber(),
 illegalConn.getOutboundFlightNumber());

13 Typically this data goes directly into a shared database or is injected via a “data
pump.”

 Layer Test

Layer Test

341

www.it-ebooks.info

http://www.it-ebooks.info/

 // verification
 StringBuffer expected = new StringBuffer();
 expected.append("");
 expected.append("Connection time between flight ");
 expected.append(illegalConn.getInboundFlightNumber());
 expected.append(" and flight ");
 expected.append(illegalConn.getOutboundFlightNumber());
 expected.append(" is ");
 expected.append(illegalConn.getActualConnectionTime());
 expected.append(" minutes.");
 assertEquals("html", expected.toString(), actualHtml);
 }

This test contains knowledge about the business layer functionality (what makes
a connection illegal) and presentation layer functionality (how an illegal connec-
tion is presented). It also depends on the database because the FlightConnections
are retrieved from another component. If any of these areas change, this test
must be revisited as well.

Refactoring Notes

We can split this test into two separate tests: one to test the business logic
(What constitutes an illegal connection?) and one to test the presentation
layer (Given an illegal connection, how should it be displayed to the user?).
We would typically do so by duplicating the entire Testcase Class (page 373),
stripping out the presentation layer logic verifi cation from the business layer
Test Methods, and stubbing out the business layer object(s) in the presentation
layer Test Methods.

Along the way, we will probably fi nd that we can reduce the number of tests
in at least one of the Testcase Classes because few test conditions exist for that
layer. In this example, we started out with four tests (the combinations of same/
different airlines and time periods), each of which tested both the business and
presentation layers; we ended up with four tests in the business layer (the origi-
nal combinations but tested directly) and two tests in the presentation layer
(formatting of legal and illegal connections).14 Therefore, only the latter two
tests need to be concerned with the details of the string formatting and, when a
test fails, we know which layer holds the bug.

We can take our refactoring even further by using a Replace Dependency
with Test Double (page 739) refactoring to turn this Subcutaneous Test into a
true Service Layer Test.

14 I’m glossing over the various error-handling tests to simplify this discussion, but note
that a Layer Test also makes it easier to exercise the error-handling logic.

342 Chapter 18 Test Strategy Patterns

Layer Test

www.it-ebooks.info

http://www.it-ebooks.info/

343

Example: Presentation Layer Test

The following example shows the earlier test refactored to verify the behavior
of the presentation layer when an illegal connection is requested. It stubs out
the FlightConnAnalyzer and confi gures it with the illegal connection to return to
the HtmlFacade when it is called. This technique gives us complete control over the
indirect input of the SUT.

 public void testGetFlightConnAsHtml_illegalConnection()
 throws Exception {
 // setup
 FlightConnection illegalConn = createIllegalConnection();
 Mock analyzerStub = mock(IFlightConnAnalyzer.class);
 analyzerStub.expects(once()).method("analyze")
 .will(returnValue(illegalConn));
 HTMLFacade htmlFacade =
 new HTMLFacade((IFlightConnAnalyzer)analyzerStub.proxy());
 // exercise
 String actualHtmlString =
 htmlFacade.getFlightConnectionAsHtmlFragment(
 illegalConn.getInboundFlightNumber(),
 illegalConn.getOutboundFlightNumber());
 // verify
 StringBuffer expected = new StringBuffer();
 expected.append("");
 expected.append("Connection time between flight ");
 expected.append(illegalConn.getInboundFlightNumber());
 expected.append(" and flight ");
 expected.append(illegalConn.getOutboundFlightNumber());
 expected.append(" is ");
 expected.append(illegalConn.getActualConnectionTime());
 expected.append(" minutes.");
 assertEquals("returned HTML",
 expected.toString(),
 actualHtmlString);
 }

We must compare the string representations of the HTML to determine whether
the code has generated the correct response. Fortunately, we need only two such
tests to verify the basic behavior of this component.

Example: Subcutaneous Test

Here’s the original test converted into a Subcutaneous Test that bypasses the
presentation layer to verify that the connection information is calculated cor-
rectly. Note the lack of any string manipulation in this test.

Layer Test

 Layer Test

www.it-ebooks.info

http://www.it-ebooks.info/

344 Chapter 18 Test Strategy Patterns

 private final int LEGAL_CONN_MINS_SAME = 30;
 public void testAnalyze_sameAirline_LessThanConnectionLimit()
 throws Exception {
 // setup
 FlightConnection expectedConnection =
 createSameAirlineConn(LEGAL_CONN_MINS_SAME -1);
 // exercise
 IFlightConnAnalyzer theConnectionAnalyzer =
 new FlightConnAnalyzer();
 FlightConnection actualConnection =
 theConnectionAnalyzer.getConn(
 expectedConnection.getInboundFlightNumber(),
 expectedConnection.getOutboundFlightNumber());
 // verification
 assertNotNull("actual connection", actualConnection);
 assertFalse("IsLegal", actualConnection.isLegal());
 }

While we have bypassed the presentation layer, we have not attempted to isolate
the Service Layer from the layers below. This omission could result in Slow Tests
or Erratic Tests (page 228).

Example: Business Layer Test

The next example shows the same test converted into a Service Layer Test that
is fully isolated from the layers below it. We have used JMock to replace these
components with Mock Objects that verify the correct fl ights are being looked
up and that inject the corresponding fl ight constructed into the SUT.

 public void testAnalyze_sameAirline_EqualsConnectionLimit()
 throws Exception {
 // setup
 Mock flightMgntStub = mock(FlightManagementFacade.class);
 Flight firstFlight = createFlight();
 Flight secondFlight = createConnectingFlight(
 firstFlight, LEGAL_CONN_MINS_SAME);
 flightMgntStub.expects(once()).method("getFlight")
 .with(eq(firstFlight.getFlightNumber()))
 .will(returnValue(firstFlight));
 flightMgntStub.expects(once()).method("getFlight")
 .with(eq(secondFlight.getFlightNumber()))
 .will(returnValue(secondFlight));
 // exercise
 FlightConnAnalyzer theConnectionAnalyzer = new FlightConnAnalyzer();
 theConnectionAnalyzer.facade =
 (FlightManagementFacade)flightMgntStub.proxy();
 FlightConnection actualConnection =
 theConnectionAnalyzer.getConn(
 firstFlight.getFlightNumber(),
 secondFlight.getFlightNumber());

Layer Test

www.it-ebooks.info

http://www.it-ebooks.info/

345

 // verification
 assertNotNull("actual connection", actualConnection);
 assertTrue("IsLegal", actualConnection.isLegal());
 }

This test runs very quickly because the Service Layer is fully isolated from any
underlying layers. It is also likely to be much more robust because it tests much
less code.

Layer Test

 Layer Test

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

347

Chapter 19

xUnit Basics Patterns

Patterns in This Chapter

Test Defi nition

Test Method . 348

Four-Phase Test . 358

Assertion Method. 362

Assertion Message . 370

Testcase Class . 373

Test Execution

Test Runner . 377

Testcase Object. 382

Test Suite Object. 387

Test Discovery . 393

Test Enumeration . 399

Test Selection . 403

xUnit Basics
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Test Method

Where do we put our test code?

We encode each test as a single Test Method on some class.

Fully Automated Tests (see page 26) consist of test logic. That logic has to live
somewhere before we can compile and execute it.

How It Works

We defi ne each test as a method, procedure, or function that implements the four
phases (see Four-Phase Test on page 358) necessary to realize a Fully Automated
Test. Most notably, the Test Method must include assertions if it is to be a Self-
Checking Test (see page 26).

We organize the test logic following one of the standard Test Method templates
to make the type of test easily recognizable by test readers. In a Simple Success
Test, we have a purely linear fl ow of control from fi xture setup through exercis-
ing the SUT to result verifi cation. In an Expected Exception Test, language-based
structures direct us to error-handling code. If we reach that code, we pass the test;
if we don’t, we fail it. In a Constructor Test, we simply instantiate an object and
make assertions against its attributes.

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUTRun

Test Runner
Suite

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUTRun

Test Runner
Suite

Test Method

Chapter 19 xUnit Basics Patterns348

www.it-ebooks.info

http://www.it-ebooks.info/

Why We Do This

We have to encode the test logic somewhere. In the procedural world, we would
encode each test as a test case procedure located in a fi le or module. In object -
oriented programming languages, the preferred option is to encode them as
methods on a suitable Testcase Class (page 373) and then to turn these Test
Methods into Testcase Objects (page 382) at runtime using either Test Discovery
(page 393) or Test Enumeration (page 399).

We follow the standard test templates to keep our Test Methods as simple
as possible. This greatly increases their utility as system documentation
(see page 23) by making it easier to fi nd the description of the basic behavior of
the SUT. It is a lot easier to recognize which tests describe this basic behavior if
only Expected Exception Tests contain error-handling language constructs such
as try/catch.

Implementation Notes

We still need a way to run all the Test Methods tests on the Testcase Class. One
solution is to defi ne a static method on the Testcase Class that calls each of the
test methods. Of course, we would also have to deal with counting the tests and
determining how many passed and how many failed. Because this functionality
is needed for a test suite anyway, a simple solution is to instantiate a Test Suite
Object (page 387) to hold each Test Method.1 This approach is easy to imple-
ment if we create an instance of the Testcase Class for each Test Method using
either Test Discovery or Test Enumeration.

In statically typed languages such as Java and C#, we may have to include
a throws clause as part of the Test Method declaration so the compiler won’t
complain about the fact that we are not handling the checked exceptions that
the SUT has declared it may throw. In effect, we tell the compiler that “The Test
Runner (page 377) will deal with the exceptions.”

Of course, different kinds of functionality need different kinds of Test
Methods. Nevertheless, almost all tests can be boiled down to one of three
basic types.

Variation: Simple Success Test

Most software has an obvious success scenario (or “happy path”). A Simple
Success Test verifi es the success scenario in a simple and easily recognized way.

1 See the sidebar “There’s Always an Exception” (page 384) for an explanation of when
this isn’t the case.

Test Method

 Test Method 349

www.it-ebooks.info

http://www.it-ebooks.info/

We create an instance of the SUT and call the method(s) that we want to test. We
then assert that the expected outcome has occurred. In other words, we follow
the normal steps of a Four-Phase Test. What we don’t do is catch any exceptions
that could happen. Instead, we let the Test Automation Framework (page 298)
catch and report them. Doing otherwise would result in Obscure Tests (page 186)
and would mislead the test reader by making it appear as if exceptions were
expected. See Tests as Documentation for the rationale behind this approach.

Another benefi t of avoiding try/catch-style code is that when errors do occur,
it is a lot easier to track them down because the Test Automation Framework
reports the location where the actual error occurred deep in the SUT rather
than the place in our test where we called an Assertion Method (page 362) such
as fail or assertTrue. These kinds of errors turn out to be much easier to trouble-
shoot than assertion failures.

Variation: Expected Exception Test

Writing software that passes the Simple Success Test is pretty straightforward.
Most of the defects in software appear in the various alternative paths—especially
the ones that relate to error scenarios, because these scenarios are often Untested
Requirements (see Production Bugs on page 268) or Untested Code (see Produc-
tion Bugs). An Expected Exception Test helps us verify that the error scenarios
have been coded correctly. We set up the test fi xture and exercise the SUT in
each way that should result in an error. We ensure that the expected error has
occurred by using whatever language construct we have available to catch the
error. If the error is raised, fl ow will pass to the error-handling block. This diver-
sion may be enough to let the test pass, but if the type or message contents of the
exception or error is important (such as when the error message will be shown
to a user), we can use an Equality Assertion (see Assertion Method) to verify it.
If the error is not raised, we call fail to report that the SUT failed to raise an
error as expected.

We should write an Expected Exception Test for each kind of exception that
the SUT is expected to raise. It may raise the error because the client (i.e., our
test) has asked it to do something invalid, or it may translate or pass through an
error raised by some other component it uses. We should not write an Expected
Exception Test for exceptions that the SUT might raise but that we cannot force
to occur on cue, because these kinds of errors should show up as test failures
in the Simple Success Tests. If we want to verify that these kinds of errors are
handled properly, we must fi nd a way to force them to occur. The most common
way to do so is to use a Test Stub (page 529) to control the indirect input of the
SUT and raise the appropriate errors in the Test Stub.

Test Method

Chapter 19 xUnit Basics Patterns350

www.it-ebooks.info

http://www.it-ebooks.info/

Exception tests are very interesting to write about because of the different
ways the xUnit frameworks express them. JUnit 3.x provides a special Expected-
Exception class to inherit from. This class forces us to create a Testcase Class
for each Test Method (page 348), however, so it really doesn’t save any effort
over coding a try/catch block and does result in a large number of very small
Testcase Classes. Later versions of JUnit and NUnit (for .NET) provide a special
ExpectedException method attribute (called an annotation in Java) to tell the Test
Automation Framework to fail the test if that exception isn’t raised. This method
attribute allows us to include message text if we want to specify exactly which
text to expect in addition to the type of the exception.

Languages that support blocks, such as Smalltalk and Ruby, can provide
special assertions to which we pass the block of code to be executed as well
as the expected exception/error object. The Assertion Method implements
the error-handling logic required to determine whether the error has, in fact,
occurred. This makes our Test Methods much simpler, even though we may
need to examine the names of the assertions more closely to see which type of
test we have.

Variation: Constructor Test

We would have a lot of Test Code Duplication (page 213) if every test we wrote
had to verify that the objects it creates in its fi xture setup phase are correctly
instantiated. We avoid this step by testing the constructor(s) separately from
other Test Methods whenever the constructor contains anything more com-
plex than a simple fi eld assignment from the constructor parameters. These
Constructor Tests provide better Defect Localization (see page 22) than includ-
ing constructor logic verifi cation in other tests. We may need to write one or
more tests for each constructor signature. Most Constructor Tests will follow a
Simple Success Test template; however, we can use an Expected Exception Test
to verify that the constructor correctly reports invalid arguments by raising
an exception.

We should verify each attribute of the object or data structure regardless of
whether we expect it to be initialized. For attributes that should be initialized,
we can use an Equality Assertion to specify the correct value. For attributes that
should not be initialized, we can use a Stated Outcome Assertion (see Assertion
Method) appropriate to the type of the attribute [e.g., assertNull(anObjectReference)
for object variables or pointers]. Note that if we are organizing our tests with
one Testcase Class per Fixture (page 631), we can put each assertion into a sepa-
rate Test Method to give optimal Defect Localization.

 Test Method

Test Method

351

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Dependency Initialization Test

When we have an object with a substitutable dependency, we need to make sure
that the attribute that holds the reference to the depended-on component (DOC)
is initialized to the real DOC when the software is run in production. A Depen-
dency Initialization Test is a Constructor Test that asserts that this attribute is
initialized correctly. It is often done in a different Test Method from the normal
Constructor Tests to improve its visibility.

Example: Simple Success Test

The following example illustrates a test where the novice test automater has
included code to catch exceptions that he or she knows might occur (or that the
test automater might have encountered while debugging the code).

 public void testFlightMileage_asKm() throws Exception {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 try {
 // exercise SUT
 newFlight.setMileage(1122);
 // verify results
 int actualKilometres = newFlight.getMileageAsKm();
 int expectedKilometres = 1810;
 // verify results
 assertEquals(expectedKilometres, actualKilometres);
 } catch (InvalidArgumentException e) {
 fail(e.getMessage());
 } catch (ArrayStoreException e) {
 fail(e.getMessage());
 }
 }

The majority of the code is unnecessary and just obscures the intent of the test.
Luckily for us, all of this exception handling can be avoided. xUnit has built-in
support for catching unexpected exceptions. We can rip out all the exception-
handling code and let the Test Automation Framework catch any unexpected
exception that might be thrown. Unexpected exceptions are counted as test
errors because the test terminates in a way we didn’t anticipate. This is useful
information and is not considered to be any more severe than a test failure.

 public void testFlightMileage_asKm() throws Exception {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 newFlight.setMileage(1122);
 // exercise mileage translator
 int actualKilometres = newFlight.getMileageAsKm();

Test Method

Chapter 19 xUnit Basics Patterns352

www.it-ebooks.info

http://www.it-ebooks.info/

353

 // verify results
 int expectedKilometres = 1810;
 assertEquals(expectedKilometres, actualKilometres);
 }

This example is in Java (a statically typed language), so we had to declare that
the SUT may throw an exception as part of the Test Method signature.

Example: Expected Exception Test Using try/catch

The following example is a partially complete test to verify an exception case.
The novice test automater has set up the right test condition to cause the SUT
to raise an error.

 public void testSetMileage_invalidInput() throws Exception {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 // exercise SUT
 newFlight.setMileage(-1122); // invalid
 // how do we verify an exception was thrown?
 }

Because the Test Automation Framework will catch the exception and fail the test,
the Test Runner will not exhibit the green bar even though the SUT’s behavior
is correct. We can introduce an error-handling block around the exercise phase
of the test and use it to invert the pass/fail criteria (pass when the exception is
thrown; fail when it is not). Here’s how to verify that the SUT fails as expected in
JUnit 3.x:

 public void testSetMileage_invalidInput() throws Exception {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 try {
 // exercise SUT
 newFlight.setMileage(-1122);
 fail("Should have thrown InvalidInputException");
 } catch(InvalidArgumentException e) {
 // verify results
 assertEquals("Flight mileage must be positive",
 e.getMessage());
 }
 }

This style of try/catch can be used only in languages that allow us to specify exactly
which exception to catch. It won’t work if we want to catch a generic exception or
the same exception that the Assertion Method fail throws, because these excep-
tions will send us into the catch clause. In these cases we need to use the same style
of Expected Exception Test as used in tests of Custom Assertions (page 474).

 Test Method

Test Method

www.it-ebooks.info

http://www.it-ebooks.info/

 public void testSetMileage_invalidInput2() throws Exception {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 try {
 // exercise SUT
 newFlight.setMileage(-1122);
 // cannot fail() here if SUT throws same kind of exception
 } catch(AssertionFailedError e) {
 // verify results
 assertEquals("Flight mileage must be positive",
 e.getMessage());
 return;
 }
 fail("Should have thrown InvalidInputException");
 }

Example: Expected Exception Test Using Method Attributes

NUnit provides a method attribute that lets us write an Expected Exception Test
without forcing us to code a try/catch block explicitly.

 [Test]
 [ExpectedException(typeof(InvalidArgumentException),
 "Flight mileage must be > zero")]
 public void testSetMileage_invalidInput_AttributeWithMessage()
 {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 // exercise SUT
 newFlight.setMileage(-1122);
 }

This approach does make the test much more compact but doesn’t provide a
way to specify anything but the type of the exception or the message it contains.
If we want to make any assertions on other contents of the exception (to avoid
Sensitive Equality; see Fragile Test on page 239), we’ll need to use try/catch.

Example: Expected Exception Test Using Block Closure

Smalltalk’s SUnit provides another mechanism to achieve the same thing:

 testSetMileageWithInvalidInput
 self
 should: [Flight new mileage: -1122]
 raise: RuntimeError new 'Should have raised error'

Because Smalltalk supports block closures, we pass the block of code to be
executed to the method should:raise: along with the expected Exception object.
Ruby’s Test::Unit uses the same approach:

Test Method

Chapter 19 xUnit Basics Patterns354

www.it-ebooks.info

http://www.it-ebooks.info/

def testSetMileage_invalidInput
 flight = Flight.new();
 assert_raises(RuntimeError, "Should have raised error") do
 flight.setMileage(-1122)
 end
end

The code between the do/end pair is a closure that is executed by the assert_raises
method. If it doesn’t raise an instance of the fi rst argument (the class RuntimeError),
the test fails and presents the error message supplied.

Example: Constructor Test

In this example, we need to build a fl ight to test the conversion of the fl ight
distance from miles to kilometers. First, we’ll make sure the fl ight is constructed
properly.

 public void testFlightMileage_asKm2() throws Exception {
 // set up fixture
 // exercise constructor
 Flight newFlight = new Flight(validFlightNumber);
 // verify constructed object
 assertEquals(validFlightNumber, newFlight.number);
 assertEquals("", newFlight.airlineCode);
 assertNull(newFlight.airline);
 // set up mileage
 newFlight.setMileage(1122);
 // exercise mileage translator
 int actualKilometres = newFlight.getMileageAsKm();
 // verify results
 int expectedKilometres = 1810;
 assertEquals(expectedKilometres, actualKilometres);
 // now try it with a canceled flight
 newFlight.cancel();
 try {
 newFlight.getMileageAsKm();
 fail("Expected exception");
 } catch (InvalidRequestException e) {
 assertEquals("Cannot get cancelled flight mileage",
 e.getMessage());
 }
 }

This test is not a Single-Condition Test (see page 45) because it examines both
object construction and distance conversion behavior. If object construction
fails, we won’t know which issue was the cause of the failure until we start
debugging the test.

Test Method

 Test Method 355

www.it-ebooks.info

http://www.it-ebooks.info/

It would be better to separate this Eager Test (see Assertion Roulette on page
224) into two tests, each of which is a Single-Condition Test. This is most easily
done by cloning the Test Method, renaming each copy to refl ect what it would
do if it were a Single-Condition Test, and then removing any code that doesn’t
satisfy that goal.

Here’s an example of a simple Constructor Test:

 public void testFlightConstructor_OK() throws Exception {
 // set up fixture
 // exercise SUT
 Flight newFlight = new Flight(validFlightNumber);
 // verify results
 assertEquals(validFlightNumber, newFlight.number);
 assertEquals("", newFlight.airlineCode);
 assertNull(newFlight.airline);
 }

While we are at it, we might as well specify what should occur if an invalid
argument is passed to the constructor by using the Expected Exception Test
template for our Constructor Test:

 public void testFlightConstructor_badInput() {
 // set up fixture
 BigDecimal invalidFlightNumber = new BigDecimal(-1023);
 // exercise SUT
 try {
 Flight newFlight = new Flight(invalidFlightNumber);
 fail("Didn't catch negative flight number!");
 } catch (InvalidArgumentException e) {
 // verify results
 assertEquals("Flight numbers must be positive",
 e.getMessage());
 }
 }

Now that we know that our constructor logic is well tested, we are ready to
write our Simple Success Test for our mileage translation functionality. Note
how much simpler it has become because we can focus on verifying the business
logic:

 public void testFlightMileage_asKm() throws Exception {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 newFlight.setMileage(1122);
 // exercise mileage translator
 int actualKilometres = newFlight.getMileageAsKm();
 // verify results
 int expectedKilometres = 1810;
 assertEquals(expectedKilometres, actualKilometres);
 }

Test Method

Chapter 19 xUnit Basics Patterns356

www.it-ebooks.info

http://www.it-ebooks.info/

So what happens if the constructor logic is defective? This test will likely fail
because its output depends on the value passed to the constructor. The con-
structor test will also fail. That failure will tell us to look at the constructor
logic fi rst. Once that problem is fi xed, this test will likely pass. If it doesn’t, then
we can focus on fi xing the getMileageAsKm method logic. This is a good example
of Defect Localization.

Test Method

 Test Method 357

www.it-ebooks.info

http://www.it-ebooks.info/

Four-Phase Test

How do we structure our test logic to make what we are testing obvious?

We structure each test with four distinct parts executed in sequence.

How It Works

We design each test to have four distinct phases that are executed in sequence:
fi xture setup, exercise SUT, result verifi cation, and fi xture teardown.

• In the fi rst phase, we set up the test fi xture (the “before” picture) that
is required for the SUT to exhibit the expected behavior as well as any-
thing you need to put in place to be able to observe the actual outcome
(such as using a Test Double; see page 522).

• In the second phase, we interact with the SUT.

• In the third phase, we do whatever is necessary to determine whether
the expected outcome has been obtained.

• In the fourth phase, we tear down the test fi xture to put the world back
into the state in which we found it.

Why We Do This

The test reader must be able to quickly determine what behavior the test is
verifying. It can be very confusing when various behaviors of the SUT are being
invoked—some to set up the pre-test state (fi xture) of the SUT, others to exercise

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Setup

Exercise

Verify

Teardown

Testcase
Class

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Setup

Exercise

Verify

Teardown

Testcase
Class

Four-Phase
Test

Chapter 19 xUnit Basics Patterns358

www.it-ebooks.info

http://www.it-ebooks.info/

the SUT, and yet others to verify the post-test state of the SUT. Clearly identifying
the four phases makes the intent of the test much easier to see.

The fi xture setup phase of the test establishes the SUT’s state prior to the test,
which is an important input to the test. The exercise SUT phase is where we actu-
ally run the software we are testing. When reading the test, we need to see which
software is being run. The result verifi cation phase of the test is where we specify
the expected outcome. The fi nal phase, fi xture teardown, is all about housekeeping.
We wouldn’t want to obscure the important test logic with it because it is com-
pletely irrelevant from the perspective of Tests as Documentation (see page 23).

We should avoid the temptation to test as much functionality as pos-
sible in a single Test Method (page 348) because that can result in Obscure
Tests (page 186). In fact, it is preferable to have many small Single-Condition
Tests (see page 45). Using comments to mark the phases of a Four-Phase Test
is a good source of self-discipline, in that it makes it very obvious when our
tests are not Single-Condition Tests. It will be self-evident if we have multiple
exercise SUT phases separated by result verifi cation phases or if we have inter-
spersed fi xture setup and exercise SUT phases. Sure, the tests may work—but
they will provide less Defect Localization (see page 22) than if we have a bunch
of independent Single-Condition Tests.

Implementation Notes

We have several options for implementing the Four-Phase Test. In the simplest
case, each test is completely free-standing. All four phases of the test are con-
tained within the body of the Test Method. This structure implies we are using
In-line Setup (page 408) and either Garbage-Collected Teardown (page 500) or
In-line Teardown (page 509). It is the most appropriate choice when we are using
Testcase Class per Class (page 617) or Testcase Class per Feature (page 624) to
organize our Test Methods.

The other choice is to take advantage of the Test Automation Framework’s
(page 298) support for Implicit Setup (page 424) and Implicit Teardown (page 516).
We factor out the common fi xture setup and fi xture teardown logic into setUp and
tearDown methods on the Testcase Class (page 373). This leaves only the exercise SUT
and result verifi cation phases in the Test Method. This approach is an appropriate
choice when we are using Testcase Class per Fixture (page 631). We can also use
this approach to set up common parts of the fi xture when using Testcase Class per
Class (page 617) or Testcase Class per Feature or to tear down the fi xture when
using Automated Teardown (page 503).

Four-Phase
Test

 Four-Phase Test 359

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Four-Phase Test (In-line)

Here is an example of a test that is clearly a Four-Phase Test:

 public void testGetFlightsByOriginAirport_NoFlights_inline()
 throws Exception {
 // Fixture setup
 NonTxFlightMngtFacade facade =new NonTxFlightMngtFacade();
 BigDecimal airportId = facade.createTestAirport("1OF");
 try {
 // Exercise system
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(airportId);
 // Verify outcome
 assertEquals(0, flightsAtDestination1.size());
 } finally {
 // Fixture teardown
 facade.removeAirport(airportId);
 }
 }

All four phases of the Four-Phase Test are included as in-line code. Because the
calls to Assertion Methods (page 362) raise exceptions, we need to surround the
fi xture teardown part of the Test Method with a try/fi nally construct to ensure that
it is run in all cases.

Example: Four-Phase Test (Implicit Setup/Teardown)

Here is the same Four-Phase Test with the fi xture setup and fi xture teardown
logic moved out of the Test Method:

 NonTxFlightMngtFacade facade = new NonTxFlightMngtFacade();
 private BigDecimal airportId;

 protected void setUp() throws Exception {
 // Fixture setup
 super.setUp();
 airportId = facade.createTestAirport("1OF");
 }

 public void testGetFlightsByOriginAirport_NoFlights_implicit()
 throws Exception {
 // Exercise SUT
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(airportId);
 // Verify outcome
 assertEquals(0, flightsAtDestination1.size());
 }

 protected void tearDown() throws Exception {

Four-Phase
Test

Chapter 19 xUnit Basics Patterns360

www.it-ebooks.info

http://www.it-ebooks.info/

 // Fixture teardown
 facade.removeAirport(airportId);
 super.tearDown();
 }

Because the tearDown method is called automatically even after test failures,
we don’t need the try/fi nally construct inside the Test Method. The downside,
however, is that references to our fi xture must be held in instance variables
rather than local variables.

Four-Phase
Test

 Four-Phase Test 361

www.it-ebooks.info

http://www.it-ebooks.info/

Assertion Method

How do we make tests self-checking?

We call a utility method to evaluate whether an expected
outcome has been achieved.

A key part of writing Fully Automated Tests (see page 26) is to make them Self-
Checking Tests (see page 26) to avoid having to inspect the outcome of each
test for correctness each time it is run. This strategy involves fi nding a way to
express the expected outcome so that it can be verifi ed automatically by the
test itself.

Assertion Methods give us a way to express the expected outcome in a way
that is both executable by the computer and useful to the human reader, who can
then use the Tests as Documentation (see page 23).

How It Works

We encode the expected outcome of the test as a series of assertions that state what
should be true for the test to pass. The assertions are realized as calls to Assertion
Methods that encapsulate the mechanism that causes the test to fail. The Assertion
Methods may be provided by the Test Automation Framework (page 298) or by
the test automater as Custom Assertions (page 474).

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Suite

Setup

Exercise

Verify

Teardown Assertion
 Method

Test Runner

Test failed

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Suite

Setup

Exercise

Verify

Teardown Assertion
 Method

Test Runner

Test failed

Assertion
Method

Chapter 19 xUnit Basics Patterns362

www.it-ebooks.info

http://www.it-ebooks.info/

Why We Do This

Encoding the expected outcome using Conditional Test Logic (page 200) is very
verbose and makes tests hard to read and understand. It is also much more likely
to lead to Test Code Duplication (page 213) and Buggy Tests (page 260). Asser-
tion Methods help us avoid these issues by moving that complexity into reusable
Test Utility Methods (page 599); these methods can then be verifi ed as working
correctly using Test Utility Tests (see Test Utility Method).

Implementation Notes

Although all members of the xUnit family provide Assertion Methods, they do
so with a fair degree of variability. The key implementation considerations are
as follows:

• How to call the Assertion Methods

• How to choose the best Assertion Method to call

• What information to include in the Assertion Message (page 370)

Calling Built-in Assertion Methods

The way the Assertion Methods are called from within the Test Method (page 348)
varies from language to language and from framework to framework. The lan-
guage features determine what is possible and preferable, while the framework
builders chose which options to use. The names these developers chose for the
Assertion Methods were infl uenced by how they chose to access them. Here are
the most common options for accessing the Assertion Methods:

• The Assertion Methods are inherited from a Testcase Superclass (page 638)
provided by the framework. Such methods may be invoked as though
they were provided locally on the Testcase Class (page 373). The original
version of Java’s JUnit, for example, used this approach by providing a
Testcase Superclass that inherits from the class Assert, which contains the
actual Assertion Methods.

• The Assertion Methods are provided via a globally accessible class or
module. They are invoked using the class or module name to fully qualify
the Assertion Method name. NUnit, for example, uses this approach
[e.g., Assert.isTrue(x);]. JUnit does allow assertions to be invoked as static

Assertion
Method

 Assertion Method 363

www.it-ebooks.info

http://www.it-ebooks.info/

methods on the Assert class [e.g., Assert.assertTrue(x)] but this is not usually
necessary because they are inherited via the Testcase Superclass.

• The Assertion Methods are provided as “mix-ins” or macros. Ruby’s Test::
Unit, for example, provides the Assertion Methods in a module called
Assert that can be included in any class,2 thereby allowing the Assertion
Methods to be used as though defi ned within the Testcase Class [e.g.,
assert_equal(a,b)]. CppUnit, by contrast, defi nes the Assertion Methods as
macros, which are expanded before the compiler sees the code.

Assertion Messages

Assertion Methods typically take an optional Assertion Message as a text param-
eter that is included in the output when the assertion fails. This structure allows the
test automater to explain to the test maintainer exactly which Assertion Method
failed and to better explain what should have occurred. The error detected by the
test will be much easier to debug if the Assertion Method provides more informa-
tion about why it failed. Choosing the right Assertion Method goes a long way
toward achieving this goal because many of the built-in Assertion Methods provide
useful diagnostic information about the values of the arguments. This is especially
true for Equality Assertions.

One of the biggest differences between members of the xUnit family is where
the optional Assertion Message appears in the argument list. Most members
tack it on to the end as an optional argument. JUnit, however, makes the Asser-
tion Message the fi rst argument when it is present.

Choosing the Right Assertion

We have two goals for the calls to Assertion Methods in our Test Methods:

• Fail the test when something other than the expected outcome occurs

• Document how the SUT is supposed to behave (i.e., Tests as Documen-
tation)

To achieve these goals we must strive to use the most appropriate Assertion
Method. While the syntax and naming conventions vary from one member of
the xUnit family to the next, most provide a basic set of assertions that fall into
the following categories:

2 This approach is particularly useful when we are building Mock Objects (page 544) because
these objects are outside the Testcase Class but need to invoke Assertion Methods.

Assertion
Method

Chapter 19 xUnit Basics Patterns364

www.it-ebooks.info

http://www.it-ebooks.info/

• Single-Outcome Assertions such as fail; these take no arguments because
they always behave the same way.

• Stated Outcome Assertions such as assertNotNull(anObjectReference) and
assertTrue(aBooleanExpression); these compare a single argument to an
outcome implied by the method name.

• Expected Exception Assertions such as assert_raises(expectedError)

{ codeToExecute }; these evaluate a block of code and a single expected
exception argument.

• Equality Assertions such as assertEqual(expected, actual); these compare
two objects or values for equality.

• Fuzzy Equality Assertions such as assertEqual(expected, actual, tolerance);
these determine whether two values are “close enough” to each other
by using a “tolerance” or “comparison mask.”

Variation: Equality Assertion

Equality Assertions are the most common examples of Assertion Methods.
They are used to compare the actual outcome with an expected outcome that is
expressed in the form of a constant Literal Value (page 714) or an Expected Object
(see State Verifi cation on page 462). By convention, the expected value is speci-
fi ed fi rst and the actual value follows it. The diagnostic message that is generated
by the Test Automation Framework makes sense only when they are provided in
this order. The equality of the two objects is usually determined by invoking the
equals method on the expected object. If the SUT’s defi nition of equals is not what
we want to use in our tests, either we can make Equality Assertions on individual
fi elds of the object or we can implement our test-specifi c equality on a Test-Specifi c
Subclass (page 579) of the Expected Object.

Variation: Fuzzy Equality Assertion

When we cannot guarantee an exact match due to variations in precision or
expected variations in value, it may be appropriate to use a Fuzzy Equality
Assertion. Typically, these assertions look just like Equality Assertions with the
addition of an extra “tolerance” or “comparison map” parameter that specifi es
how close the actual argument must be to the expected one. The most common
example of a Fuzzy Equality Assertion is the comparison of fl oating-point num-
bers where the limitations of arithmetic precision need to be accounted for
by providing a tolerance (the maximum acceptable distance between the two
values).

Assertion
Method

 Assertion Method 365

www.it-ebooks.info

http://www.it-ebooks.info/

We use the same approach when comparing XML documents where direct
string comparisons may result in failure owing to certain fi elds having unpre-
dictable content. In this case, the “fuzz” specifi cation is a “comparison schema”
that specifi es which fi elds need to match or which fi elds should be ignored. This
kind of Equality Assertion is very similar to asserting that a string conforms to
a regular expression or other form of pattern matching.

Variation: Stated Outcome Assertion

Stated Outcome Assertions are a way of saying exactly what the outcome should
be without passing an expected value as an argument. The outcome must be
common enough to warrant a special Assertion Method. The most common
examples are as follows:

• assertTrue(aBooleanExpression), which fails if the expression evaluates to
FALSE

• assertNotNull(anObjectReference), which fails if the objectReference doesn’t
refer to a valid object

Stated Outcome Assertions are often used as Guard Assertions (page 490) to
avoid Conditional Test Logic.

Variation: Expected Exception Assertion

In languages that support block closures, we can use a variation of a Stated
Outcome Assertion that takes an additional parameter specifying the kind of
exception we expect. We can use this Expected Exception Assertion to say, “Run
this block and verify that the following exception is thrown.” This format is more
compact than using a try/catch construct. Some typical examples follow:

• should: [aBlockToExecute] raise: expectedException in Smalltalk’s SUnit

• assert_raises(expectedError) { codeToExecute } in Ruby’s Test::Unit

Variation: Single-Outcome Assertion

A Single-Outcome Assertion always behaves the same way. The most commonly
used Single-Outcome Assertion is fail, which causes a test to be treated as a
failure. It is typically used in two circumstances:

• As an Unfi nished Test Assertion (page 494) when a test is fi rst identifi ed
and implemented as a nearly empty Test Method. By including a call to
fail, we can have the Test Runner (page 377) remind us that we still have
a test to fi nish writing.

Assertion
Method

366 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

• As part of a try/catch (or equivalent) block in an Expected Exception Test
(see Test Method) by including a call to fail in the try block immediately
after the call that is expected to throw an exception. If we don’t want
to assert something about the exception that was caught, we can avoid
an empty catch block by using the Single-Outcome Assertion success to
document that this is the expected outcome.

One circumstance in which we really should not use Single-Outcome Assertions
is in Conditional Test Logic. There is almost never a good reason to include
conditional logic in a Test Method, as there is usually a more declarative way
to handle this situation using other styles of Assertion Methods. For example,
use of Guard Assertions results in tests that are more easily understood and less
likely to yield incorrect results.

Motivating Example

The following example illustrates the kind of code that would be required for
each item we wanted to verify if we did not have Assertion Methods. All we
really want to do is this:

 if (x.equals(y)) {
 throw new AssertionFailedError(
 "expected: <" + x.toString() +
 "> but found: <" + y.toString() + ">");
 } else { // Okay, continue
 // ...
 }

Unfortunately, this code will cause a NullPointerException if x is null, and it would
be hard to distinguish this exception from an error in the SUT. Thus we need to
put some guard clauses around this functionality so that we always throw an
AssertionFailedException:

 if (x == null) { // cannot do null.equals(null)
 if (y == null) { // they are both null so equal
 return;
 } else {
 throw new AssertionFailedError(
 "expected null but found: <" + y.toString() +">");
 }
 } else if (!x.equals(y)) { // comparable but not equal!
 throw new AssertionFailedError(
 "expected: <" + x.toString() +
 "> but found: <" + y.toString() + ">");

 } // equal

Assertion
Method

 Assertion Method 367

www.it-ebooks.info

http://www.it-ebooks.info/

Yikes! That got pretty messy. And we’ll have to do the same thing for every
attribute we want to verify? This is not good. There must be a better way.

Refactoring Notes

Luckily for us, the inventors of xUnit recognized this problem and did the requisite
Extract Method [Fowler] refactoring to create a library of Assertion Methods that
we can call instead. We simply replace the mess of in-line if statements and thrown
exceptions with a call to the appropriate Assertion Method. The next example is
the code for the JUnit assertEquals method. Although the intent of this example
is the same as the code we wrote earlier, it has been rewritten in terms of guard
clauses that identify when things are equal.

 /**
 * Asserts that two objects are equal. If they are not,
 * an AssertionFailedError is thrown with the given message.
 */
 static public void assertEquals(String message,
 Object expected,
 Object actual) {
 if (expected == null && actual == null)
 return;
 if (expected != null && expected.equals(actual))
 return;
 failNotEquals(message, expected, actual);
 }

The method failNotEquals is a Test Utility Method that fails the test and provides
a diagnostic assertion message.

Example: Equality Assertion

Here is the same assertion logic recoded to take advantage of JUnit’s Equality
Assertion:

 assertEquals(x, y);

Here is the same assertion coded in C#. Note the classname qualifi er and the
resulting difference in the method name:

 Assert.AreEqual(x, y);

Example: Fuzzy Equality Assertion

To compare two fl oating-point numbers (which are rarely ever really equal), we
specify the acceptable differences using a Fuzzy Equality Assertion:

Assertion
Method

368 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

 assertEquals(3.1415, diameter/2/radius, 0.001);
 assertEquals(expectedXml, actualXml, elementsToCompare);

Example: Stated Outcome Assertion

To insist that a particular outcome has occurred, we use a Stated Outcome
Assertion:

 assertNotNull(a);
 assertTrue(b > c);
 assertNonZero(b);

Example: Expected Exception Assertion

Here is an example of how we verify that the correct exception was raised when
we have blocks. In Smalltalk’s SUnit, it looks like this:

 self
 should: [Flight new mileage: -1122]
 raise: RuntimeError new 'Should have raised error'

The should: indicates the block of code to run (surrounded by square brackets),
while the raise: specifi es the expected exception object. In Ruby, it looks like
this:

 assert_raises(RuntimeError,
 "Should have raised error")
 {flight.setMileage(-1122) }

The Ruby language syntax also lets us use this “control structure”-style syntax
by delimiting the block using do/end instead of curly braces:

 assert_raises(RuntimeError, "Should have raised error") do
 flight.setMileage(-1122)
 end

Example: Single-Outcome Assertion

To fail the test, use the Single Outcome Assertion:

 fail("Expected an exception");
 unfinishedTest();

Assertion
Method

 Assertion Method 369

www.it-ebooks.info

http://www.it-ebooks.info/

Assertion Message

How do we structure our test logic to know which assertion failed?

We include a descriptive string argument in each call to an
Assertion Method.

We make tests Self-Checking (see page 26) by including calls to Assertion Meth-
ods (page 362) that specify the expected outcome. When a test fails, the Test
Runner (page 377) writes an entry to the test result log.

A well-crafted Assertion Message makes it very easy to determine which asser-
tion failed and exactly what the symptoms were when the failure happened.

How It Works

Every Assertion Method takes an optional string parameter that is included in the
failure log. When the condition being asserted is not true, the Assertion Message is
output to the Test Runner’s log along with whatever output the assertion method
normally generates.

When to Use It

There are two schools of thought on this subject. Test drivers who belong to the
“single assertion per Test Method” school believe that they don’t need to include
Assertion Messages because only one assertion can possibly fail and, therefore,
they always know exactly which assertion happened. They count on the Assertion
Method to include the arguments (e.g., expected “x” but was “y”) but they don’t
need to include a message.

Testcase
Object

testMethod_1

Testcase
Object

testMethod_n

Test

Test Failed:
message

Suite

Object

Create

Fixture

SUT
run

Setup
Exercise

Teardown
Assertion
 Method

message

message

Testcase
Class

testMethod_1

testMethod_n

Suite

Test Runner

Verify

Testcase
Object

testMethod_1

Testcase
Object

testMethod_n

Test

Test Failed:
message

Suite

Object

Create

Fixture

SUT
run

Setup
Exercise

Teardown
Assertion
 Method

message

message

Testcase
Class

testMethod_1

testMethod_n

Suite

Test Runner

Verify

Assertion
Message

Chapter 19 xUnit Basics Patterns370

www.it-ebooks.info

http://www.it-ebooks.info/

Conversely, people who fi nd themselves coding several or many assertion
method calls in their tests should strongly consider including a message that at
least distinguishes which assertion failed. This information is especially impor-
tant if the tests are frequently run using a Command-Line Test Runner (see Test
Runner), which rarely provides failure location information.

Implementation Notes

It is easy to state that we need a message for each assertion method call—but
what should we say in the message? It is useful to take a moment as we write
each assertion and ask ourselves what the person reading the failure log would
hope to get out of it.

Variation: Assertion-Identifying Message

When we include several assertions of the same type in the same Test
Method (page 348), we make it more diffi cult to determine exactly which one
failed the test. By including some unique text in each Assertion Message, we can
make it very easy to determine which assertion method call failed. A common
practice is to use the name of the variable or attribute being asserted on as the
message. This technique is very simple and requires very little thought. Another
option is to number the assertions. This information would certainly be unique
but understanding it may be less intuitive as we would have to look at the code
to determine which assertion was failing.

Variation: Expectation-Describing Message

When a test fails, we know what has actually happened. The big question is,
“What should have happened?” There are several ways of documenting the
expected behavior for the test reader. For example, we could place comments in
the test code. A better solution is to include a description of the expectation in
the Assertion Message. While this is done automatically for an Equality Asser-
tion (see Assertion Method), we need to provide this information ourselves for
any Stated Outcome Assertions (see Assertion Method).

Variation: Argument-Describing Message

Some types of Assertion Methods provide less helpful failure messages than
others. Among the worst are Stated Outcome Assertions such as assertTrue
(aBooleanExpression). When they fail, all we know is that the stated outcome did
not occur. In these cases we can include the expression that was being evalu-
ated (including the actual values) as part of the Assertion Message text. The

Assertion
Message

 Assertion Message 371

www.it-ebooks.info

http://www.it-ebooks.info/

test maintainer can then examine the failure log and determine what was being
evaluated and why it caused the test to fail.

Motivating Example
 assertTrue(a > b);
 assertTrue(b > c);

This code emits a failure message—something like “Assertion Failed.” From
this output, we cannot even tell which of the two Assertion Messages failed. Not
very useful, is it?

Refactoring Notes

Fixing this problem is a simple matter of adding one more parameter to each
Assertion Method call. In this case, we want to communicate that we are
expecting “a” to be greater than “b.” Of course, it would also be useful to be
able to see what the values of “a” and “b” actually were. We can add both
pieces of information into the Assertion Message through some judicious string
concatenation.

Example: Expectation-Describing Message

Here is the same test with the Argument-Describing Message added:

 assertTrue("Expected a > b but a was '" + a.toString() +
 "' and b was '" + b.toString() + "'",
 a.gt(b));
 assertTrue("Expected b > c but b was '" + b.toString() +
 "' and c was '" + c.toString + "'",
 b > c);

This will now result in a useful failure message:

Assertion Failed. Expected a > b but a was '17' and b was '19'.

Of course, this output would be even more meaningful if the variables had
Intent-Revealing Names [SBPP]!

Assertion
Message

372 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Testcase Class

Where do we put our test code?

We group a set of related Test Methods on a single Testcase Class.

We put our test logic into Test Methods (page 348) but those Test Methods need
to be associated with a class. A Testcase Class gives us a place to host those
methods that we can later turn into Testcase Objects (page 382).

How It Works

We collect all Test Methods that are related in some way onto a special kind
of class, the Testcase Class. At runtime, the Testcase Class acts as a Test Suite
Factory (see Test Enumeration on page 399) that creates a Testcase Object for
each Test Method. It adds all of these objects to a Test Suite Object (page 387)
that the Test Runner (page 377) will use to run them all.

Why We Do This

In object-oriented languages, we prefer to put our Test Methods onto a class
rather than having them as global functions or procedures (even if that is allowed).
By making them instance methods of a Testcase Class, we can create a Testcase
Object for each test by instantiating the Testcase Class once for each Test Method.
This strategy allows us to manipulate the Test Methods at runtime.

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Suite

Test Runner

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Suite

Test Runner

Testcase
Class

 Testcase Class

Also known as:
Test Fixture

373

www.it-ebooks.info

http://www.it-ebooks.info/

Class–Instance Duality

Back in high school physics, we learned about the “wave–particle duality”
of light. Sometimes light acts like a particle (e.g., going through a small
aperture), and sometimes it acts like a wave (e.g., rainbows). The behavior
of Testcase Classes (page 373) sometimes reminds me of this concept. Let
me explain why.

Developers new to xUnit often ask, “Why is the class we subclass called
TestCase when we have several Test Methods on it? Shouldn’t it be called
TestSuite?” These questions make a lot of sense when we are focused
primarily on the view of the class when we are writing the test code as
opposed to when we are running the code.

When we are writing test code, we concentrate on the Test Methods. The
Testcase Class is primarily just a place to put the methods. About the only
time we think of objects is when we use Implicit Setup (page 424) and
need to create fi elds (instance variables) to hold them between the invo-
cation of the setUp method and when they are used in the Test Method.
When developers new to xUnit test automation are writing their fi rst tests,
they tend to code by example. Following an existing example is a good
way to get something working quickly but it doesn’t necessarily help the
developer understand what is really going on.

At runtime, the xUnit framework typically creates one instance of the
Testcase Class for each Test Method. The Testcase Class acts as a Test
Suite Factory (see Test Enumeration on page 399) that builds a Test Suite
Object (page 387) containing all the instances of itself, one instance for
each Test Method. Now, it’s not very often that a static method on a class
returns an instance of another class containing many instances of itself.
If this behavior wasn’t odd enough, the fact that xUnit reports the test
failures using the Test Method name can be enough to obscure from many
test automaters the existence of “objects inside.”

When we examine the object relationships at runtime, things become a bit
clearer. The Test Suite Object returned by the Test Suite Factory contains
one or more Testcase Objects (page 382). So far, so good. Each of these
objects is an instance of our Testcase Class. Each instance is confi gured
to run one of the Test Methods. More importantly, each will run a differ-
ent Test Method. (How this happens is described in more detail in Test
Discovery on page 393.) So each instance of our Testcase Class is, indeed,
a test case. The Test Methods are just how we tell each instance what it
should test.

Testcase
Class

Chapter 19 xUnit Basics Patterns374

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading
Martin Fowler has a great piece on his blog about this issue called “JUnit
New Instance” [JNI].

We could, of course, implement each Test Method on a separate class—but that
creates additional overhead and clutters the class namespace. It also makes it
harder (although not impossible) to reuse functionality between tests.

Implementation Notes

Most of the complexity of writing tests involves how to write the Test Methods:
what to include in-line and what to factor out into Test Utility Methods (page 599),
how to Isolate the SUT (see page 43), and so on.

The real magic associated with the Testcase Class occurs at runtime and
is described in Testcase Object and Test Runner. As far as we are concerned,
all we have to do is write some Test Methods that contain our test logic
and let the Test Runner work its magic. We can avoid Test Code Duplica-
tion (page 213) by using an Extract Method [Fowler] refactoring to factor
out common code into Test Utility Methods. These methods can be left on the
Testcase Class or they can be moved to an Abstract Testcase superclass (see Test-
case Superclass on page 638), a Test Helper class (page 643), or a Test Helper
Mixin (see Testcase Superclass).

Example: Testcase Class

Here is an example of a simple Testcase Class:

public class TestScheduleFlight extends TestCase {

 public void testUnscheduled_shouldEndUpInScheduled() throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 flight.schedule();
 assertTrue("isScheduled()", flight.isScheduled());
 }

 public void testScheduledState_shouldThrowInvalidRequestEx()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInScheduledState();
 try {
 flight.schedule();
 fail("not allowed in scheduled state");

Testcase
Class

 Testcase Class 375

www.it-ebooks.info

http://www.it-ebooks.info/

 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "schedule",
 e.getRequest());
 assertTrue("isScheduled()", flight.isScheduled());
 }
 }

 public void testAwaitingApproval_shouldThrowInvalidRequestEx()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {
 flight.schedule();
 fail("not allowed in schedule state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "schedule",
 e.getRequest());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }
}

Further Reading

In some variants of xUnit (most notably VbUnit and NUnit), the Testcase Class is
called a test fi xture. This usage should not be confused with the test fi xture (or test
context) that consists of everything we need to have in place before we can start
exercising the SUT.3 Neither should it be confused with the fi xture term as used
by the Fit framework, which is the Adapter [GOF] that interacts with the Fit table
and thereby implements a Data-Driven Test (page 288) Interpreter [GOF].

3 These are the pre-conditions of the test.

Testcase
Class

376 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Test Runner

How do we run the tests?

We defi ne an application that instantiates a Test Suite Object and executes
all the Testcase Objects it contains.

Assuming we have defi ned our Test Methods (page 348) on one or more
Testcase Classes (page 373), how do we actually cause the Test Automation
Frameworks (page 298) to run our tests?

How It Works

Each member of the xUnit family of Test Automation Frameworks provides
some form of command-line or graphical application that can be used to run
our automated tests and report on the results. The Test Runner uses Test Enu-
meration (page 399), Test Discovery (page 393), or Test Selection (page 403) to
obtain a Composite [GOF] test object. The latter may either be a single Testcase
Object (page 382), a Test Suite Object (page 387), or a Composite test suite (a
Suite of Suites; see Test Suite Object). Because all of these objects implement the
same interface, the Test Runner need not care whether it is dealing with a single
test or a multilevel suite. The Test Runner keeps track of, and reports on, how
many tests it has run, how many tests had failed assertions, and how many tests
raised errors or exceptions.

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Exercise

Create

Create

SUT
Run

Test Runner
Fixture

Suite

Testcase
Class

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Exercise

Create

Create

SUT
Run

Test Runner
Fixture

Suite

Testcase
Class

Create

Test Runner

 Test Runner 377

www.it-ebooks.info

http://www.it-ebooks.info/

Why We Do This

We wouldn’t want each test automater to have to provide a special means of
running his or her own test suites. That requirement would just get in the way
of our ability to simultaneously run all the tests automated by different people.
By providing a standard Test Runner, we encourage developers to make it easy
to run tests written by different people. We can also provide different ways of
running the same tests.

Implementation Notes

Several styles of Test Runners are available. The most common variations are
running tests from within an IDE and running tests from the command line.
All of these schemes depend on the fact that all Testcase Objects implement a
standard interface.

Standard Test Interface

Statically typed languages (such as Java and C#) typically include an interface
type (fully abstract class) that defi nes the interface that all Testcase Objects and
Test Suite Objects must implement. Some languages (such as C# and Java 5.0)
“mix” in the implementation by using class attributes or annotations on the
Testcase Class. In dynamically typed languages, this interface may not exist
explicitly. Instead, each implementation class simply implements the standard
interface methods. Typically, the standard test interface includes methods on it
to count the available tests and to run the tests. Where the framework supports
Test Enumeration, each Testcase Class and test suite class must also implement
the Test Suite Factory method (see Test Enumeration on page 399), which is
typically called suite.

Variation: Graphical Test Runner

A Graphical Test Runner is typically a desktop application or part of an IDE
(either built-in or a plug-in) for running tests. At least one, IeUnit, runs inside a
Web browser rather than an IDE. The most common feature of the Graphical
Test Runner is some sort of real-time progress indicator. This monitor typically
includes a running count of test failures and errors and often includes a colored
progress bar that starts off green and turns red as soon as an error or failure is
encountered. Some members of the xUnit family include a graphical Test Tree
Explorer as a means to drill down and run a single test from within a Suite of
Suites.

Test Runner

378 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Here is the Graphical Test Runner from the JUnit plug-in for Eclipse:

The red bar near the top indicates that at least one test has failed. The upper
text pane shows a list of test failures and test errors. The lower pane shows the
traceback from the failed test selected in the upper pane.

Variation: Command-Line Test Runner

Command-Line Test Runners are designed to be used from an operating system
command line or from batch fi les or shell scripts. They are very handy when
working remotely via remote shells or when running the tests from a build script
such as “make,” Ant, or a continuous integration tool such as “Cruise Control.”

The following example shows how to run an runit (one of the xUnit imple-
mentations for the Ruby programming language) test from the command line:

 Test Runner 379

Test Runner

www.it-ebooks.info

http://www.it-ebooks.info/

380 Chapter 19 xUnit Basics Patterns

>ruby testrunner.rb c:/examples/tests/SmellHandlerTest.rb
Loaded suite SmellHandlerTest
Started
.....
Finished in 0.016 seconds.
5 tests, 6 assertions, 0 failures, 0 errors
>Exit code: 0

The fi rst line is the invocation at the command prompt. In this example we are
running the tests defi ned in a single Testcase Class, SmellHandlerTest. The next
two lines are the initial feedback as the tests begin. The series of dots indicates
the tests’ progress, one per test completed. This particular Command-Line Test
Runner replaces the dot with an “E” or an “F” if the test produces an error or
fails. The last three lines are summary statistics that provide an overview of
what happened. Typically, the exit code is set to the total number of failed/error
tests so that a non-zero exit code can be interpreted easily as a build failure when
run from an automated build tool.

Variation: File System Test Runner

Some Command-Line Test Runners provide the option of searching a specifi ed
directory for all fi les that are tests and running them all at once. This automated
Testcase Class Discovery (see Test Discovery) avoids the need to build the Suite
of Suites in code (Test Enumeration) and helps avoid Lost Tests (see Production
Bugs on page 268).

In addition, some external tools will search the fi le system for fi les matching
specifi c patterns and then invoke an arbitrary command against the matched
fi les. These fi les can be passed to the Test Runner from a build tool.

Variation: Test Tree Explorer

Members of the xUnit family that turn each Test Method into a Testcase Object
can manipulate the tests easily. Many of them provide a graphical representation
of the Suite of Suites and allow the user to select an entire Test Suite Object or
a single Testcase Object to run. This eliminates the need to create a Single Test
Suite (see Named Test Suite on page 592) class to run a single test.

Here is the Test Tree Explorer of JUnit plug-in for Eclipse shown “popped
out” over other Eclipse views:

Test Runner

www.it-ebooks.info

http://www.it-ebooks.info/

381

The left pane of the IDE is the JUnit view within Eclipse. The progress bar ap-
pears at the top of the view, the upper pane is the Test Tree Explorer, and the
lower pane is the traceback for the currently selected test failure. Note that some
Test Suite Objects in the Test Tree Explorer are “open,” revealing their contents;
others are closed down. The colored annotation next to each Testcase Object
shows its status; the annotations for each Test Suite Object indicate whether any
contained Testcase Objects failed or produced an error. The Test Suite Object
called “Test for com.clrstream.ex8.test” is a Suite of Suites for the package “com.
clrstream.ex8.test”; “Test for allJUnitTests” is the topmost Suite of Suites for run-
ning all the tests.

 Test Runner

Test Runner

www.it-ebooks.info

http://www.it-ebooks.info/

Testcase Object

How do we run the tests?

We create a Command object for each test and call the run method when we
wish to execute it.

The Test Runner (page 377) needs a way to fi nd and invoke the appropriate Test
Methods (page 348) and to present the results to the user. Many Graphical Test
Runners (see Test Runner) let the user drill down into the tree of tests and pick
individual tests to run. This capability requires that the Test Runner be able to
inspect and manipulate the tests at runtime.

How It Works

We instantiate a Command [GOF] object to represent each Test Method that
should execute. We use the Testcase Class (page 373) as a Test Suite Factory
to create a Test Suite Object (page 387) to hold all the Testcase Objects for a
particular Testcase Class. We can use either Test Discovery (page 393) or Test
Enumeration to create the Testcase Objects.

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Suite

Test Runner

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUT
Run

Suite

Test Runner

Testcase
Object

Chapter 19 xUnit Basics Patterns382

www.it-ebooks.info

http://www.it-ebooks.info/

Why We Do This

Treating tests as fi rst-class objects opens up many new possibilities that are not
available to us if we treat the tests as simple procedures. It is a lot easier for the
Test Runner of the Test Automation Framework (page 298) to manipulate tests
when they are objects. We can hold them in collections (Test Suite Objects),
iterate over them, invoke them, and so on.

Most members of the xUnit family create a separate Testcase Object for
each test to isolate the tests from one another as prescribed by Independent
Test (see page 42). Unfortunately, there is always an exception (see the sidebar
“There’s Always an Exception” on page 384), and users of the affected Test
Automation Frameworks need to be a bit more cautious.

Implementation Notes

Each Testcase Object implements a standard test interface so that the Test
Runner does not need to know the specifi c interface for each test. This scheme
allows each Testcase Object to act as a Command object [GOF]. This allows
us to build collections of these Testcase Objects, which we can then iterate
across to do counting, running, displaying, and other operations.

In most programming languages, we need to create a class to defi ne the
behavior of the Testcase Objects. We could create a separate Testcase Class
for each Testcase Object. It is more convenient to host many Test Methods
on a single Testcase Class, however, as this strategy results in fewer classes to
manage and facilitates reuse of Test Utility Methods (page 599). This approach
requires that each Testcase Object of the Testcase Class have a way to deter-
mine which Test Method it should invoke. Pluggable Behavior [SBPP] is the
most common way to do this. The constructor of the Testcase Class takes the
name of the method to be invoked as a parameter and stores this name in an
instance variable. When the Test Runner invokes the run method on the Test-
case Object, it uses refl ection to fi nd and invoke the method whose name is in
the instance variable.

Testcase
Object

 Testcase Object 383

www.it-ebooks.info

http://www.it-ebooks.info/

384 Chapter 19 xUnit Basics Patterns

There’s Always an Exception

Whether we are learning to conjugate verbs in a new language or looking
for patterns in how software is built, there’s always an exception!

One of the most notable exceptions in the xUnit family relates to
the use of a Testcase Object (page 382) to represent each Test Meth-
od (page 348) at runtime. This key design feature of xUnit offers a
way to achieve an Independent Test (see page 42). The only members
of the xUnit family that don’t follow this scheme are TestNG and
NUnit (version 2.x). For the reasons described below, the builders
of NUnit 2.0 chose to stray from the well-worn path of one Testcase
Object per Test Method and create only a single instance of the Test-
case Class (page 373). This instance, which they call the test fi xture, is
then reused for each Test Method. One of the authors of NUnit 2.0,
James Newkirk, writes:

I think one of the biggest screw-ups that was made when we wrote
NUnit V2.0 was to not create a new instance of the test fi xture class
for each contained test method. I say “we” but I think this one was
my fault. I did not quite understand the reasoning in JUnit for cre-
ating a new instance of the test fi xture for each test method. I look
back now and see that reusing the instance for each test method
allows someone to store a member variable from one test and use
it in another. This can introduce execution-order dependencies,
which for this type of testing is an anti-pattern. It is much better to
fully isolate each test method from the others. This requires that a
new object be created for each test method.

Unfortunately, this has some very interesting—and undesirable—
consequences when one is familiar with the “JUnit New Instance Behav-
ior” of a separate Testcase Object per method. Because the object is reused,
any objects it refers to via an instance variable are available to all subse-
quent tests. This results in an implicit Shared Fixture (page 317) along
with all the forms of Erratic Tests (page 228) that go with it. James goes
on to say:

Since it would be diffi cult to change the way that NUnit works now,
and too many people would complain, I now make all of the mem-
ber variables in test fi xture classes static. It’s almost like truth in
advertising. The result is that there is only one instance of this
variable, no matter how many test fi xture objects are created. If
the variable is static, then someone who may not be familiar with

Testcase
Object

www.it-ebooks.info

http://www.it-ebooks.info/

how NUnit executes would not assume that a new one is created
before each test is executed. This is the closest I can get to how
JUnit works without changing the way that NUnit executes test
methods.

Martin Fowler felt this exception was important enough that he wrote
an article about why JUnit’s approach is correct. See http://martinfowler.
com/bliki/JunitNewInstance.html.

Example: Testcase Object

The main evidence of the existence of Testcase Objects appears in the Test Tree
Explorer (see Test Runner) when we “drill down” into the Test Suite Object to
expose the Testcase Objects it contains. Let’s look at an example from the JUnit
Graphical Test Runner that is built into Eclipse. Here’s the list of objects created
from the sample code from the write-up of Testcase Class:

TestSuite("...flightstate.featuretests.AllTests")
 TestSuite("...flightstate.featuretests.TestApproveFlight")
 TestApproveFlight("testScheduledState_shouldThrowIn..ReEx")
 TestApproveFlight("testUnsheduled_shouldEndUpInAwai..oval")
 TestApproveFlight("testAwaitingApproval_shouldThrow..stEx")
 TestApproveFlight("testWithNullArgument_shouldThrow..ntEx")
 TestApproveFlight("testWithInvalidApprover_shouldTh..ntEx")
 TestSuite("...flightstate.featuretests.TestDescheduleFlight")
 TestDescheduleFlight("testScheduled_shouldEndUpInSc..tate")
 TestDescheduleFlight("testUnscheduled_shouldThrowIn..stEx")
 TestDescheduleFlight("testAwaitingApproval_shouldTh..stEx")
 TestSuite("...flightstate.featuretests.TestRequestApproval")
 TestRequestApproval("testScheduledState_shouldThrow..stEx")
 TestRequestApproval("testUnsheduledState_shouldEndU..oval")
 TestRequestApproval("testAwaitingApprovalState_shou..stEx")
 TestSuite("...flightstate.featuretests.TestScheduleFlight")
 TestScheduleFlight("testUnscheduled_shouldEndUpInSc..uled")
 TestScheduleFlight("testScheduledState_shouldThrowI..stEx")
 TestScheduleFlight("testAwaitingApproval_shouldThro..stEx")

The name outside the parentheses is the name of the class; the string inside the
parentheses is the name of the object created from that class. By convention, the
name of the Test Method4 to be run is used as the name of the Testcase Object,
and the name of a Test Suite Object is whatever string was passed to the Test
Suite Object constructor. In this example we’ve used the full package and class-
name of the Testcase Class.

4 I replaced part of the name with “..” to keep each line within the page width limit.

Testcase
Object

 Testcase Object 385

www.it-ebooks.info

http://martinfowler.com/bliki/JunitNewInstance.html
http://martinfowler.com/bliki/JunitNewInstance.html
http://www.it-ebooks.info/

This is what this scheme might look like when viewed in a Test Tree Explorer:

Testcase
Object

386 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Test Suite Object

How do we run the tests when we have many tests to run?

We defi ne a collection class that implements the standard test interface and
use it to run a set of related Testcase Objects.

Given that we have created Test Methods (page 348) containing our test logic
and placed them on a Testcase Class (page 373) so we can construct a Testcase
Object (page 382) for each test, it would be nice to be able to run these tests as
a single user operation.

How It Works

We defi ne a Composite [GOF] Testcase Object called a Test Suite Object to hold
the collection of individual Testcase Objects to execute. When we want to run
all tests in the test suite at once, the Test Runner (page 377) asks the Test Suite
Object to run all its tests.

Why We Do This

Treating test suites as fi rst-class objects makes it easier for the Test Runner of
the Test Automation Framework (page 298) to manipulate tests in the test suite.
With or without a Test Suite Object, the Test Runner would have to hold some
kind of collection of Testcase Objects (so that we could iterate over them, count
them, and so on). When we make the collection “smart,” it becomes a simple
matter to add other uses such as the Suite of Suites.

Testcase
Class

Run

Run Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUTSuite

Test Runner

Run

Testcase
Class

Run

Run Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Create

Exercise

Create

Create

Fixture

SUTSuite

Test Runner

Run

Test Suite
Object

 Test Suite Object 387

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Testcase Class Suite

To run all the Test Methods in a single Testcase Class, we simply build a Test
Suite Object for the Testcase Class and add one Testcase Object for each Test
Method. This allows us to run all the Test Methods in the Testcase Class simply
by passing the name of the Testcase Class to the Test Runner.

Variation: Suite of Suites

We can build up larger Named Test Suites (page 592) by organizing smaller
test suites into a tree structure. The Composite pattern makes this organization
invisible to the Test Runner, allowing it to treat a Suite of Suites exactly the
same way it treats a simple Testcase Class Suite or a single Testcase Object.

Implementation Notes

As a Composite object, each Test Suite Object implements the same interface as
a simple Testcase Object. Thus neither the Test Runner nor the Test Suite Object
needs to be aware of whether it is holding a reference to a single test or an entire
suite. This makes it easier to implement any operations that involve iterating
across all the tests such as counting, running, and displaying.

Before we can do anything with our Test Suite Object, we must construct it.
We can choose from several options to do so:

• Test Discovery (page 393): We can let the Test Automation Framework
discover our Testcase Classes and Test Methods for us.

• Test Enumeration (page 399): We can write code that enumerates
which Test Methods we want to include in a Test Suite Object. This
usually involves creating a Test Suite Factory (see Test Enumeration).

• Test Selection (page 403): We can specify which subset of the Testcase
Objects we want to include from an existing Test Suite Object.

Variation: Test Suite Procedure

Sometimes we have to write code in programming or scripting languages that do
not support objects. Given that we have written a number of Test Methods, we
need to give the Test Runner some way to fi nd the tests. A Test Suite Procedure
allows us to enumerate all the tests we want to run by invoking each test in turn.
The calls to each test are hard-coded within the body of the Test Suite Object.
Of course, a Test Suite Procedure may call several other Test Suite Procedures
to realize a Suite of Suites.

Test Suite
Object

Chapter 19 xUnit Basics Patterns388

www.it-ebooks.info

http://www.it-ebooks.info/

The major disadvantage of this approach is that it forces us into Test
Enumeration, which increases both the effort required to write tests and the
likelihood of Lost Tests (see Production Bugs on page 268). Because we do not
treat our code as “data,” we lose the ability to manipulate the code at runtime.
As a consequence, it is more diffi cult to build a Graphical Test Runner (see Test
Runner) with a hierarchy (tree) view of our Suite of Suites.

Example: Test Suite Object

Most members of the xUnit family implement Test Discovery, so there isn’t much
of an example of Test Suite Object to see. The main evidence of the existence of
Test Suite Objects appears in the Test Tree Explorer (see Test Runner) when we
“drill down” into the Test Suite Object to expose the Testcase Objects it contains.
Here’s an example from the JUnit Graphical Test Runner built into Eclipse:

Example: Suite of Suites Built Using Test Enumeration
Here is an example of using Test Enumeration to construct a Suite of Suites:

public class AllTests {

 public static Test suite() {

Test Suite
Object

 Test Suite Object 389

www.it-ebooks.info

http://www.it-ebooks.info/

 TestSuite suite = new TestSuite("Test for allJunitTests");
 suite.addTestSuite(
 com.clrstream.camug.example.test.InvoiceTest.class);
 suite.addTest(com.clrstream.ex7.test.AllTests.suite());
 suite.addTest(com.clrstream.ex8.test.AllTests.suite());
 suite.addTestSuite(com.xunitpatterns.guardassertion.Example.class);
 return suite;
 }
}

The fi rst and last lines add the Test Suite Objects created from a single Testcase
Class. Each of the middle two lines calls the Test Suite Factory for another Suite
of Suites. The Test Suite Object we return is likely at least three levels deep:

1. The Test Suite Object we instantiated and populated before returning

2. The AllTests Test Suite Objects returned by the two calls to factory
methods

3. The Test Suite Objects for each of the Testcase Classes aggregated into
those Test Suite Objects

This is illustrated in the following tree of objects:

TestSuite("Test for allJunitTests");
 TestSuite("com.clrstream.camug.example.test.InvoiceTest")
 TestCase("testInvoice_addLineItem")
 ...
 TestCase("testRemoveLineItemsForProduct_oneOfTwo")
 TestSuite("com.clrstream.ex7.test.AllTests")
 TestSuite("com.clrstream.ex7.test.TimeDisplayTest")
 TestCase("testDisplayCurrentTime_AtMidnight")
 TestCase("testDisplayCurrentTime_AtOneMinAfterMidnight")
 TestCase("testDisplayCurrentTime_AtOneMinuteBeforeNoon")
 TestCase("testDisplayCurrentTime_AtNoon")
 ...
 TestSuite("com.clrstream.ex7.test.TimeDisplaySolutionTest")
 TestCase("testDisplayCurrentTime_AtMidnight")
 TestCase("testDisplayCurrentTime_AtOneMinAfterMidnight")
 TestCase("testDisplayCurrentTime_AtOneMinuteBeforeNoon")
 TestCase("testDisplayCurrentTime_AtNoon")
 ...
 TestSuite("com.clrstream.ex8.test.AllTests")
 TestSuite("com.clrstream.ex8.FlightMgntFacadeTest")
 TestCase("testAddFlight")
 TestCase("testAddFlightLogging")
 TestCase("testRemoveFlight")
 TestCase("testRemoveFlightLogging")
 ...
 TestSuite("com.xunitpatterns.guardassertion.Example")
 TestCase("testWithConditionals")
 TestCase("testWithoutConditionals")
 ...

Test Suite
Object

390 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Note that this class doesn’t subclass any other class. It does need to import
TestSuite and the classes it is using as Test Suite Factories.

Example: Test Suite Procedure

In the early days of agile software development, before any agile project manage-
ment tools were available, I built a set of Excel spreadsheets for managing tasks
and user stories. To make life simpler, I automated frequently performed tasks
such as sorting all stories by release and iteration, sorting tasks by iteration and
status, and so on. Eventually, I got bold enough to write a macro (a program,
really) that would sum up the estimated and actual effort of all tasks for each
story. At this point, the code was becoming somewhat complex and was more
challenging to maintain. In particular, if one of the named ranges used by the
sorting macros was accidentally deleted, the macro would produce an error.

Unfortunately, there was no xUnit framework for VBA at the time, so all of
this work was done without Tests as Safety Net (see page 24). Here is the main
program of the reporting macro. All output was written to a new sheet in the
workbook.

'Main Macro

Sub summarizeActivities()
 Call VerifyVersionCompatability
 Call initialize
 Call SortByActivity

 For row = firstTaskDataRow To lastTaskDataRow
 If numberOfNumberlessTasks < MaxNumberlessTasks Then
 thisActivity =
 ActiveSheet.Cells(row, TaskActivityColumn).Value

 If thisActivity <> currentActivity Then
 Call finalizeCurrentActivityTotals
 currentActivity = thisActivity
 Call initializeCurrentActivityTotals
 End If

 Call accumulateActivityTotals(row)
 Else
 lastTaskDataRow = row ' end the For loop right away
 End If
 Next row
 Call cleanUp
End Sub

Test Suite
Object

 Test Suite Object 391

www.it-ebooks.info

http://www.it-ebooks.info/

Without any tests or Test Automation Framework, I had to do what I could to
introduce some kind of regression testing. In this case, it was enough of a challenge
(and a win) just to be able to exercise all the macros. If they ran to completion, it
was a much better indication that I hadn’t broken anything major than not running
the macros at all. Because VBA is based on Visual Basic 5, it has no classes. Thus
we have no Testcase Class and no runtime Testcase Objects. The following is an
example of the various Test Suite Procedures and the Test Methods my tests called:

Sub TestAll()
 Call TestAllStoryMacros
 Call TestAllTaskMacros
 Call TestReportingMacros
 Call TestToolbarMenus 'All The Same
End Sub

Sub TestAllStoryMacros()
 Call TestActivitySorting
 Call TestStoryHiding
 Call ReportSuccess("All Story Macros")
End Sub

Sub TestActivitySorting()
 Call SortStoriesbyAreaAndNumber
 Call SortActivitiesByIteration
 Call SortActivitiesByIterationAndOrder
 Call SortActivitiesByNumber
 Call SortActivitiesByPercentDone
End Sub

Sub TestReportingMacros()
 Call summarizeActivities
End Sub

The fi rst Test Suite Procedure is a Suite of Suites; the second Test Suite Procedure
is the equivalent of a single Test Suite Object. The third Sub is the Test Method for
exercising all of the sorting macros. The last Sub exercises the summarizeActivities
macro using a Prebuilt Fixture (page 429). 5

5 For those who might be wondering what happened to the verify outcome phase of the
test, there isn’t one in this test. It is neither a Self-Checking Test nor a Single-Condition
Test. Shame on me!

Test Suite
Object

Chapter 19 xUnit Basics Patterns392

www.it-ebooks.info

http://www.it-ebooks.info/

Test Discovery

How does the Test Runner know which tests to run?

The Test Automation Framework discovers all tests that belong to the test
suite automatically.

Given that we have written a number of Test Methods (page 348) on one or more
Testcase Classes (page 373), we need to give the Test Runner (page 377) some
way to fi nd the tests. Test Discovery eliminates most of the hassles associated with
Test Enumeration (page 399).

How It Works

The Test Automation Framework (page 298) uses runtime refl ection (or com-
pile-time knowledge) to discover all Test Methods that belong to the test suite
and/or all Test Suite Objects (page 387) that belong to a Suite of Suites (see
Test Suite Object). It then builds up the Test Suite Objects containing the
corresponding Testcase Objects (page 382) and other Test Suite Objects in
preparation for running all the tests.

When to Use It

We should use Test Discovery whenever our Test Automation Framework
supports it. This pattern reduces the effort required to automate tests and greatly
reduces the possibility of Lost Tests (see Production Bugs on page 268). The

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Exercise

Create

Create

Fixture

SUT
Run

Test Runner

Test
Discovery

Mechanism
Create

Create

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Exercise

Create

Create

Fixture

SUT
Run

Test Runner

Test
Discovery

Mechanism
Create

Create

Create

Test
Discovery

 Test Discovery 393

www.it-ebooks.info

http://www.it-ebooks.info/

only times to consider using Test Enumeration are (1) when our framework
does not support Test Discovery and (2) when we wish to defi ne a Named Test
Suite (page 592) that consists of a subset of tests6 chosen from other test suites
and the Test Automation Framework does not support Test Selection (page 403).
It is not uncommon to combine Test Suite Enumeration (see Test Enumeration)
with Test Method Discovery; the reverse is less common.

Implementation Notes

Building the Suite of Suites to be executed by the Test Runner involves two steps.
First, we must fi nd all Test Methods to be included in each Test Suite Object.
Second, we must fi nd all Test Suite Objects to be included in the test run, albeit
not necessarily in this order. Each of these steps may be done manually via Test
Method Enumeration (see Test Enumeration) and Test Suite Enumeration or
automatically via Test Method Discovery and Testcase Class Discovery.

Variation: Testcase Class Discovery

Testcase Class Discovery is the process by which the Test Automation Frame-
work discovers the Testcase Classes on which it should do Test Method Dis-
covery. One solution involves tagging each Testcase Class by subclassing a
Testcase Superclass (page 638) or implementing a Marker Interface [PJV1].
Another alternative, used in the .NET languages and newer versions of JUnit,
is to use a class attribute (e.g., "[Test Fixture]") or annotation (e.g., "@Testcase")
to identify each Testcase Class. Yet another solution is to put all Testcase
Classes into a common directory and point the Test Runner or some other
program at this directory. A fourth solution is to follow a Testcase Class
naming convention and use an external program to fi nd all fi les matching
this naming pattern. Whichever way we choose to perform this task, once
a Testcase Class has been discovered we can proceed to either Test Method
Discovery or Test Method Enumeration.

Variation: Test Method Discovery

Test Method Discovery involves providing a way for the Test Automation Frame-
work to discover the Test Methods in our Testcase Classes. There are two basic
ways to indicate that a method of a Testcase Class is a Test Method. The more
traditional approach is to use a Test Method naming convention such as “starts
with ‘test’.” The Test Automation Framework then iterates over all methods of
the Testcase Class, selects those that start with the string “test” (e.g., testCounters),

6 A Smoke Test [SCM] suite is a good example.

Test
Discovery

Chapter 19 xUnit Basics Patterns394

www.it-ebooks.info

http://www.it-ebooks.info/

and calls the one-argument constructor to create the Testcase Object for that Test
Method. The other alternative, which is used in the .NET languages and newer
versions of JUnit, is to use a method attribute (e.g., “[Test]”) or annotation (e.g.,
“@Test”) to identify each Test Method.

Motivating Example

The following example illustrates the kind of code that would be required for
each Test Method to do Test Method Enumeration if we did not have Test
Discovery available:

public:
 static CppUnit::Test *suite()
 {
 CppUnit::TestSuite *suite =
 new CppUnit::TestSuite("ComplexNumberTest");
 suite>addTest(
 new CppUnit::TestCaller<ComplexNumberTest>(
 "testEquality",
 &ComplexNumberTest::testEquality));
 suite>addTest(
 new CppUnit::TestCaller<ComplexNumberTest>(
 "testAddition",
 &ComplexNumberTest::testAddition));
 return suite;
 }

This example is from the tutorial for an earlier version of CppUnit. Newer
versions no longer require this approach.

Refactoring Notes

Luckily for the users of existing xUnit family members, the inventors of xUnit
realized the importance of Test Discovery. Therefore all we have to do is follow
their advice on how to identify our test methods. If the developers of our xUnit
version used a naming convention, we may have to do a Rename Method [Fowler]
refactoring to get xUnit to discover our Test Method. If they implemented method
attributes, we just add the appropriate attribute to our Test Methods.

Example: Test Method Discovery (Using Method Naming
and Compiler Macro)

When the programming language is capable of managing the tests as objects
and invoking the methods but cannot easily fi nd all methods to use as tests, we

Test
Discovery

 Test Discovery 395

www.it-ebooks.info

http://www.it-ebooks.info/

396 Chapter 19 xUnit Basics Patterns

may need to give it a small push as encouragement to do so. Newer versions
of CppUnit provide a macro that fi nds all Test Methods at compile time and
generates the code to build the test suite as illustrated in the previous example.
The following code snippet triggers the Test Method Discovery:

CPPUNIT_TEST_SUITE_REGISTRATION(FlightManagementFacadeTest);

This macro uses a method naming convention to determine which methods
(“member functions”) it should turn into Testcase Objects by wrapping each
with a TestCaller, much like in the manual example we saw earlier.

Example: Test Method Discovery (Using Method Naming)

The following examples are more notable for the code that is missing than for
the code that is present. Note that there is no code to add the Test Methods to
the Test Suite Object.

In this Java example, the framework automatically runs all test methods that
start with “test” and have no arguments (a total of two):

public class TimeDisplayTest extends TestCase {
 public void testDisplayCurrentTime_AtMidnight()
 throws Exception {
 // Set up SUT
 TimeDisplay theTimeDisplay = new TimeDisplay();
 // Exercise SUT
 String actualTimeString =
 theTimeDisplay.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight",
 expectedTimeString,
 actualTimeString);
 }

 public void testDisplayCurrentTime_AtOneMinuteAfterMidnight()
 throws Exception {
 // Set up SUT
 TimeDisplay actualTimeDisplay = new TimeDisplay();
 // Exercise SUT
 String actualTimeString =
 actualTimeDisplay.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "12:01 AM";
 assertEquals("12:01 AM",
 expectedTimeString,
 actualTimeString);
 }
}

Test
Discovery

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Test Method Discovery (Using Method Attributes)

In this C# example, the tests are labeled with the method attribute [Test]. Both
CsUnit and NUnit use this way of identifying Test Methods.

 [Test]
 public void testFlightMileage_asKm()
 {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 newFlight.setMileage(1122);
 // exercise mileage translator
 int actualKilometres = newFlight.getMileageAsKm();
 int expectedKilometres = 1810;
 // verify results
 Assert.AreEqual(expectedKilometres, actualKilometres);
 }

 [Test]
 [ExpectedException(typeof(InvalidArgumentException))]
 public void testSetMileage_invalidInput_attribute()
 {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 // exercise SUT
 newFlight.setMileage(-1122);
 }

Example: Testcase Class Discovery (Using Class Attributes)

Here is an example of using a class attribute to identify a Testcase Class (called
a “Test Fixture” in NUnit) to the Test Runner:

[TestFixture]
public class SampleTestcase
{

}

Example: Testcase Class Discovery (Using Common
Location and Testcase Superclass)

The following Ruby example fi nds all fi les with the .rb extension in the “tests”
directory and requires them from this fi le. This causes Test::Unit to look for all tests
in each fi le because the Testcase Class in each fi le extends Test::Unit::TestCase.

Dir['tests/*.rb'].each do |each|
 require each
end

Test
Discovery

 Test Discovery 397

www.it-ebooks.info

http://www.it-ebooks.info/

The Dir['tests/*.rb'] returns a collection of fi les over which the each method iter-
ates with the block containing “require each” to implement Testcase Class Dis-
covery. The Ruby interpreter and Test::Unit fi nish the job by doing Test Method
Discovery on each required class.

Test
Discovery

398 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Test Enumeration

How does the Test Runner know which tests to run?

The test automater manually writes the code that enumerates all tests that
belong to the test suite.

Given that we have written a number of Test Methods (page 348) on one or
more Testcase Classes (page 373), we need to give the Test Runner (page 377)
some way to fi nd the tests. Test Enumeration is the way we do so when we lack
support for Test Discovery (page 393).

How It Works

The test automater manually writes the code that enumerates all Test Methods
that belong to the test suite and/or all Test Suite Objects (page 387) that belong
to a Suite of Suites (see Test Suite Object). This is typically done by implement-
ing the method suite either on a Testcase Class for Test Method Enumeration or
on a Test Suite Factory for Test Suite Enumeration.

When to Use It

We need to use Test Enumeration if our Test Automation Framework (page 298)
does not support Test Discovery. We can also choose to use Test Enumeration

testMethod_n

Testcase
Class

Create

Testcase
Object

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Test
Suite

Factory
Create

Create

Create

testMethod_n

Testcase
Class

Create

Testcase
Object

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test
Suite

Object

Exercise

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Test
Suite

Factory
Create

Create

Create

 Test Enumeration

Test
Enumeration

399

Also known as:
Test Suite
Factory

www.it-ebooks.info

http://www.it-ebooks.info/

when we wish to defi ne a Named Test Suite (page 592) that consists of a subset
of tests7 chosen from other test suites and the framework does not support Test
Selection (page 403).

Many members of the xUnit family support Test Discovery at the Test Method
level but force us to use Test Enumeration at the Testcase Class level.

Implementation Notes

Building the Suite of Suites to be executed by the Test Runner involves two steps.
First, we must fi nd all Test Methods to be included in each Test Suite Object.
Second, we must fi nd all Test Suite Objects to be included in the test run, albeit
not necessarily in this order. Each of these steps may be done manually via
Test Method Enumeration and Test Suite Enumeration or automatically via Test
Method Discovery (see Test Discovery) and Testcase Class Discovery (see Test
Discovery). When done manually, we typically use a “Test Suite Factory” that
returns the Test Suite Object.

Variation: Test Suite Enumeration

Many members of the xUnit family require that we provide a Test Suite Factory
that builds the top-level Suite of Suites (often called “AllTests”) as means to
specify which Test Suite Objects we would like to include in a test run. We do
so by providing a class method on a factory class; this Factory Method [GOF]
is called suite in most members of the xUnit family. Inside the suite method we
use calls to methods such as addTest to add each nested Test Suite Object to the
suite we are building.

Although this approach is fairly fl exible, it can result in Lost Tests (see
Production Bugs on page 268). The alternative is to let the development tools
build the AllTests Suite (see Named Test Suite) automatically or to use a Test
Runner that fi nds all test suites in a fi le system directory automatically. For
example, NUnit provides a built-in mechanism that implements Testcase Class
Discovery at the assembly level. We can also use third-party tools such as Ant
to fi nd all Testcase Class fi les in a directory structure.

Even in statically typed languages such as Java, the Test Suite Factory (see
Test Enumeration on page 399) does not need to subclass a specifi c class or
implement a specifi c interface. Instead, the only dependencies are on the generic
Test Suite Object class it returns and the Testcase Classes or Test Suite Factories
it asks for the nested suites.

7 A Smoke Test [SCM] suite is a good example.

Test
Enumeration

400 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Variation: Test Method Enumeration

Many members of the xUnit family now support Test Method Discovery. If we
happen to be using a version that does not, we need to fi nd all Test Methods in a
Testcase Class, turn them into Testcase Objects (page 382), and put them into a
Test Suite Object. We implement Test Method Enumeration by providing a class
method, typically called suite, on the Testcase Class itself.

The capability to construct an object that calls an arbitrary method is often in-
herited from the Test Automation Framework via a Testcase Superclass (page 638)
or mixed in via a class attribute or Include directive. In some members of the xUnit
family, this Pluggable Behavior [SBPP] capability is provided by a separate class
(see the CppUnit example below).

Variation: Direct Test Method Invocation

In the pure procedural world where we cannot treat a Test Method as an object
or data item, we have no choice but to hand-code a Test Suite Procedure (see
Test Suite Object) for each test suite. This procedure then calls each Test Method
(or other Test Suite Procedures) one by one.

Example: Test Method Enumeration in CppUnit

Early versions of most xUnit family members required that the test automater
add each Test Method manually. Those versions that cannot use refl ection still
have this requirement. Here is an example from an older version of CppUnit
that uses this approach:

public:
 static CppUnit::Test *suite()
 {
 CppUnit::TestSuite *suite =
 new CppUnit::TestSuite("ComplexNumberTest");
 suite>addTest(
 new CppUnit::TestCaller<ComplexNumberTest>(
 "testEquality",
 &ComplexNumberTest::testEquality));
 suite>addTest(
 new CppUnit::TestCaller<ComplexNumberTest>(
 "testAddition",
 &ComplexNumberTest::testAddition));
 return suite;
 }

This example also illustrates how CppUnit wraps each Test Method with an
instance of a class (TestCaller) to turn it into a Testcase Object.

 Test Enumeration

Test
Enumeration

401

www.it-ebooks.info

http://www.it-ebooks.info/

Example: Test Method Invocation (Hard-Coded)

The following example is from a test suite for a program written in VBA (Visual
Basic for Applications, the macro language used in Microsoft Offi ce products),
which lacks support for objects:

Sub TestAllStoryMacros()
 Call TestActivitySorting
 Call TestStoryHiding
 Call ReportSuccess("All Story Macros")
End Sub

Example: Test Suite Enumeration

We can use Test Suite Enumeration when the Test Automation Framework does
not support Test Discovery or when we want to defi ne a Named Test Suite that
includes only a subset of the tests.

The main drawback of using Test Suite Enumeration for running all tests is
the potential for Lost Tests if we forget to include a new test suite in the AllTests
Suite. This risk can be reduced by paying attention to the number of tests that
were run when we fi rst checked out the code and ensuring that the number run
just before check-in goes up by the number of new tests we added.

public class AllTests {

 public static Test suite() {
 TestSuite suite = new TestSuite("Test for allJunitTests");
 //$JUnit-BEGIN$
 suite.addTestSuite(
 com.clrstream.camug.example.test.InvoiceTest.class);
 suite.addTest(com.clrstream.ex7.test.AllTests.suite());
 suite.addTest(com.clrstream.ex8.test.AllTests.suite());
 suite.addTestSuite(
 com.xunitpatterns.guardassertion.Example.class);
 //$JUnit-END$
 return suite;
 }
}

In this example, we take advantage of the IDE’s ability to (re)generate the AllTests
suite for us. (Eclipse will regenerate the code between the two marker comments
whenever we request it to do so.) We still need to remember to regenerate the
suite occasionally, but this approach goes a long way toward avoiding Lost Tests
in the absence of Test Discovery.

Test
Enumeration

402 Chapter 19 xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Test Selection

How does the Test Runner know which tests to run?

The Test Automation Framework selects the Test Methods to be run at
runtime based on attributes of the tests.

Given that we have written a number of Test Methods (page 348) on one or more
Testcase Classes (page 373), we need to give the Test Runner (page 377) some way
to fi nd those tests. Test Selection is a way to pick subsets of tests dynamically.

How It Works

The test automater specifi es the subset of tests to be run when invoking the Test
Runner by providing test selection criteria. These selection criteria may be based
on implicit or explicit attributes of the Testcase Classes or Test Methods.

When to Use It

We should use Test Selection when we wish to run a subset of tests chosen from
other test suites and we do not want to maintain a separate structure built using
Test Enumeration (page 399). A Smoke Test [SCM] suite is a common usage; see
Named Test Suite (page 592) for other uses.

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

Test
Suite

Object
Exercise

Exercise

Create

Create

Fixture

SUT

Run

Test Runner

Test
Selection

Mechanism
Get

Add

Subset
Suite

Object

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Testcase
Class

Test
Suite

Object
Exercise

Exercise

Create

Create

Fixture

SUT

Run

Test Runner

Test
Selection

Mechanism
Get

Add

Subset
Suite

Object

Create

 Test Selection

Test
Selection

403

www.it-ebooks.info

http://www.it-ebooks.info/

Implementation Notes

Test Selection can be implemented either by creating a Subset Suite (see
Named Test Suite) from an existing Test Suite Object (page 387) or by skip-
ping some of the tests within the Test Suite Object as we execute the Testcase
Objects (page 382) it contains.

As with Test Discovery (page 393) and Test Enumeration, Test Selection
can be applied at two different levels: selecting Testcase Classes or selecting
Test Methods. Test Selection can be built into the Test Automation Frame-
work (page 298) or it can be implemented more crudely as part of the build
task.

Variation: Testcase Class Selection

We can select the Testcase Classes to be examined for Test Methods in several
ways. The crudest way to do Testcase Class Selection is simply to place the Test-
case Classes into test packages based on some criteria. Unfortunately, this strategy
works only for a single test classifi cation scheme and is likely to reduce the value
of Tests as Documentation (see page 23). A somewhat more fl exible approach is
to use a naming convention such as “contains ‘WebServer’” to select only those
classes that verify the behavior of certain parts of the system. This, too, is some-
what constrained in its utility.

The most fl exible way to implement Test Selection is within the Test Auto-
mation Framework. We can use class attributes (.NET) or annotations (Java) to
indicate characteristics of the Testcase Class. The same technique can also be
applied at the Test Method level.

Variation: Test Method Selection

When implemented as part of the Test Automation Framework, Test Method
Selection can be done by specifying the “category” (or categories) to which a Test
Method belongs. This usually requires language support for method attributes
(.NET) or annotations (Java). It could also be based on a method name scheme,
although this approach is not as fl exible and would require tighter coupling to
the Test Runner.

Example: Testcase Class Selection Using Class Attributes

The following example of Testcase Class Selection is from NUnit. The class
attribute Category(“FastSuite”) indicates that all tests in this Testcase Class
should be included (or excluded) when the category “FastSuite” is specifi ed
in the Test Runner.

404 Chapter 19 xUnit Basics Patterns

Test
Selection

www.it-ebooks.info

http://www.it-ebooks.info/

405

[TestFixture]
[Category("FastSuite")]
public class CategorizedTests
{
 [Test]
 public void testFlightConstructor_OK()
 // Methods omitted
}

Example: Test Method Selection Using Method Attributes

This example of Test Method Selection is from NUnit. The method attribute
Category(“SmokeTest”) indicates that this Test Method should be included (or
excluded) when the category “SmokeTest” is specifi ed in the Test Runner.

 [Test]
 [Category("SmokeTests")]
 public void testFlightMileage_asKm()
 {
 // set up fixture
 Flight newFlight = new Flight(validFlightNumber);
 newFlight.setMileage(1122);
 // exercise mileage translator
 int actualKilometres = newFlight.getMileageAsKm();
 int expectedKilometres = 1810;
 // verify results
 Assert.AreEqual(expectedKilometres, actualKilometres);
 }

Test
Selection

 Test Selection

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20

Fixture Setup Patterns

Patterns in This Chapter

Fresh Fixture Setup

In-line Setup . 408

Delegated Setup . 411

Creation Method . 415

Implicit Setup . 424

Shared Fixture Construction

Prebuilt Fixture . 429

Lazy Setup . 435

Suite Fixture Setup . 441

Setup Decorator . 447

Chained Tests . 454

Fixture Setup
Patterns

407

www.it-ebooks.info

http://www.it-ebooks.info/

In-line Setup

How do we construct the Fresh Fixture?

Each Test Method creates its own Fresh Fixture by calling the
appropriate constructor methods to build exactly the test fi xture

it requires.

To execute an automated test, we require a text fi xture that is well understood
and completely deterministic. We can use the Fresh Fixture (page 311) approach
to build a Minimal Fixture (page 302) for the use of this one test. Setting up the
test fi xture on an in-line basis in each test is the most obvious way to build it.

How It Works

Each Test Method (page 348) sets up its own test fi xture by directly calling what-
ever SUT code is required to construct exactly the test fi xture it requires. We put
the code that creates the fi xture, the fi rst phase of the Four-Phase Test (page 358),
at the top of each Test Method.

Fixture

SUT

Testcase Class

setUp

test_1

test_2

test_n

Setup Fixture

SUT

Testcase Class

setUp

test_1

test_2

test_n

Setup

In-line Setup

Chapter 20 Fixture Setup Patterns408

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use It

We can use In-line Setup when the fi xture setup logic is very simple and straightforward.
As soon as the fi xture setup gets at all complex, we should consider using Delegated
Setup (page 411) or Implicit Setup (page 424) for part or all of the fi xture setup.

We can also use In-line Setup when we are writing a fi rst draft of tests and haven’t
yet fi gured out which part of the fi xture setup will be repeated from test to test.
This is an example of applying the “Red–Green–Refactor” process pattern to the
tests themselves. Nevertheless, we need to be careful when we refactor the tests to
ensure that we don’t break the tests in ways that are undetectable.

A third occasion to use In-line Setup is when refactoring obtuse fi xture setup
code. A fi rst step may be to use In-line Method [Fowler] refactorings on all
Creation Methods (page 415) and the setUp method. Then we can try using a
series of Extract Method [Fowler] refactorings to defi ne a new set of Creation
Methods that are more intent-revealing and reusable.

Implementation Notes

In practice, most fi xture setup logic will include a mix of styles, such as In-line
Setup building on top of Implicit Setup or Delegated Setup interspersed with
In-line Setup.

Example: In-line Setup

Here’s an example of simple in-line setup. Everything each Test Method needs
for exercising the SUT is included in-line.

 public void testStatus_initial() {
 // in-line setup
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");
 Flight flight = new Flight(flightNumber,
 departureAirport,
 destinationAirport);
 // exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // tearDown:
 // garbage-collected
 }

 public void testStatus_cancelled() {
 // in-line setup
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");

In-line Setup

 In-line Setup 409

www.it-ebooks.info

http://www.it-ebooks.info/

410

 Flight flight = new Flight(flightNumber,
 departureAirport,
 destinationAirport);
 flight.cancel(); // still part of setup
 // exercise SUT and verify outcome
 assertEquals(FlightState.CANCELLED, flight.getStatus());
 // tearDown:
 // garbage-collected
 }

Refactoring Notes

In-line Setup is normally the starting point for refactoring, not the end goal.
Sometimes, however, we fi nd ourselves with tests that are too hard to under-
stand because of all the stuff happening behind the scenes, which is a form of
Mystery Guest (see Obscure Test on page 186). At other times, we may fi nd
ourselves modifying the previously setup fi xture in many of the tests.

Both of these situations are indications it may be time to refactor our test
class into multiple classes based on the fi xture they build. First, we use an In-
line Method refactoring on the code to produce an In-line Setup. Next, we
reorganize the tests using an Extract Class [Fowler] refactoring. Finally, we use
a series of Extract Method refactorings to defi ne a more understandable set of
fi xture setup methods.

In-line Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Delegated Setup

How do we construct the Fresh Fixture?

Each Test Method creates its own Fresh Fixture by calling Creation Methods
from within the Test Methods.

To execute an automated test, we require a text fi xture that is well understood
and completely deterministic. We are using a Fresh Fixture (page 311) approach
to build a Minimal Fixture (page 302) for the use of this one test and we’d like
to avoid Test Code Duplication (page 213).

Delegated Setup lets us reuse the code to set up the fi xture without compromis-
ing our goal of Tests as Documentation (see page 23).

How It Works

Each Test Method (page 348) sets up its own test fi xture by calling one or more
Creation Methods (page 415) to construct exactly the test fi xture it requires.
To ensure Tests as Documentation, we build a Minimal Fixture using Creation
Methods that build fully formed objects that are ready for use by the test. We
strive to ensure that the method calls will convey the “big picture” to the test
reader by passing in only those values that affect the behavior of the SUT.

Fixture

SUT

Utility
Method

Testcase Class

setUp

test_1

test_2

test_n

Utility
Method

Setup Fixture

SUT

Utility
Method

Testcase Class

setUp

test_1

test_2

test_n

Utility
Method

Setup

Delegated
Setup

 Delegated Setup 411

www.it-ebooks.info

http://www.it-ebooks.info/

412

When to Use It

We can use a Delegated Setup when we want to avoid the Test Code Duplication
caused by having to set up similar fi xtures for several tests and we want to keep
the nature of the fi xture visible within the Test Methods. A reasonable goal is to
encapsulate the essential but irrelevant steps of setting up the fi xture and leave
only the steps and values essential to understanding the test within the Test Meth-
od. This scheme helps us achieve Tests as Documentation by ensuring that excess
In-line Setup (page 408) code does not obscure the intent of the test. It also avoids
the Mystery Guest problem (see Obscure Test on page 186) by leaving the Intent-
Revealing Name [SBPP] of the Creation Method call within the Test Method.

Furthermore, Delegated Setup allows us to use whatever organization scheme
we want for our Test Methods. In particular, we are not forced to put Test Methods
that require the same test fi xture into the same Testcase Class (page 373) just to
reuse the setUp method as we would have to when using Implicit Setup (page 424).
Furthermore, Delegated Setup helps prevent Fragile Tests (page 239) by moving
much of the nonessential interaction with the SUT out of the very numerous Test
Methods and into a much smaller number of Creation Method bodies, where it is
easier to maintain.

Implementation Notes

With modern refactoring tools, we can often create the fi rst cut of a Creation
Method by performing a simple Extract Method [Fowler] refactoring. As we are
writing a set of tests using “clone and twiddle,” we must watch for any Test Code
Duplication in the fi xture setup logic within our tests. For each object that needs to
be verifi ed in the verifi cation logic, we extract a Creation Method that takes only
those attributes as parameters that affect the outcome of the test.

Initially, we can leave the Creation Method on our Testcase Class. If we need
to share them with another class, however, we can move the Creation Methods
to an Abstract Testcase class (see Testcase Superclass on page 638) or a Test
Helper (page 643) class.

Motivating Example

Suppose we are testing the state model of the Flight class. In each test, we need
to have a fl ight in the right state. Because a fl ight needs to connect at least two
airports, we need to create airports before we can create a fl ight. Of course, air-
ports are typically associated with cities or states/provinces. To keep the example
manageable, let’s assume that our airports require only a city name and an air-
port code.

Delegated
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

413

 public void testStatus_initial() {
 // in-line setup
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");
 Flight flight = new Flight(flightNumber,
 departureAirport,
 destinationAirport);
 // exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // teardown
 // garbage-collected
 }

 public void testStatus_cancelled() {
 // in-line setup
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");
 Flight flight = new Flight(flightNumber,
 departureAirport,
 destinationAirport);
 flight.cancel(); // still part of setup
 // Exercise SUT and verify outcome
 assertEquals(FlightState.CANCELLED, flight.getStatus());
 // teardown
 // garbage-collected
 }

These tests contain a fair amount of Test Code Duplication.

Refactoring Notes

We can refactor the fi xture setup logic by using an Extract Method refactoring
to remove any frequently repeated code sequences into utility methods with
Intent-Revealing Names. We leave the calls to the methods in the test, however,
so that the reader can see what is being done. The method calls that remain
within the test will convey the “big picture” to the test reader. The utility meth-
od bodies contain the irrelevant mechanics of carrying out the intent. If we need
to share the Delegated Setups with another Testcase Class, we can use either a
Pull Up Method [Fowler] refactoring to move them to a Testcase Superclass or
a Move Method [Fowler] refactoring to move them to a Test Helper class.

Example: Delegated Setup

In this version of the test, we use a method that hides the fact that we need two
airports instead of creating the two airports needed by the fl ight within each Test
Method. We could produce this version of the tests either through refactoring or
by writing the test in this intent-revealing style right off the bat.

 Delegated Setup

Delegated
Setup

www.it-ebooks.info

http://www.it-ebooks.info/

414

 public void testGetStatus_initial() {
 // setup
 Flight flight = createAnonymousFlight();
 // exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // teardown
 // garbage-collected
 }

 public void testGetStatus_cancelled2() {
 // setup
 Flight flight = createAnonymousCancelledFlight();
 // exercise SUT and verify outcome
 assertEquals(FlightState.CANCELLED, flight.getStatus());
 // teardown
 // garbage-collected
 }

The simplicity of these tests was made possible by the following Creation Methods,
which hide the “necessary but irrelevant” steps from the test reader:

 private int uniqueFlightNumber = 2000;

 public Flight createAnonymousFlight(){
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");
 Flight flight =
 new Flight(new BigDecimal(uniqueFlightNumber++),
 departureAirport,
 destinationAirport);
 return flight;
 }
 public Flight createAnonymousCancelledFlight(){
 Flight flight = createAnonymousFlight();
 flight.cancel();
 return flight;
 }

Delegated
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

415

Creation Method

How do we construct the Fresh Fixture?

We set up the test fi xture by calling methods that hide the mechanics of
building ready-to-use objects behind Intent-Revealing Names.

Fixture setup usually involves the creation of a number of objects. In many
cases, the details of those objects (i.e., the attribute values) are unimportant but
must be specifi ed to satisfy each object’s constructor method. Including all of
this unnecessary complexity within the fi xture setup part of the test can lead to
Obscure Tests (page 186) and certainly doesn’t help us achieve Tests as Docu-
mentation (see page 23)!

How can a properly initialized object be created without having to clutter
the test with In-line Setup (page 408)? The answer, of course, is to encapsulate
this complexity. Delegated Setup (page 411) moves the mechanics of the fi xture
setup into other methods but leaves overall control and coordination within
the test itself. But what to delegate to? A Creation Method is one way we can
encapsulate the mechanics of object creation so that irrelevant details do not
distract the reader.

Fixture
Setup

Exercise

Verify

Teardown

SUT

Creation
Method

Fixture
Setup

Exercise

Verify

Teardown

SUT

Creation
Method

 Creation Method

Creation
Method

www.it-ebooks.info

http://www.it-ebooks.info/

416

How It Works

As we write tests, we don’t bother asking whether a desired utility function
exists; we just use it! (It helps to pretend that we have a loyal helper sitting
next to us who will quickly fi ll in the bodies of any functions we call that do
not exist as yet.) We write our tests in terms of these magic functions with
Intent-Revealing Names [SBPP], passing as parameters only those things that
will be verifi ed in the assertions or that should affect the outcome of the test.

Once we’ve written the test in this very intent-revealing style, we must implement
all of the magic functions that we’ve been calling. The functions that create objects
are our Creation Methods; they encapsulate the complexity of object creation. The
simple ones call the appropriate constructor, passing it suitable default values for
anything needed but not supplied as a parameter. If any of the constructor argu-
ments are other objects, the Creation Method will fi rst create those depended-on
objects before calling the constructor.

The Creation Method may be placed in all the same places where we put
Test Utility Methods (page 599). As usual, the decision is based on the expected
scope of reuse and the Creation Method’s dependencies on the API of the SUT.
A related pattern is Object Mother (see Test Helper on page 643), which is a
combination of Creation Method, Test Helper, and optionally Automated Tear-
down (page 503).

When to Use It

We should use a Creation Method whenever constructing a Fresh Fixture
(page 311) requires signifi cant complexity and we value Tests as Documentation.
Another key indicator for using Creation Method is that we are building the
system in a highly incremental way and we expect the API of the system (and
especially the object constructors) to change frequently. Encapsulating knowl-
edge of how to create a fi xture object is a special case of SUT API Encapsulation
(see Test Utility Method), and it helps us avoid both Fragile Tests (page 239) and
Obscure Tests.

The main drawback of a Creation Method is that it creates another API for
test automaters to learn. This isn’t much of a problem for the initial test devel-
opers because they are typically involved in building this API but it can create
“one more thing” for new additions to the team to learn. Even so, this API
should be pretty easy to understand because it is just a set of Factory Methods
[GOF] organized in some way.

If we are using a Prebuilt Fixture (page 429), we should use Finder Methods
(see Test Utility Method) to locate the prebuilt objects. At the same time, we

Creation
Method

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

417

may still use Creation Methods to lay mutable objects that we plan to modify
on top of an Immutable Shared Fixture (see Shared Fixture on page 317).

Several variations of Creation Method are worth exploring.

Variation: Parameterized Creation Method

While it is possible (and often very desirable) for Creation Methods to take no
parameters whatsoever, many tests will require some customization of the cre-
ated object. A Parameterized Creation Method allows the test to pass in some
attributes to be used in the creation of the object. In such a case, we should pass
only those attributes that are expected to affect (or those we want to demon-
strate do not affect) the test’s outcome; otherwise, we could be headed down the
slippery slope to Obscure Tests.

Variation: Anonymous Creation Method

An Anonymous Creation Method automatically creates a Distinct Generated
Value (see Generated Value on page 723) as the unique identifi er for the object it
is creating even though the arguments it receives may not be unique. This behav-
ior is invaluable for avoiding Unrepeatable Tests (see Erratic Test on page 228)
because it ensures that every object we create is unique, even across multiple test
runs. If the test cares about some attributes of the object to be created, it can
pass them as parameters of the Creation Method; this behavior turns the Anony-
mous Creation Method into a Parameterized Anonymous Creation Method.

Variation: Parameterized Anonymous Creation Method

A Parameterized Anonymous Creation Method is a combination of several other
variations of Creation Method in that we pass in some attributes to be used in
the creation of the object but let the Creation Method create the unique identi-
fi er for it. A Creation Method could also take zero parameters if the test doesn’t
care about any of the attributes.

Variation: Named State Reaching Method

Some SUTs are essentially stateless, meaning we can call any method at any
time. By contrast, when the SUT is state-rich and the validity or behavior of
methods is affected by the state of the SUT, it is important to test each method
from each possible starting state. We could chain a bunch of such tests together
in a single Test Method (page 348), but that approach would create an Eager
Test (see Assertion Roulette on page 224). It is better to use a series of Single-
Condition Tests (see page 45) for this purpose. Unfortunately, that leaves us

Creation
Method

 Creation Method

www.it-ebooks.info

http://www.it-ebooks.info/

418

with the problem of how to set up the starting state in each test without a lot of
Test Code Duplication (page 213).

One obvious solution is to put all tests that depend on the same starting state
into the same Testcase Class (page 373) and to create the SUT in the appropri-
ate state in the setUp method using Implicit Setup (page 424) (called Testcase
Class per Fixture; see page 631). The alternative is to use Delegated Setup by
calling a Named State Reaching Method; this approach allows us to choose
some other way to organize our Testcase Classes.

Either way, the code that sets up the SUT will be easier to understand if it
is short and sweet. That’s where a Named State Reaching Method comes in
handy. By encapsulating the logic required to create the test objects in the cor-
rect state in a single place (whether on the Testcase Class or a Test Helper), we
reduce the amount of code we must update if we need to change how we put
the test object into that state.

Variation: Attachment Method

Suppose we already have a test object and we want to modify it in some way. We
fi nd ourselves performing this task in enough tests to want to code this modifi ca-
tion once and only once. The solution in this case is an Attachment Method. The
main difference between this variation and the original Creation Method pattern
is that we pass in the object to be modifi ed (one that was probably returned by
another Creation Method) and the object we want to set one of its attributes to;
the Attachment Method does the rest of the work for us.

Implementation Notes

Most Creation Methods are created by doing an Extract Method [Fowler] refac-
toring on parts of an existing test. When we write tests in an “outside-in” man-
ner, we assume that the Creation Methods already exist and fi ll in the method
bodies later. In effect, we defi ne a Higher-Level Language (see page 41) for defi n-
ing our fi xtures. Nevertheless, there is another, completely different way to defi ne
Creation Methods.

Variation: Reuse Test for Fixture Setup

We can set up the fi xture by calling another Test Method to do the fi xture setup
for us. This assumes that we have some way of accessing the fi xture that the
other test created, either through a Registry [PEAA] object or through instance
variables of the Testcase Object (page 382).

It may be appropriate to implement a Creation Method in this way when
we already have tests that depend on other tests to set up their test fi xture but

Creation
Method

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

419

we want to reduce the likelihood that a change in the test execution order of
Chained Tests (page 454) will cause tests to fail. Mind you, the tests will run
more slowly because each test will call all the preceding tests it depends on each
time each test is run rather than each test being run only once per test run. Of
course, each test needs to call only the specifi c tests it actually depends on, not all
tests in the test suite. This slowdown won’t be very noticeable if we have replaced
any slow components, such as a database, with a Fake Object (page 551).

Wrapping the Test Method in a Creation Method is a better option than
calling the Test Method directly from the client Test Method because most Test
Methods are named based on which test condition(s) they verify, not what (fi x-
ture) they leave behind. The Creation Method lets us put a nice Intent-Revealing
Name between the client Test Method and the implementing Test Method. It
also solves the Lonely Test (see Erratic Test) problem because the other test is
run explicitly from within the calling test rather than just assuming that it was
already run. This scheme makes the test less fragile and easier to understand but
it won’t solve the Interacting Tests (see Erratic Test) problem: If the test we call
fails and leaves the test fi xture in a different state than we expected, our test will
likely fail as well, even if the functionality we are testing is still working.

Motivating Example

In the following example, the testPurchase test requires a Customer to fi ll the role of
the buyer. The fi rst and last names of the buyer have no bearing on the act of pur-
chasing, but are required parameters of the Customer constructor; we do care that
the Customer’s credit rating is good (“G”) and that he or she is currently active.

 public void testPurchase_firstPurchase_ICC() {
 Customer buyer =
 new Customer(17, "FirstName", "LastName", "G","ACTIVE");
 // ...
 }
 public void testPurchase_subsequentPurchase_ICC() {
 Customer buyer =
 new Customer(18, "FirstName", "LastName", "G","ACTIVE");
 // ...
 }

The use of constructors in tests can be problematic, especially when we are
building an application incrementally. Every change to the parameters of the
constructor will force us to revisit a lot of tests or jump through hoops to keep
the constructor signatures backward compatible for the sake of the tests.

Creation
Method

 Creation Method

www.it-ebooks.info

http://www.it-ebooks.info/

420

Refactoring Notes

We can use an Extract Method refactoring to remove the direct call to the construc-
tor. We can give the new Creation Method an appropriate Intent-Revealing Name
such as createCustomer based on the style of Creation Method we have created.

Example: Anonymous Creation Method

In the following example, instead of making that direct call to the Customer
constructor, we now use the Customer Creation Method. Notice that the coupling
between the fi xture setup code and the constructor has been removed. If another
parameter such as phone number is added to the Customer constructor, only the
Customer Creation Method must be updated to provide a default value; the fi xture
setup code remains insulated from the change thanks to encapsulation.

 public void testPurchase_firstPurchase_ACM() {
 Customer buyer = createAnonymousCustomer();
 // ...
 }
 public void testPurchase_subsequentPurchase_ACM() {
 Customer buyer = createAnonymousCustomer();
 // ...
 }

We call this pattern an Anonymous Creation Method because the identity of
the customer does not matter. The Anonymous Creation Method might look
something like this:

 public Customer createAnonymousCustomer() {
 int uniqueid = getUniqueCustomerId();
 return new Customer(uniqueid,
 "FirstName" + uniqueid,
 "LastName" + uniqueid,
 "G", "ACTIVE");
 }

Note the use of a Distinct Generated Value to ensure that each anonymous Customer
is slightly different to avoid accidentally creating an identical Customer.

Example: Parameterized Creation Method

If we wanted to supply some of the Customer’s attributes as parameters, we could
defi ne a Parameterized Creation Method:

 public void testPurchase_firstPurchase_PCM() {
 Customer buyer =
 createCreditworthyCustomer("FirstName", "LastName");

Creation
Method

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

421

 // ...
 }
 public void testPurchase_subsequentPurchase_PCM() {
 Customer buyer = createCreditworthyCustomer("FirstName", "LastName");
 // ...
 }

Here’s the corresponding Parameterized Creation Method defi nition:

 public Customer createCreditworthyCustomer(
 String firstName, String lastName) {
 int uniqueid = getUniqueCustomerId();
 Customer customer =
 new Customer(uniqueid,firstName,lastName,"G","ACTIVE");
 customer.setCredit(CreditRating.EXCELLENT);
 customer.approveCredit();
 return customer;
 }

Example: Attachment Method

Here’s an example of a test that uses an Attachment Method to associate two
customers to verify that both get the best discount either of them has earned or
negotiated:

 public void testPurchase_relatedCustomerDiscount_AM() {
 Customer buyer = createCreditworthyCustomer("Related", "Buyer");
 Customer discountHolder =
 createCreditworthyCustomer("Discount", "Holder");
 createRelationshipBetweenCustomers(buyer, discountHolder);
 // ...
 }

Behind the scenes, the Attachment Method does whatever it takes to establish
the relationship:

 private void createRelationshipBetweenCustomers(
 Customer buyer,
 Customer discountHolder) {
 buyer.addToRelatedCustomersList(discountHolder);
 discountHolder.addToRelatedCustomersList(buyer);
 }

Although this example is relatively simple, the call to this method is still easier to
understand than reading both the method calls of which it consists.

Creation
Method

 Creation Method

www.it-ebooks.info

http://www.it-ebooks.info/

422

Example: Test Reused for Fixture Setup

We can reuse other tests to set up the fi xture for our test. Here is an example of
how not to do it:

 private Customer buyer;
 private AccountManager sut = new AccountManager();
 private Account account;

 public void testCustomerConstructor_SRT() {
 // Exercise
 buyer = new Customer(17, "First", "Last", "G", "ACTIVE");
 // Verify
 assertEquals("First", buyer.firstName(), "first");
 // ...
 }
 public void testPurchase_SRT() {
 testCustomerConstructor_SRT(); // Leaves in field "buyer"
 account = sut.createAccountForCustomer(buyer);
 assertEquals(buyer.name, account.customerName, "cust");
 // ...
 }

The problem here is twofold. First, the name of the Test Method we are calling
describes what it verifi es (e.g., a name) and not what it leaves behind (i.e., a Customer
in the buyer fi eld. Second, the test does not return a Customer; it leaves the Customer in
an instance variable. This scheme works only because the Test Method we want
to reuse is on the same Testcase Class; if it were on an unrelated class, we would
have to do a few backfl ips to access the buyer. A better way to accomplish this goal
is to encapsulate this call behind a Creation Method:

 private Customer buyer;
 private AccountManager sut = new AccountManager();
 private Account account;

 public void testCustomerConstructor_RTCM() {
 // Exercise
 buyer = new Customer(17, "First", "Last", "G", "ACTIVE");
 // Verify
 assertEquals("First", buyer.firstName(), "first");
 // ...
 }
 public void testPurchase_RTCM() {
 buyer = createCreditworthyCustomer();
 account = sut.createAccountForCustomer(buyer);
 assertEquals(buyer.name, account.customerName, "cust");
 // ...
 }
 public Customer createCreditworthyCustomer() {
 testCustomerConstructor_RTCM();

Creation
Method

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

423

 return buyer;
 // ...
 }

Notice how much more readable this test has become? We can see where the buyer
came from! This was easy to do because both Test Methods were on the same
class. If they were on different classes, our Creation Method would have to create
an instance of the other Testcase Class before it could run the test. Then it would
have to fi nd a way to access the buyer instance variable so that it could return it
to the calling Test Method. Creation

Method

 Creation Method

www.it-ebooks.info

http://www.it-ebooks.info/

424

Implicit Setup

How do we construct the Fresh Fixture?

We build the test fi xture common to several tests in the setUp method.

To execute an automated test, we require a text fi xture that is well understood
and completely deterministic. We are using a Fresh Fixture (page 311) approach
to build the Minimal Fixture (page 302) for the use of this one test.

Implicit Setup is a way to reuse the fi xture setup code for all Test Meth-
ods (page 348) in a Testcase Class (page 373).

How It Works

All tests in a Testcase Class create identical Fresh Fixtures by doing test fi xture
setup in a special setUp method on the Testcase Class. The setUp method is called
automatically by the Test Automation Framework (page 298) before it calls each
Test Method. This allows the fi xture setup code placed in the setUp method to
be reused without reusing the same instance of the test fi xture. This approach is
called “implicit” setup because the calls to the fi xture setup logic are not explicit
within the Test Method, unlike with In-line Setup (page 408) and Delegated Set-
up (page 411).

Fixture

SUT

Testcase Class

setup

test_1

test_2

test_n

Setup Fixture

SUT

Testcase Class

setup

test_1

test_2

test_n

Setup

Also known as:
Hooked Setup,

Framework-
Invoked Setup,
Shared Setup

Method

Implicit
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

425

When to Use It

We can use Implicit Setup when several Test Methods on the same Testcase Class
need an identical Fresh Fixture. If all Test Methods need the exact same fi xture,
then the entire Minimal Fixture needed by each test can be set up in the setUp
method. This form of Test Method organization is known as Testcase Class per
Fixture (page 631).

When the Test Methods need different fi xtures because we are using a Testcase
Class per Feature (page 624) or Testcase Class per Class (page 617) scheme, it
is more diffi cult to use Implicit Setup and still build a Minimal Fixture. We can
use the setUp method only to set up the part of the fi xture that does not cause any
problems for the other tests. A reasonable compromise is to use Implicit Setup to
set up the parts of the fi xture that are essential but irrelevant and leave the setup
of critical (and different from test to test) parts of the fi xture to the individual
Test Methods. Examples of “essential but irrelevant” fi xture setup include ini-
tializing variables with “don’t care” values and initializing hidden “plumbing”
such as database connections. Fixture setup logic that directly affects the state of
the SUT should be left to the individual Test Methods unless every Test Method
requires the same starting state.

The obvious alternatives for creating a Fresh Fixture are In-line Setup, in
which we include all setup logic within each Test Method without factoring out
any common code, and Delegated Setup, in which we move all common fi xture
setup code into a set of Creation Methods (page 415) that we can call from
within the setup part of each Test Method.

Implicit Setup removes a lot of Test Code Duplication (page 213) and helps
prevent Fragile Tests (page 239) by moving much of the nonessential interaction
with the SUT out of the very numerous tests and into a much smaller num-
ber of places where it is easier to maintain. It can, however, lead to Obscure
Tests (page 186) when a Mystery Guest makes the test fi xture used by each test
less obvious. It can also lead to a Fragile Fixture (see Fragile Test) if all tests in
the class do not really need identical test fi xtures.

Implementation Notes

The main implementation considerations for Implicit Setup are as follows:

• How do we cause the fi xture setUp method to be called?

• How do we tear the fi xture down?

• How do the Test Methods access the fi xture?

 Implicit Setup

Implicit
Setup

www.it-ebooks.info

http://www.it-ebooks.info/

426

Calling the Setup Code

A setUp method is the most common way to handle Implicit Setup; it consists of
having the Test Automation Framework call the setUp method before each Test
Method. Strictly speaking, the setUp method is not the only form of implicit fi x-
ture setup. Suite Fixture Setup (page 441), for example, is used to set up and tear
down a Shared Fixture (page 317) that is reused by the Test Methods on a single
Testcase Class. In addition, Setup Decorator (page 447) moves the setUp method
to a Decorator [GOF] object installed between the Test Suite Object (page 387)
and the Test Runner (page 377). Both are forms of Implicit Setup because the
setUp logic is not explicit within the Test Method.

Tearing Down the Fixture

The fi xture teardown counterpart of Implicit Setup is Implicit Teardown (page 516).
Anything that we set up in the setUp method that is not automatically cleaned up by
Automated Teardown (page 503) or garbage collection should be torn down in the
corresponding tearDown method.

Accessing the Fixture

The Test Methods need to be able to access the test fi xture built in the
setUp method. When they were used in the same method, local variables were
suffi cient. To communicate between the setUp method and the Test Method, how-
ever, the local variables must be changed into instance variables. We must be
careful not to make them class variables as this will result in the potential for a
Shared Fixture. (See the sidebar “There’s Always an Exception” on page 384 for a
description of when instance variations do not provide this level of isolation.)

Motivating Example

In the following example, each test needs to create a fl ight between a pair of
airports.

 public void testStatus_initial() {
 // in-line setup
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");
 Flight flight = new Flight(flightNumber,
 departureAirport,
 destinationAirport);
 // exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 // teardown
 // garbage-collected

Implicit
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

427

 }

 public void testStatus_cancelled() {
 // in-line setup
 Airport departureAirport = new Airport("Calgary", "YYC");
 Airport destinationAirport = new Airport("Toronto", "YYZ");
 Flight flight = new Flight(flightNumber,
 departureAirport,
 destinationAirport);
 flight.cancel(); // still part of setup
 // exercise SUT and verify outcome
 assertEquals(FlightState.CANCELLED, flight.getStatus());
 // teardown
 // garbage-collected
 }

Refactoring Notes

These tests contain a fair amount of Test Code Duplication. We can remove this
duplication by refactoring this Testcase Class to use Implicit Setup. There are
two refactoring cases to consider.

First, when we discover that all tests are doing similar work to set up their
test fi xtures but are not sharing a setUp method, we can do an Extract Meth-
od [Fowler] refactoring of the fi xture setup logic in one of the tests to create
our setUp method. We will also need to convert any local variables to instance
variables (fi elds) that hold the references to the resulting fi xture until the Test
Method can access it.

Second, when we discover that a Testcase Class already uses the setUp method to
build the fi xture and has tests that need a different fi xture, we can use an Extract
Class [Fowler] refactoring to move all Test Methods that need a different setup
method to a different class. We need to ensure any instance variables that are used
to convey knowledge of the fi xture from the setup method to the Test Methods
are transferred along with the setUp method. Sometimes it is simpler to clone the
Testcase Class and delete each test from one or the other copy of the class; we can
then delete from each class any instance variables that are no longer being used.

Example: Implicit Setup

In this modifi ed example, we have moved all common fi xture setup code to the
setUp method of our Testcase Class. This avoids the need to repeat this code in
each test and makes each test much shorter—which is a good thing.

 Airport departureAirport;
 Airport destinationAirport;

Implicit
Setup

 Implicit Setup

www.it-ebooks.info

http://www.it-ebooks.info/

428

 Flight flight;

 public void setUp() throws Exception{
 super.setUp();
 departureAirport = new Airport("Calgary", "YYC");
 destinationAirport = new Airport("Toronto", "YYZ");
 BigDecimal flightNumber = new BigDecimal("999");
 flight = new Flight(flightNumber , departureAirport,
 destinationAirport);
 }

 public void testGetStatus_initial() {
 // implicit setup
 // exercise SUT and verify outcome
 assertEquals(FlightState.PROPOSED, flight.getStatus());
 }

 public void testGetStatus_cancelled() {
 // implicit setup partially overridden
 flight.cancel();
 // exercise SUT and verify outcome
 assertEquals(FlightState.CANCELLED, flight.getStatus());
 }

This approach has several disadvantages, which arise because we are not
organizing our Test Methods around a Testcase Class per Fixture. (We are using
Testcase Class per Feature here.) All the Test Methods on the Testcase Class
must be able to make do with the same fi xture (at least as a starting point), as
evidenced by the partially overridden fi xture setup in the second test in the exam-
ple. The fi xture is also not very obvious in these tests. Where does the fl ight come
from? Is there anything special about it? We cannot even rename the instance
variable to communicate the nature of the fl ight better because we are using it to
hold fl ights with different characteristics in each test.

Implicit
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

429

Prebuilt Fixture

How do we cause the Shared Fixture to be built before the fi rst
test method that needs it?

We build the Shared Fixture separately from running the tests.

When we choose to use a Shared Fixture (page 317), whether it be for reasons
of convenience or out of necessity, we need to create the Shared Fixture before
we use it.

How It Works

We create the fi xture sometime before running the test suite. We can create the
fi xture a number of different ways that we’ll discuss later. The most important
point is that we don’t need to build the fi xture each time the test suite is run
because the fi xture outlives both the mechanism used to build it and any one
test run that uses it.

When to Use It

We can reduce the overhead of creating a Shared Fixture each time a test suite is
run by creating the fi xture only occasionally. This pattern is especially appropri-
ate when the cost of constructing the Shared Fixture is extremely high or cannot
be automated easily.

Setup

Exercise

Verify

Teardown

Fixture

Exercise

Verify

Teardown

SUT

Test Runner

SetupSetup

Exercise

Verify

Teardown

Fixture

Exercise

Verify

Teardown

SUT

Test Runner

Setup

Also known as:
Prebuilt
Context, Test
Bed

 Prebuilt Fixture

Prebuilt
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

430

Because of the Manual Intervention (page 250) required to (re)build the fi xture
before the tests are run, we’ll probably end up using the same fi xture several times,
which can lead to Erratic Tests (page 228) caused by shared fi xture pollution. We
may be able to avoid these problems by treating the Prebuilt Fixture as an Immu-
table Shared Fixture (see Shared Fixture) and building a Fresh Fixture (page 311)
for anything we plan to modify.

The alternatives to a Prebuilt Fixture are a Shared Fixture that is built once
per test run and a Fresh Fixture. Shared Fixtures can be constructed using Suite
Fixture Setup (page 441), Lazy Setup (page 435), or Setup Decorator (page 447).
Fresh Fixtures can be constructed using In-line Setup (page 408), Implicit
Setup (page 424), or Delegated Setup (page 411).

Variation: Global Fixture

A Global Fixture is a special case of Prebuilt Fixture where we shared the fi xture
between multiple test automaters. The key difference is that the fi xture is globally
visible and not “private” to a particular user. This pattern is most commonly em-
ployed when we are using a single shared Database Sandbox (page 650) without
using some form of Database Partitioning Scheme (see Database Sandbox).

The tests themselves can be the same as those used for a basic Prebuilt Fix-
ture; likewise, the fi xture setup is the same as that for a Prebuilt Fixture. What’s
different here are the kinds of problems we can encounter. Because the fi xture
is now shared among multiple users, each of whom is running a separate Test
Runner (page 377) on a different CPU, we may experience all sorts of multipro-
cessing-related issues. The most common problem is a Test Run War (see Erratic
Test) where we see seemingly random results. We can avoid this possibility
by adopting some kind of Database Partitioning Scheme or by using Distinct
Generated Values (see Generated Value on page 723) for any fi elds with unique
key constraints.

Implementation Notes

The tests themselves look identical to a basic Shared Fixture. What’s different is
how the fi xture is set up. The test reader won’t be able to fi nd any sign of it either
within the Testcase Class (page 373) or in a Setup Decorator or Suite Fixture
Setup method. Instead, the fi xture setup is most probably performed manually
via some kind of database copy operation, by using a Data Loader (see Back
Door Manipulation on page 327) or by running a database population script. In
these examples of Back Door Setup (see Back Door Manipulation), we bypass
the SUT and interact with its database directly. (See the sidebar “Database as

Prebuilt
Fixture

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

431

SUT API?” on page 336 for an example of when the back door really is a front
door.) Another option is to use a Fixture Setup Testcase (see Chained Tests on
page 454) run from a Test Runner either manually or on a regular schedule.

Another difference is how the Finder Methods (see Test Utility Method on
page 599) are implemented. We cannot just store the results of creating the
objects in a class variable or an in-memory Test Fixture Registry (see Test Helper
on page 643) because we aren’t setting the fi xture up in code within the test
run. Two of the more commonly used options available to us are (1) to store
the unique identifi ers generated during fi xture construction in a persistent Test
Fixture Registry (such as a fi le) as we build the fi xture so that the Finder Meth-
ods can retrieve them later and (2) to hard-code the identifi ers in the Finder
Methods. We could search for objects/records that meet the Finder Methods’
criteria at runtime, but that approach might result in Nondeterministic Tests
(see Erratic Test) because each test run could end up using a different object/re-
cord from the Prebuilt Fixture. This strategy may be a good idea if each test run
modifi es the objects such that they no longer satisfy the criteria. Nevertheless, it
may make debugging a failing test rather diffi cult, especially if the failures occur
intermittently because some other attribute of the selected object is different.

Motivating Example

The following example shows the construction of a Shared Fixture using Lazy
Setup:1

 protected void setUp() throws Exception {
 if (sharedFixtureInitialized) {
 return;
 }
 facade = new FlightMgmtFacadeImpl();
 setupStandardAirportsAndFlights();
 sharedFixtureInitialized = true;
 }

 protected void tearDown() throws Exception {
 // Cannot delete any objects because we don't know
 // whether this is the last test
 }

Note the call to setupStandardAirports in the setUp method. The tests use this fi xture
by calling Finder Methods that return objects from the fi xture that match certain
criteria:

1 Of course, there are other ways to set up the Shared Fixture, such as Setup Decorator
and Suite Fixture Setup.

Prebuilt
Fixture

 Prebuilt Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

432

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

Refactoring Notes

One way to convert a Testcase Class from a Standard Fixture (page 305) to a
Prebuilt Fixture is to do an Extract Class [Fowler] refactoring so that the fi xture
is set up in one class and the Test Methods (page 348) are located in another
class. Of course, we need to provide a way for the Finder Methods to deter-
mine which objects or records exist in the structure because we won’t be able to
guarantee that any instance or class variables will bridge the time gap between
fi xture construction and fi xture usage.

Example: Prebuilt Fixture Test

Here is the resulting Testcase Class that contains the Test Methods. Note that it
looks almost identical to the basic Shared Fixture tests.

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome

Prebuilt
Fixture

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

433

 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

What’s different is how the fi xture is set up and how the Finder Methods are
implemented.

Example: Fixture Setup Testcase

We may fi nd it to be convenient to set up our Prebuilt Fixture using xUnit. This is
simple to do if we already have the appropriate Creation Methods (page 415) or
constructors already defi ned and we have a way to easily persist the objects into
the Database Sandbox. In the following example, we call the same method as in
the previous example from the setUp method, except that now the method lives
in the setUp method of a Fixture Setup Testcase that can be run whenever we want
to regenerate the Prebuilt Fixture:

public class FlightManagementFacadeSetupTestcase
 extends AbstractFlightManagementFacadeTestCase {
 public FlightManagementFacadeSetupTestcase(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 facade = new FlightMgmtFacadeImpl();
 helper = new FlightManagementTestHelper();
 setupStandardAirportsAndFlights();
 saveFixtureInformation();
 }

 protected void tearDown() throws Exception {
 // Leave the Prebuilt Fixture for later use
 }

}

 Prebuilt Fixture

Prebuilt
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

434

Note that there are no Test Methods on this Testcase Class and the tearDown
method is empty. Here we want to do only the setup—nothing else.

Once we created the objects, we saved the information to the database using
the call to saveFixtureInformation; this method persists the objects and saves the
various keys in a fi le so that we can reload them for use from the subsequent
real test runs. This approach avoids the need to hard-code knowledge of the
fi xture into Test Methods or Test Utility Methods. In the interest of space, I’ll
spare you the details of how we fi nd the “dirty” objects and save the key infor-
mation; there is more than one way to handle this task and any of these tactics
will suffi ce.

Example: Prebuilt Fixture Setup Using a Data Population
Script

There are as many ways to build a Prebuilt Fixture in a Database Sandbox as
there are programming languages—everything from SQL scripts to Pearl and
Ruby programs. These scripts can contain the data or they can read the data
from a collection of fl at fi les. We can even copy the contents of a “golden” data-
base into our Database Sandbox. I’ll leave it as an exercise for you to fi gure out
what’s most appropriate in your particular circumstance.

Prebuilt
Fixture

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

435

Lazy Setup

How do we cause the Shared Fixture to be built before the
fi rst test method that needs it?

We use Lazy Initialization of the fi xture to create it in the fi rst test that needs it.

Shared Fixtures (page 317) are often used to speed up test execution by reducing
the number of times a complex fi xture needs to be created. Unfortunately, a test
that depends on other tests to set up the fi xture cannot be run by itself; it is a
Lonely Test (see Erratic Test on page 228)

We can avoid this problem by having each test use Lazy Setup to set up the
fi xture if it is not already set up.

How It Works

We use Lazy Initialization [SBPP] to construct the fi xture in the fi rst test that
needs it and then store a reference to the fi xture in a class variable that every
test can access. All subsequently run tests will discover that the fi xture is already
created and that they can reuse it, thereby avoiding the effort of constructing
the fi xture anew.

setUp

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Test
Suite

Object

Exercise

Fixture

SUT

No

Implicit setUp

Implicit setUp

Is Fixture Set
Up Yet?

Create

setUp

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1

Test
Suite

Object

Exercise

Fixture

SUT

No

Implicit setUp

Implicit setUp

Is Fixture Set
Up Yet?

Create

 Lazy Setup

Lazy Setup

www.it-ebooks.info

http://www.it-ebooks.info/

436

When to Use It

We can use Lazy Setup whenever we need to create a Shared Fixture yet still
want to be able to run each test by itself. We can also use Lazy Setup instead
of other techniques such as Setup Decorator (page 447) and Suite Fixture Set-
up (page 441) if it is not crucial that the fi xture be torn down. For example,
we could use Lazy Setup when we are using a fi xture that can be torn down by
Garbage-Collected Teardown (page 500). We might also use Lazy Setup when
we are using Distinct Generated Values (see Generated Value on page 723) for
all database keys and aren’t worried about leaving extra records lying around
after each test; Delta Assertions (page 485) make this approach possible.

The major disadvantage of Lazy Setup is the fact that while it is easy to
discover that we are running the fi rst test and need to construct the fi xture,
it is diffi cult to determine that we are running the last test and the fi xture
should be destroyed. Most members of the xUnit family of Test Automation
Frameworks (page 298) do not provide any way to determine this fact other
than by using a Setup Decorator for the entire test suite. A few members of the
xUnit family support Suite Fixture Setup (NUnit, VbUnit, and JUnit 4.0 and
newer, to name a few), which provides setUp/tearDown “bookends” for a Testcase
Class (page 373). Unfortunately, this ability won’t help us if we are writing our
tests in Ruby, Python, or PLSQL!

Some IDEs and Test Runners (page 377) automatically reload our classes every
time the test suite is run. This causes the original class variable to go out of scope,
and the fi xture will be garbage-collected before the new version of the class is run.
In these cases there may be no negative consequence of using Lazy Setup.

A Prebuilt Fixture (page 429) is another alternative to setting up the Shared
Fixture for each test run. Its use can lead to Unrepeatable Tests (see Erratic
Test) if the fi xture is corrupted by some of the tests.

Implementation Notes

Because Lazy Setup makes sense only with Shared Fixtures, Lazy Setup carries
all the same baggage that comes with Shared Fixtures.

Normally, Lazy Setup is used to build a Shared Fixture to be used by a single
Testcase Class. The reference to the fi xture is held in a class variable. Things
get a bit trickier if we want to share the fi xture across several Testcase Classes.
We could move both the Lazy Initialization logic and the class variable to a
Testcase Superclass (page 638) but only if our language supports inheritance of
class variables. The other alternative is to move the logic and variables to a Test
Helper (page 643).

Lazy Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

437

Of course, we could use an approach such as reference counting as a way
to know whether all Test Methods (page 348) have run. The challenge would
be to know how many Testcase Objects (page 382) are in the Test Suite
Object (page 387) so that we can compare this number with the number of times
the tearDown method has been called. I have never seen anyone do this so I won’t
call it a pattern! Adding logic to the Test Runner to invoke a tearDown method at
the Test Suite Object level would amount to implementing Suite Fixture Setup.

Motivating Example

In this example, we have been building a new fi xture for each Testcase Object:

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 setupStandardAirportsAndFlights();
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

Not surprisingly, these tests are slow because creating the airports and fl ights
involves a database. We can try refactoring these tests to set up the fi xture in the
setUp method (Implicit Setup; see page 424):

 protected void setUp() throws Exception {
 facade = new FlightMgmtFacadeImpl();
 helper = new FlightManagementTestHelper();
 setupStandardAirportsAndFlights();
 oneOutboundFlight = findOneOutboundFlight();
 }

 Lazy Setup

Lazy Setup

www.it-ebooks.info

http://www.it-ebooks.info/

438

 protected void tearDown() throws Exception {
 removeStandardAirportsAndFlights();
 }

 public void testGetFlightsByOriginAirport_NoFlights_td()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 try {
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(outboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 facade.removeAirport(outboundAirport);
 }
 }

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 oneOutboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 oneOutboundFlight,
 flightsAtOrigin);
 }

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

This doesn’t speed up our tests one bit because the Test Automation Framework
calls the setUp and tearDown methods for each Testcase Object. All we have done
is moved the code. We need to fi nd a way to set up the fi xture only once per
test run.

Lazy Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

439

Refactoring Notes

We can reduce the number of times we set up the fi xture by converting this test to
Lazy Setup. Because the fi xture setup is already handled by the setUp method, we
need simply insert the Lazy Initialization logic into the setUp method so that only
the fi rst test will cause it to be run. We must not forget to remove the tearDown logic,
because it will render the Lazy Initialization logic useless if it removes the fi xture
after each Test Method has run! Sorry, but there is nowhere that we can move
this logic to so that it will be run after the last Test Method has completed if our
xUnit family member doesn’t support Suite Fixture Setup.

Example: Lazy Setup

Here is the same test refactored to use Lazy Setup:

 protected void setUp() throws Exception {
 if (sharedFixtureInitialized) {
 return;
 }
 facade = new FlightMgmtFacadeImpl();
 setupStandardAirportsAndFlights();
 sharedFixtureInitialized = true;
 }

 protected void tearDown() throws Exception {
 // Cannot delete any objects because we don't know
 // whether this is the last test
 }

While there is a tearDown method on AirportFixture, there is no way to know when
to call it! That’s the main consequence of using Lazy Setup. Because the variables
are static, they will not go out of scope; hence the fi xture will not be garbage col-
lected until the class is unloaded or reloaded.

The tests are unchanged from the Implicit Setup version:

 public void testGetFlightsByFromAirport_OneOutboundFlight()
 throws Exception {
 FlightDto outboundFlight = findOneOutboundFlight();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlight.getOriginAirportId());
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 outboundFlight,
 flightsAtOrigin);
 }

 Lazy Setup

Lazy Setup

www.it-ebooks.info

http://www.it-ebooks.info/

440

 public void testGetFlightsByFromAirport_TwoOutboundFlights()
 throws Exception {
 FlightDto[] outboundFlights =
 findTwoOutboundFlightsFromOneAirport();
 // Exercise System
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 outboundFlights[0].getOriginAirportId());
 // Verify Outcome
 assertExactly2FlightsInDtoList("Flights at origin",
 outboundFlights,
 flightsAtOrigin);
 }

Lazy Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

441

Suite Fixture Setup

How do we cause the Shared Fixture to be built before the
fi rst test method that needs it?

We build/destroy the shared fi xture in special methods called by the Test
Automation Framework before/after the fi rst/last Test Method is called.

Shared Fixtures (page 317) are commonly used to reduce the amount of per-test
overhead required to set up the fi xture. Sharing a fi xture involves extra test program-
ming effort because we must create the fi xture and have a way of discovering the
fi xture in each test. Regardless of how the fi xture is accessed, it must be initialized
(constructed) before it is used.

Suite Fixture Setup is one way to initialize the fi xture if all the Test Meth-
ods (page 348) that need it are defi ned on the same Testcase Class (page 373).

How It Works

We implement or override a pair of methods that the Test Automation Frame-
work (page 298) calls automatically. The name or annotation of these methods
varies between members of the xUnit family but all work the same way: The
framework calls the Suite Fixture Setup method before it calls the setUp method
for the fi rst Test Method; it calls the Suite Fixture Teardown method after it
calls the tearDown method for the fi nal Test Method. (I would have preferred to

Testcase Object

Testcase Object

Fixture

SUT

Inline Setup
Exercise

Verify
Inline Teardown

Inline Setup
Exercise

Verify
Inline Teardown

Implicit setUp

Implicit tearDown

Implicit setUp

Implicit tearDown

SuiteFixture setUp

SuiteFixture tearDown

TestSuite Object
for

Testcase Class

Setup

Testcase Object

Testcase Object

Fixture

SUT

Inline Setup
Exercise

Verify
Inline Teardown

Inline Setup
Exercise

Verify
Inline Teardown

Implicit setUp

Implicit tearDown

Implicit setUp

Implicit tearDown

SuiteFixture setUp

SuiteFixture tearDown

TestSuite Object
for

Testcase Class

Setup

 Suite Fixture Setup

Suite
Fixture
Setup

www.it-ebooks.info

http://www.it-ebooks.info/

442

say, “method on the fi rst/fi nal Testcase Object” but that isn’t true: NUnit, unlike
other members of the xUnit family, creates only a single Testcase Object. See the
sidebar “There’s Always an Exception” on page 384 for details.)

When to Use It

We can use Suite Fixture Setup when we have a test fi xture we wish to share
between all Test Methods of a single Testcase Class and our variant of xUnit sup-
ports this feature. This pattern is particularly useful if we need to tear down the
fi xture after the last test is run. At the time of writing this book, only VbUnit,
NUnit, and JUnit 4.0 supported Suite Fixture Setup “out of the box.” Nevertheless,
it is not diffi cult to add this capability in most variants of xUnit.

If we need to share the fi xture more widely, we must use either a Prebuilt
Fixture (page 429), a Setup Decorator (page 447), or Lazy Setup (page 435).
If we don’t want to share the actual instance of the fi xture but we do want to
share the code to set up the fi xture, we can use Implicit Setup (page 424) or
Delegated Setup (page 411).

The main reason for using a Shared Fixture, and hence Suite Fixture Setup,
is to overcome the problem of Slow Tests (page 253) caused by too many test
fi xture objects being created each time every test is run. Of course, a Shared
Fixture can lead to Interacting Tests (see Erratic Test on page 228) or even
a Test Run War (see Erratic Test); the sidebar “Faster Tests Without Shared
Fixtures” (page 319) describes other ways to solve this problem.

Implementation Notes

For Suite Fixture Setup to work properly, we must ensure that the fi xture is
remembered between calls to the Test Methods. This criterion implies we need to
use a class variable, Registry [PEAA], or Singleton [GOF] to hold the references
to the fi xture (except in NUnit; see the sidebar “There’s Always an Exception”
on page 384). The exact implementation varies from one member of the xUnit
family to the next. Here are a few highlights:

• In VbUnit, we implement the interface IFixtureFrame in the Testcase Class,
thereby causing the Test Automation Framework (1) to call the IFixture
Frame_Create method before the fi rst Test Method is called and (2) to call
the IFixtureFrame_Destroy method after the last Test Method is called.

• In NUnit, the attributes [TestFixtureSetUp] and [TestFixtureTearDown] are
used inside a test fi xture to designate the methods to be called (1) once

Suite
Fixture
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

443

prior to executing any of the tests in the fi xture and (2) once after all
tests are completed.

• In JUnit 4.0 and later, the attribute @BeforeClass is used to indicate that a
method should be run once before the fi rst Test Method is executed. The
method with the attribute @AfterClass is run after the last Test Method
is run. JUnit allows these methods to be inherited and overridden; the
subclass’s methods are run between the superclass’s methods.

Just because we use a form of Implicit Setup to invoke the construction and
destruction of the test fi xture, it doesn’t mean that we should dump all the fi xture
setup logic into the Suite Fixture Setup. We can call Creation Methods (page 415)
from the Suite Fixture Setup method to move complex construction logic into
places where it can be tested and reused more easily, such as a Testcase Super-
class (page 638) or a Test Helper (page 643).

Motivating Example

Suppose we have the following test:

 [SetUp]
 protected void setUp() {
 helper.setupStandardAirportsAndFlights();
 }

 [TearDown]
 protected void tearDown() {
 helper.removeStandardAirportsAndFlights();
 }

 [Test]
 public void testGetFlightsByOriginAirport_2OutboundFlights(){
 FlightDto[] expectedFlights =
 helper.findTwoOutboundFlightsFromOneAirport();
 long originAirportId = expectedFlights[0].OriginAirportId;
 // Exercise System
 IList flightsAtOrigin =
 facade.GetFlightsByOriginAirport(originAirportId);
 // Verify Outcome
 AssertExactly2FlightsInDtoList(
 expectedFlights[0], expectedFlights[1],
 flightsAtOrigin, "Flights at origin");
 }

 [Test]
 public void testGetFlightsByOriginAirport_OneOutboundFlight(){
 FlightDto expectedFlight = helper.findOneOutboundFlight();
 // Exercise System

 Suite Fixture Setup

Suite
Fixture
Setup

www.it-ebooks.info

http://www.it-ebooks.info/

444

 IList flightsAtOrigin = facade.GetFlightsByOriginAirport(
 expectedFlight.OriginAirportId);
 // Verify Outcome
 AssertOnly1FlightInDtoList(expectedFlight,
 flightsAtOrigin, "Outbound flight at origin");
 }

Figure 20.1 is the console generated by an instrumented version of these tests.

 setUp
 setupStandardAirportsAndFlights
 testGetFlightsByOriginAirport_OneOutboundFlight
 tearDown
 removeStandardAirportsAndFlights

 setUp
 setupStandardAirportsAndFlights
 testGetFlightsByOriginAirport_TwoOutboundFlights
 tearDown
 removeStandardAirportsAndFlights

Figure 20.1 The calling sequence of Implicit Setup and Test Methods. The
setupStandardAirportsAndFlights method is called before each Test Method. The hori-
zontal lines delineate the Test Method boundaries.

Refactoring Notes

Suppose we want to refactor this example to a Shared Fixture. If we don’t care
about destroying the fi xture when the test run is fi nished, we could use Lazy Setup.
Otherwise, we can convert this example to a Suite Fixture Setup strategy by simply
moving our code from the setUp and tearDown methods to the suiteFixtureSetUp and
suiteFixtureTearDown methods, respectively.

In NUnit, we use the attributes [TestFixtureSetUp] and [TestFixtureTearDown] to
indicate these methods to the Test Automation Framework. If we don’t want
to leave anything in our setUp/tearDown methods, we can simply change the
attributes from [Setup] and TearDown to [TestFixtureSetUp] and [TestFixtureTearDown],
respectively.

Example: Suite Fixture Setup

Here’s the result of our refactoring to Suite Fixture Setup:

 [TestFixtureSetUp]
 protected void suiteFixtureSetUp()
 {

Suite
Fixture
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

445

 helper.setupStandardAirportsAndFlights();
 }

 [TestFixtureTearDown]
 protected void suiteFixtureTearDown() {
 helper.removeStandardAirportsAndFlights();
 }

 [SetUp]
 protected void setUp() {
 }

 [TearDown]
 protected void tearDown() {
 }

 [Test]
 public void testGetFlightsByOrigin_TwoOutboundFlights(){
 FlightDto[] expectedFlights =
 helper.findTwoOutboundFlightsFromOneAirport();
 long originAirportId = expectedFlights[0].OriginAirportId;
 // Exercise System
 IList flightsAtOrigin =
 facade.GetFlightsByOriginAirport(originAirportId);
 // Verify Outcome
 AssertExactly2FlightsInDtoList(
 expectedFlights[0], expectedFlights[1],
 flightsAtOrigin, "Flights at origin");
 }

 [Test]
 public void testGetFlightsByOrigin_OneOutboundFlight() {
 FlightDto expectedFlight = helper.findOneOutboundFlight();
 // Exercise System
 IList flightsAtOrigin = facade.GetFlightsByOriginAirport(
 expectedFlight.OriginAirportId);
 // Verify Outcome
 AssertOnly1FlightInDtoList(expectedFlight,
 flightsAtOrigin, "Outbound flight at origin");
 }

Now when various methods of the Testcase Class are called, the console looks
like Figure 20.2.

Suite
Fixture
Setup

 Suite Fixture Setup

www.it-ebooks.info

http://www.it-ebooks.info/

446

suiteFixtureSetUp
 setupStandardAirportsAndFlights

 setUp
 testGetFlightsByOriginAirport_OneOutboundFlight
 tearDown

 setUp
 testGetFlightsByOriginAirport_TwoOutboundFlights
 tearDown

suiteFixtureTearDown
 removeStandardAirportsAndFlights

Figure 20.2 The calling sequence of Suite Fixture Setup and Test Methods.
The setupStandardAndAirportsAndFlights method is called once only for the Testcase
Class rather than before each Test Method. The horizontal lines delineate the
Test Method boundaries.

The setUp method is still called before each Test Method, along with the suite
FixtureSetUp method where we are now calling setupStandardAirportsAndFlights to
set up our fi xture. So far, this is no different than Lazy Setup; the difference
arises in that removeStandardAirportsAndFlights is called after the last of our Test
Methods.

About the Name

Naming this pattern was tough because each variant of xUnit that implements
it has a different name for it. Complicating matters is the fact that the Microsoft
camp uses “test fi xture” to mean more than what the Java/Pearl/Ruby/etc. camp
means. I landed on Suite Fixture Setup by focusing on the scope of the Shared
Fixture; it is shared across the test suite for one Testcase Class that spawns a
single Test Suite Object (page 387). The fi xture that is built for the Test Suite
Object could be called a “SuiteFixture.”

Further Reading

See http://www.vbunit.com/doc/Advanced.htm for more information on Suite
Fixture Setup as implemented in VbUnit. See http://nunit.org for more informa-
tion on Suite Fixture Setup as implemented in NUnit.

Suite
Fixture
Setup

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.vbunit.com/doc/Advanced.htm
http://nunit.org
http://www.it-ebooks.info/

447

Setup Decorator

How do we cause the Shared Fixture to be built before the
fi rst test method that needs it?

We wrap the test suite with a Decorator that sets up the shared test fi xture
before running the tests and tears it down after all tests are done.

If we have chosen to use a Shared Fixture (page 317), whether for reasons of
convenience or out of necessity, and we have chosen not to use a Prebuilt Fix-
ture (page 429), we will need to ensure that the fi xture is built before each test
run. Lazy Setup (page 435) is one strategy we could employ to create the test
fi xture “just in time” for the fi rst test. But if it is critical to tear down the fi xture
after the last test, how do we know that all tests have been completed?

How It Works

A Setup Decorator works by “bracketing” the execution of the entire test suite
with a set of matching setUp and tearDown “bookends.” The pattern Decorator
[GOF] is just what we need to make this happen. We construct a Setup Decora-
tor that holds a reference to the Test Suite Object (page 387) we wish to decorate
and then pass our Decorator to the Test Runner (page 377). When it is time to

Testcase Object

Testcase Object Fixture

SUT

TestSuite
Object

Inline Setup
Exercise

Verify
Inline Teardown

Inline Setup
Exercise

Verify
Inline Teardown

Implicit setUp

Implicit tearDown

Implicit setUp

Implicit tearDown

Fixture
Setup

Decorator

setUp

tearDown

Testcase Object

Testcase Object Fixture

SUT

TestSuite
Object

Inline Setup
Exercise

Verify
Inline Teardown

Inline Setup
Exercise

Verify
Inline Teardown

Implicit setUp

Implicit tearDown

Implicit setUp

Implicit tearDown

Fixture
Setup

Decorator

setUp

tearDown

 Setup Decorator

Setup
Decorator

www.it-ebooks.info

http://www.it-ebooks.info/

448

run the test, the Test Runner calls the run method on our Setup Decorator rather
than the run method on the actual Test Suite Object. The Setup Decorator
performs the fi xture setup before calling the run method on the Test Suite Object
and tears down the fi xture after it returns.

When to Use It

We can use a Setup Decorator when it is critical that a Shared Fixture be set up
before every test run and that the fi xture is torn down after the run is complete.
This behavior may be critical because tests are using Hard-Coded Values (see
Literal Value on page 714) that would cause the tests to fail if they are run
again without cleaning up after each run (Unrepeatable Tests; see Erratic Test on
page 228). Alternatively, this behavior may be necessary to avoid the incremental
consumption of some limited resource, such as our database slowly fi lling up
with data from repeated test runs.

We might also use a Setup Decorator when the tests need to change some global
parameter before exercising the SUT and then need to change this parameter back
when they are fi nished. Replacing the database with a Fake Database (see Fake
Object on page 551) in an effort to avoid Slow Tests (page 253) is one common
reason for taking this approach; setting global switches to a particular confi gura-
tion is another. Setup Decorators are installed at runtime, so nothing stops us
from using several different decorators on the same test suite at different times (or
even the same time).

As an alternative to a Setup Decorator, we can use Suite Fixture Setup
(page 441) if we only want to share the fi xture across the tests in a single Testcase
Class (page 373) and our member of the xUnit family supports this behavior. If
it is not essential that the fi xture be torn down after every test run, we could use
Lazy Setup instead.

Implementation Notes

A Setup Decorator consists of an object that sets up the fi xture, delegates test
execution to the test suite to be run, and then executes the code to tear down the
fi xture. To better line up with the normal xUnit calling conventions, we typically
put the code that constructs the test fi xture into a method called setUp and the
code that tears down the fi xture into a method called tearDown. Then our Setup
Decorator’s run logic consists of three lines of code:

Setup
Decorator

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

449

 void run() {
 setup();
 decoratedSuite.run();
 teardown();
 }

There are several ways to build the Setup Decorator.

Variation: Abstract Setup Decorator

Many members of the xUnit family of Test Automation Frameworks (page 298)
provide a reusable superclass that implements a Setup Decorator. This class
usually implements the setUp/run/tearDown sequence as a Template Method [GOF].
All we have to do is to subclass this class and implement the setUp and tearDown
methods as we would in a normal Testcase Class. When instantiating our Setup
Decorator class, we pass the Test Suite Object we are decorating as the construc-
tor argument.

Variation: Hard-Coded Setup Decorator

If we need to build our Setup Decorator from scratch, the “simplest thing that
could possibly work” is to hard-code the name of the decorated class in the
suite method of the Setup Decorator. This allows the Setup Decorator class
to act as the Test Suite Factory (see Test Enumeration on page 399) for the
decorated suite.

Variation: Parameterized Setup Decorator

If we want to reuse the Setup Decorator for different test suites, we can param-
eterize its constructor method with the Test Suite Object to be run. This means
that the setup and teardown logic can be coded within the Setup Decorator,
thereby eliminating the need for a separate Test Helper (page 643) class just to
reuse the setup logic across tests.

Variation: Decorated Lazy Setup

One of the main drawbacks of using a Setup Decorator is that tests cannot
be run by themselves because they depend on the Setup Decorator to set up
the fi xture. We can work around this requirement by augmenting the Setup
Decorator with Lazy Setup in the setUp method so that an undecorated Testcase
Object (page 382) can construct its own fi xture. The Testcase Object can also
remember that it built its own fi xture and destroy it in the tearDown method. This
functionality could be implemented on a generic Testcase Superclass (page 638)
so that it has to be built and tested just once.

 Setup Decorator

Setup
Decorator

www.it-ebooks.info

http://www.it-ebooks.info/

450

The only other alternative is to use a Pushdown Decorator. That would negate
any test speedup the Shared Fixture bought us, however, so this approach can
be used only in those cases when we use the Setup Decorator for reasons other
than setting up a Shared Fixture.

Variation: Pushdown Decorator

One of the main drawbacks of using a Setup Decorator is that tests cannot be
run by themselves because they depend on the Setup Decorator to set up the
fi xture. One way we can circumvent this obstacle is to provide a means to push
the decorator down to the level of the individual tests rather than the whole test
suite. This step requires a few modifi cations to the TestSuite class to allow the
Setup Decorator to be passed down to where the individual Testcase Objects
are constructed during the Test Discovery (page 393) process. As each object is
created from the Test Method (page 348), it is wrapped in the Setup Decorator
before it is added to the Test Suite Object’s collection of tests.

Of course, this negates one of the major sources of the speed advantage created
by using a Setup Decorator by forcing a new test fi xture to be built for each
test. See the sidebar “Faster Tests Without Shared Fixtures” on page 319 for
other ways to address the test execution speed issue.

Motivating Example

In this example, we have a set of tests that use Lazy Setup to build the Shared
Fixture and Finder Methods (see Test Utility Method on page 599) to fi nd the
objects in the fi xture. We have discovered that the leftover fi xture is causing
Unrepeatable Tests, so we want to clean up properly after the last test has fi n-
ished running.

 protected void setUp() throws Exception {
 if (sharedFixtureInitialized) {
 return;
 }
 facade = new FlightMgmtFacadeImpl();
 setupStandardAirportsAndFlights();
 sharedFixtureInitialized = true;
 }

 protected void tearDown() throws Exception {
 // Cannot delete any objects because we don't know
 // whether this is the last test
 }

Setup
Decorator

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

451

Because there is no easy way to accomplish this goal with Lazy Setup, we
must change our fi xture setup strategy. One option is to use a Setup Decorator
instead.

Refactoring Notes

When creating a Setup Decorator, we can reuse the exact same fi xture setup
logic; we just need to call it at a different time. Thus this refactoring consists
mostly of moving the call to the fi xture setup logic from the setUp method on the
Testcase Class to the setUp method of a Setup Decorator class. Assuming we have
an Abstract Setup Decorator available to subclass, we can create our new sub-
class and provide concrete implementations of the setUp and tearDown methods.

If our instance of xUnit does not support Setup Decorator directly, we can
create our own Setup Decorator superclass by building a single-purpose Setup
Decorator and then introducing a constructor parameter and instance variable
to hold the test suite to be run. Finally, we do an Extract Superclass [Fowler]
refactoring to create our reusable superclass.

Example: Hard-Coded Setup Decorator

In this example, we have moved all of the setup logic to the setUp method of
a Setup Decorator that inherits its basic functionality from an Abstract Setup
Decorator. We have also written some fi xture teardown logic in the tearDown
method so that we clean up the fi xture after the entire test suite has been run.

public class FlightManagementTestSetup extends TestSetup {
 private FlightManagementTestHelper helper;

 public FlightManagementTestSetup() {
 // Construct the Test Suite Object to be decorated and
 // pass it to our Abstract Setup Decorator superclass
 super(SafeFlightManagementFacadeTest.suite());
 helper = new FlightManagementTestHelper();
 }

 public void setUp() throws Exception {
 helper.setupStandardAirportsAndFlights();
 }

 public void tearDown() throws Exception {
 helper.removeStandardAirportsAndFlights();
 }

 Setup Decorator

Setup
Decorator

www.it-ebooks.info

http://www.it-ebooks.info/

452

 public static Test suite() {
 // Return an instance of this decorator class
 return new FlightManagementTestSetup();
 }
}

Because this is a Hard-Coded Setup Decorator, the call to the Test Suite Factory
that builds the actual Test Suite Object is hard-coded inside the constructor. The
suite method just calls the constructor.

Example: Parameterized Setup Decorator

To make our Setup Decorator reusable with several different test suites, we need
to do an Introduce Parameter [JBrains] refactoring on the name of the Test Suite
Factory inside the constructor:

public class ParameterizedFlightManagementTestSetup extends TestSetup {

 private FlightManagementTestHelper helper =
 new FlightManagementTestHelper();

 public ParameterizedFlightManagementTestSetup(
 Test testSuiteToDecorate) {
 super(testSuiteToDecorate);
 }

 public void setUp() throws Exception {
 helper.setupStandardAirportsAndFlights();
 }

 public void tearDown() throws Exception {
 helper.removeStandardAirportsAndFlights();
 }
}

To make it easy for the Test Runner to create our test suite, we also need to cre-
ate a Test Suite Factory that calls the Setup Decorator’s constructor with the Test
Suite Object to be decorated:

public class DecoratedFlightManagementFacadeTestFactory {
 public static Test suite() {
 // Return a new Test Suite Object suitably decorated
 return new ParameterizedFlightManagementTestSetup(
 SafeFlightManagementFacadeTest.suite());
 }
}

Setup
Decorator

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

453

We will need one of these Test Suite Factories for each test suite we want to be
able to run by itself. Even so, this is a small price to pay for reusing the actual
Setup Decorator.

Example: Abstract Decorator Class

Here’s what the Abstract Decorator Class looks like:

public class TestSetup extends TestCase {
 Test decoratedSuite;

 AbstractSetupDecorator(Test testSuiteToDecorate) {
 decoratedSuite = testSuiteToDecorate;
 }

 public void setUp() throws Exception {
 // subclass responsibility
 }
 public void tearDown() throws Exception {
 // subclass responsibility
 }

 void run() {
 setup();
 decoratedSuite.run();
 teardown();
 }
}

 Setup Decorator

Setup
Decorator

www.it-ebooks.info

http://www.it-ebooks.info/

454

Chained Tests

How do we cause the Shared Fixture to be built before the
fi rst test method that needs it?

We let the other tests in a test suite set up the test fi xture.

Shared Fixtures (page 317) are commonly used to reduce the amount of per-
test overhead required to set up the fi xture. Sharing a fi xture involves extra test
programming effort because we need to create the fi xture and have a way of
discovering the fi xture in each test. Regardless of how the fi xture is accessed, it
must be initialized (constructed) before it is used.

Chained Tests offer a way to reuse the test fi xture left over from one test and
the Shared Fixture of a subsequent test.

How It Works

Chained Tests take advantage of the objects created by the tests that run before our
current test in the test suite. This approach is very similar to how a human tester
tests a large number of test conditions in a single test—by building up a complex
test fi xture through a series of actions, with the outcome of each action fi rst being
verifi ed. We can achieve a similar result with automated tests by building a set of
Self-Checking Tests (see page 26) that do not perform any fi xture setup but instead

Fixture

Exercise

Verify
SUT

Exercise

Verify

Exercise

Verify

Test Runner

FixtureFixture

Exercise

Verify
SUT

Exercise

Verify

Exercise

Verify

Test Runner

Fixture

Chained
Tests

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

455

rely on the “leftovers” of the test(s) that run before them. Unlike with the Reuse
Test for Fixture Setup pattern (see Creation Method on page 415), we don’t actu-
ally call another Test Method (page 348) from within out test; we just assume that
it has been run and has left behind something we can use as a test fi xture.

When to Use It

Chained Tests is a fi xture strategy that people either love or hate. Those who
hate it do so because this approach is simply the test smell Interacting Tests (see
Erratic Test on page 228) recast as a pattern. Those who love it typically do so
because it solves a nasty problem introduced by using Shared Fixtures to deal
with Slow Tests (page 253). Either way, it is a valid strategy for refactoring exist-
ing tests that are overly long and contain many steps that build on one another.
Such tests will stop executing when the fi rst assertion fails. We can refactor
such tests into a set of Chained Tests fairly quickly because this strategy doesn’t
require determining exactly which test fi xture we need to build for each test.
This may be the fi rst step in evolving the tests into a set of Independent Tests
(see page 42).

Chained Tests help prevent Fragile Tests (page 239) because they are a crude
form of SUT API Encapsulation (see Test Utility Method on page 599). Our
test doesn’t need to interact with the SUT to set up the fi xture because we
let another test that was already using the same API set up the fi xture for us.
Fragile Fixtures (see Fragile Test) may be a problem, however; if one of the
preceding tests is modifi ed to create a different fi xture, the depending test will
probably fail. This is also true if some of the earlier tests fail or have errors;
they may leave the Shared Fixture in a different state from what the current
test expects.

One of the key problems with Chained Tests is the nondeterminism of the
order in which xUnit executes tests in a test suite. Most members of the family
make no guarantees about this order (TestNG is an exception). Thus tests could
start to fail when a new version of xUnit is installed or even when one of the
Test Methods is renamed [if the xUnit implementation happens to sort the Test-
case Objects (page 382) by method name].

Another problem is that Chained Tests are Lonely Tests (see Erratic Test)
because the current test depends on the tests that precede it to set up the test
fi xture. If we run the test by itself, it will likely fail because the test fi xture
it assumes is not set up for it. As a consequence, we cannot run just the one test
when we are debugging failures it exposes.

Depending on other tests to set up the test fi xture invariably results in tests
that are more diffi cult to understand because the test fi xture is invisible to the

 Chained Tests

Chained
Tests

www.it-ebooks.info

http://www.it-ebooks.info/

456

test reader—a classic case of a Mystery Guest (see Obscure Test on page 186).
This problem can be at least partially mitigated through the use of appropri-
ately named Finder Methods (see Test Utility Method) to access the objects in
the Shared Fixture. It is less of an issue if all the Test Methods are on the same
Testcase Class (page 373) and are listed in the same order as they are executed.

Variation: Fixture Setup Testcase

If we need to set up a Shared Fixture and we cannot use any of the other tech-
niques to set it up [e.g., Lazy Setup (page 435), Suite Fixture Setup (page 441),
or Setup Decorator (page 447)], we can arrange to have a Fixture Setup Testcase
run as the fi rst test in the test suite. This is simple to do if we are using Test Enu-
meration (page 399); we just include the appropriate addTest method call in our
Test Suite Factory (see Test Enumeration). This variation is a degenerate form
of the Chained Tests pattern in that we are chaining a test suite behind a single
Fixture Setup Testcase.

Implementation Notes

There are two key challenges in implementing Chained Tests:

• Getting tests in the test suite to run in the desired order

• Accessing the fi xture leftover by the previous test(s)

While a few members of the xUnit family provide an explicit mechanism for
defi ning the order of tests, most members make no such guarantees about this
order. We can probably fi gure out what order the xUnit member uses by per-
forming a few experiments. Most commonly, we will discover that it is either the
order in which the Test Methods appear in the fi le or alphabetical order by Test
Method name (in which case, the easiest solution is to include a test sequence
number in the test name). In the worst-case scenario, we could always revert
to Test Method Enumeration (see Test Enumeration) to ensure that Testcase
Objects are added to the test suite in the correct order.

To refer to the objects created by the previous tests, we need to use one of the
fi xture object access patterns. If the preceding tests are Test Methods on the same
Testcase Class, it is suffi cient for each test to store any object references that subse-
quent tests will use to access the fi xture in a fi xture holding class variable. (Fixture
holding instance variables typically won’t work here because each test runs on a
separate Testcase Object and, therefore, the tests don’t share instance variables.
See the sidebar “There’s Always an Exception” on page 384 for a description of
when instance variations do not behave this way.)

Chained
Tests

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

457

If our test depends on a Test Method on a different Testcase Class being run
as a part of a Suite of Suites (see Test Suite Object on page 387), neither of these
solutions will work. Our best bet will be to use a Test Fixture Registry (see Test
Helper on page 643) as the means to store references to the objects used by the
tests. A test database is a good example.

Obviously, we don’t want the test we are depending on to clean up after
itself—that would leave nothing for us to reuse as our test fi xture. That re-
quirement makes Chained Tests incompatible with the Fresh Fixture (page 311)
approach.

Motivating Example

Here’s an example of an incremental Tabular Test (see Parameterized Test on
page 607) provided by Clint Shank on his blog:

public class TabularTest extends TestCase {
 private Order order = new Order();
 private static final double tolerance = 0.001;

 public void testGetTotal() {
 assertEquals("initial", 0.00, order.getTotal(), tolerance);
 testAddItemAndGetTotal("first", 1, 3.00, 3.00);
 testAddItemAndGetTotal("second",3, 5.00, 18.00);
 // etc.
 }

 private void testAddItemAndGetTotal(String msg,
 int lineItemQuantity,
 double lineItemPrice,
 double expectedTotal) {
 // setup
 LineItem item = new LineItem(lineItemQuantity, lineItemPrice);
 // exercise SUT
 order.addItem(item);
 // verify total
 assertEquals(msg,expectedTotal,order.getTotal(),tolerance);
 }
}

This test begins by building an empty order, verifi es the total is zero, and then
proceeds to add several items verifying the total after each item (Figure 20.3).
The main issue with this test is that if one of the subtests fails, all subsequent
subtests don’t get run. For example, suppose a rounding error makes the total
after the second item incorrect: Wouldn’t we like to see whether the fourth, fi fth,
and six items are still correct?

 Chained Tests

Chained
Tests

www.it-ebooks.info

http://www.it-ebooks.info/

458

Figure 20.3 Tabular Test results. The lower pane shows the details of the fi rst
failure inside the single Tabular Test method listed in the upper pane. Because of
the failure, the rest of the test method is not executed.

Refactoring Notes

We can convert this Tabular Test to a set of Chained Tests simply by breaking up
the single Test Method into one Test Method per subtest. One way to do so is to
use a series of Extract Method [Fowler] refactorings to create the Test Methods.
This will force us to use an Introduce Field [JetBrains] refactoring for any local
variables before the fi rst Extract Method refactoring operation. Once we have de-
fi ned all of the new Test Methods, we simply delete the original Test Method and
let the Test Automation Framework (page 298) call our new methods directly.2

We need to ensure the tests run in the same order. Because JUnit seems to
sort the Testcase Objects by method name, we can force them into the right
order by including a sequence number in the Test Method name.

Finally, we need to convert our Fresh Fixture into a Shared Fixture. We do
so by changing our order fi eld (instance variable) into a class variable (a static
variable in Java) so that all of the Testcase Objects use the same Order.

2 If we don’t have a refactoring tool handy, no worries. Just end the Test Method after
each subtest and type in the signature of the next Test Method before the next subtest. We
then move any Shared Fixture variables out of the fi rst Test Method.

Chained
Tests

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

459

Example: Chained Tests

Here’s the simple example turned into three separate tests:

 private static Order order = new Order();
 private static final double tolerance = 0.001;

 public void test_01_initialTotalShouldBeZero() {
 assertEquals("initial", 0.00, order.getTotal(), tolerance);
 }

 public void test_02_totalAfter1stItemShouldBeOnlyItemAmount(){
 testAddItemAndGetTotal("first", 1, 3.00, 3.00);
 }

 public void test_03_totalAfter2ndItemShouldBeSumOfAmounts() {
 testAddItemAndGetTotal("second",3, 5.00, 18.00);
 }

 private void testAddItemAndGetTotal(String msg,
 int lineItemQuantity,
 double lineItemPrice,
 double expectedTotal) {
 // create a line item
 LineItem item =
 new LineItem(lineItemQuantity, lineItemPrice);
 // add line item to order
 order.addItem(item);
 // verify total
 assertEquals(msg,expectedTotal,order.getTotal(),tolerance);
 }

The Test Runner (page 377) gives us a better overview of what is wrong and
what is working (Figure 20.4).

Unfortunately, we will not be able to run any of the tests by themselves while
we debug this problem (except for the very fi rst test) because of the interdepen-
dencies between the tests; they are Lonely Tests.

Chained
Tests

 Chained Tests

www.it-ebooks.info

http://www.it-ebooks.info/

460

Figure 20.4 Chained Tests result. The upper pane shows the three test methods
with two tests passing. The lower pane shows the details of the one failing Test
Method.

Chained
Tests

Chapter 20 Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21

Result Verifi cation Patterns

Patterns in This Chapter

Verifi cation Strategy

State Verifi cation . 462

Behavior Verifi cation . 468

Assertion Method Styles

Custom Assertion . 474

Delta Assertion. 485

Guard Assertion . 490

Unfi nished Test Assertion . 494

Result
Verifi cation
Patterns

461

www.it-ebooks.info

http://www.it-ebooks.info/

462 Chapter 21 Result Verification Patterns

State Verifi cation

How do we make tests self-checking when there is state to be verifi ed?

We inspect the state of the system under test after it has been exercised and
compare it to the expected state.

A Self-Checking Test (see page 26) must verify that the expected outcome has
occurred without manual intervention by whoever is running the test. But what
do we mean by “expected outcome”? The SUT may or may not be “stateful”; if
it is stateful, it may or may not have a different state after it has been exercised.
As test automaters, it is our job to determine whether our expected outcome is a
change of fi nal state or whether we need to be more specifi c about what occurs
while the SUT is being exercised.

State Verifi cation involves inspecting the state of the SUT after it has been
exercised.

How It Works

We exercise the SUT by invoking the methods of interest. Then, as a separate
step, we interact with the SUT to retrieve its post-exercise state and compare it
with the expected end state by calling Assertion Methods (page 362).

Fixture

SUT

DOC

Exercise

Setup

Exercise

Verify

Teardown

Get State
A C

B

Behavior
(Indirect
 Outputs)

Fixture

SUT

DOC

Exercise

Setup

Exercise

Verify

Teardown

Get State
A C

B

Behavior
(Indirect
 Outputs)

Also known as:
State-Based

Testing

State
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

463

Normally, we can access the state of the SUT simply by calling methods or
functions that return its state. This is especially true when we are doing test-driven
development because the tests will have ensured that the state is easily accessible.
When we are retrofi tting tests, however, we may fi nd it more challenging to access
the relevant state information. In these cases, we may need to use a Test-Specifi c
Subclass (page 579) or some other technique to expose the state without introduc-
ing Test Logic in Production (page 217).

A related question is “Where is the state of the SUT stored?” Sometimes, the
state is stored within the actual SUT; in other cases, the state may be stored in
another component such as a database. In the latter case, State Verifi cation may
involve accessing the state within the other component (essentially a layer-crossing
test). By contrast, Behavior Verifi cation (page 468) would involve verifying the
interactions between the SUT and the other component.

When to Use It

We should use State Verifi cation when we care about only the end state of the
SUT—not how the SUT got there. Taking such a limited view helps us maintain
encapsulation of the implementation of the SUT.

State Verifi cation comes naturally when we are building the software inside
out. That is, we build the innermost objects fi rst and then build the next layer
of objects on top of them. Of course, we may need to use Test Stubs (page 529)
to control the indirect inputs of the SUT to avoid Production Bugs (page 268)
caused by untested code paths. Even then, we are choosing not to verify the
indirect outputs of the SUT.

When we do care about the side effects of exercising the SUT that are not
visible in its end state (its indirect outputs), we can use Behavior Verifi cation to
observe the behavior directly. We must be careful, however, not to create Fragile
Tests (page 239) by overspecifying the software.

Implementation Notes

There are two basic styles of implementing State Verifi cation.

Variation: Procedural State Verifi cation

When doing Procedural State Verifi cation, we simply write a series of calls to
Assertion Methods that pick apart the state information into pieces and com-
pare those bits of information to individual expected values. Most people who
are new to automating tests take such a “path of least resistance.” The major
disadvantage of this approach is that it can result in Obscure Tests (page 186)

 State Verification

State
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

464 Chapter 21 Result Verification Patterns

owing to the number of assertions it may take to specify the expected outcome.
When the same sequence of assertions must be carried out in many tests or many
times within a single Test Method (page 348), we also have Test Code Duplica-
tion (page 213).

Variation: Expected State Specifi cation

When doing Expected State Specifi cation, we construct a specifi cation for the
post-exercise state of the SUT in the form of one or more objects populated with
the expected attributes. We then compare the actual state directly with these
objects using a single call to an Equality Assertion (see Assertion Method). This
tends to result in more concise and readable tests. We can use an Expected State
Specifi cation whenever we need to verify several attributes and it is possible to
construct an object that looks like the object we expect the SUT to return. The
more attributes we have that need to be compared and the more tests that need
to compare them, the more compelling the argument for using an Expected State
Specifi cation. In the most extreme cases, when we have a lot of data to verify, we
can construct an “expected table” and verify that the SUT contains it. Fit’s “row
fi xtures” offer a good way to do this in customer tests; tools such as DbUnit are
a good way to use Back Door Manipulation (page 327) for this purpose.

When constructing the Expected State Specifi cation, we may prefer to use
a Parameterized Creation Method (see Creation Method on page 415) so that
the reader is not distracted by all the necessary but unimportant attributes of
the Expected State Specifi cation. The Expected State Specifi cation is most often
an instance of the same class that we expect to get back from the SUT. We may
have diffi culty using an Expected State Specifi cation if the object doesn’t imple-
ment equality in a way that involves comparing the values of attributes (e.g., by
comparing the object references with each other) or if our test-specifi c defi nition
of equality differs from that implemented by the equals method.

In these cases, we can still use an Expected State Specifi cation if we create
a Custom Assertion (page 474) that implements test-specifi c equality. Alterna-
tively, we can build the Expected State Specifi cation from a class that imple-
ments our test-specifi c equality. This class can either be a Test-Specifi c Subclass
that overrides the equals method or a simple Data Transfer Object [CJ2EEP] that
implements equals(TheRealObjectClass other). Both of these measures are preferable
to modifying (or introducing) the equals method on the production class, as that
would be a form of Equality Pollution (see Test Logic in Production). When
the class is diffi cult to instantiate, we can defi ne a Fake Object (page 551) that
has the necessary attributes plus an equals method that implements test-specifi c
equality. These last few “tricks” are made possible by the fact that Equality

State
Verifi cation

Also known as:
Expected

Object

www.it-ebooks.info

http://www.it-ebooks.info/

465

Assertions usually ask the Expected State Specifi cation to compare itself to the
actual result, rather than the reverse.

We can build the Expected State Specifi cation either during the result verifi -
cation phase of the test immediately before it is used in the Equality Assertion
or during the fi xture setup phase of the test. The latter strategy allows us to use
attributes of the Expected State Specifi cation as parameters passed to the SUT
or as the base for Derived Values (page 718) when building other objects in the
test fi xture. This makes it easier to see the cause–effect relationship between
the fi xture and the Expected State Specifi cation, which in turn helps us achieve
Tests as Documentation (see page 23). It is particularly useful when the Ex-
pected State Specifi cation is created out of sight of the test reader such as when
using Creation Methods to do the construction.

Motivating Example

This simple1 example features a test that exercises the code that adds a line item
to an invoice. Because it contains no assertions, it is not a Self-Checking Test.

 public void testInvoice_addOneLineItem_quantity1() {
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 }

We have chosen to create the invoice and product in the setUp method, an approach
called Implicit Setup (page 424).

 public void setUp() {
 product = createAnonProduct();
 anotherProduct = createAnonProduct();
 inv = createAnonInvoice();
 }

Refactoring Notes

The fi rst refactoring we can do is not really a refactoring at all, because we are
changing the behavior of the tests (for the better): We introduce some assertions
that specify the expected outcome. This results in an example of Procedural
State Verifi cation because we make this change within the Test Method as a
series of calls to built-in Assertion Methods.

1 The natural example for this pattern is not very good at illustrating the difference
between State Verifi cation and Behavior Verifi cation. For this purpose, refer to Behavior
Verifi cation, which provides a second example of State Verifi cation that is more directly
comparable.

 State Verification

State
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

466 Chapter 21 Result Verification Patterns

We can further simplify the Test Method by refactoring it to use an Expected
Object. First, we build an Expected Object by constructing an object of the
expected class, or a suitable Test Double (page 522), and initializing it with
the values that were previously specifi ed in the assertions. Then we replace the
series of assertions with a single Equality Assertion that compares the actual
result with an Expected Object. We may have to use a Custom Assertion if we
need test-specifi c equality.

Example: Procedural State Verifi cation

Here we have added the assertions to the Test Method to turn it into a Self-
Checking Test. Because several steps must be carried out to verify the expected
outcome, this test suffers from a mild case of Obscure Test.

 public void testInvoice_addOneLineItem_quantity1() {
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 // Verify only item
 LineItem actual = (LineItem) lineItems.get(0);
 assertEquals(inv, actual.getInv());
 assertEquals(product, actual.getProd());
 assertEquals(QUANTITY, actual.getQuantity());
 }

Example: Expected Object

In this simplifi ed version of the test, we use the Expected Object with a single
Equality Assertion instead of a series of assertions on individual attributes:

 public void testInvoice_addLineItem1() {
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(expItem.getProd(), expItem.getQuantity());
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem) lineItems.get(0);
 assertEquals("Item", expItem, actual);
 }

State
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

467

Because we are also using some of the attributes as arguments of the SUT, we
have chosen to build the Expected Object during the fi xture setup phase of the
test and to use the attributes of the Expected Object as the SUT arguments.

 State Verification

State
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

468 Chapter 21 Result Verification Patterns

Behavior Verifi cation

How do we make tests self-checking when there is no state to verify?

We capture the indirect outputs of the SUT as they occur and compare
them to the expected behavior.

A Self-Checking Test (see page 26) must verify that the expected outcome has
occurred without manual intervention by whoever is running the test. But what
do we mean by “expected outcome”? The SUT may or may not be “stateful”; if
it is stateful, it may or may not be expected to end up in a different state after it
has been exercised. The SUT may also be expected to invoke methods on other
objects or components.

Behavior Verifi cation involves verifying the indirect outputs of the SUT as it
is being exercised.

How It Works

Each test specifi es not only how the client of the SUT interacts with it during the
exercise SUT phase of the test, but also how the SUT interacts with the compo-
nents on which it should depend. This ensures that the SUT really is behaving as
specifi ed rather than just ending up in the correct post-exercise state.

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect
 Outputs)

V
er

ify

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect
 Outputs)

V
er

ify

Also known as:
Interaction

Testing

Behavior
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

469

Behavior Verifi cation almost always involves interacting with or replacing
a depended-on component (DOC) with which the SUT interacts at runtime.
The line between Behavior Verifi cation and State Verifi cation (page 462) can
get a bit blurry when the SUT stores its state in the DOC because both forms
of verifi cation involve layer-crossing tests. We can distinguish between the two
cases based on whether we are verifying the post-test state in the DOC (State
Verifi cation) or whether we are verifying the method calls made by the SUT on
the DOC (Behavior Verifi cation).

When to Use It

Behavior Verifi cation is primarily a technique for unit tests and component tests. We
can use Behavior Verifi cation whenever the SUT calls methods on other objects or
components. We must use Behavior Verifi cation whenever the expected outputs of
the SUT are transient and cannot be determined simply by looking at the post-exercise
state of the SUT or the DOC. This forces us to monitor these indirect outputs as
they occur.

A common application of Behavior Verifi cation is when we are writing our
code in an “outside-in” manner. This approach, which is often called need-driven
development, involves writing the client code before we write the DOC. It is
a good way to fi nd out exactly what the interface provided by the DOC needs
to be based on real, concrete examples rather than on speculation. The main
objection to this approach is that we need to use a lot of Test Doubles (page 522)
to write these tests. That could result in Fragile Tests (page 239) because each
test knows so much about how the SUT is implemented. Because the tests
specify the behavior of the SUT in terms of its interactions with the DOC, a
change in the implementation of the SUT could break a lot of tests. This kind of
Overspecifi ed Software (see Fragile Test) could lead to High Test Maintenance
Cost (page 265).

The jury is still out on whether Behavior Verifi cation is a better approach
than State Verifi cation. In most cases, State Verifi cation is clearly necessary; in
some cases, Behavior Verifi cation is clearly necessary. What has yet to be deter-
mined is whether Behavior Verifi cation should be used in all cases or whether
we should use State Verifi cation most of the time and resort to Behavior Verifi -
cation only when State Verifi cation falls short of full test coverage.

Implementation Notes

Before we exercise the SUT by invoking the methods of interest, we must ensure
that we have a way of observing its behavior. Sometimes the mechanisms that the

 Behavior Verification

Behavior
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

470 Chapter 21 Result Verification Patterns

SUT uses to interact with the components surrounding it make such observation
possible; when this is not the case, we must install some sort of Test Double to
monitor the SUT’s indirect outputs. We can use a Test Double as long as we have
a way to replace the DOC with the Test Double. This could be via Dependency
Injection (page 678) or by Dependency Lookup (page 686).

There are two fundamentally different ways to implement Behavior Verifi ca-
tion, each with its own proponents. The Mock Object (page 544) community has
been very vocal about the use of “mocks” as an Expected Behavior Specifi cation,
so it is the more commonly used approach. Nevertheless, Mock Objects are not
the only way of doing Behavior Verifi cation.

Variation: Procedural Behavior Verifi cation

In Procedural Behavior Verifi cation, we capture the method calls made by the SUT
as it executes and later get access to them from within the Test Method (page 348).
Then we use Equality Assertions (see Assertion Method on page 362) to compare
them with the expected results.

The most common way of trapping the indirect outputs of the SUT is to
install a Test Spy (page 538) in place of the DOC during the fi xture setup phase
of the Four-Phase Test (page 358). During the result verifi cation phase of the
test, we ask the Test Spy how it was used by the SUT during the exercise SUT
phase. Use of a Test Spy does not require any advance knowledge of how the
methods of the DOC will be called.

The alternative is to ask the real DOC how it was used. Although this scheme
is not always feasible, when it is, it avoids the need to use a Test Double and
minimizes the degree to which we have Overspecifi ed Software.

We can reduce the amount of code in the Test Method (and avoid Test Code
Duplication; see page 213) by defi ning Expected Objects (see State Verifi cation)
for the arguments of method calls or by delegating the verifi cation of them to
Custom Assertions (page 474).

Variation: Expected Behavior Specifi cation

Expected Behavior Specifi cation is a different way of doing Behavior Verifi cation.
Instead of waiting until after the fact to verify the indirect outputs of the SUT
by using a sequence of assertions, we load the Expected Behavior Specifi cation
into a Mock Object and let it verify that the method calls are correct as they are
received.

We can use an Expected Behavior Specifi cation when we know exactly what
should happen ahead of time and we want to remove all Procedural Behavior
Verifi cation from the Test Method. This pattern variation tends to make the

Also known as:
Expected
Behavior

Behavior
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

471

test shorter (assuming we are using a compact representation of the expected
behavior) and can be used to cause the test to fail on the fi rst deviation from the
expected behavior if we so choose.

One distinct advantage of using Mock Objects is that Test Double generation
tools are available for many members of the xUnit family. They make imple-
menting Expected Behavior Specifi cation very easy because we don’t need to
manually build a Test Double for each set of tests. One drawback of using a
Mock Object is that it requires that we can predict how the methods of the DOC
will be called and what arguments will be passed to it in the method calls.

Motivating Example

The following test is not a Self-Checking Test because it does not verify that
the expected outcome has actually occurred; it contains no calls to Assertion
Methods, nor does it set up any expectations on a Mock Object. Because we are
testing the logging functionality of the SUT, the state that interests us is actu-
ally stored in the logger rather than within the SUT itself. The writer of this test
hasn’t found a way to access the state we are trying to verify.

 public void testRemoveFlightLogging_NSC() throws Exception {
 // setup
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 // have not found a way to verify the outcome yet
 // Log contains record of Flight removal
 }

To verify the outcome, whoever is running the tests must access the database
and the log console and compare what was actually output to what should have
been output.

One way to make the test Self-Checking is to enhance the test with Expected
State Specifi cation (see State Verifi cation) of the SUT as follows:

 public void testRemoveFlightLogging_ESS() throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacadeImplTI facade =
 new FlightManagementFacadeImplTI();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify

 Behavior Verification

Behavior
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

472 Chapter 21 Result Verification Patterns

 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 }

Unfortunately, this test does not verify the logging function of the SUT in any
way. It also illustrates one reason why Behavior Verifi cation came about: Some
functionality of the SUT is not visible within the end state of the SUT itself, but
can be seen only if we intercept the behavior at an internal observation point
between the SUT and the DOC or if we express the behavior in terms of state
changes for the objects with which the SUT interacts.

Refactoring Notes

When we made the changes in the second code sample in the “Motivating
Example,” we weren’t really refactoring; instead, we added verifi cation logic to
make the tests behave differently. There are, however, several refactoring cases
that are worth discussing.

To refactor from State Verifi cation to Behavior Verifi cation, we must do a
Replace Dependency with Test Double (page 522) refactoring to gain visibility
of the indirect outputs of the SUT via a Test Spy or Mock Object.

To refactor from an Expected Behavior Specifi cation to Procedural Behavior
Verifi cation, we install a Test Spy instead of the Mock Object. After exercising the
SUT, we make assertions on values returned by the Test Spy and compare them
with the expected values that were originally used as arguments when we initially
confi gured the Mock Object (the one that we just converted into a Test Spy).

To refactor from Procedural Behavior Verifi cation to an Expected Behavior
Specifi cation, we confi gure a Mock Object with the expected values from the
assertions made on values returned by the Test Spy and install the Mock Object
instead of the Test Spy.

Example: Procedural Behavior Verifi cation

The following test verifi es the basic functionality of creating a fl ight but uses
Procedural Behavior Verifi cation to verify the indirect outputs of the SUT. That
is, it uses a Test Spy to capture the indirect outputs and then verifi es those out-
puts are correct by making in-line calls to the Assertion Methods.

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();

Behavior
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

473

 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

Example: Expected Behavior Specifi cation

In this version of the test, we use the JMock framework to defi ne the expected
behavior of the SUT. The method expects on mockLog confi gures the Mock Object
with the Expected Behavior Specifi cation (specifi cally, the expected log message).

 public void testRemoveFlight_JMock() throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 FlightManagementFacade facade =
 new FlightManagementFacadeImpl();
 // mock configuration
 Mock mockLog = mock(AuditLog.class);
 mockLog.expects(once()).method("logMessage")
 .with(eq(helper.getTodaysDateWithoutTime()),
 eq(Helper.TEST_USER_NAME),
 eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
 eq(expectedFlightDto.getFlightNumber()));
 // mock installation
 facade.setAuditLog((AuditLog) mockLog.proxy());
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 // verify() method called automatically by JMock
 }

 Behavior Verification

Behavior
Verifi cation

www.it-ebooks.info

http://www.it-ebooks.info/

474 Chapter 21 Result Verification Patterns

Custom Assertion

How do we make tests self-checking when we have test-specifi c equality logic?
How do we reduce Test Code Duplication when the same assertion

logic appears in many tests?
How do we avoid Conditional Test Logic?

We create a purpose-built Assertion Method that compares only those
attributes of the object that defi ne test-specifi c equality.

Most members of the xUnit family provide a reasonably rich set of Assertion
Methods (page 362). But sooner or later, we inevitably fi nd ourselves saying,
“This test would be so much easier to write if I just had an assertion that did”
So why not write it ourselves?

The reasons for writing a Custom Assertion are many, but the technique is
pretty much the same regardless of our goal. We hide the complexity of whatever
it takes to prove the system is behaving correctly behind an Assertion Method
with an Intent-Revealing Name [SBPP].

How It Works

We encapsulate the mechanics of verifying that something is true (an assertion)
behind an Intent-Revealing Name. To do so, we factor out all the common
assertion code within the tests into a Custom Assertion that implements the

Fixture
Setup

Exercise

Verify

Teardown

SUT

Custom
Assertion

Assertion
 Method

Assertion
 Method

Fixture
Setup

Exercise

Verify

Teardown

SUT

Custom
Assertion

Assertion
 Method

Assertion
 Method

Also known as:
Bespoke

Assertion

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

475

verifi cation logic. A Custom Equality Assertion takes two parameters: an
Expected Object (see State Verifi cation on page 462) and the actual object.

A key characteristic of Custom Assertions is that they receive everything they
need to pass or fail the test as parameters. Other than causing the test to fail,
they have no side effects.

Typically, we create Custom Assertions through refactoring by identifying
common patterns of assertions in our tests. When test driving, we might just
go ahead and call a nonexistent Custom Assertion because it makes writing our
test easier; this tactic lets us focus on the part of the SUT that needs to be tested
rather than the mechanics of how the test would be carried out.

When to Use It

We should consider creating a Custom Assertion whenever any of the following
statements are true:

• We fi nd ourselves writing (or cloning) the same assertion logic in test
after test (Test Code Duplication; see page 213).

• We fi nd ourselves writing Conditional Test Logic (page 200) in the result
verifi cation part of our tests. That is, our calls to Assertion Methods are
embedded in if statements or loops.

• The result verifi cation parts of our tests suffer from Obscure Test
(page 186) because we use procedural rather than declarative result
verifi cation in the tests.

• We fi nd ourselves doing Frequent Debugging (page 248) whenever
assertions fail because they do not provide enough information.

A key reason for moving the assertion logic out of the tests and into Custom
Assertions is to Minimize Untestable Code (see page 44). Once the verifi cation
logic has been moved into a Custom Assertion, we can write Custom Assertion
Tests (see Custom Assertion on page 474) to prove the verifi cation logic is work-
ing properly. Another important benefi t of using Custom Assertions is that they
help avoid Obscure Tests and make tests Communicate Intent (see page 41).
That, in turn, will help produce robust, easily maintained tests.

If the verifi cation logic must interact with the SUT to determine the actual
outcome, we can use a Verifi cation Method (see Custom Assertion) instead of a
Custom Assertion. If the setup and exercise parts of the tests are also the same
except for the values of the actual/expected objects, we should consider using
a Parameterized Test (page 607). The primary advantage of Custom Assertions
over both of these techniques is reusability; the same Custom Assertion can be

CUSTOM ASSERTION

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

476 Chapter 21 Result Verification Patterns

reused in many different circumstances because it is independent of its context
(its only contact with the outside world occurs through its parameter list).

We most commonly write Custom Assertions that are Equality Assertions
(see Assertion Method), but there is no reason why we cannot write other kinds
as well.

Variation: Custom Equality Assertion

For custom equality assertions, the Custom Assertion must be passed an Expected
Object and the actual object to be verifi ed. It should also take an Assertion Mes-
sage (page 370) to avoid playing Assertion Roulette (page 224). Such an assertion
is essentially an equals method implemented as a Foreign Method [Fowler].

Variation: Object Attribute Equality Assertion

We often run across Custom Assertions that take one actual object and several
different Expected Objects that need to be compared with specifi c attributes of
the actual object. (The set of attributes to be compared is implied by the name of
the Custom Assertion.) The key difference between these Custom Assertions and
a Verifi cation Method is that the latter interacts with the SUT while the Object
Attribute Equality Assertion looks only at the objects passed in as parameters.

Variation: Domain Assertion

All of the built-in Assertion Methods are domain independent. Custom Equal-
ity Assertions implement test-specifi c equality but still compare only two
objects. Another style of Custom Assertion helps contribute to the defi nition
of a “domain-specifi c” Higher-Level Language (see page 41)—namely, the
Domain Assertion.

A Domain Assertion is a Stated Outcome Assertion (see Assertion Method)
that states something that should be true in domain-specifi c terms. It helps elevate
the test into “business-speak.”

Variation: Diagnostic Assertion

Sometimes we fi nd ourselves doing Frequent Debugging whenever a test fails
because the assertions tell us only that something is wrong but do not identify
the specifi c problem (e.g., the assertions indicate these two objects are not equal
but it isn’t clear what isn’t equal about the object). We can write a special kind of
Custom Assertion that may look just like one of the built-in assertions but pro-
vide more information about what is different between the expected and actual
values than a built-in assertion because it is specifi c to our types. (For example,
it might tell us which attributes are different or where long strings differ.)

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

477

On one project, we were comparing string variables containing XML.
Whenever a test failed, we had to bring up two string inspectors and scroll
through them looking for the difference. Finally, we got smart and included
the logic in a Custom Assertion that told us where the fi rst difference between
the two XML strings occurred. The small amount of time we spent writing
the diagnostic custom assertion was paid back many times over as we ran
our tests.

Variation: Verifi cation Method

In customer tests, a lot of the complexity of verifying the outcome is related
to interacting with the SUT. Verifi cation Methods are a form of Custom Asser-
tions that interact directly with the SUT, thereby relieving their callers from this
task. This simplifi es the tests signifi cantly and leads to a more “declarative”
style of outcome specifi cation. After the Custom Assertion has been written, we
can write subsequent tests that result in the same outcome much more quickly.
In some cases, it may be advantageous to incorporate even the exercise SUT
phase of the test into the Verifi cation Method. This is one step short of a full
Parameterized Test that incorporates all the test logic in a reusable Test Utility
Method (page 599).

Implementation Notes

The Custom Assertion is typically implemented as a set of calls to the various
built-in Assertion Methods. Depending on how we plan to use it in our tests,
we may also want to include the standard Equality Assertion template to ensure
correct behavior with null parameters. Because the Custom Assertion is itself an
Assertion Method, it should not have any side effects, nor should it call the SUT.
(If it needs to do so, it would be a Verifi cation Method.)

Variation: Custom Assertion Test

Testing zealots would also write a Custom Assertion Test (a Self-Checking Test—
see page 26—for Custom Assertions) to verify the Custom Assertion. The benefi t
from doing so is obvious: increased confi dence in our tests. In most cases, writing
Custom Assertion Tests isn’t particularly diffi cult because Assertion Methods take
all their arguments as parameters.

We can treat the Custom Assertion as the SUT simply by calling it with various
arguments and verifying that it fails in the right cases. Single-Outcome Assertions
(see Assertion Method) need only a single test because they don’t take any parameters
(other than possibly an Assertion Message). Stated Outcome Assertions need one

 Custom Assertion

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

478 Chapter 21 Result Verification Patterns

test for each possible value (or boundary value). Equality Assertions need one test
that compares two objects deemed to be equivalent, one test that compares an
object with itself, and one test for each attribute whose inequality should cause
the assertion to fail. Attributes that don’t affect equality can be verifi ed in one
additional test because the Equality Assertion should not raise an error for any of
them.

The Custom Assertions follow the normal Simple Success Test (see Test
Method on page 348) and Expected Exception Test (see Test Method) tem-
plates with one minor difference: Because the Assertion Method is the SUT, the
exercise SUT and verify outcome phases of the Four-Phase Test (page 358) are
combined into a single phase.

Each test consists of setting up the Expected Object and the actual object and
then calling the Custom Assertion. If the objects should be equivalent, that’s all
there is to it. (The Test Automation Framework described on page 298 would
catch any assertion failures and fail the test.) For the tests where we expect the
Custom Assertion to fail, we can write the test as an Expected Exception Test
(except that the exercise SUT and verify outcome phases of the Four-Phase Test
are combined into the single call to the Custom Assertion).

The simplest way to build the objects to be compared for a specifi c test is to
do something similar to One Bad Attribute (see Derived Value on page 718)—
that is, build the fi rst object and make a deep copy of it. For successful tests,
modify any of the attributes that should not be compared. For each test failure,
modify one attribute that should be grounds for failing the assertion.

A brief warning about a possible complication in a few members of the
xUnit family: If all of the test failure handling does not occur in the Test Runner
(page 377), calls to fail or built-in assertions may add messages to the failure
log even if we catch the error or exception in our Custom Assertion Test. The
only way to circumvent this behavior is to use an “Encapsulated Test Runner”
to run each test by itself and verify that the one test failed with the expected
error message.

Motivating Example

In the following example, several test methods repeat the same series of
assertions:

 public void testInvoice_addOneLineItem_quantity1_b() {
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

479

 // Verify only item
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem.getInv(), actual.getInv());
 assertEquals(expItem.getProd(), actual.getProd());
 assertEquals(expItem.getQuantity(), actual.getQuantity());
 }

 public void testRemoveLineItemsForProduct_oneOfTwo() {
 // Setup
 Invoice inv = createAnonInvoice();
 inv.addItemQuantity(product, QUANTITY);
 inv.addItemQuantity(anotherProduct, QUANTITY);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.removeLineItemForProduct(anotherProduct);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem.getInv(), actual.getInv());
 assertEquals(expItem.getProd(), actual.getProd());
 assertEquals(expItem.getQuantity(), actual.getQuantity());
 }

 //
 // Adding TWO line items
 //

 public void testInvoice_addTwoLineItems_sameProduct() {
 Invoice inv = createAnonInvoice();
 LineItem expItem1 = new LineItem(inv, product, QUANTITY1);
 LineItem expItem2 = new LineItem(inv, product, QUANTITY2);
 // Exercise
 inv.addItemQuantity(product, QUANTITY1);
 inv.addItemQuantity(product, QUANTITY2);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 2);
 // Verify first item
 LineItem actual = (LineItem)lineItems.get(0);
 assertEquals(expItem1.getInv(), actual.getInv());
 assertEquals(expItem1.getProd(), actual.getProd());
 assertEquals(expItem1.getQuantity(), actual.getQuantity());
 // Verify second item
 actual = (LineItem)lineItems.get(1);
 assertEquals(expItem2.getInv(), actual.getInv());
 assertEquals(expItem2.getProd(), actual.getProd());
 assertEquals(expItem2.getQuantity(), actual.getQuantity());
 }

 Custom Assertion

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

480 Chapter 21 Result Verification Patterns

Note that the fi rst test ends with a series of three assertions and the second test
repeats the series of three assertions twice, once for each line item. This is clearly
a bad case of Test Code Duplication.

Refactoring Notes

Refactoring zealots can probably see that the solution is to do an Extract Meth-
od [Fowler] refactoring on these tests. If we pull out all the common calls to
Assertion Methods, we will be left with only the differences in each test. The
extracted method is our Custom Assertion. We may also need to introduce an
Expected Object to hold all the values that were being passed to the individual
Assertion Methods on a single object to be passed to the Custom Assertion.

Example: Custom Assertion

In this test, we use a Custom Assertion to verify that LineItem matches the expected
LineItem(s). For one reason or another, we have chosen to implement a test-specifi c
equality rather than using a standard Equality Assertion.

 public void testInvoice_addOneLineItem_quantity1_() {
 Invoice inv = createAnonInvoice();
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 // Verify only item
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("LineItem", expItem, actual);
 }

 public void testAddItemQuantity_sameProduct_() {
 Invoice inv = createAnonInvoice();
 LineItem expItem1 = new LineItem(inv, product, QUANTITY1);
 LineItem expItem2 = new LineItem(inv, product, QUANTITY2);
 // Exercise
 inv.addItemQuantity(product, QUANTITY1);
 inv.addItemQuantity(product, QUANTITY2);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 2);
 // Verify first item
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("Item 1",expItem1,actual);
 // Verify second item

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

481

 actual = (LineItem)lineItems.get(1);
 assertLineItemsEqual("Item 2",expItem2, actual);
 }

The tests have become signifi cantly smaller and more intent-revealing. We have
also chosen to pass a string indicating which item we are examining as an argu-
ment to the Custom Assertion to avoid playing Assertion Roulette when a test
fails.

This simplifi ed test was made possible by having the following Custom
Assertion available to us:

 static void assertLineItemsEqual(
 String msg, LineItem exp, LineItem act) {
 assertEquals(msg+" Inv", exp.getInv(),act.getInv());
 assertEquals(msg+" Prod", exp.getProd(), act.getProd());
 assertEquals(msg+" Quan", exp.getQuantity(), act.getQuantity());
 }

This Custom Assertion compares the same attributes of the object as we were
comparing on an in-line basis in the previous version of the test; thus the seman-
tics of the test haven’t changed. We also concatenate the name of the attribute
being compared with the message parameter to get a unique failure message,
which allows us to avoid playing Assertion Roulette when a test fails.

Example: Domain Assertion

In this next version of the test, we have further elevated the level of the asser-
tions to better communicate the expected outcome of the test scenarios:

 public void testAddOneLineItem_quantity1() {
 Invoice inv = createAnonInvoice();
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 assertInvoiceContainsOnlyThisLineItem(inv, expItem);
 }

 public void testRemoveLineItemsForProduct_oneOfTwo_() {
 Invoice inv = createAnonInvoice();
 inv.addItemQuantity(product, QUANTITY);
 inv.addItemQuantity(anotherProduct, QUANTITY);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.removeLineItemForProduct(anotherProduct);
 // Verify
 assertInvoiceContainsOnlyThisLineItem(inv, expItem);
 }

 Custom Assertion

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

482 Chapter 21 Result Verification Patterns

This simplifi ed version of the test was made possible by extracting the following
Domain Assertion method:

 void assertInvoiceContainsOnlyThisLineItem(
 Invoice inv,
 LineItem expItem) {
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("item",expItem, actual);
 }

This example chose to forgo passing a message to the Domain Assertion to save
a bit of space. In real life, we would typically include a message string in the
parameter list and concatenate the messages of the individual assertions to one
passed in. See Assertion Message (page 370) for more details.

Example: Verifi cation Method

If the exercise SUT and result verifi cation phases of several tests are pretty much
identical, we can incorporate both phases into our reusable Custom Assertion.
Because this approach changes the semantics of the Custom Assertion from being
just a function free of side effects to an operation that changes the state of the
SUT, we usually give it a more distinctive name starting with “verify”.

This version of the test merely sets up the test fi xture before calling a Verifi ca-
tion Method that incorporates both the exercise SUT and verify outcome phases
of the test. It is most easily recognized by the lack of a distinct “exercise” phase
in the calling test and the presence of calls to methods that modify the state of
one of the objects passed as a parameter of the Verifi cation Method.

 public void testAddOneLineItem_quantity2() {
 Invoice inv = createAnonInvoice();
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise & Verify
 verifyOneLineItemCanBeAdded(inv, product, QUANTITY, expItem);
 }

The Verifi cation Method for this example looks like this:

 public void verifyOneLineItemCanBeAdded(
 Invoice inv, Product product,
 int QUANTITY, LineItem expItem) {
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 assertInvoiceContainsOnlyThisLineItem(inv, expItem);
 }

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

483

This Verifi cation Method calls the “pure” Custom Assertion, although it could
just as easily have included all the assertion logic if we didn’t have the other Cus-
tom Assertion to call. Note the call to addItemQuantity on the parameter inv; this is
what changes if from a Custom Assertion to a Verifi cation Method.

Example: Custom Assertion Test

This Custom Assertion isn’t particularly complicated, so we may feel comfort-
able without having any automated tests for it. If there is anything complex
about it, however, we may fi nd it worthwhile to write tests like these:

 public void testassertLineItemsEqual_equivalent() {
 Invoice inv = createAnonInvoice();
 LineItem item1 = new LineItem(inv, product, QUANTITY1);
 LineItem item2 = new LineItem(inv, product, QUANTITY1);
 // exercise/verify
 assertLineItemsEqual("This should not fail",item1, item2);
 }

 public void testassertLineItemsEqual_differentInvoice() {
 Invoice inv1 = createAnonInvoice();
 Invoice inv2 = createAnonInvoice();
 LineItem item1 = new LineItem(inv1, product, QUANTITY1);
 LineItem item2 = new LineItem(inv2, product, QUANTITY1);
 // exercise/verify
 try {
 assertLineItemsEqual("Msg",item1, item2);
 } catch (AssertionFailedError e) {
 assertEquals("e.getMsg",
 "Invoice-expected: <123> but was <124>",
 e.getMessage());
 return;
 }
 fail("Should have thrown exception");
 }

 public void testassertLineItemsEqual_differentQuantity() {
 Invoice inv = createAnonInvoice();
 LineItem item1 = new LineItem(inv, product, QUANTITY1);
 LineItem item2 = new LineItem(inv, product, QUANTITY2);
 // exercise/verify
 try {
 assertLineItemsEqual("Msg",item1, item2);
 } catch (AssertionFailedError e) {
 pass(); // to indicate that no assertion is needed
 return;
 }
 fail("Should have thrown exception");
 }

 Custom Assertion

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

484 Chapter 21 Result Verification Patterns

This example includes a few of the Custom Assertion Tests needed for this Custom
Assertion. Note that the code includes one “equivalent” and several “different”
tests (one for each attribute whose difference should cause the test to fail). We have
to use the second form of the Expected Exception Test template in those cases
where the assertion was expected to fail, because fail throws the same exception as
our assertion method. In one of the “different” tests, we have included sample logic
for asserting on the exception message. (Although I’ve abridged it to save space, the
example here should give you an idea of where to assert on the message.)

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

485

Delta Assertion

How do we make tests self-checking when we cannot control
the initial contents of the fi xture?

We specify assertions based on differences between the pre- and
post-exercise state of the SUT.

When we are using a Shared Fixture (page 317) such as a test database, it can
be challenging to code the assertions that state what the content of the fi xture
should be after the SUT has been exercised. This is because other tests may have
created objects in the fi xture that our assertions may detect and that may cause
our assertions to fail. One solution is to isolate the current test from all other
tests by using a Database Partitioning Scheme (see Database Sandbox on page
650). But what can we do if this option is not available to us?

Using Delta Assertions allows us to be less dependent on which data already
exist in the Shared Fixture.

How It Works

Before exercising the SUT, we take a snapshot of relevant parts of the Shared
Fixture. After exercising the SUT, we specify our assertions relative to the saved
snapshot. The Delta Assertions typically verify that the number of objects has
changed by the right number and that the contents of collections of objects
returned by the SUT in response to our queries have been augmented by the
expected objects.

Teardown 3. Compare with
Expected Difference

Data
Fixture

Setup

Exercise

Verify After

Before

1. Get Pre-test State

2. Get Post-test State

SUT

Teardown 3. Compare with
Expected Difference

Data
Fixture

Setup

Exercise

Verify After

Before

1. Get Pre-test State

2. Get Post-test State

SUT

 Delta Assertion

Delta
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

486 Chapter 21 Result Verification Patterns

When to Use It

We can use a Delta Assertion whenever we don’t have full control over the test
fi xture and we want to avoid Interacting Tests (see Erratic Test on page 228).
Using Delta Assertions will help make our tests more resilient to changes in the
fi xture. We can also use Delta Assertions in concert with Implicit Teardown
(page 516) to detect memory or data leaks in the code that we are testing. See
the sidebar “Using Delta Assertions to Detect Data Leakage” on page 487 for a
more detailed description.

Delta Assertions work well when tests are run one after another from the
same Test Runner (page 377). Unfortunately, they cannot prevent a Test Run
War (see Erratic Test) because such a problem arises when tests are run at the
same time from different processes. Delta Assertions work whenever the state
of the SUT and the fi xture are modifi ed only by our own test. If other tests are
running in parallel (not before or after the current test, but at the same time), a
Delta Assertion won’t be suffi cient to avoid the Test Run War problem.

Implementation Notes

When saving the pre-test state of the Shared Fixture or SUT, we must make sure
that the SUT cannot change our snapshot. For example, if our snapshot consists
of a collection of objects returned by the SUT in response to a query, we must
perform a deep copy; a shallow copy copies only the Collection object and not the
objects to which it refers. Shallow copying would allow the SUT to modify the
very objects it returned to us as we exercise it; as a consequence, we would lose
the reference snapshot with which we are comparing the post-test state.

We can ensure that we have the correct post-test state in several different ways.
Assuming that our test adds any new objects it plans to modify, one approach is
to fi rst check that the result collection (1) has the right number of items, (2) con-
tains all the pre-test items, and (3) contains the new Expected Objects (see State
Verifi cation on page 462). Another approach is to remove all the saved items
from the result collection and then compare what remains with the collection of
new expected objects. Both of these approaches can be hidden behind a Custom
Assertion (page 474) or a Verifi cation Method (see Custom Assertion).

Delta
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

487

Using Delta Assertions to Detect Data Leakage

A long time ago, on a project far away, we were experimenting with
different ways to clean up our test fi xtures after the customer tests. Our
tests were accessing a database and leaving objects behind. This behavior
caused all sorts of problems with Unrepeatable Tests (see Erratic Test on
page 228) and Interacting Tests (see Erratic Test). We were also suffering
from Slow Tests (page 253).

Eventually we hit upon the idea of keeping track of all the objects we
were creating in our tests by registering them with an Automated Tear-
down (page 503) mechanism. Then we found a way to stub out the data-
base with a Fake Database (see Fake Object on page 551). Next we made
it possible to run the same test against either the fake database or the real
one. This solved many of the interaction problems when running against
the fake database, although those problems still occurred when we ran
the tests against the real database—tests still left objects behind, and we
wanted to know why. But fi rst we had to determine precisely which tests
were at fault.

The solution turned out to be pretty simple. In our Fake Database—which
was implemented using simple hash tables—we added a method to count
the total number of objects. We simply saved this value in an instance
variable in the setUp method and used it as the expected value passed to an
Equality Assertion (see Assertion Method on page 362) called in the tear-
Down method to verify that we had cleaned up all objects properly. [This is
an example of using Delta Assertions (page 485).] Once we implemented
this little trick, we quickly found out which tests were suffering from the
Data Leak (see Erratic Test). We could then focus our efforts on a much
smaller number of tests.

Even today, we fi nd it useful to be able to run the same test against the
database and in memory. Similarly, we still occasionally see a test fail
when the tearDown method inherited from our company-specifi c Testcase
Superclass (page 638) has a Delta Assertion failure. Perhaps the same
idea could be applied to checking for memory leaks in programming lan-
guages with manual memory management (such as C++).

 Delta Assertion

Delta
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

488 Chapter 21 Result Verification Patterns

Motivating Example

The following test retrieves some objects from the SUT. It then compares the
objects it actually found with the objects it expected to fi nd.

 public void testGetFlightsByOriginAirport_OneOutboundFlight()
 throws Exception {
 FlightDto expectedFlightDto =
 createNewFlightBetweenExistingAirports();
 // Exercise System
 facade.createFlight(
 expectedFlightDto.getOriginAirportId(),
 expectedFlightDto.getDestinationAirportId());
 // Verify Outcome
 List flightsAtOrigin = facade.getFlightsByOriginAirport(
 expectedFlightDto.getOriginAirportId());
 assertOnly1FlightInDtoList("Outbound flight at origin",
 expectedFlightDto,
 flightsAtOrigin);
 }

Unfortunately, because this test used a Shared Fixture, other tests that ran before
it may have added objects as well. That behavior could cause the current test to
fail if we encounter additional, unexpected objects.

Refactoring Notes

To convert the test to use a Delta Assertion, we must fi rst take a snapshot of
the data (or collection of objects) we will later be asserting on. Next, we need
to modify our assertions to focus on the difference between the pre-test data/
objects and the post-test data/objects. To avoid introducing Conditional Test
Logic (page 200) into the Test Method (page 348), we may want to introduce
a new Custom Assertion. Although we may be able to use existing assertions
(custom or otherwise) as a starting point, we’ll probably have to modify them to
take the pre-test data into account.

Example: Delta Assertion

In this version of the test, we use a Delta Assertion to verify the objects added
when we exercised the SUT. Here we are verifying that we have one more object
than before and that the collection of objects returned by the SUT includes the
new Expected Object and all objects that it previously contained.

 public void testCreateFlight_Delta()
 throws Exception {
 FlightDto expectedFlightDto =
 createNewFlightBetweenExistingAirports();

Delta
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

489

 // Remember prior state
 List flightsBeforeCreate =
 facade.getFlightsByOriginAirport(
 expectedFlightDto.getOriginAirportId());
 // Exercise system
 facade.createFlight(
 expectedFlightDto.getOriginAirportId(),
 expectedFlightDto.getDestinationAirportId());
 // Verify outcome relative to prior state
 List flightsAfterCreate =
 facade.getFlightsByOriginAirport(
 expectedFlightDto.getOriginAirportId());
 assertFlightIncludedInDtoList("new flight ",
 expectedFlightDto,
 flightsAfterCreate);
 assertAllFlightsIncludedInDtoList("previous flights",
 flightsBeforeCreate,
 flightsAfterCreate);
 assertEquals("Number of flights after create",
 flightsBeforeCreate.size()+1,
 flightsAfterCreate.size());
 }

Because the SUT returns Data Transfer Objects [CJ2EEP], we can be assured
that the objects we saved before exercising the SUT cannot possibly change.
We have modifi ed our Custom Assertions to ignore the pre-test objects (by not
insisting that the Expected Object is the only one) and have written a new Cus-
tom Assertion that ensures all pre-test objects are also present. Another way to
accomplish this task is to remove the pre-test objects from the result collection
and then verify that only the new Expected Objects are left.

I’ve omitted the implementation of the Custom Assertions, as it is purely
an exercise in comparing objects and is not salient to understanding the Delta
Assertion pattern. The “test infected” among us would, of course, write the Custom
Assertions driven by some Custom Assertion Tests (see Custom Assertion).

 Delta Assertion

Delta
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

490 Chapter 21 Result Verification Patterns

Guard Assertion

How do we avoid Conditional Test Logic?

We replace an if statement in a test with an assertion that fails the test
if not satisfi ed.

Some verifi cation logic may fail because information returned by the SUT is not
initialized as expected. When a test encounters an unexpected problem, it may
produce a test error rather than a test failure. While the Test Runner (page 377)
does its best to provide useful diagnostic information, the test automater can of-
ten do better by checking for the particular condition and reporting it explicitly.

A Guard Assertion is a good way to do so without introducing Conditional
Test Logic (page 200).

How It Works

Tests either pass or fail. We fail tests by calling Assertion Methods (page 362)
that stop the test from executing further if the assertion’s condition is not met.
Alternatively, we can replace Conditional Test Logic that is used to avoid ex-
ecuting assertions when they would cause test errors with assertions that fail the
test instead. This pattern also documents the fact that we expect the condition of
the Guard Assertion to be true. A failure of the Guard Assertion makes it very

Fixture
Setup

Exercise

Verify

Teardown

SUT

Assert

AssertNotNull

obj

obj.attr

Fixture
Setup

Exercise

Verify

Teardown

SUT

Assert

AssertNotNull

obj

obj.attr

Guard
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

491

clear that some condition we expected to be true was not; it eliminates the effort
needed to infer the test result from the conditional logic.

When to Use It

We should use a Guard Assertion whenever we want to avoid executing state-
ments in our Test Method (page 348) because they would cause an error if they
were executed when some condition related to values returned by the SUT is not
true. We take this step instead of putting an if then else fail code construct around
the sensitive statements. Normally, a Guard Assertion is placed between the exer-
cise SUT and the verify outcome phases of a Four-Phase Test (page 358).

Variation: Shared Fixture State Assertion

When the test uses a Shared Fixture (page 317), a Guard Assertion can also be
useful at the beginning of the test (before the exercise SUT phase) to verify that
the Shared Fixture satisfi es the test’s needs. It also makes it clearer to the test
reader which parts of the Shared Fixture this test actually uses; the greater clar-
ity improves the likelihood of achieving Tests as Documentation (see page 23).

Implementation Notes

We can use Stated Outcome Assertions (see Assertion Method) like assertNotNil and
Equality Assertions (see Assertion Method) like assertEquals as Guard Assertions
that fail the test and prevent execution of other statements that would cause test
errors.

Motivating Example

Consider the following example:

 public void testWithConditionals() throws Exception {
 String expectedLastname = "smith";
 List foundPeople = PeopleFinder.
 findPeopleWithLastname(expectedLastname);
 if (foundPeople != null) {
 if (foundPeople.size() == 1) {
 Person solePerson = (Person) foundPeople.get(0);
 assertEquals(expectedLastname,solePerson.getName());
 } else {
 fail("list should have exactly one element");
 }
 } else {
 fail("list is null");
 }
 }

 Guard Assertion

Guard
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

492 Chapter 21 Result Verification Patterns

This example includes plenty of conditional statements that the author might get
wrong—things like writing (foundPeople == null) instead of (foundPeople != null). In
C-based languages, one might mistakenly use = instead of ==, which would result
in the test always passing!

Refactoring Notes

We can use a Replace Nested Conditional with Guard Clauses [Fowler] refactoring
to transform this spider web of Conditional Test Logic into a nice linear sequence
of statements. (In a test, even a single conditional statement is considered too much
and hence “nested”!) We can use Stated Outcome Assertions to check for null
object references and Equality Assertions to verify the number of objects in the
collection. If each assertion is satisfi ed, the test proceeds. If they are not satisfi ed,
the test ends in failure before it reaches the next statement.

Example: Simple Guard Assertion

This simplifi ed version of the test replaces all conditional statements with asser-
tions. It is shorter than the original test and much easier to read.

 public void testWithoutConditionals() throws Exception {
 String expectedLastname = "smith";
 List foundPeople = PeopleFinder.
 findPeopleWithLastname(expectedLastname);
 assertNotNull("found people list", foundPeople);
 assertEquals("number of people", 1, foundPeople.size());
 Person solePerson = (Person) foundPeople.get(0);
 assertEquals("last name",
 expectedLastname,
 solePerson.getName());
 }

We now have a single linear execution path through this Test Method (page 348);
it should improve our confi dence in the correctness of this test immensely!

Example: Shared Fixture Guard Assertion

Here’s an example of a test that depends on a Shared Fixture. If a previous test (or
even this test in a previous test run) modifi es the state of the fi xture, our SUT could
return unexpected results. It might take a fair bit of effort to determine that the
problem lies in the test’s pre-conditions rather than being a bug in the SUT. We can
avoid all of this trouble by making the assumptions of this test explicit through the
use of a Guard Assertion during the fi xture lookup phase of the test.

Guard
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

493

 public void testAddFlightsByFromAirport_OneOutboundFlight_GA()
 throws Exception {
 // Fixture Lookup
 List flights = facade.getFlightsByOriginAirport(
 ONE_OUTBOUND_FLIGHT_AIRPORT_ID);
 // Guard Assertion on Fixture Contents
 assertEquals("# flights precondition", 1, flights.size());
 FlightDto firstFlight = (FlightDto) flights.get(0);
 // Exercise System
 BigDecimal flightNum = facade.createFlight(
 firstFlight.getOriginAirportId(),
 firstFlight.getDestAirportId());
 // Verify Outcome
 FlightDto expFlight = (FlightDto) firstFlight.clone();
 expFlight.setFlightNumber(flightNum);
 List actual = facade.getFlightsByOriginAirport(
 firstFlight.getOriginAirportId());
 assertExactly2FlightsInDtoList("Flights at origin",
 firstFlight,
 expFlight,
 actual);
 }

We now have a way to determine that the assumptions were violated without
extensive debugging! This is another way we achieve Defect Localization (see
page 22). This time the defect is in the tests’ assumptions on the previously run
tests’ behavior.

 Guard Assertion

Guard
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

494 Chapter 21 Result Verification Patterns

Unfi nished Test Assertion

How do we structure our test logic to avoid leaving tests unfi nished?

We ensure that incomplete tests fail by executing an assertion
that is guaranteed to fail.

 void testSomething() {
 // Outline:
 // create a flight in ... state
 // call the ... method
 // verify flight is in ... state
 fail("Unfinished Test!");
 }

When we start defi ning the tests for a particular piece of code, it is useful to
“rough in” the tests by defi ning Test Methods (page 348) on the appropriate
Testcase Class (page 373) as we think of the test conditions. We do, however,
want to ensure that we don’t accidentally forget to fi ll in the bodies of these tests
if we get distracted. We want the tests to fail until we fi nish coding them.

Including an Unfi nished Test Assertion is a good way to make sure we don’t
forget.

How It Works

We put a single call to fail in each Test Method as we defi ne it. The fail method is
a Single-Outcome Assertion (see Assertion Method on page 362) that always fails.
We include the Assertion Message (page 370) “Unfi nished Test” as a reminder of
why the test fails when we do run the tests.

When to Use It

We should not deliberately write any tests that might accidentally pass. A failing
test makes a good reminder that we still have work to do. We can remind our-
selves of this work by putting an Unfi nished Test Assertion at the end of every
test we write and by removing it only when we are satisfi ed that the test is coded
properly. There is no real cost to doing so, but a lot of benefi t. It is just a matter
of getting into the habit. Some IDEs even help us out by letting us put the Unfi n-
ished Test Assertion into the code generation template for a Test Method

If we need to check in the tests before all code is working, we shouldn’t remove
the tests or the Unfi nished Test Assertions just to get a green bar, as this could

Unfi nished
Test

Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

495

result in Lost Tests (see Production Bugs on page 268). Instead, we can add an
[Ignore] attribute to the test if our member of the xUnit family supports it, rename
the test method if xUnit uses name-based Test Discovery (page 393), or exclude
the entire Testcase Class from the AllTests Suite (see Named Test Suite on page
592) if we are using Test Enumeration (page 399) at the suite level.

Implementation Notes

Most members of the xUnit family have a fail method already defi ned. If the
member that we are using doesn’t include it, we should avoid the temptation
to sprinkle assertTrue(false) throughout our code. This kind of code is obtuse
and easy to get wrong because it is counter-intuitive. Instead, we should take
a minute to write this method ourselves as a Custom Assertion (page 474) and
write the Custom Assertion Test (see Custom Assertion) for it fi rst to make sure
we got it right.

Some IDEs include the ability to customize code generation templates. Some
even include a template for a Test Method that includes an Unfi nished Test
Assertion.

Motivating Example

Consider the following Testcase Class that we are roughing in:

 public void testPull_emptyStack() {

 }

 public void testPull_oneItemOnStack () {

 }

 public void testPull_twoItemsOnStack () {
 //To do: Write this test
 }

 public void testPull_oneItemsRemainingOnStack () {
 //To do: Write this test
 }

Including the // To do: ... comments may remind us that the test still needs work
if our IDE supports that feature—but it won’t remind us of the unfi nished work
when we run the tests. Running this Testcase Class will result in a green bar even
though we may not have implemented our stack at all!

 Unfinished Test Assertion

Unfi nished
Test
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

496 Chapter 21 Result Verification Patterns

Refactoring Notes

To implement Unfi nished Test Assertion all we need to do is add the following
line to each test as we rough it in:

fail("Unfinished Test!");

The exclamation mark is optional. It might be even better to create a Custom
Assertion such as this one:

private void unfinishedTest() {
 fail("Test not implemented!");
}

This would allow us to fi nd all the Unfi nished Test Assertions easily by using the
“search for references” feature of our IDE.

Example: Unfi nished Test Assertion

Here are the tests with an Unfi nished Test Assertion added to each one:

 public void testPull_emptyStack() {
 unfinishedTest();
 }

 public void testPull_oneItemOnStack () {
 unfinishedTest();
 }

 public void testPull_twoItemsOnStack() {
 unfinishedTest();
 }

 public void testPull_oneItemsRemainingOnStack () {
 unfinishedTest();
 }

Now we have a Testcase Class that is guaranteed to fail until we fi nish writing
the code. The failing tests act as a “to do” list for writing the tests.

Example: Unfi nished Test Method Generation from Template

Eclipse (version 3.0) is an example of an IDE that includes the ability to custom-
ize templates. Its testmethod template inserts the following code into our Testcase
Class:

public void testname() throws Exception {
 fail("ClassName::testname not implemented");
}

Unfi nished
Test

 Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

497

The strings “ClassName” and “testname” are placeholders for the names of the
Testcase Class and Test Method, respectively; they are fi lled in automatically
by the IDE. As we modify the test name in the signature, the test name in the
fail statement is adjusted automatically. All we have to do to insert a new Test
Method into a class is to type “testmethod” and then press CTRL-SPACEBAR.

 Unfinished Test Assertion

Unfi nished
Test
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

499

Chapter 22

Fixture Teardown Patterns

Patterns in This Chapter

Teardown Strategy

Garbage-Collected Teardown . 500

Automated Teardown. 503

Code Organization

In-line Teardown . 509

Implicit Teardown . 516

Fixture
Teardown
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

500 Chapter 22 Fixture Teardown Patterns

 b

Garbage-Collected Teardown

How do we tear down the Test Fixture?

We let the garbage collection mechanism provided by the programming
language clean up after our test.

A large part of making tests repeatable and robust is ensuring that the test fi x-
ture is torn down after each test and a new one created for the next test run.
This strategy is known as a Fresh Fixture (page 311). In languages that provide
garbage collection, much of the teardown can happen automatically if we refer
to resources via local and instance variables.

How It Works

Many of the objects created during the course of our test (including both fi xture
setup and exercising the SUT) are transient objects that are kept alive only as
long as there is a reference to them somewhere in the program that created them.
The garbage collection mechanisms of modern languages use various algorithms
to detect “garbage.” What is most important, though, is how they determine
that something is not garbage: Any object that is reachable from any other live
object or from global (i.e., static) variables will not be garbage collected.

When running our tests, the Test Automation Framework (page 298) creates
a Testcase Object (page 382) for each Test Method (page 348) in our Testcase

Fixture

SUT
Setup

Testcase Class

tearDown

test_method_1

test_method_2

test_method_n

Setup

Setup

Garbage
Collection

Teardown

Fixture

SUT
Setup

Testcase Class

tearDown

test_method_1

test_method_2

test_method_n

Setup

Setup

Garbage
Collection

Teardown

Garbage-
Collected
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

501

Class (page 373) and adds those objects to a Test Suite Object (page 387). When-
ever a new test run is started, the framework typically throws away the existing
test suite and builds a new one (to be sure everything is fresh). When the old test
suite is discarded, any objects referenced only by instance variables in those tests
become candidates for garbage collection.

When to Use It

We should use Garbage-Collected Teardown whenever we possibly can because
it will save us a lot of effort!

If our programming takes place in an environment that doesn’t support garbage
collection, or if we have resources that aren’t garbage collected automatically (e.g.,
fi les, sockets, records in a database), we’ll need to destroy or free those resources
explicitly. If we are using a Shared Fixture (page 317), we won’t be able to use
Garbage-Collected Teardown unless we do something fancy to hold the reference
to the fi xture in such a way that it will go out of scope when our test suite has
fi nished running.

We can use In-line Teardown (page 509), Implicit Teardown (page 516), or
Automated Teardown (page 503) to ensure that they are released properly.

Implementation Notes

Some members of the xUnit family and some IDEs go so far as to replace the
classes each time the test suite is run. We may see this behavior show up as an
option called “Reload Classes” or it may be forced upon us. We must be care-
ful if we decide to take advantage of this feature to perform Garbage-Collected
Teardown with fi xture holding class variables, as our tests may stop running
if we change IDEs or try running our tests from the command line (e.g., from
“Cruise Control” or a build script.)

Motivating Example

The following test creates some in-memory objects during fi xture setup and
explicitly destroys them using In-line Teardown. (We could have used Implicit
Teardown in this example but that just makes it harder for readers to see what
is going on.)

 public void testCancel_proposed_UIT() {
 // fixture setup
 Flight proposedFlight = createAnonymousProposedFlight();
 // exercise SUT
 proposedFlight.cancel();

Garbage-Collected Teardown

Garbage-
Collected
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

502 Chapter 22 Fixture Teardown Patterns

 // verify outcome
 try{
 assertEquals(FlightState.CANCELLED,
 proposedFlight.getStatus());
 } finally {
 // teardown
 proposedFlight.delete();
 proposedFlight = null;
 }
 }

Because these objects are not persistent, the code to delete the proposedFlight is
unnecessary and just makes the test more complicated and harder to understand.

Refactoring Notes

To convert to Garbage-Collected Teardown, we need only remove the unneces-
sary cleanup code. If we had been using a class variable to hold the reference to
the object, we would have had to convert it to either an instance variable or a
local variable, both of which would have moved us from a Shared Fixture to a
Fresh Fixture.

Example: Garbage-Collected Teardown

In this reworked test, we let Garbage-Collected Teardown do the job for us.

 public void testCancel_proposed_GCT() {
 // fixture setup
 Flight proposedFlight = createAnonymousProposedFlight();
 // exercise SUT
 proposedFlight.cancel();
 // verify outcome
 assertEquals(FlightState.CANCELLED,
 proposedFlight.getStatus());
 // teardown
 // Garbage collected when proposedFlight goes out of scope
 }

Note how much simpler the test has become!

Garbage-
Collected
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

503

Automated Teardown

How do we tear down the Test Fixture?

We keep track of all resources that are created in a test and automatically
destroy/free them during teardown.

A large part of making tests repeatable and robust is ensuring that the test
fi xture is torn down after each test and a new one created for the next test
run. This strategy is known as a Fresh Fixture (page 311). Leftover objects
and database records, as well as open fi les and connections, can at best cause
performance degradations and at worst cause tests to fail or systems to crash.
While some of these resources may be cleaned up automatically by garbage
collection, others may be left hanging if they are not torn down explicitly.

Writing teardown code that can be relied upon to clean up properly in all possible
circumstances is challenging and time-consuming. It involves understanding what
could be left over for each possible outcome of the test and writing code to deal with
that scenario. This Complex Teardown (see Obscure Test on page 186) introduces
a fair bit of Conditional Test Logic (page 200) and—worst of all—Untestable Test
Code (see Hard-to-Test Code on page 209).

A better solution is to let the test infrastructure track the objects created and
clean them up auto-magically when the test is complete.

Fixture

SUT

Testcase Class

tearDown

test_method_1

test_method_2

test_method_n

Creation

Creation

Test Object
Registry

Destroy All

Teardown

Register
Test Object

Fixture

SUT

Testcase Class

tearDown

test_method_1

test_method_2

test_method_n

Creation

Creation

Test Object
Registry

Destroy All

Teardown

Register
Test Object

 Automated Teardown

Automated
Teardown

Also known as:
Test Object
Registry

www.it-ebooks.info

http://www.it-ebooks.info/

504 Chapter 22 Fixture Teardown Patterns

How It Works

The core of the solution is a mechanism to register each persistent item (i.e.,
object, record, connection, and so on) we create in the test. We maintain a list
(or lists) of registered objects that need some action to be taken to destroy them.
This can be as simple as tossing each object into a collection. At the end of the
test, we traverse the collection and destroy each object. We will want to catch
any errors that we encounter so that one object’s cleanup error will not cause the
rest of the cleanup to be aborted.

When to Use It

We can use Automated Teardown whenever we have persistent resources that
need to be cleaned up to keep the test environment functioning. (This happens
more often in customer tests than in unit tests.) This pattern addresses both
Unrepeatable Tests (see Erratic Test on page 228) and Interacting Tests (see
Erratic Test) by keeping the objects created in one test from lingering into the
execution of a subsequent test.

Automated Teardown isn’t very diffi cult to build, and it will save us a large
amount of grief and effort. Once we have built it for one project, we should be
able to reuse the teardown logic on subsequent projects for very little effort.

Implementation Notes

Automated Teardown comes in two fl avors. The basic fl avor tears down only
objects that were created as part of fi xture setup. The more advanced version also
destroys any objects that were created by the SUT while it was being exercised.

Variation: Automated Fixture Teardown

The simplest solution is to register the objects we create in our Creation Methods
(page 415). Although this pattern will not tear down the objects created by the
SUT, by dealing with our fi xture it reduces the effort and likelihood of errors
signifi cantly.

There are two key challenges with this variation:

• Finding a generic way to clean up the registered objects

• Ensuring that our Automated Teardown code is run for each registered
object

Given that the latter challenge is the easier problem, let us deal with it fi rst.
When we are tearing down a Persistent Fresh Fixture (see Fresh Fixture), the

Automated
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

505

simplest solution is to put the call to the Automated Teardown mechanism into
the tearDown method on our Testcase Class (page 373). This method is called
regardless of whether the test passes or fails as long as the setUp method succeeds.
When we are tearing down a Shared Fixture (page 317), we want the tearDown
method to run only after all the Test Methods (page 348) have been run. In this
case, we can use either Suite Fixture Setup (page 441), if our member of the
xUnit family supports it, or a Setup Decorator (page 447).

Now let’s go back to the harder problem: the generic mechanism for cleaning
up the resources. We have at least two options here. First, we can ensure that all
persistent (non-garbage-collected) objects implement a generic cleanup mechanism
that we can call from within the Automated Teardown mechanism. Alternatively,
we can wrap each object in another object that knows how to clean up the object
in question. The latter strategy is an example of the Command [GOF] pattern.

If we build our Automated Teardown mechanism in a completely generic
way, we can include it in the Testcase Superclass (page 638) on which we can
base all our Testcase Classes. Otherwise, we may need to put it onto a Test
Helper (page 643) that is visible from all Testcase Classes that need it. A Test
Helper that both creates fi xture objects and tears them down automatically is
sometimes called an Object Mother (see Test Helper).

Being a nontrivial (and very critical) piece of code, the Automated Teardown
mechanism deserves its own unit tests. Because it is now outside the Test Method,
we can write Self-Checking Tests (see page 26) for it! If we want to be really
careful (some might say paranoid), we can use Delta Assertions (page 485) to
verify that any objects that persist after the teardown operation really existed
before the test was performed.

Variation: Automated Exercise Teardown

We can make the tests even more “self-cleaning” by also cleaning up the objects
created by the SUT. This effort involves designing the SUT using an observable
Object Factory (see Dependency Lookup on page 686) so that we can automati-
cally register any objects created by the SUT while it is being exercised. During
the teardown phase we can delete these objects, too.

Motivating Example

In this example, we create several objects using Creation Methods and need to
tear them down when the test in complete. To do so, we introduce a try/fi nally
block to ensure that our In-line Teardown (page 509) code executes even when
the assertions fail.

Automated Teardown

Automated
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

506 Chapter 22 Fixture Teardown Patterns

 public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = null;
 FlightDto expFlightDto = null;
 try {
 inboundAirport = createTestAirport("1IF");
 expFlightDto = createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 try {
 facade.removeFlight(expFlightDto.getFlightNumber());
 } finally {
 try {
 facade.removeAirport(inboundAirport);
 } finally {
 facade.removeAirport(outboundAirport);
 }
 }
 }
 }

Note that we must use nested try/fi nally constructs within the fi nally block to
ensure that any errors in the teardown don’t keep us from fi nishing the job.

Refactoring Notes

Introducing Automated Teardown involves two steps. First, we add the
Automated Teardown mechanism to our Testcase Class. Second, we remove
any In-line Teardown code from our tests.

Automated Teardown can be implemented on a specifi c Testcase Class or it can
be inherited (or mixed in) via a generic class. Either way, we need to make sure we
register all of our newly created objects so that the mechanism knows to delete
them when the test is fi nished. This is most easily done inside Creation Methods
that already exist. Alternatively, we can use an Extract Method [Fowler] refactoring
to move the direct constructor calls into newly created Creation Methods and add
the registration.

The generic Automated Teardown mechanism should be invoked from the
tearDown method. Although this can be done on our own Testcase Class, it is
almost always better to put this method on a Testcase Superclass that all our
Testcase Classes inherit from. If we don’t already have a Testcase Superclass,

Automated
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

507

we can easily create one by doing an Extract Class [Fowler] refactoring and
then doing a Pull Up Method [Fowler] refactoring on any methods (and fi elds)
associated with the Automated Teardown mechanism.

Example: Automated Teardown

There is not much to see in this refactored test because all of the teardown code
has been removed.

 public void testGetFlightsByOriginAirport_OneOutboundFlight()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = createTestAirport("1IF");
 FlightDto expectedFlightDto =
 createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtOrigin =
 facade.getFlightsByOriginAirport(outboundAirport);
 // Verify Outcome
 assertOnly1FlightInDtoList("Flights at origin",
 expectedFlightDto,
 flightsAtOrigin);
 }

Here is where all the work gets done! The Creation Method has been modifi ed
to register the object it just created.

 private List allAirportIds;
 private List allFlights;

 protected void setUp() throws Exception {
 allAirportIds = new ArrayList();
 allFlights = new ArrayList();
 }

 private BigDecimal createTestAirport(String airportName)
 throws FlightBookingException {
 BigDecimal newAirportId = facade.createAirport(
 airportName, " Airport" + airportName,
 "City" + airportName);
 allAirportIds.add(newAirportId);
 return newAirportId;
 }

Next comes the actual Automated Teardown logic. In this example, it lives on
our Testcase Class and is called from the tearDown method. To keep this example
very simple, this logic has been written specifi cally to handle airports and fl ights.
More typically, it would live in the Testcase Superclass, where it could be used

 Automated Teardown

Automated
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

508 Chapter 22 Fixture Teardown Patterns

by all Testcase Classes, and would use a generic object destruction mechanism
so that it would not have to care what types of objects it was deleting.

 protected void tearDown() throws Exception {
 removeObjects(allAirportIds, "Airport");
 removeObjects(allFlights, "Flight");
 }

 public void removeObjects(List objectsToDelete, String type) {
 Iterator i = objectsToDelete.iterator();
 while (i.hasNext()) {
 try {
 BigDecimal id = (BigDecimal) i.next();
 if ("Airport"==type) {
 facade.removeAirport(id);
 } else {
 facade.removeFlight(id);
 }
 } catch (Exception e) {
 // do nothing if the remove failed
 }
 }
 }

If we were tearing down a Shared Fixture, we would annotate our tearDown method
with the suitable annotation or attribute (e.g., @afterClass or [TestFixtureTearDown])
or move it to a Setup Decorator.

Example: Automated Exercise Teardown

If we wanted to take the next step and automatically tear down any objects
created within the SUT, we could modify the SUT to use an observable Object
Factory. In our test, we would add the following code:

ResourceTracker tracker;

public void setUp() {
 tracker = new ResourceTracker();
 ObjectFactory.addObserver(tracker);
}

public void tearDown() {
 tracker.cleanup();
 ObjectFactory.removeObserver(tracker);
}

This last example assumes that the Automated Teardown logic has been moved
into the cleanup method on the ResourceTracker.

Automated
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

509

In-line Teardown

How do we tear down the Test Fixture?

We include teardown logic at the end of the Test Method immediately after the
result verifi cation.

A large part of making tests repeatable and robust is ensuring that the test fi xture
is torn down after each test and a new one created for the next test run. This
strategy is known as a Fresh Fixture (page 311). Leftover objects and database
records, as well as open fi les and connections, can at best cause performance
degradations and at worst cause tests to fail or systems to crash. While some of
these resources may be cleaned up automatically by garbage collection, others
may be left hanging if they are not torn down explicitly.

At a minimum, we should write In-line Teardown code that cleans up
resources left over after our test.

How It Works

As we write a test, we mentally keep track of all objects the test creates that
will not be cleaned up automatically. After writing the code to exercise the SUT
and verify the outcome, we add logic to the end of the Test Method (page 348)
to destroy any objects that will not be cleaned up automatically by the garbage
collector. We use the relevant language feature to ensure that the teardown code
is run regardless of the outcome of the test.

Fixture

SUT

Teardown

Testcase Class

tearDown

test_method_1

test_method_2

test_method_n
Teardown

Teardown

Fixture

SUT

Teardown

Testcase Class

tearDown

test_method_1

test_method_2

test_method_n
Teardown

Teardown

 In-line Teardown

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

510 Chapter 22 Fixture Teardown Patterns

When to Use It

We should use some form of teardown logic whenever we have resources that
will not be freed automatically after the Test Method is run; we can use In-line
Teardown when each test has different objects to clean up. We may discover that
objects need to be cleaned up because we have Unrepeatable Tests (see Erratic
Test on page 228) or Slow Tests (page 253) caused by the accumulation of detritus
from many test runs.

Unlike fi xture setup, the teardown logic is not important from the perspective
of Tests as Documentation (see page 23). Use of any form of teardown logic may
potentially contribute to High Test Maintenance Cost (page 265) and should be
avoided if at all possible. Thus the only real benefi t of including the teardown logic
on an in-line basis is that it may make it easier to maintain the teardown logic—a
pretty slim benefi t, indeed. It is almost always better to strive for Automated Tear-
down (page 503) or to use Implicit Teardown (page 516) if we are using Testcase
Class per Fixture (page 631), where all tests in a Testcase Class (page 373) have the
same test fi xture.

We can also use In-line Teardown as a steppingstone to Implicit Teardown,
thereby following the principle of “the simplest thing that could possibly
work.” First, we learn how to do In-line Teardown for each Test Method; next,
we extract the common logic from those tests into the tearDown method. We
should not use In-line Teardown if the objects created by the test are subject
to automated memory management. In such a case, we should use Garbage-
Collected Teardown (page 500) instead because it is much less error-prone and
keeps the tests easier to understand and maintain.

Implementation Notes

The primary consideration in In-line Teardown is ensuring that the teardown
code actually runs even when the test is failed by an Assertion Method (page 362)
or ends in an error in either the SUT or the Test Method. A secondary consider-
ation is ensuring that the teardown code does not introduce additional errors.

The key to doing In-line Teardown correctly is to use language-level constructs
to ensure that the teardown code is run. Most modern languages include some
sort of error/exception-handling construct that will attempt the execution of a
block of code with the guarantee that a second block of code will be run regard-
less of how the fi rst block terminates. In Java, this construct takes the form of a
try block with an associated fi nally block.

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

511

Variation: Teardown Guard Clause

To protect against a failure caused by trying to tear down a resource that doesn’t
exist, we can put a “guard clause” around the logic. Its inclusion reduces the
likelihood of a test error caused by the teardown logic.

Variation: Delegated Teardown

We can move much of the teardown logic out of the Test Method by calling a
Test Utility Method (page 599). Although this strategy reduces the amount of
teardown logic cluttering the test, we still need to place an error-handling con-
struct around at least the assertions and the exercising of the SUT to ensure that
it gets called. Using Implicit Teardown is almost always a better solution.

Variation: Naive In-line Teardown

Naive In-line Teardown is what we have when we forget to put the equivalent of
a try/fi nally block around our test logic to ensure that our teardown logic always
executes. It leads to Resource Leakage (see Erratic Test), which in turn may lead
to Erratic Tests.

Motivating Example

The following test creates a persistent object (airport) as part of the fi xture.
Because the object is stored in a database, it is not subject to Garbage-Collected
Teardown and must be explicitly destroyed. If we do not include teardown logic in
the test, each time the test is run it will create another object in the database. This
may lead to Unrepeatable Tests unless the test uses Distinct Generated Values (see
Generated Value on page 723) to ensure that the created objects do not violate any
unique key constraints.

 public void testGetFlightsByOriginAirport_NoFlights_ntd()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(outboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 }

 In-line Teardown

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

512 Chapter 22 Fixture Teardown Patterns

Example: Naive In-line Teardown

In this naive solution to this problem, we added a line after the assertion to
destroy the airport created in the fi xture setup.

 public void testGetFlightsByOriginAirport_NoFlights()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(outboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 facade.removeAirport(outboundAirport);
 }

Unfortunately, this solution isn’t really adequate because the teardown logic
won’t be exercised if the SUT encounters an error or if the assertions fail. We
could try moving the fi xture cleanup before the assertions but this still wouldn’t
address the issue with errors occurring inside the SUT. Clearly, we need a more
general solution.

Refactoring Notes

We need either to place an error-handling construct around the exercising of the
SUT and the assertions or to move the teardown code into the tearDown method.
Either way, we need to ensure that all the teardown code runs, even if some parts
of it fail. This usually involves the judicious use of try/fi nally control structures
around each step of the teardown process.

Example: In-line Teardown

In this Java example, we have introduced a try/fi nally block around the exercise
SUT and result verifi cation phases of the test to ensure that our teardown code
is run.

 public void testGetFlightsByOriginAirport_NoFlights_td()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 try {
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(outboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

513

 } finally {
 facade.removeAirport(outboundAirport);
 }
 }

Now the exercising of the SUT and the assertions both appear in the try block
and the teardown logic is found in the fi nally block. This separation is crucial to
making In-line Teardown work properly. We should not include a catch block
unless we are writing an Expected Exception Test (see Test Method).

Example: Teardown Guard Clause

Here, we’ve added a Teardown Guard Clause to the teardown code to ensure it
isn’t run if the airport doesn’t exist:

 public void testGetFlightsByOriginAirport_NoFlights_TDGC()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 try {
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(outboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 if (outboundAirport!=null) {
 facade.removeAirport(outboundAirport);
 }
 }
 }

Example: Multiresource In-line Teardown (Java)

If multiple resources need to be cleaned up in the same test, we must ensure that
all the teardown code runs even if some of the teardown statements contain
errors. This goal can be accomplished by nesting each subsequent teardown step
inside another block of guaranteed code, as in this Java example:

 public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = null;
 FlightDto expFlightDto = null;
 try {
 inboundAirport = createTestAirport("1IF");
 expFlightDto = createTestFlight(outboundAirport, inboundAirport);

 In-line Teardown

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

514 Chapter 22 Fixture Teardown Patterns

 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 try {
 facade.removeFlight(expFlightDto.getFlightNumber());
 } finally {
 try {
 facade.removeAirport(inboundAirport);
 } finally {
 facade.removeAirport(outboundAirport);
 }
 }
 }
 }

This scheme gets very messy in a hurry if we must clean up more than a few
resources. In such a situation, it makes more sense to organize the resources into
an array or list and then to iterate over that array or list. At that point we are
halfway to implementing Automated Teardown.

Example: Delegated Teardown

We can also delegate the teardown from within the Test Method if we don’t
believe we can come up with a completely generic way cleanup strategy that will
work for all tests.

 public void testGetFlightsByOrigin_NoInboundFlight_DTD()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = null;
 FlightDto expectedFlightDto = null;
 try {
 inboundAirport = createTestAirport("1IF");
 expectedFlightDto =
 createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 teardownFlightAndAirports(outboundAirport,
 inboundAirport,
 expectedFlightDto);
 }
 }

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

515

 private void teardownFlightAndAirports(
 BigDecimal firstAirport,
 BigDecimal secondAirport,
 FlightDto flightDto)
 throws FlightBookingException {
 try {
 facade.removeFlight(flightDto.getFlightNumber());
 } finally {
 try {
 facade.removeAirport(secondAirport);
 } finally {
 facade.removeAirport(firstAirport);
 }
 }
 }

The optimizers among us will notice that the two fl ight numbers are actually
available as attributes of the fl ightDto. The paranoid will counter that because the
teardownFlightAndAirports method could be called before the fl ightDto is constructed,
we cannot count on using it to access the Airports. Hence we must pass the
Airports in individually. The need to think this way is why a generic Automated
Teardown is so attractive; it avoids having to think at all!

 In-line Teardown

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

516 Chapter 22 Fixture Teardown Patterns

Implicit Teardown

How do we tear down the Test Fixture?

The Test Automation Framework calls our cleanup logic in the
tearDown method after every Test Method.

A large part of making tests repeatable and robust is ensuring that the test
fi xture is torn down after each test and a new one created for the next test
run. This strategy is known as a Fresh Fixture (page 311). Leftover objects
and database records, as well as open fi les and connections, can at best cause
performance degradations and at worst cause tests to fail or systems to crash.

When we can’t take advantage of Garbage-Collected Teardown (page 500)
and we have several tests with the same objects to tear down, we can put
the teardown logic into a special tearDown method that the Test Automation
Framework (page 298) calls after each Test Method (page 348) is run.

How It Works

Anything that needs to be cleaned up can be freed or destroyed in the fi nal
phase of the Four-Phase Test (page 358)—namely, the fi xture teardown phase.
Most members of the xUnit family of Test Automation Frameworks support

Implicit
Teardown

Fixture

Testcase Class

SUT

Teardown

test_1

test_2

test_n

Teardown

Also known as:
Hooked

Teardown,
Framework-

Invoked
Teardown,
Teardown

Method

www.it-ebooks.info

http://www.it-ebooks.info/

517

the concept of Implicit Teardown, wherein they call the tearDown method of each
Testcase Object (page 382) after the Test Method has been run.

The tearDown method is called regardless of whether the test passes or fails.
This scheme ensures that we have the opportunity to clean up, undisturbed by
any failed assertions. Be aware, however, that many members of the xUnit
family do not call tearDown if the setUp method raises an error.

When to Use It

We can use Implicit Teardown whenever several tests with the same resources need
to be destroyed or freed explicitly after the test has been completed and those
resources will not be destroyed or freed automatically. We may discover this require-
ment because we have Unrepeatable Tests (see Erratic Test on page 228) or Slow
Tests (page 253) caused by the accumulation of detritus from many test runs.

If the objects created by the test are internal resources and subject to automated
memory management, then Garbage-Collected Teardown may eliminate a lot of
work for us. If each test has a completely different set of objects to tear down,
then In-line Teardown (page 509) may be more appropriate. In many cases, we
can completely avoid manually written teardown logic by using Automated Tear-
down (page 503).

Implementation Notes

The teardown logic in the tearDown method is most often created by refactoring
from tests that had In-line Teardown. The tearDown method may need to be
“fl exible” or “accommodating” for several reasons:

• When a test fails or when a test error occurs, the Test Method may not
have created all the fi xture objects.

• If all the Test Methods in the Testcase Class (page 373) don’t use
identical fi xtures,1 there may be different sets of objects to clean up
for different tests.

Variation: Teardown Guard Clause

We can avoid arbitrarily Conditional Test Logic (page 200) if we deal with the
case where only a subset of the objects to be torn down are actually present by
putting a guard clause (a simple if statement) around each teardown operation

1 That is, they augment the Implicit Teardown with some additional In-line Setup
(page 408) or Delegated Setup (page 411).

 Implicit Teardown

Implicit
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

518 Chapter 22 Fixture Teardown Patterns

to guard against the resource not being present. With this technique, a suitably
coded tearDown method can tear down various fi xture confi gurations. Contrast this
with the setUp method, which can set up only the lowest common denominator
fi xture for the Test Methods that share it.

Motivating Example

The following test creates several standard objects during fi xture setup. Because
the objects are persisted in a database, they must be cleaned up explicitly after
every test. Each test (only one of several is shown here) contains the same in-line
teardown logic to delete the objects.

 public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = null;
 FlightDto expFlightDto = null;
 try {
 inboundAirport = createTestAirport("1IF");
 expFlightDto = createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 try {
 facade.removeFlight(expFlightDto.getFlightNumber());
 } finally {
 try {
 facade.removeAirport(inboundAirport);
 } finally {
 facade.removeAirport(outboundAirport);
 }
 }
 }
 }

There is enough Test Code Duplication (page 213) here to warrant converting
these tests to Implicit Teardown.

Refactoring Notes

First, we fi nd the most representative example of teardown in all the tests. Next,
we do an Extract Method [Fowler] refactoring on that code and call the resulting
method tearDown. Finally, we delete the teardown logic in each of the other tests.

Implicit
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

519

We may need to introduce Teardown Guard Clauses around any teardown logic
that may not be needed in every test. We should also surround each teardown
attempt with a try/fi nally block to ensure that the remaining teardown logic
executes even if an earlier attempt fails.

Example: Implicit Teardown

This example shows the same tests with the teardown logic removed to the tearDown
method. Note how much smaller the tests have become.

 BigDecimal outboundAirport;
 BigDecimal inboundAirport;
 FlightDto expFlightDto;

 public void testGetFlightsByAirport_NoInboundFlights_NIT()
 throws Exception {
 // Fixture Setup
 outboundAirport = createTestAirport("1OF");
 inboundAirport = createTestAirport("1IF");
 expFlightDto = createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 }

 protected void tearDown() throws Exception {
 try {
 facade.removeFlight(expFlightDto.getFlightNumber());
 } finally {
 try {
 facade.removeAirport(inboundAirport);
 } finally {
 facade.removeAirport(outboundAirport);
 }
 }
 }

Note that there is no try/fi nally block around the exercising of the SUT and the
assertions. This structure helps the test reader understand that this is not an
Expected Exception Test (see Test Method). Also, we didn’t need to put a Guard
Clause [SBPP] in front of each operation because the try/fi nally block ensures
that a failure is noncatastrophic; thus there is no real harm in trying to perform
the operation. We did have to convert our fi xture holding local variables into
instance variables to allow the tearDown method to access the fi xture.

 Implicit Teardown

Implicit
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

521

Chapter 23

Test Double Patterns

Patterns in This Chapter

Test Double. 522

Test Double Usage

Test Stub. 529

Test Spy . 538

Mock Object . 544

Fake Object . 551

Test Double Construction

Confi gurable Test Double . 558

Hard-Coded Test Double . 568

Test-Specifi c Subclass . 579

Test Double
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

522 Chapter 23 Test Double Patterns

3

Test Double

How can we verify logic independently when code it depends
on is unusable?

How can we avoid Slow Tests?

We replace a component on which the SUT depends with a
“test-specifi c equivalent.”

Sometimes it is just plain hard to test the SUT because it depends on other
components that cannot be used in the test environment. Such a situation may
arise because those components aren’t available, because they will not return
the results needed for the test, or because executing them would have unde-
sirable side effects. In other cases, our test strategy requires us to have more
control over or visibility of the internal behavior of the SUT.

When we are writing a test in which we cannot (or choose not to) use a
real depended-on component (DOC), we can replace it with a Test Double.
The Test Double doesn’t have to behave exactly like the real DOC; it merely
has to provide the same API as the real DOC so that the SUT thinks it is the
real one!

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Also known as:
Imposter

Test
Double

www.it-ebooks.info

http://www.it-ebooks.info/

523

How It Works

When the producers of a movie want to fi lm something that is potentially risky
or dangerous for the leading actor to carry out, they hire a “stunt double” to
take the place of the actor in the scene. The stunt double is a highly trained
individual who is capable of meeting the specifi c requirements of the scene. The
stunt double may not be able to act, but he or she knows how to fall from great
heights, crash a car, or do whatever the scene calls for. How closely the stunt
double needs to resemble the actor depends on the nature of the scene. Usually,
things can be arranged such that someone who vaguely resembles the actor in
stature can take the actor’s place.

For testing purposes, we can replace the real DOC (not the SUT!) with our
equivalent of the “stunt double”: the Test Double. During the fi xture setup phase
of our Four-Phase Test (page 358), we replace the real DOC with our Test Double.
Depending on the kind of test we are executing, we may hard-code the behavior
of the Test Double or we may confi gure it during the setup phase. When the SUT
interacts with the Test Double, it won’t be aware that it isn’t talking to the real
McCoy, but we will have achieved our goal of making impossible tests possible.

Regardless of which variation of Test Double we choose to use, we must keep
in mind that we don’t need to implement the entire interface of the DOC. Instead,
we provide only the functionality needed for our particular test. We can even
build different Test Doubles for different tests that involve the same DOC.

When to Use It

We might want to use some sort of Test Double during our tests in the following
circumstances:

• If we have an Untested Requirement (see Production Bugs on page 268)
because neither the SUT nor its DOCs provide an observation point for
the SUT’s indirect output that we need to verify using Behavior Verifi -
cation (page 468)

• If we have Untested Code (see Production Bugs) and a DOC does not
provide the control point to allow us to exercise the SUT with the nec-
essary indirect inputs

• If we have Slow Tests (page 253) and we want to be able to run our
tests more quickly and hence more often

Each of these scenarios can be addressed in some way by using a Test Double.
Of course, we have to be careful when using Test Doubles because we are testing

 Test Double

Test
Double

www.it-ebooks.info

http://www.it-ebooks.info/

524 Chapter 23 Test Double Patterns

the SUT in a different confi guration from the one that will be used in production.
For this reason, we really should have at least one test that verifi es the SUT works
without a Test Double. We need to be careful that we don’t replace the parts of
the SUT that we are trying to verify because that practice can result in tests that
test the wrong software! Also, excessive use of Test Doubles can result in Fragile
Tests (page 239) as a result of Overspecifi ed Software.

Test Doubles come in several major fl avors, as summarized in Figure 23.1.
The implementation variations of these patterns are described in more detail in
the corresponding pattern write-ups.

Figure 23.1 Types of Test Doubles. Dummy Objects are really an alternative
to the value patterns. Test Stubs are used to verify indirect inputs; Test Spies
and Mock Objects are used to verify indirect outputs. Fake objects provide an
alternative implementation.

These variations are classifi ed based on how/why we use the Test Double. We
will deal with variations around how we build the Test Doubles in the “Imple-
mentation” section.

Variation: Test Stub

We use a Test Stub (page 529) to replace a real component on which the SUT
depends so that the test has a control point for the indirect inputs of the SUT. Its
inclusion allows the test to force the SUT down paths it might not otherwise
execute. We can further classify Test Stubs by the kind of indirect inputs they
are used to inject into the SUT. A Responder (see Test Stub) injects valid values,
while a Saboteur (see Test Stub) injects errors or exceptions.

Some people use the term “test stub” to mean a temporary implementation
that is used only until the real object or procedure becomes available. I prefer to
call this usage a Temporary Test Stub (see Test Stub) to avoid confusion.

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Test
Double

www.it-ebooks.info

http://www.it-ebooks.info/

525

Variation: Test Spy

We can use a more capable version of a Test Stub, the Test Spy (page 538), as
an observation point for the indirect outputs of the SUT. Like a Test Stub, a
Test Spy may need to provide values to the SUT in response to method calls.
The Test Spy, however, also captures the indirect outputs of the SUT as it is
exercised and saves them for later verifi cation by the test. Thus, in many ways,
the Test Spy is “just a” Test Stub with some recording capability. While a Test
Spy is used for the same fundamental purpose as a Mock Object (page 544),
the style of test we write using a Test Spy looks much more like a test written
with a Test Stub.

Variation: Mock Object

We can use a Mock Object as an observation point to verify the indirect outputs
of the SUT as it is exercised. Typically, the Mock Object also includes the func-
tionality of a Test Stub in that it must return values to the SUT if it hasn’t already
failed the tests but the emphasis1 is on the verifi cation of the indirect outputs.
Therefore, a Mock Object is a lot more than just a Test Stub plus assertions: It
is used in a fundamentally different way.

Variation: Fake Object

We use a Fake Object (page 551) to replace the functionality of a real DOC
in a test for reasons other than verifi cation of indirect inputs and outputs of
the SUT. Typically, a Fake Object implements the same functionality as the
real DOC but in a much simpler way. While a Fake Object is typically built
specifi cally for testing, the test does not use it as either a control point or an
observation point.

The most common reason for using a Fake Object is that the real DOC
is not available yet, is too slow, or cannot be used in the test environment
because of deleterious side effects. The sidebar “Faster Tests Without Shared
Fixtures” (page 319) describes how we encapsulated all database access behind
a persistence layer interface and then replaced the database with in-memory
hash tables and made our tests run 50 times faster. Chapter 6, Test Automation
Strategy, and Chapter 11, Using Test Doubles, provide an overview of the vari-
ous techniques available for making our SUT easier to test.

1 My mother grew up in Hungary and has retained a part of her Hungarian accent—think
Zsa Zsa Gabor—all her life. She says, “It is important to put the emphasis on the right
syllable.”

Test
Double

 Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

526 Chapter 23 Test Double Patterns

Variation: Dummy Object

Some method signatures of the SUT may require objects as parameters. If
neither the test nor the SUT cares about these objects, we may choose to pass
in a Dummy Object (page 728), which may be as simple as a null object ref-
erence, an instance of the Object class, or an instance of a Pseudo-Object (see
Hard-Coded Test Double on page 568). In this sense, a Dummy Object isn’t
really a Test Double per se but rather an alternative to the value patterns Literal
Value (page 714), Derived Value (page 718), and Generated Value (page 723).

Variation: Procedural Test Stub

A Test Double implemented in a procedural programming language is often
called a “test stub,” but I prefer to call it a Procedural Test Stub (see Test Stub)
to distinguish this usage from the modern Test Stub variation of Test Doubles.
Typically, we use a Procedural Test Stub to allow testing/debugging to proceed
while waiting for other code to become available. It is rare for these objects to
be “swapped in” at runtime but sometimes we make the code conditional on a
“Debugging” fl ag—a form of Test Logic in Production (page 217).

Implementation Notes

Several considerations must be taken into account when we are building the Test
Double (Figure 23.2):

• Whether the Test Double should be specifi c to a single test or reusable
across many tests

• Whether the Test Double should exist in code or be generated on-the-fl y

• How we tell the SUT to use the Test Double (installation)

The fi rst and last points are addressed here. The discussion of Test Double gen-
eration is left to the section on Confi gurable Test Doubles.

Because the techniques for building Test Doubles are pretty much independent
of their behavior (e.g., they apply to both Test Stubs and Mock Objects), I’ve
chosen to split out the descriptions of the various ways we can build Hard-Coded
Test Doubles and Confi gurable Test Doubles (page 558) into separate patterns.

Test
Double

www.it-ebooks.info

http://www.it-ebooks.info/

527

Figure 23.2 Types of Test Doubles with implementation choices. Only Test
Stubs, Test Spies, and Mock Objects need to be hard-coded or confi gured by the
test. Dummy Objects have no implementation; Fake Objects are installed but
not controlled by the test.

Variation: Unconfi gurable Test Doubles

Neither Dummy Objects nor Fake Objects need to be confi gured, each for their
own reason. Dummies should never be used by the receiver so they need no
“real” implementation. Fake Objects, by contrast, need a “real” implementa-
tion but one that is much simpler or “lighter” than the object that they replace.
Therefore, neither the test nor the test automater will need to confi gure “canned”
responses or expectations; we just install the Test Double and let the SUT use it
as if it were real.

Variation: Hard-Coded Test Double

When we plan to use a specifi c Test Double in only a single test, it is often sim-
plest to just hard-code the Test Double to return specifi c values (for Test Stubs)
or expect specifi c method calls (Mock Objects). Hard-Coded Test Doubles are
typically hand-built by the test automater. They come in several forms, including
the Self Shunt (see Hard-Coded Test Double), where the Testcase Class (page 373)
acts as the Test Double; the Anonymous Inner Test Double (see Hard-Coded Test
Double), where language features are used to create the Test Double inside the
Test Method (page 348); and the Test Double implemented as separate Test
Double Class (see Hard-Coded Test Double). Each of these options is discussed
in more detail in Hard-Coded Test Double.

Configurable
Test Double

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Hard-Coded
Test Double

Configurable
Test Double

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Hard-Coded
Test Double

 Test Double

Test
Double

www.it-ebooks.info

http://www.it-ebooks.info/

528 Chapter 23 Test Double Patterns

Variation: Confi gurable Test Double

When we want to use the same Test Double implementation in many tests, we
will typically prefer to use a Confi gurable Test Double. Although the test auto-
mater can manually build these objects, many members of the xUnit family have
reusable toolkits available for generating Confi gurable Test Doubles.

Installing the Test Double

Before we can exercise the SUT, we must tell it to use the Test Double instead
of the object that the Test Double replaces. We can use any of the substitutable
dependency patterns to install the Test Double during the fi xture setup phase of
our Four-Phase Test. Confi gurable Test Doubles need to be confi gured before
we exercise the SUT, and we typically perform this confi guration before we
install them.

Example: Test Double

Because there are a wide variety of reasons for using the variations of Test Dou-
bles, it is diffi cult to provide a single example that characterizes the motivation
behind each style. Please refer to the examples in each of the more detailed pat-
terns referenced earlier.

Test
Double

www.it-ebooks.info

http://www.it-ebooks.info/

529

Test Stub

How can we verify logic independently when it depends on indirect inputs
from other software components?

We replace a real object with a test-specifi c object that feeds the desired
indirect inputs into the system under test.

In many circumstances, the environment or context in which the SUT operates
very much infl uences the behavior of the SUT. To get adequate control over the
indirect inputs of the SUT, we may have to replace some of the context with
something we can control—namely, a Test Stub.

How It Works

First, we defi ne a test-specifi c implementation of an interface on which the SUT
depends. This implementation is confi gured to respond to calls from the SUT with
the values (or exceptions) that will exercise the Untested Code (see Production
Bugs on page 268) within the SUT. Before exercising the SUT, we install the Test
Stub so that the SUT uses it instead of the real implementation. When called by

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Creation
Test
Stub

Return
Values

Indirect
 Input

Installation

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Creation
Test
Stub

Return
Values

Indirect
 Input

Installation

Test
Stub

Also known as:
Stub

 Test Stub

www.it-ebooks.info

http://www.it-ebooks.info/

530 Chapter 23 Test Double Patterns

the SUT during test execution, the Test Stub returns the previously defi ned values.
The test can then verify the expected outcome in the normal way.

When to Use It

A key indication for using a Test Stub is having Untested Code caused by our
inability to control the indirect inputs of the SUT. We can use a Test Stub as
a control point that allows us to control the behavior of the SUT with vari-
ous indirect inputs and we have no need to verify the indirect outputs. We
can also use a Test Stub to inject values that allow us to get past a particular
point in the software where the SUT calls software that is unavailable in our
test environment.

If we do need an observation point that allows us to verify the indirect out-
puts of the SUT, we should consider using a Mock Object (page 544) or a Test
Spy (page 538). Of course, we must have a way of installing a Test Double (page 522)
into the SUT to be able to use any form of Test Double.

Variation: Responder

A Test Stub that is used to inject valid indirect inputs into the SUT so that it
can go about its business is called a Responder. Responders are commonly used
in “happy path” testing when the real component is uncontrollable, is not yet
available, or is unusable in the development environment. The tests will invari-
ably be Simple Success Tests (see Test Method on page 348).

Variation: Saboteur

A Test Stub that is used to inject invalid indirect inputs into the SUT is often
called a Saboteur because its purpose is to derail whatever the SUT is trying
to do so that we can see how the SUT copes under these circumstances. The
“derailment” might be caused by returning unexpected values or objects, or
it might result from raising an exception or causing a runtime error. Each test
may be either a Simple Success Test or an Expected Exception Test (see Test
Method), depending on how the SUT is expected to behave in response to the
indirect input.

Variation: Temporary Test Stub

A Temporary Test Stub stands in for a DOC that is not yet available. This kind
of Test Stub typically consists of an empty shell of a real class with hard-coded
return statements. As soon as the real DOC is available, it replaces the Tempo-
rary Test Stub. Test-driven development often requires us to create Temporary

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

531

Test Stubs as we write code from the outside in; these shells evolve into the real
classes as we add code to them. In need-driven development, we tend to use
Mock Objects because we want to verify that the SUT calls the right methods
on the Temporary Test Stub; in addition, we typically continue using the Mock
Object even after the real DOC becomes available.

Variation: Procedural Test Stub

A Procedural Test Stub is a Test Stub written in a procedural programming lan-
guage. It is particularly challenging to create in procedural programming languages
that do not support procedure variables (also known as function pointers). In most
cases, we must put if testing then hooks into the production code (a form of Test
Logic in Production; see page 217).

Variation: Entity Chain Snipping

Entity Chain Snipping (see Test Stub on page 529) is a special case of a
Responder that is used to replace a complex network of objects with a single
Test Stub that pretends to be the network of objects. Its inclusion can make fi x-
ture setup go much more quickly (especially when the objects would normally
have to be persisted into a database) and can make the tests much easier to
understand.

Implementation Notes

We must be careful when using Test Stubs because we are testing the SUT in a
different confi guration from the one that will be used in production. We really
should have at least one test that verifi es the SUT works without a Test Stub. A
common mistake made by test automaters who are new to stubs is to replace a
part of the SUT that they are trying to test. For this reason, it is important to be
really clear about what is playing the role of SUT and what is playing the role of
test fi xture. Also, note that excessive use of Test Stubs can result in Overspeci-
fi ed Software (see Fragile Test on page 239).

Test Stubs may be built in several different ways depending on our specifi c
needs and the tools we have on hand.

Variation: Hard-Coded Test Stub

A Hard-Coded Test Stub has its responses hard-coded within its program logic.
These Test Stubs tend to be purpose-built for a single test or a very small number
of tests. See Hard-Coded Test Double (page 568) for more information.

 Test Stub

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

532 Chapter 23 Test Double Patterns

Variation: Confi gurable Test Stub

When we want to avoid building a different Hard-Coded Test Stub for each test,
we can use a Confi gurable Test Stub (see Confi gurable Test Double on page 558).
A test confi gures the Confi gurable Test Stub as part of its fi xture setup phase. Many
members of the xUnit family offer tools with which to generate Confi gurable Test
Doubles (page 558), including Confi gurable Test Stubs.

Motivating Example

The following test verifi es the basic functionality of a component that formats
an HTML string containing the current time. Unfortunately, it depends on the
real system clock so it rarely ever passes!

 public void testDisplayCurrentTime_AtMidnight() {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

We could try to address this problem by making the test calculate the expected
results based on the current system time as follows:

 public void testDisplayCurrentTime_whenever() {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify outcome
 Calendar time = new DefaultTimeProvider().getTime();
 StringBuffer expectedTime = new StringBuffer();
 expectedTime.append("");

 if ((time.get(Calendar.HOUR_OF_DAY) == 0)
 && (time.get(Calendar.MINUTE) <= 1)) {
 expectedTime.append("Midnight");
 } else if ((time.get(Calendar.HOUR_OF_DAY) == 12)
 && (time.get(Calendar.MINUTE) == 0)) { // noon
 expectedTime.append("N3oon");
 } else {
 SimpleDateFormat fr = new SimpleDateFormat("h:mm a");
 expectedTime.append(fr.format(time.getTime()));
 }

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

533

 expectedTime.append("");

 assertEquals(expectedTime, result);
 }

This Flexible Test (see Conditional Test Logic on page 200) introduces two prob-
lems. First, some test conditions are never exercised. (Do you want to come in
to work to run the tests at midnight to prove the software works at midnight?)
Second, the test needs to duplicate much of the logic in the SUT to calculate the
expected results. How do we prove the logic is actually correct?

Refactoring Notes

We can achieve proper verifi cation of the indirect inputs by getting control of
the time. To do so, we use the Replace Dependency with Test Double (page 522)
refactoring to replace the real system clock (represented here by TimeProvider)
with a Virtual Clock [VCTP]. We then implement it as a Test Stub that is confi g-
ured by the test with the time we want to use as the indirect input to the SUT.

Example: Responder (as Hand-Coded Test Stub)

The following test verifi es one of the happy path test conditions using a Responder
to get control over the indirect inputs of the SUT. Based on the time injected into
the SUT, the expected result can be hard-coded safely.

 public void testDisplayCurrentTime_AtMidnight()
 throws Exception {
 // Fixture setup
 // Test Double configuration
 TimeProviderTestStub tpStub = new TimeProviderTestStub();
 tpStub.setHours(0);
 tpStub.setMinutes(0);
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Test Double installation
 sut.setTimeProvider(tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

 Test Stub

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

534 Chapter 23 Test Double Patterns

This test makes use of the following hand-coded configurable Test Stub
implementation:

 private Calendar myTime = new GregorianCalendar();
 /**
 * The complete constructor for the TimeProviderTestStub
 * @param hours specifies the hours using a 24-hour clock
 * (e.g., 10 = 10 AM, 12 = noon, 22 = 10 PM, 0 = midnight)
 * @param minutes specifies the minutes after the hour
 * (e.g., 0 = exactly on the hour, 1 = 1 min after the hour)
 */
 public TimeProviderTestStub(int hours, int minutes) {
 setTime(hours, minutes);
 }

 public void setTime(int hours, int minutes) {
 setHours(hours);
 setMinutes(minutes);
 }

 // Configuration interface
 public void setHours(int hours) {
 // 0 is midnight; 12 is noon
 myTime.set(Calendar.HOUR_OF_DAY, hours);
 }

 public void setMinutes(int minutes) {
 myTime.set(Calendar.MINUTE, minutes);
 }
 // Interface used by SUT
 public Calendar getTime() {
 // @return the last time that was set
 return myTime;
 }

Example: Responder (Dynamically Generated)

Here’s the same test coded using the JMock Confi gurable Test Double frame-
work:

 public void testDisplayCurrentTime_AtMidnight_JM()
 throws Exception {
 // Fixture setup
 TimeDisplay sut = new TimeDisplay();
 // Test Double configuration
 Mock tpStub = mock(TimeProvider.class);
 Calendar midnight = makeTime(0,0);
 tpStub.stubs().method("getTime").
 withNoArguments().
 will(returnValue(midnight));

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

535

 // Test Double installation
 sut.setTimeProvider((TimeProvider) tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

There is no Test Stub implementation to examine for this test because the
JMock framework implements the Test Stub using refl ection. Thus we had to
write a Test Utility Method (page 599) called makeTime that contains the logic to
construct the Calendar object to be returned. In the hand-coded Test Stub, this
logic appeared inside the getTime method.

Example: Saboteur (as Anonymous Inner Class)

The following test uses a Saboteur to inject invalid indirect inputs into the SUT
so we can see how the SUT copes under these circumstances.

 public void testDisplayCurrentTime_exception()
 throws Exception {
 // Fixture setup
 // Define and instantiate Test Stub
 TimeProvider testStub = new TimeProvider()
 { // Anonymous inner Test Stub
 public Calendar getTime() throws TimeProviderEx {
 throw new TimeProviderEx("Sample");
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Invalid Time";
 assertEquals("Exception", expectedTimeString, result);
 }

In this case, we used an Inner Test Double (see Hard-Coded Test Double) to
throw an exception that we expect the SUT to handle gracefully. One interest-
ing thing about this test is that it uses the Simple Success Test method template
rather than the Expected Exception Test template, even though we are injecting
an exception as the indirect input. The rationale behind this choice is that we are
expecting the SUT to catch the exception and change the string formatting; we
are not expecting the SUT to throw an exception.

 Test Stub

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

536 Chapter 23 Test Double Patterns

Example: Entity Chain Snipping

In this example, we are testing the Invoice but require a Customer to instantiate
the Invoice. The Customer requires an Address, which in turn requires a City. Thus
we fi nd ourselves creating numerous additional objects just to set up the fi xture.
Suppose the behavior of the invoice depends on some attribute of the Customer
that is calculated from the Address by calling the method get_zone on the Customer.

 public void testInvoice_addLineItem_noECS() {
 final int QUANTITY = 1;
 Product product = new Product(getUniqueNumberAsString(),
 getUniqueNumber());
 State state = new State("West Dakota", "WD");
 City city = new City("Centreville", state);
 Address address = new Address("123 Blake St.", city, "12345");
 Customer customer= new Customer(getUniqueNumberAsString(),
 getUniqueNumberAsString(),
 address);
 Invoice inv = new Invoice(customer);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 assertLineItemsEqual("",expItem, actual);
 }

In this test, we want to verify only the behavior of the invoice logic that depends
on this zone attribute—not the way this attribute is calculated from the Customer’s
address. (There are separate Customer unit tests to verify the zone is calculated
correctly.) All of the setup of the address, city, and other information merely
distracts the reader.

Here’s the same test using a Test Stub instead of the Customer. Note how much
simpler the fi xture setup has become as a result of Entity Chain Snipping!

 public void testInvoice_addLineItem_ECS() {
 final int QUANTITY = 1;
 Product product = new Product(getUniqueNumberAsString(),
 getUniqueNumber());
 Mock customerStub = mock(ICustomer.class);
 customerStub.stubs().method("getZone").will(returnValue(ZONE_3));
 Invoice inv = new Invoice((ICustomer)customerStub.proxy());
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

537

 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 assertLineItemsEqual("", expItem, actual);
 }

We have used JMock to stub out the Customer with a customerStub that returns
ZONE_3 when getZone is called. This is all we need to verify the Invoice behavior, and
we have managed to get rid of all that distracting extra object construction. It
is also much clearer from reading this test that invoicing behavior depends only
on the value returned by get_zone and not any other attributes of the Customer or
Address.

Further Reading

Almost every book on automated testing using xUnit has something to say about
Test Stubs, so I won’t list those resources here. As you are reading other books,
however, keep in mind that the term Test Stub is often used to refer to a Mock
Object. Mocks, Fakes, Stubs, and Dummies (in Appendix B) contains a more
thorough comparison of the terminology used in various books and articles.

Sven Gorts describes a number of different ways we can use a Test Stub
[UTwHCM]. I have adopted many of his names and adapted a few to better
fi t into this pattern language. Paolo Perrotta wrote a pattern describing a com-
mon example of a Responder called Virtual Clock. He uses a Test Stub as a
Decorator [GOF] for the real system clock that allows the time to be “frozen”
or resumed. Of course, we could use a Hard-Coded Test Stub or a Confi gu-
rable Test Stub just as easily for most tests.

 Test Stub

Test
Stub

www.it-ebooks.info

http://www.it-ebooks.info/

538 Chapter 23 Test Double Patterns

Test Spy

How do we implement Behavior Verifi cation?
How can we verify logic independently when it has indirect outputs

to other software components?

We use a Test Double to capture the indirect output calls made to another
component by the SUT for later verifi cation by the test.

In many circumstances, the environment or context in which the SUT operates
very much infl uences the behavior of the SUT. To get adequate visibility of the
indirect outputs of the SUT, we may have to replace some of the context with
something we can use to capture these outputs of the SUT.

Use of a Test Spy is a simple and intuitive way to implement Behavior Verifi -
cation (page 468) via an observation point that exposes the indirect outputs of
the SUT so they can be verifi ed.

How It Works

Before we exercise the SUT, we install a Test Spy as a stand-in for a DOC
used by the SUT. The Test Spy is designed to act as an observation point by
recording the method calls made to it by the SUT as it is exercised. During the

Fixture

Setup

Exercise

Verify

Teardown

SUTExercise

Test Spy

Installation

Creation

Indirect
 Outputs

Indirect
 Output

DOC
Fixture

Setup

Exercise

Verify

Teardown

SUTExercise

Test Spy

Installation

Creation

Indirect
 Outputs

Indirect
 Output

DOC

Also known as:
Spy, Recording

Test Stub

Test
Spy

www.it-ebooks.info

http://www.it-ebooks.info/

539

result verifi cation phase, the test compares the actual values passed to the Test
Spy by the SUT with the values expected by the test.

When to Use It

A key indication for using a Test Spy is having an Untested Requirement (see
Production Bugs on page 268) caused by an inability to observe the side effects
of invoking methods on the SUT. Test Spies are a natural and intuitive way to
extend the existing tests to cover these indirect outputs because the calls to the
Assertion Methods (page 362) are invoked by the test after the SUT has been
exercised just like in “normal” tests. The Test Spy merely acts as the observation
point that gives the Test Method (page 348) access to the values recorded during
the SUT execution.

We should use a Test Spy in the following circumstances:

• We are verifying the indirect outputs of the SUT and we cannot predict
the values of all attributes of the interactions with the SUT ahead of
time.

• We want the assertions to be visible in the test and we don’t think the
way in which the Mock Object (page 544) expectations are established
is suffi ciently intent-revealing.

• Our test requires test-specifi c equality (so we cannot use the standard
defi nition of equality as implemented in the SUT) and we are using
tools that generate the Mock Object but do not give us control over the
Assertion Methods being called.

• A failed assertion cannot be reported effectively back to the Test Run-
ner (page 377). This might occur if the SUT is running inside a contain-
er that catches all exceptions and makes it diffi cult to report the results
or if the logic of the SUT runs in a different thread or process from
the test that invokes it. (Both of these cases really beg refactoring to
allow us to test the SUT logic directly, but that is the subject of another
chapter.)

• We would like to have access to all the outgoing calls of the SUT before
making any assertions on them.

If none of these criteria apply, we may want to consider using a Mock Object. If
we are trying to address Untested Code (see Production Bugs) by controlling the
indirect inputs of the SUT, a simple Test Stub (page 529) may be all we need.

 Test Spy

Test
Spy

www.it-ebooks.info

http://www.it-ebooks.info/

540 Chapter 23 Test Double Patterns

Unlike a Mock Object, a Test Spy does not fail the test at the fi rst deviation
from the expected behavior. Thus our tests will be able to include more detailed
diagnostic information in the Assertion Message (page 370) based on informa-
tion gathered after a Mock Object would have failed the test. At the point of
test failure, however, only the information within the Test Method itself is avail-
able to be used in the calls to the Assertion Methods. If we need to include
information that is accessible only while the SUT is being exercised, either we
must explicitly capture it within our Test Spy or we must use a Mock Object.

Of course, we won’t be able to use any Test Doubles (page 522) unless the
SUT implements some form of substitutable dependency.

Implementation Notes

The Test Spy itself can be built as a Hard-Coded Test Double (page 568) or as a
Confi gurable Test Double (page 558). Because detailed examples appear in the
discussion of those patterns, only a quick summary is provided here. Likewise,
we can use any of the substitutable dependency patterns to install the Test Spy
before we exercise the SUT.

The key characteristic in how a test uses a Test Spy relates to the fact that as-
sertions are made from within the Test Method. Therefore, the test must recover
the indirect outputs captured by the Test Spy before it can make its assertions,
which can be done in several ways.

Variation: Retrieval Interface

We can defi ne the Test Spy as a separate class with a Retrieval Interface that
exposes the recorded information. The Test Method installs the Test Spy instead
of the normal DOC as part of the fi xture setup phase of the test. After the test
has exercised the SUT, it uses the Retrieval Interface to retrieve the actual indi-
rect outputs of the SUT from the Test Spy and then calls Assertion Methods with
those outputs as arguments.

Variation: Self Shunt

We can collapse the Test Spy and the Testcase Class (page 373) into a single object
called a Self Shunt. The Test Method installs itself, the Testcase Object (page 382),
as the DOC into the SUT. Whenever the SUT delegates to the DOC, it is actually
calling methods on the Testcase Object, which implements the methods by saving
the actual values into instance variables that can be accessed by the Test Method.
The methods could also make assertions in the Test Spy methods, in which case
the Self Shunt is a variation on a Mock Object rather than a Test Spy. In stati-
cally typed languages, the Testcase Class must implement the outgoing interface

Also known as:
Loopback

Test
Spy

www.it-ebooks.info

http://www.it-ebooks.info/

541

(the observation point) on which the SUT depends so that the Testcase Class is
type-compatible with the variables that are used to hold the DOC.

Variation: Inner Test Double

A popular way to implement the Test Spy as a Hard-Coded Test Double is to
code it as an anonymous inner class or block closure within the Test Method and
to have this class or block save the actual values into instance or local variables
that are accessible by the Test Method. This variation is really another way to
implement a Self Shunt (see Hard-Coded Test Double).

Variation: Indirect Output Registry

Yet another possibility is to have the Test Spy store the actual parameters in a
well-known place where the Test Method can access them. For example, the Test
Spy could save those values in a fi le or in a Registry [PEAA] object.

Motivating Example

The following test verifi es the basic functionality of removing a fl ight but does
not verify the indirect outputs of the SUT—namely, the fact that the SUT is
expected to log each time a fl ight is removed along with the date/time and user-
name of the requester.

 public void testRemoveFlight() throws Exception {
 // setup
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight should not exist after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 }

Refactoring Notes

We can add verifi cation of indirect outputs to existing tests using a Replace
Dependency with Test Double (page 522) refactoring. It involves adding code
to the fi xture setup logic of the tests to create the Test Spy, confi guring the Test
Spy with any values it needs to return, and installing it. At the end of the test,
we add assertions comparing the expected method names and arguments of the

 Test Spy

Test
Spy

www.it-ebooks.info

http://www.it-ebooks.info/

542 Chapter 23 Test Double Patterns

indirect outputs with the actual values retrieved from the Test Spy using the
Retrieval Interface.

Example: Test Spy

In this improved version of the test, logSpy is our Test Spy. The statement facade.
setAuditLog(logSpy) installs the Test Spy using the Setter Injection pattern (see
Dependency Injection on page 678). The methods getDate, getActionCode, and so
on are the Retrieval Interface used to access the actual arguments of the call to
the logger.

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

This test depends on the following defi nition of the Test Spy:

public class AuditLogSpy implements AuditLog {
 // Fields into which we record actual usage information
 private Date date;
 private String user;
 private String actionCode;
 private Object detail;
 private int numberOfCalls = 0;

Test
Spy

www.it-ebooks.info

http://www.it-ebooks.info/

543

 // Recording implementation of real AuditLog interface
 public void logMessage(Date date,
 String user,
 String actionCode,
 Object detail) {
 this.date = date;
 this.user = user;
 this.actionCode = actionCode;
 this.detail = detail;

 numberOfCalls++;
 }

 // Retrieval Interface
 public int getNumberOfCalls() {
 return numberOfCalls;
 }
 public Date getDate() {
 return date;
 }
 public String getUser() {
 return user;
 }
 public String getActionCode() {
 return actionCode;
 }
 public Object getDetail() {
 return detail;
 }
}

Of course, we could have implemented the Retrieval Interface by making the
various fi elds of our spy public and thereby avoided the need for accessor
methods. Please refer to the examples in Hard-Coded Test Double for other
implementation options.

 Test Spy

Test
Spy

www.it-ebooks.info

http://www.it-ebooks.info/

544 Chapter 23 Test Double Patterns

Mock Object

How do we implement Behavior Verifi cation for indirect
outputs of the SUT?

How can we verify logic independently when it depends on indirect inputs
from other software components?

We replace an object on which the SUT depends on with a test-specifi c object
that verifi es it is being used correctly by the SUT.

In many circumstances, the environment or context in which the SUT operates
very much infl uences the behavior of the SUT. In other cases, we must peer
“inside”2 the SUT to determine whether the expected behavior has occurred.

A Mock Object is a powerful way to implement Behavior Verifi cation (page 468)
while avoiding Test Code Duplication (page 213) between similar tests. It works
by delegating the job of verifying the indirect outputs of the SUT entirely to a Test
Double (page 522).

2 Technically, the SUT is whatever software we are testing and doesn’t include anything
it depends on; thus “inside” is somewhat of a misnomer. It is better to think of the DOC
that is the destination of the indirect outputs as being “behind” the SUT and part of the
fi xture.

Fixture
DOC

SUT

Mock
Object

Final Verification

Exercise

Creation
Setup

Exercise

Verify

Teardown

ExpectationsInstallation
Indirect
Output

V
er

ify

Fixture
DOC

SUT

Mock
Object

Final Verification

Exercise

Creation
Setup

Exercise

Verify

Teardown

ExpectationsInstallation
Indirect
Output

V
er

ify

Mock
Object

www.it-ebooks.info

http://www.it-ebooks.info/

545

How It Works

First, we defi ne a Mock Object that implements the same interface as an object
on which the SUT depends. Then, during the test, we confi gure the Mock Object
with the values with which it should respond to the SUT and the method calls
(complete with expected arguments) it should expect from the SUT. Before exer-
cising the SUT, we install the Mock Object so that the SUT uses it instead of the
real implementation. When called during SUT execution, the Mock Object com-
pares the actual arguments received with the expected arguments using Equality
Assertions (see Assertion Method on page 362) and fails the test if they don’t
match. The test need not make any assertions at all!

When to Use It

We can use a Mock Object as an observation point when we need to do Behavior
Verifi cation to avoid having an Untested Requirement (see Production Bugs on
page 268) caused by our inability to observe the side effects of invoking meth-
ods on the SUT. This pattern is commonly used during endoscopic testing [ET]
or need-driven development [MRNO]. Although we don’t need to use a Mock
Object when we are doing State Verifi cation (page 462), we might use a Test
Stub (page 529) or Fake Object (page 551). Note that test drivers have found
other uses for the Mock Object toolkits, but many of these are actually examples
of using a Test Stub rather than a Mock Object.

To use a Mock Object, we must be able to predict the values of most or
all arguments of the method calls before we exercise the SUT. We should not
use a Mock Object if a failed assertion cannot be reported back to the Test
Runner (page 377) effectively. This may be the case if the SUT runs inside a
container that catches and eats all exceptions. In these circumstances, we may
be better off using a Test Spy (page 538) instead.

Mock Objects (especially those created using dynamic mocking tools) often
use the equals methods of the various objects being compared. If our test-specifi c
equality differs from how the SUT would interpret equals, we may not be able to
use a Mock Object or we may be forced to add an equals method where we didn’t
need one. This smell is called Equality Pollution (see Test Logic in Production on
page 217). Some implementations of Mock Objects avoid this problem by allow-
ing us to specify the “comparator” to be used in the Equality Assertions.

Mock Objects can be either “strict” or “lenient” (sometimes called “nice”).
A “strict” Mock Object fails the test if the calls are received in a different order
than was specifi ed when the Mock Object was programmed. A “lenient” Mock
Object tolerates out-of-order calls.

 Mock Object

Mock
Object

www.it-ebooks.info

http://www.it-ebooks.info/

546 Chapter 23 Test Double Patterns

Implementation Notes

Tests written using Mock Objects look different from more traditional tests be-
cause all the expected behavior must be specifi ed before the SUT is exercised. This
makes the tests harder to write and to understand for test automation neophytes.
This factor may be enough to cause us to prefer writing our tests using Test Spies.

The standard Four-Phase Test (page 358) is altered somewhat when we use
Mock Objects. In particular, the fi xture setup phase of the test is broken down
into three specifi c activities and the result verifi cation phase more or less dis-
appears, except for the possible presence of a call to the “fi nal verifi cation”
method at the end of the test.

Fixture setup:

• Test constructs Mock Object.

• Test confi gures Mock Object. This step is omitted for Hard-Coded Test
Doubles (page 568).

• Test installs Mock Object into SUT.

Exercise SUT:

• SUT calls Mock Object; Mock Object does assertions.

Result verifi cation:

• Test calls “fi nal verifi cation” method.

Fixture teardown:

• No impact.

Let’s examine these differences a bit more closely:

Construction

As part of the fi xture setup phase of our Four-Phase Test, we must construct the
Mock Object that we will use to replace the substitutable dependency. Depend-
ing on which tools are available in our programming language, we can either
build the Mock Object class manually, use a code generator to create a Mock
Object class, or use a dynamically generated Mock Object.

Confi guration with Expected Values

Because the Mock Object toolkits available in many members of the xUnit
family typically create Confi gurable Mock Objects (page 544), we need

Mock
Object

www.it-ebooks.info

http://www.it-ebooks.info/

547

to confi gure the Mock Object with the expected method calls (and their
parameters) as well as the values to be returned by any functions. (Some
Mock Object frameworks allow us to disable verifi cation of the method calls
or just their parameters.) We typically perform this confi guration before we
install the Test Double.

This step is not needed when we are using a Hard-Coded Test Double such
as an Inner Test Double (see Hard-Coded Test Double).

Installation

Of course, we must have a way of installing a Test Double into the SUT to be
able to use a Mock Object. We can use whichever substitutable dependency
pattern the SUT supports. A common approach in the test-driven development
community is Dependency Injection (page 678); more traditional developers
may favor Dependency Lookup (page 686).

Usage

When the SUT calls the methods of the Mock Object, these methods compare the
method call (method name plus arguments) with the expectations. If the method
call is unexpected or the arguments are incorrect, the assertion fails the test im-
mediately. If the call is expected but came out of sequence, a strict Mock Object
fails the test immediately; by contrast, a lenient Mock Object notes that the call
was received and carries on. Missed calls are detected when the fi nal verifi cation
method is called.

If the method call has any outgoing parameters or return values, the Mock
Object needs to return or update something to allow the SUT to continue executing
the test scenario. This behavior may be either hard-coded or confi gured at the same
time as the expectations. This behavior is the same as for Test Stubs, except that we
typically return happy path values.

Final Verifi cation

Most of the result verifi cation occurs inside the Mock Object as it is called by
the SUT. The Mock Object will fail the test if the methods are called with the
wrong arguments or if methods are called unexpectedly. But what happens if
the expected method calls are never received by the Mock Object? The Mock
Object may have trouble detecting that the test is over and it is time to check for
unfulfi lled expectations. Therefore, we need to ensure that the fi nal verifi cation
method is called. Some Mock Object toolkits have found a way to invoke this

 Mock Object

Mock
Object

www.it-ebooks.info

http://www.it-ebooks.info/

548 Chapter 23 Test Double Patterns

method automatically by including the call in the tearDown method.3 Many other
toolkits require us to remember to call the fi nal verifi cation method ourselves.

Motivating Example

The following test verifi es the basic functionality of creating a fl ight. But it does
not verify the indirect outputs of the SUT—namely, the SUT is expected to log each
time a fl ight is created along with the date/time and username of the requester.

 public void testRemoveFlight() throws Exception {
 // setup
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight should not exist after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 }

Refactoring Notes

Verifi cation of indirect outputs can be added to existing tests by using a Replace
Dependency with Test Double (page 522) refactoring. This involves adding code to
the fi xture setup logic of our test to create the Mock Object; confi guring the Mock
Object with the expected method calls, arguments, and values to be returned; and
installing it using whatever substitutable dependency mechanism is provided by
the SUT. At the end of the test, we add a call to the fi nal verifi cation method if our
Mock Object framework requires one.

Example: Mock Object (Hand-Coded)

In this improved version of the test, mockLog is our Mock Object. The method
setExpectedLogMessage is used to program it with the expected log message. The
statement facade.setAuditLog(mockLog) installs the Mock Object using the Setter
Injection (see Dependency Injection) test double-installation pattern. Finally,
the verify() method ensures that the call to logMessage() was actually made.

3 This usually requires that we subclass our testcase from a special MockObjectTestCase
class.

Mock
Object

www.it-ebooks.info

http://www.it-ebooks.info/

549

 public void testRemoveFlight_Mock() throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 // mock configuration
 ConfigurableMockAuditLog mockLog =
 new ConfigurableMockAuditLog();
 mockLog.setExpectedLogMessage(
 helper.getTodaysDateWithoutTime(),
 Helper.TEST_USER_NAME,
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 expectedFlightDto.getFlightNumber());
 mockLog.setExpectedNumberCalls(1);
 // mock installation
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 facade.setAuditLog(mockLog);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 mockLog.verify();
 }

This approach was made possible by use of the following Mock Object. Here we
have chosen to use a hand-built Mock Object. In the interest of space, just the
logMessage method is shown:

 public void logMessage(Date actualDate,
 String actualUser,
 String actualActionCode,
 Object actualDetail) {
 actualNumberCalls++;

 Assert.assertEquals("date", expectedDate, actualDate);
 Assert.assertEquals("user", expectedUser, actualUser);
 Assert.assertEquals("action code",
 expectedActionCode,
 actualActionCode);
 Assert.assertEquals("detail", expectedDetail,actualDetail);
 }

The Assertion Methods are called as static methods. In JUnit, this approach is
required because the Mock Object is not a subclass of TestCase; thus it does not
inherit the assertion methods from Assert. Other members of the xUnit family
may provide different mechanisms to access the Assertion Methods. For exam-
ple, NUnit provides them only as static methods on the Assert class, so even Test
Methods (page 348) need to access the Assertion Methods this way. Test::Unit,

 Mock Object

Mock
Object

www.it-ebooks.info

http://www.it-ebooks.info/

550 Chapter 23 Test Double Patterns

the xUnit family member for the Ruby programming language, provides them as
mixins; as a consequence, they can be called in the normal fashion.

Example: Mock Object (Dynamically Generated)

The last example used a hand-coded Mock Object. Most members of the xUnit
family, however, have dynamic Mock Object frameworks available. Here’s the
same test rewritten using JMock:

 public void testRemoveFlight_JMock() throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // mock configuration
 Mock mockLog = mock(AuditLog.class);
 mockLog.expects(once()).method("logMessage")
 .with(eq(helper.getTodaysDateWithoutTime()),
 eq(Helper.TEST_USER_NAME),
 eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
 eq(expectedFlightDto.getFlightNumber()));
 // mock installation
 facade.setAuditLog((AuditLog) mockLog.proxy());
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 // verify() method called automatically by JMock
 }

Note how JMock provides a “fl uent” Confi guration Interface (see Confi gurable
Test Double) that allows us to specify the expected method calls in a fairly readable
fashion. JMock also allows us to specify the comparator to be used by the asser-
tions; in this case, the calls to eq cause the default equals method to be called.

Further Reading

Almost every book on automated testing using xUnit has something to say about
Mock Objects, so I won’t list those resources here. As you are reading other
books, keep in mind that the term Mock Object is often used to refer to a Test
Stub and sometimes even to Fake Objects. Mocks, Fakes, Stubs, and Dummies
(in Appendix B) contains a more thorough comparison of the terminology used
in various books and articles.

Mock
Object

www.it-ebooks.info

http://www.it-ebooks.info/

551

Fake Object

How can we verify logic independently when depended-on objects
cannot be used?

How can we avoid Slow Tests?

We replace a component that the SUT depends on with a much
lighter-weight implementation.

The SUT often depends on other components or systems. Although the inter-
actions with these other components may be necessary, the side effects of these
interactions as implemented by the real DOC may be unnecessary or even
detrimental.

A Fake Object is a much simpler and lighter-weight implementation of the
functionality provided by the DOC without the side effects we choose to do
without.

How It Works

We acquire or build a very lightweight implementation of the same functionality
as provided by a component on which the SUT depends and instruct the SUT
to use it instead of the real DOC. This implementation need not have any of the

Fixture
DOC

Fake
Object

Exercise

Creation
Setup

Exercise

Verify

Teardown

Installation

Setup

SUT
Data

Fixture
DOC

Fake
Object

Exercise

Creation
Setup

Exercise

Verify

Teardown

Installation

Setup

SUT
Data

 Fake Object

Fake
Object

Also known as:
Dummy

www.it-ebooks.info

http://www.it-ebooks.info/

552 Chapter 23 Test Double Patterns

“-ilities” that the real DOC needs to have (such as scalability); it need provide
only the equivalent services to the SUT so that the SUT remains unaware it isn’t
using the real DOC.

A Fake Object is a kind of Test Double (page 522) that is similar to a Test
Stub (page 529) in many ways, including the need to install into the SUT a
substitutable dependency. Whereas a Test Stub acts as a control point to inject
indirect inputs into the SUT, however, the Fake Object does not: It merely
provides a way for the interactions to occur in a self-consistent manner. These
interactions (i.e., between the SUT and the Fake Object) will typically be
many, and the values passed in as arguments of earlier method calls will often
be returned as results of later method calls. Contrast this behavior with that
of Test Stubs and Mock Objects (page 544), where the responses are either
hard-coded or confi gured by the test.

While the test does not normally confi gure a Fake Object, complex fi xture
setup that would typically involve initializing the state of the DOC may also be
done with the Fake Object directly using Back Door Manipulation (page 327).
Techniques such as Data Loader (see Back Door Manipulation) and Back Door
Setup (see Back Door Manipulation) can be used quite successfully with less
fear of Overspecifi ed Software (see Fragile Test on page 239) because they sim-
ply bind us to the interface between the SUT and the Fake Object; the interface
used to confi gure the Fake Object is a test-only concern.

When to Use It

We should use a Fake Object whenever the SUT depends on other components that
are unavailable or that make testing diffi cult or slow (e.g., Slow Tests; see page 253)
and the tests need more complex sequences of behavior than are worth implement-
ing in a Test Stub or Mock Object. It must also be easier to create a lightweight
implementation than to build and program suitable Mock Objects, at least in the
long run, if building a Fake Object is to be worthwhile.

Using a Fake Object helps us avoid Overspecifi ed Software because we do
not encode the exact calling sequences expected of the DOC within the test.
The SUT can vary how many times the methods of the DOC are called without
causing tests to fail.

If we need to control the indirect inputs or verify the indirect outputs of the
SUT, we should probably use a Mock Object or Test Stub instead.

Some specifi c situations where we replace the real component with a Fake
Object are described next.

Fake
Object

www.it-ebooks.info

http://www.it-ebooks.info/

553

Variation: Fake Database

With the Fake Database pattern, the real database or persistence layer is replaced
by a Fake Object that is functionally equivalent but that has much better perfor-
mance characteristics. An approach we have often used involves replacing the
database with a set of in-memory HashTables that act as a very lightweight way of
retrieving objects that have been “persisted” earlier in the test.

Variation: In-Memory Database

Another example of a Fake Object is the use of a small-footprint, diskless
database instead of a full-featured disk-based database. This kind of In-Memory
Database will improve the speed of tests by at least an order of magnitude while
giving up less functionality than a Fake Database.

Variation: Fake Web Service

When testing software that depends on other components that are accessed as
Web services, we can build a small hard-coded or data-driven implementation
that can be used instead of the real Web service to make our tests more robust
and to avoid having to create a test instance of the real Web service in our
development environment.

Variation: Fake Service Layer

When testing user interfaces, we can avoid Data Sensitivity (see Fragile Test) and
Behavior Sensitivity (see Fragile Test) of the tests by replacing the component
that implements the Service Layer [PEAA] (including the domain layer) of our
application with a Fake Object that returns remembered or data-driven results.
This approach allows us to focus on testing the user interface without having to
worry about the data being returned changing over time.

Implementation Notes

Introducing a Fake Object involves two basic concerns:

• Building the Fake Object implementation

• Installing the Fake Object

Building the Fake Object

Most Fake Objects are hand-built. Often, the Fake Object is used to replace a
real implementation that suffers from latency issues owing to real messaging

 Fake Object

Fake
Object

www.it-ebooks.info

http://www.it-ebooks.info/

554 Chapter 23 Test Double Patterns

or disk I/O with a much lighter in-memory implementation. With the rich class
libraries available in most object-oriented programming languages, it is usually
possible to build a fake implementation that is suffi cient to satisfy the needs of
the SUT, at least for the purposes of specifi c tests, with relatively little effort.

A popular strategy is to start by building a Fake Object to support a specifi c
set of tests where the SUT requires only a subset of the DOC’s services. If this
proves successful, we may consider expanding the Fake Object to handle addi-
tional tests. Over time, we may fi nd that we can run all of our tests using the Fake
Object. (See the sidebar “Faster Tests Without Shared Fixtures” on page 319 for
a description of how we faked out the entire database with hash tables and made
our tests run 50 times faster.)

Installing the Fake Object

Of course, we must have a way of installing the Fake Object into the SUT to
be able to take advantage of it. We can use whichever substitutable dependency
pattern the SUT supports. A common approach in the test-driven development
community is Dependency Injection (page 678); more traditional developers
may favor Dependency Lookup (page 686). The latter technique is also more
appropriate when we introduce a Fake Database (see Fake Object on page 551)
in an effort to speed up execution of the customer tests; Dependency Injection
doesn’t work so well with these kinds of tests.

Motivating Example

In this example, the SUT needs to read and write records from a database. The test
must set up the fi xture in the database (several writes), the SUT interacts (reads
and writes) with the database several more times, and then the test removes the
records from the database (several deletes). All of this work takes time—several
seconds per test. This very quickly adds up to minutes, and soon we fi nd that our
developers aren’t running the tests quite so frequently. Here is an example of one
of these tests:

 public void testReadWrite() throws Exception{
 // Setup
 FlightMngtFacade facade = new FlightMgmtFacadeImpl();
 BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
 BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
 facade.createFlight(yyc, lax);
 // Exercise
 List flights = facade.getFlightsByOriginAirport(yyc);

Fake
Object

www.it-ebooks.info

http://www.it-ebooks.info/

555

 // Verify
 assertEquals("# of flights", 1, flights.size());
 Flight flight = (Flight) flights.get(0);
 assertEquals("origin",
 yyc, flight.getOrigin().getCode());
 }

The test calls createAirport on our Service Facade [CJ2EEP], which calls, among
other things, our data access layer. Here is the actual implementation of several
of the methods we are calling:

 public BigDecimal createAirport(String airportCode,
 String name,
 String nearbyCity)
 throws FlightBookingException{
 TransactionManager.beginTransaction();
 Airport airport = dataAccess.
 createAirport(airportCode, name, nearbyCity);
 logMessage("Wrong Action Code", airport.getCode());//bug
 TransactionManager.commitTransaction();
 return airport.getId();
 }

 public List getFlightsByOriginAirport(
 BigDecimal originAirportId)
 throws FlightBookingException {

 if (originAirportId == null)
 throw new InvalidArgumentException(
 "Origin Airport Id has not been provided",
 "originAirportId", null);
 Airport origin = dataAccess.getAirportByPrimaryKey(originAirportId);
 List flights = dataAccess.getFlightsByOriginAirport(origin);

 return flights;
 }

The calls to dataAccess.createAirport, dataAccess.createFlight, and TransactionManager.
commitTransaction cause our test to slow down the most. The calls to dataAccess.
getAirportByPrimaryKey and dataAccess.getFlightsByOriginAirport are a lesser factor but
still contribute to the slow test.

Refactoring Notes

The steps for introducing a Fake Object are very similar to those for adding a
Mock Object. If one doesn’t already exist, we use a Replace Dependency with Test
Double (page 522) refactoring to introduce a way to substitute the Fake Object for
the DOC—usually a fi eld (attribute) to hold the reference to it. In statically typed
languages, we may have to do an Extract Interface [Fowler] refactoring before we

 Fake Object

Fake
Object

www.it-ebooks.info

http://www.it-ebooks.info/

556 Chapter 23 Test Double Patterns

can introduce the fake implementation. Then, we use this interface as the type of
variable that holds the reference to the substitutable dependency.

One notable difference is that we do not need to confi gure the Fake Object with
expectations or return values; we merely set up the fi xture in the normal way.

Example: Fake Database

In this example, we’ve created a Fake Object that replaces the database—that
is, a Fake Database implemented entirely in memory using hash tables. The test
doesn’t change a lot, but the test execution occurs much, much faster.

 public void testReadWrite_inMemory() throws Exception{
 // Setup
 FlightMgmtFacadeImpl facade = new FlightMgmtFacadeImpl();
 facade.setDao(new InMemoryDatabase());
 BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
 BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
 facade.createFlight(yyc, lax);
 // Exercise
 List flights = facade.getFlightsByOriginAirport(yyc);
 // Verify
 assertEquals("# of flights", 1, flights.size());
 Flight flight = (Flight) flights.get(0);
 assertEquals("origin",
 yyc, flight.getOrigin().getCode());
 }

Here’s the implementation of the Fake Database:

public class InMemoryDatabase implements FlightDao{
 private List airports = new Vector();
 public Airport createAirport(String airportCode,
 String name, String nearbyCity)
 throws DataException, InvalidArgumentException {
 assertParamtersAreValid(airportCode, name, nearbyCity);
 assertAirportDoesntExist(airportCode);
 Airport result = new Airport(getNextAirportId(),
 airportCode, name, createCity(nearbyCity));
 airports.add(result);
 return result;
 }
 public Airport getAirportByPrimaryKey(BigDecimal airportId)
 throws DataException, InvalidArgumentException {
 assertAirportNotNull(airportId);

 Airport result = null;
 Iterator i = airports.iterator();
 while (i.hasNext()) {

Fake
Object

www.it-ebooks.info

http://www.it-ebooks.info/

557

 Airport airport = (Airport) i.next();
 if (airport.getId().equals(airportId)) {
 return airport;
 }
 }
 throw new DataException("Airport not found:"+airportId);
 }

Now all we need is the implementation of the method that installs the Fake
Database into the facade to make our developers more than happy to run all the
tests after every code change.

 public void setDao(FlightDao) {
 dataAccess = dao;
 }

Further Reading

The sidebar “Faster Tests Without Shared Fixtures” on page 319 provides a
more in-depth description of how we faked out the entire database with hash
tables and made our tests run 50 times faster. Mocks, Fakes, Stubs, and Dum-
mies (in Appendix B) contains a more thorough comparison of the terminology
used in various books and articles.

 Fake Object

Fake
Object

www.it-ebooks.info

http://www.it-ebooks.info/

558 Chapter 23 Test Double Patterns

Confi gurable Test Double

How do we tell a Test Double what to return or expect?

We confi gure a reusable Test Double with the values to be returned
or verifi ed during the fi xture setup phase of a test.

Some tests require unique values to be fed into the SUT as indirect inputs or to be
verifi ed as indirect outputs of the SUT. This approach typically requires the use of
Test Doubles (page 522) as the conduit between the test and the SUT; at the same
time, the Test Double somehow needs to be told which values to return or verify.

A Confi gurable Test Double is a way to reduce Test Code Duplication (page 213)
by reusing a Test Double in many tests. The key to its use is to confi gure the Test
Double’s values to be returned or expected at runtime.

How It Works

The Test Double is built with instance variables that hold the values to be returned
to the SUT or to serve as the expected values of arguments to method calls. The test
initializes these variables during the setup phase of the test by calling the appropri-
ate methods on the Test Double’s interface. When the SUT calls the methods on the
Test Double, the Test Double uses the contents of the appropriate variable as the
value to return or as the expected value in assertions.

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation Expectations

Configuration

Expectations,
Return Values

Return
Values

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation Expectations

Configuration

Expectations,
Return Values

Return
Values

Confi gurable
Test Double

Also known as:
Confi gurable
Mock Object,
Confi gurable

Test Spy,
Confi gurable

Test Stub

www.it-ebooks.info

http://www.it-ebooks.info/

559

When to Use It

We can use a Confi gurable Test Double whenever we need similar but slightly
different behavior in several tests that depend on Test Doubles and we want to avoid
Test Code Duplication or Obscure Tests (page 186)—in the latter case, we need to
see what values the Test Double is using as we read the test. If we expect only
a single usage of a Test Double, we can consider using a Hard-Coded Test
Double (page 568) if the extra effort and complexity of building a Confi gurable
Test Double are not warranted.

Implementation Notes

A Test Double is a Confi gurable Test Double because it needs to provide a way
for the tests to confi gure it with values to return and/or method arguments to
expect. Confi gurable Test Stubs (page 529) and Test Spies (page 538) simply
require a way to confi gure the responses to calls on their methods; confi gurable
Mock Objects (page 544) also require a way to confi gure their expectations
(which methods should be called and with which arguments).

Confi gurable Test Doubles may be built in many ways. Deciding on a par-
ticular implementation involves making two relatively independent decisions:
(1) how the Confi gurable Test Double will be confi gured and (2) how the
Confi gurable Test Double will be coded.

There are two common ways to confi gure a Confi gurable Test Double. The
most popular approach is to provide a Confi guration Interface that is used
only by the test to confi gure the values to be returned as indirect inputs and
the expected values of the indirect outputs. Alternatively, we may build the
Confi gurable Test Double with two modes. The Confi guration Mode is used
during fi xture setup to install the indirect inputs and expected indirect out-
puts by calling the methods of the Confi gurable Test Double with the expected
arguments. Before the Confi gurable Test Double is installed, it is put into the
normal (“usage” or “playback”) mode.

The obvious way to build a Confi gurable Test Double is to create a Hand-
Built Test Double. If we are lucky, however, someone will have already built
a tool to generate a Confi gurable Test Double for us. Test Double genera-
tors come in two fl avors: code generators and tools that fabricate the object
at runtime. Developers have built several generations of “mocking” tools, and
several of these have been ported to other programming languages; check out
http://xprogramming.com to see what is available in your programming language
of choice. If the answer is “nothing,” you can hand-code the Test Double your-
self, although this does take somewhat more effort.

 Configurable Test Double

Confi gurable
Test Double

www.it-ebooks.info

http://xprogramming.com
http://www.it-ebooks.info/

560 Chapter 23 Test Double Patterns

Variation: Confi guration Interface

A Confi guration Interface comprises a separate set of methods that the
Confi gurable Test Double provides specifi cally for use by the test to set each
value that the Confi gurable Test Double returns or expects to receive. The
test simply calls these methods during the fi xture setup phase of the Four-Phase
Test (page 358). The SUT uses the “other” methods on the Confi gurable Test
Double (the “normal” interface). It isn’t aware that the Confi guration Interface
exists on the object to which it is delegating.

Confi guration Interfaces come in two fl avors. Early toolkits, such as Mock-
Maker, generated a distinct method for each value we needed to confi gure. The
collection of these setter methods made up the Confi guration Interface. More
recently introduced toolkits, such as JMock, provide a generic interface that is used
to build an Expected Behavior Specifi cation (see Behavior Verifi cation on page
468) that the Confi gurable Test Double interprets at runtime. A well-designed
fl uent interface can make the test much easier to read and understand.

Variation: Confi guration Mode

We can avoid defi ning a separate set of methods to confi gure the Test Double by
providing a Confi guration Mode that the test uses to “teach” the Confi gurable
Test Double what to expect. At fi rst glance, this means of confi guring the Test
Double can be confusing: Why does the Test Method (page 348) call the methods
of this other object before it calls the methods it is exercising on the SUT? When
we come to grips with the fact that we are doing a form of “record and play-
back,” this technique makes a bit more sense.

The main advantage of using a Confi guration Mode is that it avoids creating
a separate set of methods for confi guring the Confi gurable Test Double because
we reuse the same methods that the SUT will be calling. (We do have to pro-
vide a way to set the values to be returned by the methods, so we have at least
one additional method to add.) On the fl ip side, each method that the SUT is
expected to call now has two code paths through it: one for the Confi guration
Mode and another for the “usage mode.”

Variation: Hand-Built Test Double

A Hand-Built Test Double is one that was defi ned by the test automater for one
or more specifi c tests. A Hard-Coded Test Double is inherently a Hand-Built Test
Double, while a Confi gurable Test Double can be either hand-built or gener-
ated. This book uses Hand-Built Test Doubles in a lot of the examples because
it is easier to see what is going on when we have actual, simple, concrete code to
look at. This is the main advantage of using a Hand-Built Test Double; indeed,

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

561

some people consider this benefi t to be so important that they use Hand-Built
Test Doubles exclusively. We may also use a Hand-Built Test Double when no
third-party toolkits are available or if we are prevented from using those tools by
project or corporate policy.

Variation: Statically Generated Test Double

The early third-party toolkits used code generators to create the code for Stati-
cally Generated Test Doubles. The code is then compiled and linked with our
handwritten test code. Typically, we will store the code in a source code repository
[SCM]. Whenever the interface of the target class changes, of course, we must
regenerate the code for our Statically Generated Test Doubles. It may be advan-
tageous to include this step as part of the automated build script to ensure that it
really does happen whenever the interface changes.

Instantiating a Statically Generated Test Double is the same as instantiating
a Hand-Built Test Double. That is, we use the name of the generated class to
construct the Confi gurable Test Double.

An interesting problem arises during refactoring. Suppose we change the
interface of the class we are replacing by adding an argument to one of the
methods. Should we then refactor the generated code? Or should we regener-
ate the Statically Generated Test Double after the code it replaces has been
refactored? With modern refactoring tools, it may seem easier to refactor the
generated code and the tests that use it in a single step; this strategy, however,
may leave the Statically Generated Test Double without argument verifi cation
logic or variables for the new parameter. Therefore, we should regenerate the
Statically Generated Test Double after the refactoring is fi nished to ensure that
the refactored Statically Generated Test Double works properly and can be
recreated by the code generator.

Variation: Dynamically Generated Test Double

Newer third-party toolkits generate Confi gurable Test Doubles at runtime by
using the refl ection capabilities of the programming language to examine a
class or interface and build an object that is capable of understanding all calls
to its methods. These Confi gurable Test Doubles may interpret the behavior
specifi cation at runtime or they may generate executable code; nevertheless,
there is no source code for us to generate and maintain or regenerate. The
down side is simply that there is no code to look at—but that really isn’t a
disadvantage unless we are particularly suspicious or paranoid.

Most of today’s tools generate Mock Objects because they are the most
fashionable and widely used options. We can still use these objects as Test Stubs,

 Configurable Test Double

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

562 Chapter 23 Test Double Patterns

however, because they do provide a way of setting the value to be returned when
a particular method is called. If we aren’t particularly interested in verifying the
methods being called or the arguments passed to them, most toolkits provide a
way to specify “don’t care” arguments. Given that most toolkits generate Mock
Objects, they typically don’t provide a Retrieval Interface (see Test Spy).

Motivating Example

Here’s a test that uses a Hard-Coded Test Double to give it control over the
time:

 public void testDisplayCurrentTime_AtMidnight_HCM()
 throws Exception {
 // Fixture Setup
 // Instantiate hard-code Test Stub:
 TimeProvider testStub = new MidnightTimeProvider();
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Stub into SUT
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Direct Output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

This test is hard to understand without seeing the defi nition of the Hard-Coded
Test Double. It is easy to see how this lack of clarity can lead to a Mystery Guest
(see Obscure Test) if the defi nition is not close at hand.

 class MidnightTimeProvider implements TimeProvider {
 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 myTime.set(Calendar.MINUTE, 0);
 return myTime;
 }
 }

We can solve the Obscure Test problem by using a Self Shunt (see Hard-Coded
Test Double) to make the Hard-Coded Test Double visible within the test:

public class SelfShuntExample extends TestCase
implements TimeProvider {
 public void testDisplayCurrentTime_AtMidnight() throws Exception {
 // Fixture Setup

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

563

 TimeDisplay sut = new TimeDisplay();
 // Mock Setup
 sut.setTimeProvider(this); // self shunt installation
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Direct Output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
}

Unfortunately, we will need to build the Test Double behavior into each Testcase
Class (page 373) that requires it, which results in Test Code Duplication.

Refactoring Notes

Refactoring a test that uses a Hard-Coded Test Double to become a test that uses
a third-party Confi gurable Test Double is relatively straightforward. We simply
follow the directions provided with the toolkit to instantiate the Confi gurable
Test Double and confi gure it with the same values as we used in the Hard-Coded
Test Double. We may also have to move some of the logic that was originally
hard-coded within the Test Double into the Test Method and pass it in to the Test
Double as part of the confi guration step.

Converting the actual Hard-Coded Test Double into a Confi gurable Test
Double is a bit more complicated, but not overly so if we need to capture
only simple behavior. (For more complex behavior, we’re probably better off
examining one of the existing toolkits and porting it to our environment if it
is not yet available.) First we need to introduce a way to set the values to be
returned or expected. The best choice is to start by modifying the test to see
how we want to interact with the Confi gurable Test Double. After instantiating
it during the fi xture setup part of the test, we then pass the test-specifi c values
to the Confi gurable Test Double using the emerging Confi guration Interface or
Confi guration Mode. Once we’ve seen how we want to use the Confi gurable
Test Double, we can use an Introduce Field [JetBrains] refactoring to create the
instance variables of the Confi gurable Test Double to hold each of the previ-
ously hard-coded values.

 Configurable Test Double

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

564 Chapter 23 Test Double Patterns

Example: Confi guration Interface Using Setters

The following example shows how a test would use a simple hand-built
Confi guration Interface using Setter Injection:

 public void testDisplayCurrentTime_AtMidnight()
 throws Exception {
 // Fixture setup
 // Test Double configuration
 TimeProviderTestStub tpStub = new TimeProviderTestStub();
 tpStub.setHours(0);
 tpStub.setMinutes(0);
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Test Double installation
 sut.setTimeProvider(tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

The Confi gurable Test Double is implemented as follows:

class TimeProviderTestStub implements TimeProvider {
 // Configuration Interface
 public void setHours(int hours) {
 // 0 is midnight; 12 is noon
 myTime.set(Calendar.HOUR_OF_DAY, hours);
 }

 public void setMinutes(int minutes) {
 myTime.set(Calendar.MINUTE, minutes);
 }
 // Interface Used by SUT
 public Calendar getTime() {
 // @return the last time that was set
 return myTime;
 }
}

Example: Confi guration Interface Using Expression Builder

Now let’s contrast the Confi guration Interface we defi ned in the previous example
with the one provided by the JMock framework. JMock generates Mock Objects
dynamically and provides a generic fl uent interface for confi guring the Mock
Object in an intent-revealing style. Here’s the same test converted to use JMock:

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

565

 public void testDisplayCurrentTime_AtMidnight_JM()
 throws Exception {
 // Fixture setup
 TimeDisplay sut = new TimeDisplay();
 // Test Double configuration
 Mock tpStub = mock(TimeProvider.class);
 Calendar midnight = makeTime(0,0);
 tpStub.stubs().method("getTime").
 withNoArguments().
 will(returnValue(midnight));
 // Test Double installation
 sut.setTimeProvider((TimeProvider) tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

Here we have moved some of the logic to construct the time to be returned into
the Testcase Class because there is no way to do it in the generic mocking frame-
work; we’ve used a Test Utility Method (page 599) to construct the time to be
returned. This next example shows a confi gurable Mock Object complete with
multiple expected parameters:

 public void testRemoveFlight_JMock() throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // mock configuration
 Mock mockLog = mock(AuditLog.class);
 mockLog.expects(once()).method("logMessage")
 .with(eq(helper.getTodaysDateWithoutTime()),
 eq(Helper.TEST_USER_NAME),
 eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
 eq(expectedFlightDto.getFlightNumber()));
 // mock installation
 facade.setAuditLog((AuditLog) mockLog.proxy());
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 // verify() method called automatically by JMock
 }

The Expected Behavior Specifi cation is built by calling expression-building
methods such as expects, once, and method to describe how the Confi gurable

 Configurable Test Double

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

566 Chapter 23 Test Double Patterns

Test Double should be used and what it should return. JMock supports the
specifi cation of much more sophisticated behavior (such as multiple calls to
the same method with different arguments and return values) than does our
hand-built Confi gurable Test Double.

Example: Confi guration Mode

In the next example, the test has been converted to use a Mock Object with a
Confi guration Mode:

 public void testRemoveFlight_ModalMock() throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 // mock configuration (in Configuration Mode)
 ModalMockAuditLog mockLog = new ModalMockAuditLog();
 mockLog.logMessage(Helper.getTodaysDateWithoutTime(),
 Helper.TEST_USER_NAME,
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 expectedFlightDto.getFlightNumber());
 mockLog.enterPlaybackMode();
 // mock installation
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 facade.setAuditLog(mockLog);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 mockLog.verify();
 }

Here the test calls the methods on the Confi gurable Test Double during the fi xture
setup phase. If we weren’t aware that this test uses a Confi gurable Test Double
mock, we might fi nd this structure confusing at fi rst glance. The most obvious clue
to its intent is the call to the method enterPlaybackMode, which tells the Confi gurable
Test Double to stop saving expected values and to start asserting on them.

The Confi gurable Test Double used by this test is implemented like this:

 private int mode = record;

 public void enterPlaybackMode() {
 mode = playback;
 }

 public void logMessage(Date date,
 String user,
 String action,
 Object detail) {

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

567

 if (mode == record) {
 Assert.assertEquals("Only supports 1 expected call",
 0, expectedNumberCalls);
 expectedNumberCalls = 1;
 expectedDate = date;
 expectedUser = user;
 expectedCode = action;
 expectedDetail = detail;
 } else {
 Assert.assertEquals("Date", expectedDate, date);
 Assert.assertEquals("User", expectedUser, user);
 Assert.assertEquals("Action", expectedCode, action);
 Assert.assertEquals("Detail", expectedDetail, detail);
 }
 }

The if statement checks whether we are in record or playback mode. Because
this simple hand-built Confi gurable Test Double allows only a single value to
be stored, a Guard Assertion (page 490) fails the test if it tries to record more
than one call to this method. The rest of the then clause saves the parameters
into variables that it uses as the expected values of the Equality Assertions (see
Assertion Method on page 362) in the else clause.

 Configurable Test Double

Confi gurable
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

568 Chapter 23 Test Double Patterns

Hard-Coded Test Double

How do we tell a Test Double what to return or expect?

We build the Test Double by hard-coding the return values and/or
expected calls.

Test Doubles (page 522) are used for many reasons during the development of
Fully Automated Tests (see page 26). The behavior of the Test Double may vary
from test to test, and there are many ways to defi ne this behavior.

When the Test Double is very simple or very specifi c to a single test, the sim-
plest solution is often to hard-code the behavior into the Test Double.

How It Works

The test automater hard-codes all of the Test Double’s behavior into the Test
Double. For example, if the Test Double needs to return a value for a method
call, the value is hard-coded into the return statement. If it needs to verify that a
certain parameter had a specifi c value, the assertion is hard-coded with the value
that is expected.

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation
Expectations

Return
Values

Creation
Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation
Expectations

Return
Values

Creation

Hard-Coded
Test Double

Also known as:
Hard-Coded

Mock Object,
Hard-Coded

Test Stub,
Hard-Coded

Test Spy

www.it-ebooks.info

http://www.it-ebooks.info/

569

When to Use It

We typically use a Hard-Coded Test Double when the behavior of the Test Double
is very simple or is very specifi c to a single test or Testcase Class (page 373). The
Hard-Coded Test Double can be either a Test Stub (page 529), a Test Spy (page 538),
or a Mock Object (page 544), depending on what we encode in the method(s)
called by the SUT.

Because each Hard-Coded Test Double is purpose-built by hand, its construction
may take more effort than using a third-party Confi gurable Test Double (page 558).
It can also result in more test code to maintain and refactor as the SUT changes. If
different tests require that the Test Double behave in different ways and the use of
Hard-Coded Test Doubles results in too much Test Code Duplication (page 213),
we should consider using a Confi gurable Test Double instead.

Implementation Notes

Hard-Coded Test Doubles are inherently Hand-Built Test Doubles (see
Confi gurable Test Double) because there tends to be no point in generating
Hard-Coded Test Doubles automatically. Hard-Coded Test Doubles can be
implemented with dedicated classes, but they are most commonly used when
the programming language supports blocks, closures, or inner classes. All of
these language features help to avoid the fi le/class overhead associated with
creating a Hard-Coded Test Double; they also keep the Hard-Coded Test
Double’s behavior visible within the test that uses it. In some languages, this
can make the tests a bit more diffi cult to read. This is especially true when
we use anonymous inner classes, which require a lot of syntactic overhead to
defi ne the class in-line. In languages that support blocks directly, and in which
developers are very familiar with their usage idioms, using Hard-Coded Test
Doubles can actually make the tests easier to read.

There are many different ways to implement a Hard-Coded Test Double,
each of which has its own advantages and disadvantages.

Variation: Test Double Class

We can implement the Hard-Coded Test Double as a class distinct from either
the Testcase Class or the SUT. This allows the Hard-Coded Test Double to be
reused by several Testcase Classes but may result in an Obscure Test (page 186;
caused by a Mystery Guest) because it moves important indirect inputs or indi-
rect outputs of the SUT out of the test to somewhere else, possibly out of sight of
the test reader. Depending on how we implement the Test Double Class, it may
also result in code proliferation and additional Test Double classes to maintain.

 Hard-Coded Test Double

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

570 Chapter 23 Test Double Patterns

One way to ensure that the Test Double Class is type-compatible with the
component it will replace is to make the Test Double Class a subclass of that
component. We then override any methods whose behavior we want to change.

Variation: Test Double Subclass

We can also implement the Hard-Coded Test Double by subclassing the real
DOC and overriding the behavior of the methods we expect the SUT to call as
we exercise it. Unfortunately, this approach can have unpredictable consequences
if the SUT calls other DOC methods that we have not overridden. It also ties our
test code very closely to the implementation of the DOC and can result in Over-
specifi ed Software (see Fragile Test on page 239). Using a Test Double Subclass
may be a reasonable option in very specifi c circumstances (e.g., while doing a
spike or when it is the only option available to us), but this strategy isn’t recom-
mended on a routine basis.

Variation: Self Shunt

We can implement the methods that we want the SUT to call on the Testcase
Class and install the Testcase Object (page 382) into the SUT as the Test Double
to be used. This approach is called a Self Shunt.

The Self Shunt can be either a Test Stub, a Test Spy, or a Mock Object,
depending on what the method called by the SUT does. In each case, it will
need to access instance variables of the Testcase Class to know what to do or
expect. In statically typed languages, the Testcase Class must also implement
the interface on which the SUT depends.

We typically use a Self Shunt when we need a Hard-Coded Test Double that
is very specifi c to a single Testcase Class. If only a single Test Method (page 348)
requires the Hard-Coded Test Double, using an Inner Test Double may result in
greater clarity if our language supports it.

Variation: Inner Test Double

A popular way to implement a Hard-Coded Test Double is to code it as an
anonymous inner class or block closure within the Test Method. This strategy
gives the Test Double access to instance variables and constants of the Testcase
Class and even the local variables of the Test Method, which can eliminate the
need to confi gure the Test Double.

While the name of this variation is based on the name of the Java language
construct of which it takes advantage, many programming languages have an
equivalent mechanism for defi ning code to be run later using blocks or closures.

Hard-Coded
Test Double

Also known as:
Loopback,

Testcase Class
as Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

571

We typically use an Inner Test Double when we are building a Hard-Coded
Test Double that is relatively simple and is used only within a single Test Method.
Many people fi nd the use of a Hard-Coded Test Double more intuitive than using
a Self Shunt because they can see exactly what is going on within the Test Method.
Readers who are unfamiliar with the syntax of anonymous inner classes or blocks
may fi nd the test diffi cult to understand, however.

Variation: Pseudo-Object

One challenge facing writers of Hard-Coded Test Doubles is that we must
implement all the methods in the interface that the SUT might call. In statically
typed languages such as Java and C#, we must at least implement all methods
declared in the interface implied by the class or type associated with however
we access the DOC. This often “forces” us to subclass from the real DOC to
avoid providing dummy implementations for these methods.

One way of reducing the programming effort is to provide a default class
that implements all the interface methods and throws a unique error. We can
then implement a Hard-Coded Test Double by subclassing this concrete class
and overriding just the one method we expect the SUT to call while we are
exercising it. If the SUT calls any other methods, the Pseudo-Object throws an
error, thereby failing the test.

Motivating Example

The following test verifi es the basic functionality of the component that formats
an HTML string containing the current time. Unfortunately, it depends on the
real system clock, so it rarely passes!

 public void testDisplayCurrentTime_AtMidnight() {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

 Hard-Coded Test Double

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

572 Chapter 23 Test Double Patterns

Refactoring Notes

The most common transition is from using the real component to using a
Hard-Coded Test Double.4 To make this transition, we need to build the Test Double
itself and install it from within our Test Method. We may also need to introduce a way
to install the Test Double using one of the Dependency Injection patterns (page 678)
if the SUT does not already support this installation. The process for doing so is
described in the Replace Dependency with Test Double (page 522) refactoring.

Example: Test Double Class

Here’s the same test modifi ed to use a Hard-Coded Test Double class to allow
control over the time:

 public void testDisplayCurrentTime_AtMidnight_HCM()
 throws Exception {
 // Fixture setup
 // Instantiate hard-coded Test Stub
 TimeProvider testStub = new MidnightTimeProvider();
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Test Stub into SUT
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

This test is hard to understand without seeing the defi nition of the Hard-Coded
Test Double. We can readily see how this approach might lead to an Obscure Test
caused by a Mystery Guest if the Hard-Coded Test Double is not close at hand.

 class MidnightTimeProvider implements TimeProvider {
 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 myTime.set(Calendar.MINUTE, 0);
 return myTime;
 }
 }

4 We rarely move from a Confi gurable Test Double to a Hard-Coded Test Double because
we generally seek to make the Test Double more—not less—reusable.

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

573

Depending on the programming language, this Test Double Class can be defi ned
in a number of different places, including within the body of the Testcase Class
(an inner class) and as a separate free-standing class either in the same fi le as the
test or in its own fi le. Of course, the farther away the Test Double Class resides
from the Test Method, the more of a Mystery Guest it becomes.

Example: Self Shunt/Loopback

Here’s a test that uses a Self Shunt to allow control over the time:

public class SelfShuntExample extends TestCase
implements TimeProvider {
 public void testDisplayCurrentTime_AtMidnight() throws Exception {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // mock setup
 sut.setTimeProvider(this); // self shunt installation
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
}

Note how both the Test Method that installs the Hard-Coded Test Double and
the implementation of the getTime method called by the SUT are members of the
same class. We used the Setter Injection pattern (see Dependency Injection) to
install the Hard-Coded Test Double. Because this example is written in a statically
typed language, we had to add the clause implements TimeProvider to the Testcase
Class declaration so that the sut.setTimeProvider(this) statement will compile. In a
dynamically typed language, this step is unnecessary.

Example: Subclassed Inner Test Double

Here’s a JUnit test that uses a Subclassed Inner Test Double using Java’s “Anon-
ymous Inner Class” syntax:

 Hard-Coded Test Double

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

574 Chapter 23 Test Double Patterns

 public void testDisplayCurrentTime_AtMidnight_AIM() throws Exception {
 // Fixture setup
 // Define and instantiate Test Stub
 TimeProvider testStub = new TimeProvider() {
 // Anonymous inner stub
 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Test Stub into SUT
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

Here we used the name of the real depended-on class (TimeProvider) in the call to
new for the defi nition of the Hard-Coded Test Double. By including a defi nition
of the method getTime within curly braces after the classname, we are actually
creating an anonymous Subclassed Test Double inside the Test Method.

Example: Inner Test Double Subclassed from Pseudo-Class

Suppose we have replaced one implementation of a method with another imple-
mentation that we need to leave around for backward-compatibility purposes,
but we want to write tests to ensure that the old method is no longer called. This
is easy to do if we already have the following Pseudo-Object defi nition:

/**
 * Base class for hand-coded Test Stubs and Mock Objects
 */
public class PseudoTimeProvider implements ComplexTimeProvider {

 public Calendar getTime() throws TimeProviderEx {
 throw new PseudoClassException();
 }

 public Calendar getTimeDifference(Calendar baseTime,
 Calendar otherTime)
 throws TimeProviderEx {
 throw new PseudoClassException();

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

575

 }

 public Calendar getTime(String timeZone) throws TimeProviderEx {
 throw new PseudoClassException();
 }
}

We can now write a test that ensures the old version of the getTime method is not
called by subclassing and overriding the newer version of the method (the one
we expect to be called by the SUT):

 public void testDisplayCurrentTime_AtMidnight_PS() throws Exception {
 // Fixture setup
 // Define and instantiate Test Stub
 TimeProvider testStub = new PseudoTimeProvider()
 { // Anonymous inner stub
 public Calendar getTime(String timeZone) {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Test Stub into SUT:
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

If any of the other methods are called, the base class methods are invoked and
throw an exception. Therefore, if we run this test and one of the methods we
didn’t override is called, we will see the following output as the fi rst line of the
JUnit stack trace for this test error:

 com..PseudoClassEx: Unexpected call to unsupported method.
 at com..PseudoTimeProvider.getTime(PseudoTimeProvider.java:22)
 at com..TimeDisplay.getCurrentTimeAsHtmlFragment(TimeDisplay.java:64)
 at com..TimeDisplayTestSolution.
 testDisplayCurrentTime_AtMidnight_PS(
 TimeDisplayTestSolution.java:247)

 Hard-Coded Test Double

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

576 Chapter 23 Test Double Patterns

What’s in a (Pattern) Name?

The Importance of Good Names
Names are important because they are a key part of how we communicate.
Names are labels we attach to concepts. Good names help us communi-
cate those concepts. This is true when we are communicating with people
who already know the names, but especially when we are communicating
with people who don’t. Consider the following example.

Early in my pattern-writing days, I attended the very fi rst Pattern
Languages of Programs (PLoP) conference (http://www.hillside.net/
conferences/plop). At the conference, the well-known author Jim Co-
plien (“Cope,” to his friends) had a pattern language of organizational
patterns being workshopped. One of the patterns was called “Buffalo
Mountain”; another was called “Architect Also Implements.” These
two pattern names are at opposite ends of the spectrum as far as pat-
tern names are concerned.

The gist of “Architect Also Implements” can be gleaned from the pattern
name even if a person has not read the actual pattern. The name is both a
placeholder for the pattern and meaningful in its own right.

The name “Buffalo Mountain,” by contrast, does not readily communi-
cate its underlying meaning. To this day I can still remember the story
behind the name—but I cannot remember the actual focus of the pattern.
The name was based on a graph that plotted some data related to the
pattern. An early reviewer thought it resembled the profi le of a nearby
mountain called Buffalo Mountain. Thus, while the pattern name is mem-
orable, it is not very evocative.

Closer to home, Self Shunt (see Hard-Coded Test Double on page 568)
is an example of a name that is less than evocative because the term
“shunt” is not widely used except in a few specialized fi elds. Michael
Feathers does a good job explaining the background of the name in his
description of the pattern. Unless you’ve read that description, however,
the name is “just a name.” A more evocative name might be something
like “Testcase Class as Test Double” or “Loopback” but even the latter
suffers from ambiguity because it isn’t clear what is being looped back.
So the name Self Shunt survives because it is in common use.

Hard-Coded
Test Double

www.it-ebooks.info

http://www.hillside.net/conferences/plop
http://www.hillside.net/conferences/plop
http://www.it-ebooks.info/

577

Other Naming Considerations
People might ask why I sometimes propose alternative names for some
patterns. The preceding story highlights one of the reasons. Another
reason is that in a larger collection of patterns (such as this book), it is
important that there exists a “system of names.”

Let me illustrate this second reason with an example. Many people
advocate the use of a setUp method to create the test fi xture. This approach
moves the fi xture setup logic out of each individual Test Method (page 348)
and into a single place where it can be reused. Many people might refer to
this pattern as “Shared Setup Method.” But in this pattern language, I’ve
chosen to call it Implicit Setup (page 424). Why?

It comes down to the names of other patterns in the language. On the one
hand, “Shared Setup Method” could easily be confused with the existing
pattern Shared Fixture (page 317). (The former pattern deals with sharing
code, whereas the latter pattern focuses on sharing the runtime objects
in the fi xture.) On the other hand, the two major alternatives to Implicit
Setup are called In-line Setup (page 408) and Delegated Setup (page 411).
Wouldn’t you agree that “In-line Setup, Delegated Setup, Implicit Setup”
forms a better “system of names” than “In-line Setup, Delegated Setup,
Shared Setup Method”? The connection between the pattern names is
much more obvious when we consider all the major alternative patterns
when choosing the system of names.

Why Standardize Testing Patterns?
The last part of this soapbox highlights why I think it is important for us
to standardize the names of the test automation patterns, especially those
related to Test Stubs (page 529) and Mock Objects (page 544). The key
issue here relates to succinctness of communication.

When someone tells you, “Put a mock in it” (pun intended!), what advice
is that person giving you? Depending on what the person means by a
“mock,” he or she could be suggesting that you control the indirect inputs
of your SUT using a Test Stub or that you replace your database with a
Fake Database (see Fake Object on page 551) that will reduce test inter-
actions and speed up your tests by a factor of 50. (Yes, 50! See the sidebar
“Faster Tests Without Shared Fixtures” on page 319.) Or perhaps the
person is suggesting that you verify that your SUT calls the correct meth-
ods by installing an Eager Mock Object (see Mock Object) preconfi gured

Continued...

 Hard-Coded Test Double

Hard-Coded
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

578 Chapter 23 Test Double Patterns

with the Expected Behavior (see Behavior Verifi cation on page 468). If
everyone used “mock” to mean a Mock Object—no more or less—then
the advice would be pretty clear. As I write this, the advice is very murky
because we have taken to calling just about any Test Double (page 522) a
“mock object” (despite the objections of the authors of the original paper
on Mock Objects [ET]).

Further Reading
If you want to fi nd out what “Buffalo Mountain” is really about, go to
http://www1.bell-labs.com/user/cope/Patterns/Process/section29.html.

You can fi nd “Architect Also Implements” at http://www1.bell-labs.com/
user/cope/Patterns/Process/section16.html.

Interestingly, Alistair Cockburn wrote a similar comparison of pattern
names in an article on his Web site (http://alistair.cockburn.us) and chose
exactly the same two pattern names in his comparison. Coincidence or
pattern?

In addition to failing the test, this scheme makes it very easy to see exactly which
method was called. The bonus is that it works for calls to all unexpected methods
with no additional effort.

Further Reading

Many of the “how to” books on test-driven development provide examples of Self
Shunt, including [TDD-APG], [TDD-BE], [UTwJ], [PUT], and [JuPG]. The original
write-up was by Michael Feathers and is accessible at http://www.objectmentor.
com/resources/articles/SelfShunPtrn.pdf

The original “Shunt” pattern is written up at http://http://c2.com/cgi/wiki?
ShuntPattern, along with a list of alternative names including “Loopback.” See
the sidebar “What’s in a (Pattern) Name?” on page 576 for a discussion of how
to select meaningful and evocative pattern names.

The Pseudo-Object pattern is described in the paper “Pseudo-Classes: Very
Simple and Lightweight Mock Object-like Classes for Unit-Testing” available at
http://www.devx.com/Java/Article/22599/1954?pf=true.

Hard-Coded
Test Double

www.it-ebooks.info

http://www1.bell-labs.com/user/cope/Patterns/Process/section29.html
http://www1.bell-labs.com/user/cope/Patterns/Process/section16.html
http://www1.bell-labs.com/user/cope/Patterns/Process/section16.html
http://alistair.cockburn.us
http://www.objectmentor.com/resources/articles/SelfShunPtrn.pdf
http://www.objectmentor.com/resources/articles/SelfShunPtrn.pdf
http://www.devx.com/Java/Article/22599/1954?pf=true
http://c2.com/cgi/wiki?
http://www.it-ebooks.info/

579

Test-Specifi c Subclass

How can we make code testable when we need to access
private state of the SUT?

We add methods that expose the state or behavior needed by the test
to a subclass of the SUT.

If the SUT was not designed specifi cally to be testable, we may fi nd that the
test cannot gain access to a state that it must initialize or verify at some point
in the test.

A Test-Specifi c Subclass is a simple yet very powerful way to open up the
SUT for testing purposes without modifying the code of the SUT itself.

How It Works

We defi ne a subclass of the SUT and add methods that modify the behavior of
the SUT just enough to make it testable by implementing control points and
observation points. This effort typically involves exposing instance variables
using setters and getters or perhaps adding a method to put the SUT into a
specifi c state without moving through its entire life cycle.

Setup

Exercise

Verify

Teardown

SUT

Test-
Specific

Subclass
Get State

Method Under Test

Internal Method

Internal Method

Overridden
Self Call

Set State

Create

Exercise

Setup

Exercise

Verify

Teardown

SUT

Test-
Specific

Subclass
Get State

Method Under Test

Internal Method

Internal Method

Overridden
Self Call

Set State

Create

Exercise

 Test-Specific Subclass

Test-Specifi c
Subclass

Also known as:
Test-Specifi c
Extension

www.it-ebooks.info

http://www.it-ebooks.info/

580 Chapter 23 Test Double Patterns

Because the Test-Specifi c Subclass would be packaged together with the tests
that use it, the use of a Test-Specifi c Subclass does not change how the SUT is
seen by the rest of the application.

When to Use It

We should use a Test-Specifi c Subclass whenever we need to modify the SUT to
improve its testability but doing so directly would result in Test Logic in Produc-
tion (page 217). Although we can use a Test-Specifi c Subclass for a number of
purposes, all of those scenarios share a common goal: They improve testability
by letting us get at the insides of the SUT more easily. A Test-Specifi c Subclass
can be a double-edged sword, however. By breaking encapsulation, it allows us
to tie our tests even more closely to the implementation, which can in turn result
in Fragile Tests (page 239).

Variation: State-Exposing Subclass

If we are doing State Verifi cation (page 462), we can subclass the SUT (or some
component of it) so that we can see the internal state of the SUT for use in Assertion
Methods (page 362). Usually, this effort involves adding accessor methods for pri-
vate instance variables. We may also allow the test to set the state as a way to avoid
Obscure Tests (page 186) caused by Obscure Setup (see Obscure Test) logic.

Variation: Behavior-Exposing Subclass

If we want to test the individual steps of a complex algorithm individually, we
can subclass the SUT to expose the private methods that implement the Self-
Calls [WWW]. Because most languages do not allow for relaxing the visibility
of a method, we often have to use a different name in the Test-Specifi c Subclass
and make a call to the superclass’s method.

Variation: Behavior-Modifying Subclass

If the SUT contains some behavior that we do not want to occur when testing,
we can override whatever method implements the behavior with an empty
method body. This technique works best when the SUT uses Self-Calls (or a
Template Method [GOF]) to delegate the steps of an algorithm to methods on
itself or subclasses.

Variation: Test Double Subclass

To ensure that a Test Double (page 522) is type-compatible with a DOC we wish
to replace, we can make the Test Double a subclass of that component. This may

Test-Specifi c
Subclass

Also known as:
Subclassed
Test Double

www.it-ebooks.info

http://www.it-ebooks.info/

581

be the only way we can build a Test Double that the compiler will accept when
variables are statically typed using concrete classes.5 (We should not have to
take this step with dynamically typed languages such as Ruby, Python, Perl, and
JavaScript.) We then override any methods whose behavior we want to change
and add any methods we require to transform the Test Double into a Confi gu-
rable Test Double (page 558) if we so desire.

Unlike the Behavior-Modifying Subclass, the Test Double Subclass does not
just “tweak” the behavior of the SUT (or a part thereof) but replaces it entirely
with canned behavior.

Variation: Substituted Singleton

The Substituted Singleton is a special case of Test Double Subclass. We use it
when we want to replace a DOC with a Test Double and the SUT does not sup-
port Dependency Injection (page 678) or Dependency Lookup (page 686).

Implementation Notes

The use of a Test-Specifi c Subclass brings some challenges:

• Feature granularity: ensuring that any behavior we want to override or
expose is in its own single-purpose method. It is enabled through copi-
ous use of small methods and Self-Calls.

• Feature visibility: ensuring that subclasses can access attributes and be-
havior of the SUT class. It is primarily an issue in statically typed lan-
guages such as Java, C#, and C++; dynamically typed languages typically
do not enforce visibility.

As with Test Doubles, we must be careful to ensure that we do not replace any
of the behavior we are actually trying to test.

In languages that support class extensions without the need for subclassing
(e.g., Smalltalk, Ruby, JavaScript, and other dynamic languages), a Test-Specifi c
Subclass can be implemented as a class extension in the test package. We need to
be aware, however, whether the extensions will make it into production; doing
so would introduce Test Logic in Production.

5 That is, by using a concrete class as the type of the variable rather than an abstract
class or interface.

Also known as:
Subclassed
Singleton,
Substitutable
Singleton

 Test-Specific Subclass

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

582 Chapter 23 Test Double Patterns

Visibility of Features

In languages that enforce scope (visibility) of variables and methods, we may
need to change the visibility of the variables to allow subclasses to access them.
While such a change affects the actual SUT code, it would typically be con-
sidered much less intrusive or misleading than changing the visibility to public
(thereby allowing any code in the application to access the variables) or adding
the test-specifi c methods directly to the SUT.

For example, in Java, we might change the visibility of instance variables
from private to protected to allow the Test-Specifi c Subclass to access them.
Similarly, we might change the visibility of methods to allow the Test-Specifi c
Subclass to call them.

Granularity of Features

Long methods are diffi cult to test because they often bring too many dependen-
cies into play. By comparison, short methods tend to be much simpler to test
because they do only one thing. Self-Call offers an easy way to reduce the size
of methods. We delegate parts of an algorithm to other methods implemented
on the same class. This strategy allows us to test these methods independently.
We can also confi rm that the calling method calls these methods in the right
sequence by overriding them in a Test Double Subclass (see Test-Specifi c Subclass
on page 579).

Self-Call is a part of good object-oriented code design in that it keeps methods
small and focused on implementing a single responsibility of the SUT. We can use
this pattern whenever we are doing test-driven development and have control
over the design of the SUT. We may fi nd that we need to introduce Self-Call when
we encounter long methods where some parts of the algorithm depend on things
we do not want to exercise (e.g., database calls). This likelihood is especially
high, for example, when the SUT is built using a Transaction Script [PEAA]
architecture. Self-Call can be retrofi tted easily using the Extract Method [Fowler]
refactoring supported by most modern IDEs.

Motivating Example

The test in the following example is nondeterministic because it depends on the
time. Our SUT is an object that formats the time for display as part of a Web
page. It gets the time by asking a Singleton called TimeProvider to retrieve the time
from a calendar object that it gets from the container.

 public void testDisplayCurrentTime_AtMidnight() throws Exception {
 // Set up SUT

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

583

 TimeDisplay theTimeDisplay = new TimeDisplay();
 // Exercise SUT
 String actualTimeString =
 theTimeDisplay.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight",
 expectedTimeString,
 actualTimeString);
 }

 public void testDisplayCurrentTime_AtOneMinuteAfterMidnight()
 throws Exception {
 // Set up SUT
 TimeDisplay actualTimeDisplay = new TimeDisplay();
 // Exercise SUT
 String actualTimeString =
 actualTimeDisplay.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "12:01 AM";
 assertEquals("12:01 AM",
 expectedTimeString,
 actualTimeString);
 }

These tests rarely pass, and they never pass in the same test run! The code within
the SUT looks like this:

 public String getCurrentTimeAsHtmlFragment() {
 Calendar timeProvider;
 try {
 timeProvider = getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.
 }

 protected Calendar getTime() {
 return TimeProvider.getInstance().getTime();
 }

The code for the Singleton follows:

public class TimeProvider {
 protected static TimeProvider soleInstance = null;

 protected TimeProvider() {};

 public static TimeProvider getInstance() {

 Test-Specific Subclass

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

584 Chapter 23 Test Double Patterns

 if (soleInstance==null) soleInstance = new TimeProvider();
 return soleInstance;
 }

 public Calendar getTime() {
 return Calendar.getInstance();
 }
}

Refactoring Notes

The precise nature of the refactoring employed to introduce a Test-Specifi c Subclass
depends on why we are using one. When we are using a Test-Specifi c Subclass to
expose “private parts” of the SUT or override undesirable parts of its behavior,
we merely defi ne the Test-Specifi c Subclass as a subclass of the SUT and create an
instance of the Test-Specifi c Subclass to exercise in the setup fi xture phase of our
Four-Phase Test (page 358).

When we are using the Test-Specifi c Subclass to replace a DOC of the SUT,
however, we need to use a Replace Dependency with Test Double (page 522)
refactoring to tell the SUT to use our Test-Specifi c Subclass instead of the real
DOC.

In either case, we either override existing methods or add new methods to
the Test-Specifi c Subclass using our language-specifi c capabilities (e.g., subclass-
ing or mixins) as required by our tests.

Example: Behavior-Modifying Subclass (Test Stub)

Because the SUT uses a Self-Call to the getTime method to ask the TimeProvider for
the time, we have an opportunity to use a Subclassed Test Double to control the
time.6 Based on this idea we can take a stab at writing our tests as follows (I have
shown only one test here):

 public void testDisplayCurrentTime_AtMidnight() {
 // Fixture setup
 TimeDisplayTestStubSubclass tss = new TimeDisplayTestStubSubclass();
 TimeDisplay sut = tss;
 // Test Double configuration
 tss.setHours(0);
 tss.setMinutes(0);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();

6 This decision is enabled by the fact that getTime was defi ned to be protected; we would
not be able to do this if it was private.

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

585

 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

Note that we have used the Test-Specifi c Subclass class for the variable that receives
the instance of the SUT; this approach ensures that the methods of the Confi gura-
tion Interface (see Confi gurable Test Double) defi ned on the Test-Specifi c Subclass
are visible to the test.7 For documentation purposes, we have then assigned the
Test-Specifi c Subclass to the variable sut; this is a safe cast because the Test-Specifi c
Subclass class is a subclass of the SUT class. This technique also helps us avoid the
Mystery Guest (see Obscure Test) problem caused by hard-coding an important
indirect input of our SUT inside the Test Stub (page 529).

Now that we have seen how it will be used, it is a simple matter to imple-
ment the Test-Specifi c Subclass:

public class TimeDisplayTestStubSubclass extends TimeDisplay {

 private int hours;
 private int minutes;

 // Overridden method
 protected Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.HOUR_OF_DAY, this.hours);
 myTime.set(Calendar.MINUTE, this.minutes);
 return myTime;
 }
 /*
 * Configuration Interface
 */
 public void setHours(int hours) {
 this.hours = hours;
 }

 public void setMinutes(int minutes) {
 this.minutes = minutes;
 }
}

There’s no rocket science here—we just had to implement the methods used by
the test.

7 We could have used a Hard-Coded Test Double (page 568) subclass instead, but that
tactic would have required a different Test-Specifi c Subclass for each time we want to test
with. Each subclass would simply hard-code the return value of the getTime method.

 Test-Specific Subclass

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

586 Chapter 23 Test Double Patterns

Example: Behavior-Modifying Subclass (Substituted
Singleton)

Suppose our getTime method was declared to be private8 or static, fi nal or sealed, and so
on.9 Such a declaration would prevent us from overriding the method’s behavior
in our Test-Specifi c Subclass. What could we do to address our Nondeterministic
Tests (see Erratic Test on page 228)?

Because the design uses a Singleton [GOF] to provide the time, a simple
solution is to replace the Singleton during test execution with a Test Double
Subclass. We can do so as long as it is possible for a subclass to access its
soleInstance variable. We use the Introduce Local Extension [Fowler] refactoring
(specifi cally, the subclass variant of it) to create the Test-Specifi c Subclass. Writ-
ing the tests fi rst helps us understand the interface we want to implement.

 public void testDisplayCurrentTime_AtMidnight() {
 TimeDisplay sut = new TimeDisplay();
 // Install test Singleton
 TimeProviderTestSingleton timeProvideSingleton =
 TimeProviderTestSingleton.overrideSoleInstance();
 timeProvideSingleton.setTime(0,0);
 // Exercise SUT
 String actualTimeString = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, actualTimeString);
 }

Now that we have a test that uses the Substituted Singleton, we can proceed
to implement it by subclassing the Singleton and defi ning the methods the
tests will use.

public class TimeProviderTestSingleton extends TimeProvider {
 private Calendar myTime = new GregorianCalendar();
 private TimeProviderTestSingleton() {};

 // Installation Interface
 static TimeProviderTestSingleton overrideSoleInstance() {
 // We could save the real instance first, but we won't!
 soleInstance = new TimeProviderTestSingleton();
 return (TimeProviderTestSingleton) soleInstance;
 }

 // Configuration Interface used by the test

8 A private method cannot be seen or overridden by a subclass.
9 This choice prevents a subclass from overriding the method’s behavior.

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

587

 public void setTime(int hours, int minutes) {
 myTime.set(Calendar.HOUR_OF_DAY, hours);
 myTime.set(Calendar.MINUTE, minutes);
 }

 // Usage Interface used by the client
 public Calendar getTime() {
 return myTime;
 }
}

Here the Test Double is a subclass of the real component and has overridden the
instance method called by the clients of the Singleton.

Example: Behavior-Exposing Subclass

Suppose we wanted to test the getTime method directly. Because getTime is protected
and our test is in a different package from the TimeDisplay class, our test cannot
call this method. We could try making our test a subclass of TimeDisplay or we
could put it into the same package as TimeDisplay. Unfortunately, both of these
solutions come with baggage and may not always be possible.

A more general solution is to expose the behavior using a Behavior-Exposing
Subclass. We can do so by defi ning a Test-Specifi c Subclass and adding a public
method that calls this method.

public class TimeDisplayBehaviorExposingTss extends TimeDisplay {

 public Calendar callGetTime() {
 return super.getTime();
 }
}

We can now write the test using the Behavior-Exposing Subclass as follows:

 public void testGetTime_default() {
 // create SUT
 TimeDisplayBehaviorExposingTss tsSut =
 new TimeDisplayBehaviorExposingTss();
 // exercise SUT
 // want to do
 // Calendar time = sut.getTime();
 // have to do
 Calendar time = tsSut.callGetTime();
 // verify outcome
 assertEquals(defaultTime, time);
 }

 Test-Specific Subclass

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

588 Chapter 23 Test Double Patterns

Example: Defi ning Test-Specifi c Equality (Behavior-Modifying
Subclass)

Here is an example of a very simple test that fails because the object we pass
to assertEquals does not implement test-specifi c equality. That is, the default
equals method returns false even though our test considers the two objects to be
equals.

 protected void setUp() throws Exception {
 oneOutboundFlight = findOneOutboundFlightDto();
 }

 public void testGetFlights_OneFlight() throws Exception {
 // Exercise System
 List flights = facade.getFlightsByOriginAirport(
 oneOutboundFlight.getOriginAirportId());
 // Verify Outcome
 assertEquals("Flights at origin - number of flights: ",
 1,
 flights.size());
 FlightDto actualFlightDto = (FlightDto)flights.get(0);
 assertEquals("Flight DTOs at origin",
 oneOutboundFlight,
 actualFlightDto);
 }

One option is to write a Custom Assertion (page 474). Another option is to use
a Test-Specifi c Subclass to add a more appropriate defi nition of equality for our
test purposes alone. We can change our fi xture setup code slightly to create the
Test-Specifi c Subclass as our Expected Object (see State Verifi cation).

 private FlightDtoTss oneOutboundFlight;

 private FlightDtoTss findOneOutboundFlightDto() {
 FlightDto realDto = helper.findOneOutboundFlightDto();
 return new FlightDtoTss(realDto) ;
 }

Finally, we implement the Test-Specifi c Subclass by copying and comparing only
those fi elds that we want to use for our test-specifi c equality.

public class FlightDtoTss extends FlightDto {
 public FlightDtoTss(FlightDto realDto) {
 this.destAirportId = realDto.getDestinationAirportId();
 this.equipmentType = realDto.getEquipmentType();
 this.flightNumber = realDto.getFlightNumber();
 this.originAirportId = realDto.getOriginAirportId();
 }

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

589

 public boolean equals(Object obj) {
 FlightDto otherDto = (FlightDto) obj;
 if (otherDto == null) return false;
 if (otherDto.getDestAirportId()!= this.destAirportId)
 return false;
 if (otherDto.getOriginAirportId()!= this.originAirportId)
 return false;
 if (otherDto.getFlightNumber()!= this.flightNumber)
 return false;
 if (otherDto.getEquipmentType() != this.equipmentType)
 return false;
 return true;
 }
}

In this case we copied the fi elds from the real DTO into our Test-Specifi c Subclass,
but we could just as easily have used the Test-Specifi c Subclass as a wrapper for the
real DTO. There are other ways we could have created the Test-Specifi c Subclass;
the only real limit is our imagination.

This example also assumes that we have a reasonable toString implementa-
tion on our base class that prints out the values of the fi elds being compared.
It is needed because assertEquals will use that implementation when the equals
method returns false. Otherwise, we will have no idea of why the objects are
considered unequal.

Example: State-Exposing Subclass

Suppose we have the following test, which requires a Flight to be in a particular
state:

 protected void setUp() throws Exception {
 super.setUp();
 scheduledFlight = createScheduledFlight();
 }

 Flight createScheduledFlight() throws InvalidRequestException{
 Flight newFlight = new Flight();
 newFlight.schedule();
 return newFlight;
 }

 public void testDeschedule_shouldEndUpInUnscheduleState()
 throws Exception {
 scheduledFlight.deschedule();
 assertTrue("isUnsched", scheduledFlight.isUnscheduled());
 }

 Test-Specific Subclass

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

590 Chapter 23 Test Double Patterns

Setting up the fi xture for this test requires us to call the method schedule on the
fl ight:

public class Flight{
 protected FlightState currentState = new UnscheduledState();

 /**
 * Transitions the Flight from the <code>unscheduled</code>
 * state to the <code>scheduled</code> state.
 * @throws InvalidRequestException when an invalid state
 * transition is requested
 */
 public void schedule() throws InvalidRequestException{
 currentState.schedule();
 }
}

The Flight class uses the State [GOF] pattern and delegates handling of the schedule
method to whatever State object is currently referenced by currentState. This test
will fail during fi xture setup if schedule does not work yet on the default content of
currentState. We can avoid this problem by using a State-Exposing Subclass that
provides a method to move directly into the state, thereby making this an Inde-
pendent Test (see page 42).

public class FlightTss extends Flight {

 public void becomeScheduled() {
 currentState = new ScheduledState();
 }
}

By introducing a new method becomeScheduled on the Test-Specifi c Subclass, we
ensure that we will not accidentally override any existing behavior of the SUT.
Now all we have to do is instantiate the Test-Specifi c Subclass in our test instead
of the base class by modifying our Creation Method (page 415).

 Flight createScheduledFlight() throws InvalidRequestException{
 FlightTss newFlight = new FlightTss();
 newFlight.becomeScheduled();
 return newFlight;
 }

Note how we still declare that we are returning an instance of the Flight class
when we are, in fact, returning an instance of the Test-Specifi c Subclass that has
the additional method.

Test-Specifi c
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/

591

Chapter 24

Test Organization Patterns

Patterns in This Chapter

Named Test Suite . 592

Test Code Reuse

Test Utility Method . 599

Parameterized Test . 607

Testcase Class Structure

Testcase Class per Class . 617

Testcase Class per Feature . 624

Testcase Class per Fixture. 631

Utility Method Location

Testcase Superclass . 638

Test Helper . 643

Test
Organization
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

592 Chapter 24 Test Organization Patterns

Named Test Suite

How do we run the tests when we have arbitrary groups of
tests to run?

We defi ne a test suite, suitably named, that contains a set of tests
that we wish to be able to run as a group.

When we have a large number of tests, we need to organize them in a systematic
way. A test suite allows us to group tests that have related functionality close to
each other. Although we want to be able to run all the tests for the entire applica-
tion or component easily, we also want to be able to run only those tests applicable
to specifi c subsets of the functionality or subcomponents of the system. In other
situations, we want to run only a subset of all the tests we have defi ned.

Named Test Suites give us a way to choose which predefi ned subset of the
tests we want to run.

How It Works

For each group of related tests that we would like to be able to run as a group, we
can defi ne a special Test Suite Factory (see Test Enumeration on page 399) with
an Intent-Revealing Name. The Factory Method [GOF] can use any of several

Fixture

Testcase Class

Testcase Object
Implicit setUp

Implicit tearDown

Testcase Object
Implicit setUp

Implicit tearDown

SUTTest
Suite

Object

testMethod_1

testMethod_n

Test
Suite

Factory
Creation

Fixture

Testcase Class

Testcase Object
Implicit setUp

Implicit tearDown

Testcase Object
Implicit setUp

Implicit tearDown

SUTTest
Suite

Object

testMethod_1

testMethod_n

Test
Suite

Factory
Creation

Named Test
Suite

www.it-ebooks.info

http://www.it-ebooks.info/

593

test suite construction techniques to return a Test Suite Object (page 387)
containing only the specifi c Testcase Objects (page 382) we wish to execute.

When to Use It

Although we often want to run all the tests with a single command, sometimes
we want to run only a subset of the tests. The most common reason for doing so
is time; for this purpose, running the AllTests Suite for a specifi c context is prob-
ably our best bet. When our member of xUnit doesn’t support Test Selection
and the tests we want to run are scattered across multiple contexts and some
contexts contain tests we defi nitely don’t want run, we can use a Subset Suite.

Variation: AllTests Suite

We often want to run all the tests we have available. With smaller systems, it
may be standard practice to run the AllTests Suite after checking out a new code
base (to ensure we start at a known point) and before every check-in (to ensure
all our code works). We typically have an AllTests Suite for each package or
namespace of software so that we can run subsets of the tests after each code
change as part of the “red–green–refactor” cycle.

Variation: Subset Suite

Developers often do not want to run tests because they are Slow Tests (page 253).
Tests that exercise components that access a database will inevitably run much
more slowly than tests that run entirely in memory. By defi ning one Named Test
Suite for the database tests and another Named Test Suite for the in-memory
tests, we can choose not to run the database tests simply by choosing to run the
in-memory Subset Suite.

Another common reason given for not running tests is because the context
they need to run is not available. For example, if we don’t have a Web server
running on our development desktop, or if deploying our software to the Web
server takes too long, we won’t want to run the tests of components that require
the Web server to be running (they would just take extra time to run, and we
know they will fail and spoil our chances of achieving a green bar).

Variation: Single Test Suite

The degenerate form of a Subset Suite is the Single Test Suite, in which we instanti-
ate a single Testcase Object so that we can run a single Test Method (page 348).
This variation is particularly useful when we don’t have a Test Tree Explorer
(see Test Runner on page 377) available or when the Test Method requires some

Named Test
Suite

 Named Test Suite

www.it-ebooks.info

http://www.it-ebooks.info/

594 Chapter 24 Test Organization Patterns

form of Setup Decorator (page 447) to run properly. Some test automaters keep a
“MyTest” Testcase Class (page 373) open in their workspace at all times specifi -
cally for this purpose.

Implementation Notes

The concept of running named sets of tests is independent of how we build the
Named Test Suites. For example, we can use Test Enumeration to build up our
suites of tests explicitly or we can use Test Discovery (page 393) to fi nd all tests
in a particular place (e.g., a namespace or assembly). We can also do Test Selec-
tion (page 403) from within a suite of tests to create a smaller suite dynamically.
Some members of the xUnit family require us to defi ne the AllTests Suites for
each test package or subsystem manually; others, such as NUnit, automatically
create a Test Suite Object for each namespace.

When we are using Test Enumeration and have Named Test Suites for various
subsets of the tests, it is better to defi ne our AllTests Suite in terms of these subsets.
When we implement the AllTests Suite as a Suite of Suites (see Test Suite Object), we
need to add a new Testcase Class to only a single Named Test Suite; this collection
of tests is then rolled up into the AllTests Suite for the local context as well as the
Named Test Suite and the next higher context.

Refactoring Notes

The steps to refactor existing code to a Named Test Suite are highly dependent
on the variant of Named Test Suite we are using. For this reason, I’ll dispense
with the motivating example and skip directly to examples of Named Test Suites.

Example: AllTests Suite

An AllTests Suite helps us run all the tests for different subsets of the functional-
ity of our choosing. For each subcomponent or context (e.g., a Java package),
we defi ne a special test suite (and its corresponding Test Suite Factory) called
AllTests. In the suite Factory Method on the Test Suite Factory, we add all the
tests in the current context and all the Named Test Suites from any nested con-
texts (such as nested Java packages). That way, when the top-level Named Test
Suite is run, all Named Test Suites for the nested contexts will be run as well.

The following example illustrates the kind of code that would be required to
run all the tests in most members of the xUnit family:

public class AllTests {

 public static Test suite() {

Named Test
Suite

www.it-ebooks.info

http://www.it-ebooks.info/

595

 TestSuite suite = new TestSuite("Test for allJunitTests");
 //$JUnit-BEGIN$
 suite.addTestSuite(
 com.clrstream.camug.example.test.InvoiceTest.class);
 suite.addTest(com.clrstream.ex7.test.AllTests.suite());
 suite.addTest(com.clrstream.ex8.test.AllTests.suite());
 suite.addTestSuite(
 com.xunitpatterns.guardassertion.Example.class);
 //$JUnit-END$
 return suite;
 }
}

We had to use a mix of methods in this case because we are adding other Named
Test Suites as well as Test Suite Objects representing a single Testcase Class. In
JUnit, we use different methods to do this. Other members of the xUnit family,
however, may use the same method signature.

The other notable aspect of this example is the JUnit-start and JUnit-end com-
ments. The IDE (in this case, Eclipse) helps us out by automatically regener-
ating the list between these two comments—a semi-automated form of Test
Discovery.

Example: Special-Purpose Suite

Suppose we have three major packages (A, B, and C) containing business logic.
Each package contains both in-memory objects and database access classes. We
would then have corresponding test packages for each of the three packages.
Some tests in each package would require the database, while others could run
purely in memory.

We want to be able to run the following sets of tests for the entire system,
and for each package (A, B, and C):

• All tests

• All database tests

• All in-memory tests

This implies a total of 12 named sets of tests (three named sets for each of four
contexts).

In each of the three packages (A, B, and C), we should defi ne the following
Named Test Suites:

Named Test
Suite

 Named Test Suite

www.it-ebooks.info

http://www.it-ebooks.info/

596 Chapter 24 Test Organization Patterns

• AllDbTests, by adding all the Testcase Classes containing database tests

• AllInMemoryTests, by adding all the Testcase Classes containing in-memory
tests

• AllTests, by combining AllDbTests and AllInMemoryTests

Then, at the top-level testing context, we defi ne Named Test Suites by the same
names as follows:

• AllDbTests, by composing all the AllDbTests Testcase Classes from pack-
ages A, B, and C

• AllInMemoryTests, by composing all the AllInMemoryTests Testcase Classes
from packages A, B, and C

• AllTests, by composing all the AllTests Testcase Classes from packages
A, B, and C (This is just the normal AllTests Suite.)

If we fi nd ourselves needing to include some tests from a single Testcase Class in
both Named Test Suites, we should split the class into one class for each context
(e.g., database tests and in-memory tests).

Example: Single Test Suite

In some circumstances—especially when we are using a debugger—it is highly
desirable to not run all the tests in a Testcase Class. One way to run only a subset of
these tests is to use the Test Tree Explorer provided by some Graphical Test Run-
ners (see Test Runner). When this capability isn’t available, a common practice is
to disable the tests we don’t want run by either commenting them out, copying the
entire Testcase Class and deleting most of the tests, or changing the names or attri-
butes of the test that cause them to be included by the Test Discovery algorithm.

public class LostTests extends TestCase {
 public LostTests(String name) {
 super(name);
 }

 public void xtestOne() throws Exception {
 fail("test not implemented");
 }

 /*
 public void testTwo() throws Exception {
 fail("test not implemented");
 }
 */

Named Test
Suite

www.it-ebooks.info

http://www.it-ebooks.info/

597

 public void testSeventeen() throws Exception {
 assertTrue(true);
 }
}

All of these approaches suffer from the potential for Lost Tests (see Produc-
tion Bugs on page 268) if the means of running a single test is not reversed
properly when the situation requiring this testing strategy has passed. A Sin-
gle Test Suite makes it possible to run the specifi c test(s) without making any
changes to the Testcase Class in question. This technique takes advantage of the
fact that most implementations of xUnit require a one-argument constructor on
our Testcase Class; this argument consists of the name of the method that this
instance of the class will invoke using refl ection. The one-argument construc-
tor is called once for each Test Method on the class, and the resulting Testcase
Object is added to the Test Suite Object. (This is an example of the Pluggable
Behavior [SBPP] pattern.)

We can run a single test by implementing a Test Suite Factory class with a
single method suite that creates an instance of the desired Testcase Class by call-
ing the one-argument constructor with the name of the one Test Method to be
run. By returning a Test Suite Object containing only this one Testcase Object
from suite, we achieve the desired result (running a single test) without touching
the target Testcase Class.

public class MyTest extends TestCase {

 public static Test suite() {
 return new LostTests("testSeventeen");
 }
}

I like to keep a Single Test Suite class around all the time and just plug in what-
ever test I want to run by changing the import statements and the suite method.
Often, I maintain several Single Test Suite classes so I can fl ip back and forth
between different tests very quickly. I fi nd this technique easier to do than drill-
ing down in the Test Tree Explorer and picking the specifi c test to run manually.
(Your mileage may vary!)

Example: Smoke Test Suite

We can take the idea of a Special-Purpose Suite and combine it with the imple-
mentation technique of a Single Test Suite to create a Smoke Test [SCM] suite.
This strategy involves picking a representative test or two from each of the major
areas of the system and including those tests in a single Test Suite Object.

Named Test
Suite

 Named Test Suite

www.it-ebooks.info

http://www.it-ebooks.info/

598 Chapter 24 Test Organization Patterns

public class SmokeTestSuite extends TestCase {
 public static Test suite() {
 TestSuite mySuite = new TestSuite("Smoke Tests");

 mySuite.addTest(new LostTests("testSeventeen"));
 mySuite.addTest(new SampleTests("testOne"));
 mySuite.addTest(new FlightManagementFacadeTest(
 "testGetFlightsByOriginAirports_TwoOutboundFlights"));
 // add additional tests here as needed...
 return mySuite;
 }
}

This scheme won’t test our system thoroughly, but it is a quick way to fi nd out
whether some part of the core functionality is broken.

Named Test
Suite

www.it-ebooks.info

http://www.it-ebooks.info/

599

Test Utility Method

How do we reduce Test Code Duplication?

We encapsulate the test logic we want to reuse behind a suitably
named utility method.

As we write tests, we will invariably fi nd ourselves needing to repeat the same
logic in many, many tests. Initially, we will just “clone and twiddle” as we write
additional tests that need the same logic. Sooner or later, however, we will come to
the realization that this Test Code Duplication (page 213) is starting to cause prob-
lems. This point is a good time to think about introducing a Test Utility Method.

How It Works

The subroutine and the function were two of the earliest ways devised to reuse
logic in several places within a program. A Test Utility Method is just the same
principle applied to object-oriented test code. We move any logic that appears
in more than one test into a Test Utility Method; we can then call this method
from various tests or even several times from within a single test. Of course, we
will want to pass in anything that varies from usage to usage as arguments to
the Test Utility Method.

Test Utility
Methods

Setup

Exercise

Verify

Teardown

SUT

Creation
Method

Cleanup
Method

Fixture

Encapsulation
Method SUT

Finder
Method

Verification
Method

Custom
Assertion

Test Utility
Methods

Setup

Exercise

Verify

Teardown

SUT

Creation
Method

Cleanup
Method

Fixture

Encapsulation
Method SUT

Finder
Method

Verification
Method

Custom
Assertion

 Test Utility Method

Test Utility
Method

www.it-ebooks.info

http://www.it-ebooks.info/

600 Chapter 24 Test Organization Patterns

When to Use It

We should use a Test Utility Method whenever test logic appears in several tests
and we want to be able to reuse that logic. We might also use a Test Utility Method
because we want to be very sure that the logic works as expected. The best way
to achieve that kind of certainty is to write Self-Checking Tests (unit tests—see
page 26) for the reusable test logic. Because the Test Methods (page 348) cannot
easily be tested, it is best to do this by moving the logic out of the test methods
and into Test Utility Methods, where it can be more easily tested.

The main drawback of using the Test Utility Method pattern is that it creates
another API that the test automaters must build and understand. This extra ef-
fort can be largely mitigated through the use of Intent-Revealing Names [SBPP]
for the Test Utility Methods and through the use of refactoring as the means for
defi ning the Test Utility Methods.

There are as many different kinds of Test Utility Methods as there are kinds
of logic in a Test Method. Next, we briefl y summarize some of the most popu-
lar kinds. Some of these variations are important enough to warrant their own
pattern write-ups in the corresponding section of this book.

Variation: Creation Method

Creation Methods (page 415) are used to create ready-to-use objects as part of
fi xture setup. They hide the complexity of object creation and interdependencies
from the test. Creation Method has enough variants to warrant addressing this
pattern in its own section.

Variation: Attachment Method

An Attachment Method (see Creation Method) is a special form of Creation
Method used to amend already-created objects as part of fi xture setup.

Variation: Finder Method

We can encapsulate any logic required to retrieve objects from a Shared Fix-
ture (page 317) within a function that returns the object(s). We then give this
function an Intent-Revealing Name so that anyone reading the test can easily
understand the fi xture we are using in this test.

We should use a Finder Method whenever we need to fi nd an existing Shared
Fixture object that meets some criteria and we want to avoid a Fragile Fixture
(see Fragile Test on page 239) and High Test Maintenance Cost (page 265).
Finder Methods can be used in either a pure Shared Fixture strategy or a
hybrid strategy such as Immutable Shared Fixture (see Shared Fixture). Finder

Test Utility
Method

www.it-ebooks.info

http://www.it-ebooks.info/

601

Methods also help prevent Obscure Tests (page 186) by encapsulating
the mechanism of how the required objects are found and exactly which
objects to use, thereby enabling the reader to focus on understanding why
a particular object is being used and how it relates to the expected outcome
described in the assertions. This helps us move toward Tests as Documentation
(see page 23).

Although most Finder Methods return a single object reference, that object
may be the root of a tree of objects (e.g., an invoice might refer to the customer
and various addresses as well as containing a list of line items). In some circum-
stances, we may choose to defi ne a Finder Method that returns a collection (Array
or Hash) of objects, but the use of this type of Finder Method is less common.
Finder Methods may also update parameters to pass additional objects back to
the test that called them, although this approach is not as intent-revealing as use
of a function. I do not recommend initialization of instance variables as a way of
passing back objects because it is obscure and keeps us from moving the Finder
Method to a Test Helper (page 643) later.

The Finder Method can fi nd objects in the Shared Fixture in several ways:
by using direct references (instance variables or class variables initialized in the
fi xture setup logic), by looking the objects up using known keys, or by search-
ing for the objects using specifi c criteria. Using direct references or known keys
has the advantage of always returning exactly the same object each time the test
is run. The main drawback is that some other test may have modifi ed the object
such that it may no longer match the criteria implied by the Finder Method’s
name. Searching by criteria can avoid this problem, though the resulting tests
may take longer to run and might be less deterministic if they use different
objects each time they are run. Either way, we must modify the code in fewer
places whenever the Shared Fixture is modifi ed (compared to when the objects
are used directly within the Test Method).

Variation: SUT Encapsulation Method

Another reason for using a Test Utility Method is to encapsulate unnecessary knowl-
edge of the API of the SUT. What constitutes unnecessary? Any method we call on
the SUT that is not the method being tested creates additional coupling between
the test and the SUT. Creation Methods and Custom Assertions (page 474) are
common enough examples of SUT Encapsulation Methods to warrant their own
write-ups as separate patterns. This section focuses on the less common uses of
SUT Encapsulation Methods. For example, if the method that we are exercising
(or that we use for verifying the outcome) has a complicated signature, we
increase the amount of work involved to write and maintain the test code and may

 Test Utility Method

Test Utility
Method

Also known as:
SUT API
Encapsulation

www.it-ebooks.info

http://www.it-ebooks.info/

602 Chapter 24 Test Organization Patterns

make it harder to understand the tests (Obscure Test). We can avoid this problem
by wrapping these calls in SUT Encapsulation Methods that are intent-revealing
and may have simpler signatures.

Variation: Custom Assertion

Custom Assertions are used to specify test-specifi c equality in a way that is
reusable across many tests. They hide the complexity of comparing the expected
outcome with the actual outcome. Custom Assertions are typically free of side
effects in that they do not interact with the SUT to retrieve the outcome; that
task is left to the caller.

Variation: Verifi cation Method

Verifi cation Methods (see Custom Assertion) are used to verify that the expected
outcome has occurred. They hide the complexity of verifying the outcome from
the test. Unlike Custom Assertions, Verifi cation Methods interact with the SUT.

Variation: Parameterized Test

The most complete form of the Test Utility Method pattern is the Parameterized
Test (page 607). It is, in essence, an almost complete test that can be reused in
many circumstances. We simply provide the data that varies from test to test as
a parameter and let the Parameterized Test execute all the stages of the Four-
Phase Test (page 358) for us.

Variation: Cleanup Method

Cleanup Methods1 are used during the fi xture teardown phase of the test to
clean up any resources that might still be allocated after the test ends. Refer to
the pattern Automated Teardown (page 503) for a more detailed discussion and
examples.

Implementation Notes

The main objection some people have to using Test Utility Methods is that
this pattern removes some of the logic from the test, which may make the test
harder to read. One way we can avoid this problem when using Test Utility
Methods is to give Intent-Revealing Names to the Test Utility Methods. In fact,
well-chosen names can make the tests even easier to understand because they

1 One could call this pattern a “Teardown Method,” but that name might be confused
with the method used in Implicit Teardown (page 516).

Test Utility
Method

www.it-ebooks.info

http://www.it-ebooks.info/

603

help prevent Obscure Tests by defi ning a Higher Level Language (see page 41)
for defi ning tests. It is also helpful to keep the Test Utility Methods relatively
small and self-contained. We can achieve this goal by passing all arguments to
these methods explicitly as parameters (rather than using instance variables)
and by returning any objects that the tests will require as explicit return values
or updated parameters.

To ensure that the Test Utility Methods have Intent-Revealing Names, we
should let the tests pull the Test Utility Methods into existence rather than just
inventing Test Utility Methods that we think may be needed later. This “out-
side-in” approach to writing code avoids “borrowing tomorrow’s trouble” and
helps us fi nd the minimal solution.

Writing the reusable Test Utility Method is relatively straightforward. The
trickier question is where we would put this method. If the Test Utility Method
is needed only in Test Methods in a single Testcase Class (page 373), then we
can put it onto that class. If we need the Test Utility Method in several classes,
however, the solution becomes a bit more complicated. The key issue relates to
type visibility. The client classes need to be able to see the Test Utility Method,
and the Test Utility Method needs to be able to see all the types and classes
on which it depends. When it doesn’t depend on many types/classes or when
everything it depends on is visible from a single place, we can put the Test Utility
Method into a common Testcase Superclass (page 638) that we defi ne for our
project or company. If it depends on types/classes that cannot be seen from a
single place that all the clients can see, then we may need to put the Test Utility
Method on a Test Helper in the appropriate test package or subsystem. In larger
systems with many groups of domain objects, it is common practice to have one
Test Helper for each group (package) of related domain objects.

Variation: Test Utility Test

One major advantage of using Test Utility Methods is that otherwise Untestable
Test Code (see Hard-to-Test Code on page 209) can now be tested with Self-
Checking Tests. The exact nature of such tests varies based on the kind of Test
Utility Method being tested but a good example is a Custom Assertion Test (see
Custom Assertion).

Motivating Example

The following example shows a test as many novice test automaters would fi rst
write it:

 public void testAddItemQuantity_severalQuantity_v1(){
 Address billingAddress = null;

 Test Utility Method

Test Utility
Method

www.it-ebooks.info

http://www.it-ebooks.info/

604 Chapter 24 Test Organization Patterns

 Address shippingAddress = null;
 Customer customer = null;
 Product product = null;
 Invoice invoice = null;
 try {
 // Fixture Setup
 billingAddress = new Address("1222 1st St SW",
 "Calgary", "Alberta",
 "T2N 2V2", "Canada");
 shippingAddress = new Address("1333 1st St SW",
 "Calgary", "Alberta",
 "T2N 2V2", "Canada");
 customer = new Customer(99, "John", "Doe",
 new BigDecimal("30"),
 billingAddress,
 shippingAddress);
 product = new Product(88, "SomeWidget",
 new BigDecimal("19.99"));
 invoice = new Invoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, 5);
 // Verify Outcome
 List lineItems = invoice.getLineItems();
 if (lineItems.size() == 1) {
 LineItem actItem = (LineItem) lineItems.get(0);
 assertEquals("inv", invoice, actItem.getInv());
 assertEquals("prod", product, actItem.getProd());
 assertEquals("quant", 5, actItem.getQuantity());
 assertEquals("discount",
 new BigDecimal("30"),
 actItem.getPercentDiscount());
 assertEquals("unit price",
 new BigDecimal("19.99"),
 actItem.getUnitPrice());
 assertEquals("extended",
 new BigDecimal("69.96"),
 actItem.getExtendedPrice());
 } else {
 assertTrue("Invoice should have 1 item", false);
 }
 } finally {
 // Teardown
 deleteObject(invoice);
 deleteObject(product);
 deleteObject(customer);
 deleteObject(billingAddress);
 deleteObject(shippingAddress);
 }
 }

This test is diffi cult to understand because it exhibits many code smells, includ-
ing Obscure Test and Hard-Coded Test Data (see Obscure Test).

Test Utility
Method

www.it-ebooks.info

http://www.it-ebooks.info/

605

Refactoring Notes

We often create Test Utility Methods by mining existing tests for reusable logic
when we are writing new tests. We can use an Extract Method [Fowler] refac-
toring to pull the code for the Test Utility Method out of one Test Method
and put it onto the Testcase Class as a Test Utility Method. From there, we
may choose to move the Test Utility Method to a superclass by using a Pull
Up Method [Fowler] refactoring or to another class by using a Move Method
[Fowler] refactoring.

Example: Test Utility Method

Here’s the refactored version of the earlier test. Note how much simpler this test
is to understand than the original version. And this is just one example of what
we can achieve by using Test Utility Methods!

 public void testAddItemQuantity_severalQuantity_v13(){
 final int QUANTITY = 5;
 final BigDecimal CUSTOMER_DISCOUNT = new BigDecimal("30");
 // Fixture Setup
 Customer customer =
 findActiveCustomerWithDiscount(CUSTOMER_DISCOUNT);
 Product product = findCurrentProductWith3DigitPrice();
 Invoice invoice = createInvoice(customer);
 // Exercise SUT
 invoice.addItemQuantity(product, QUANTITY);
 // Verify Outcome
 final BigDecimal BASE_PRICE = product.getUnitPrice().
 multiply(new BigDecimal(QUANTITY));
 final BigDecimal EXTENDED_PRICE =
 BASE_PRICE.subtract(BASE_PRICE.multiply(
 CUSTOMER_DISCOUNT.movePointLeft(2)));
 LineItem expected =
 createLineItem(QUANTITY, CUSTOMER_DISCOUNT,
 EXTENDED_PRICE, product, invoice);
 assertContainsExactlyOneLineItem(invoice, expected);
 }

Let’s go through the changes step by step. First, we replaced the code to create
the Customer and the Product with calls to Finder Methods that retrieve those objects
from an Immutable Shared Fixture. We altered the code in this way because we
don’t plan to change these objects.

 protected Customer findActiveCustomerWithDiscount(
 BigDecimal percentDiscount) {
 return CustomerHome.findCustomerById(
 ACTIVE_CUSTOMER_WITH_30PC_DISCOUNT_ID);
 }

 Test Utility Method

Test Utility
Method

www.it-ebooks.info

http://www.it-ebooks.info/

606 Chapter 24 Test Organization Patterns

Next, we introduced a Creation Method for the Invoice to which we plan to add
the LineItem.

 protected Invoice createInvoice(Customer customer) {
 Invoice newInvoice = new Invoice(customer);
 registerTestObject(newInvoice);
 return newInvoice;
 }

 List testObjects;
 protected void registerTestObject(Object testObject) {
 testObjects.add(testObject);
 }

To avoid the need for In-line Teardown (page 509), we registered each of the
objects we created with our Automated Teardown mechanism, which we call
from the tearDown method.

 private void deleteTestObjects() {
 Iterator i = testObjects.iterator();
 while (i.hasNext()) {
 try {
 deleteObject(i.next());
 } catch (RuntimeException e) {
 // Nothing to do; we just want to make sure
 // we continue on to the next object in the list.
 }
 }
 }

 public void tearDown() {
 deleteTestObjects();
 }

Finally, we extracted a Custom Assertion to verify that the correct LineItem has
been added to the Invoice.

 void assertContainsExactlyOneLineItem(Invoice invoice,
 LineItem expected) {
 List lineItems = invoice.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actItem = (LineItem)lineItems.get(0);
 assertLineItemsEqual("",expected, actItem);
 }

Test Utility
Method

www.it-ebooks.info

http://www.it-ebooks.info/

607

Parameterized Test

How do we reduce Test Code Duplication when the same test
logic appears in many tests?

We pass the information needed to do fi xture setup and result verifi cation to a
utility method that implements the entire test life cycle.

Testing can be very repetitious not only because we must run the same test over
and over again, but also because many of the tests differ only slightly from
one another. For example, we might want to run essentially the same test with
slightly different system inputs and verify that the actual output varies accord-
ingly. Each of these tests would consist of the exact same steps. While having a
large number of tests is an excellent way to ensure good code coverage, it is not
so attractive from a test maintainability standpoint because any change made to
the algorithm of one of the tests must be propagated to all similar tests.

A Parameterized Test offers a way to reuse the same test logic in many Test
Methods (page 348).

Setup

Exercise

Verify

Teardown

Fixture

SUT

Test
Method1

Test
Method2

Test
Method n

Data

Data

Data

Setup

Exercise

Verify

Teardown

Fixture

SUT

Test
Method1

Test
Method2

Test
Method n

Data

Data

Data

Parame-
terized Test

 Parameterized Test

www.it-ebooks.info

http://www.it-ebooks.info/

608 Chapter 24 Test Organization Patterns

How It Works

The solution, of course, is to factor out the common logic into a utility method.
When this logic includes all four parts of the entire Four-Phase Test (page 358)
life cycle—that is, fi xture setup, exercise SUT, result verifi cation, and fi xture
teardown—we call the resulting utility method a Parameterized Test. This kind
of test gives us the best coverage with the least code to maintain and makes it
very easy to add more tests as they are needed.

If the right utility method is available to us, we can reduce a test that would
otherwise require a series of complex steps to a single line of code. As we detect
similarities between our tests, we can factor out the commonalities into a Test
Utility Method (page 599) that takes only the information that differs from test to
test as its arguments. The Test Methods pass in as parameters any information
that the Parameterized Test requires to run and that varies from test to test.

When to Use It

We can use a Parameterized Test whenever Test Code Duplication (page 213)
results from several tests implementing the same test algorithm but with slightly
different data. The data that differs becomes the arguments passed to the Param-
eterized Test, and the logic is encapsulated by the utility method. A Parameterized
Test also helps us avoid Obscure Tests (page 186); by reducing the number of
times the same logic is repeated, it can make the Testcase Class (page 373) much
more compact. A Parameterized Test is also a good steppingstone to a Data-
Driven Test (page 288); the name of the Parameterized Test maps to the verb or
“action word” of the Data-Driven Test, and the parameters are the attributes.

If our extracted utility method doesn’t do any fi xture setup, it is called a
Verifi cation Method (see Custom Assertion on page 474). If it also doesn’t
exercise the SUT, it is called a Custom Assertion.

Implementation Notes

We need to ensure that the Parameterized Test has an Intent-Revealing Name
[SBPP] so that readers of the test will understand what it is doing. This name
should imply that the test encompasses the whole life cycle to avoid any con-
fusion. One convention is to start or end the name in “test”; the presence of
parameters conveys the fact that the test is parameterized. Most members of
the xUnit family that implement Test Discovery (page 393) will create only
Testcase Objects (page 382) for “no arg” methods that start with “test,” so this
restriction shouldn’t prevent us from starting our Parameterized Test names
with “test.” At least one member of the xUnit family—MbUnit—implements

Parame-
terized Test

www.it-ebooks.info

http://www.it-ebooks.info/

609

Parameterized Tests at the Test Automation Framework (page 298) level.
Extensions are becoming available for other members of the xUnit family, with
DDSteps for JUnit being one of the fi rst to appear.

Testing zealots would advocate writing a Self-Checking Test (see page 26) to
verify the Parameterized Test. The benefi ts of doing so are obvious—including
increased confi dence in our tests—and in most cases it isn’t that hard to do. It is
a bit harder than writing unit tests for a Custom Assertion because of the inter-
action with the SUT. We will likely need to replace the SUT2 with a Test Double
so that we can observe how it is called and control what it returns.

Variation: Tabular Test

Several early reviewers of this book wrote to me about a variation of Param-
eterized Test that they use regularly: the Tabular Test. The essence of this test
is the same as that for a Parameterized Test, except that the entire table of
values resides in a single Test Method. Unfortunately, this approach makes
the test an Eager Test (see Assertion Roulette on page 224) because it verifi es
many test conditions. This issue isn’t a problem when all of the tests pass, but
it does lead to a lack of Defect Localization (see page 22) when one of the
“rows” fails.

Another potential problem is that “row tests” may depend on one another
either on purpose or by accident because they are running on the same Testcase
Object; see Incremental Tabular Test for an example of this behavior.

Despite these potential issues, Tabular Tests can be a very effective way to
test. At least one member of the xUnit family implements Tabular Tests at the
framework level: MbUnit provides an attribute [RowTest] to indicate that a test is a
Parameterized Test and another attribute [Row(x,y,...)] to specify the parameters
to be passed to it. Perhaps it will be ported to other members of the xUnit family?
(Hint, hint!)

Variation: Incremental Tabular Test

An Incremental Tabular Test is a variant of the Tabular Test pattern in which we
deliberately build on the fi xture left over by the previous rows of the test. It is
identical to a deliberate form of Interacting Tests (see Erratic Test on page 228)

2 The terminology of SUT becomes very confusing in this case because we cannot replace the
SUT with a Test Double if it truly is the SUT. Strictly speaking, we are replacing the object
that would normally be the SUT with respect to this test. Because we are actually verifying
the behavior of the Parameterized Test, whatever normally plays the role of SUT for this test
now becomes a DOC. (My head is starting to hurt just describing this; fortunately, it really
isn’t very complicated and will make a lot more sense when you actually try it out.)

 Parameterized Test

Parame-
terized Test

Also known as:
Row Test

www.it-ebooks.info

http://www.it-ebooks.info/

610 Chapter 24 Test Organization Patterns

called Chained Tests (page 454), except that all the tests reside within the same
Test Method. The steps within the Test Method act somewhat like the steps of a
“DoFixture” in Fit but without individual reporting of failed steps.3

Variation: Loop-Driven Test

When we want to test the SUT with all the values in a particular list or range, we
can call the Parameterized Test from within a loop that iterates over the values
in the list or range. By nesting loops within loops, we can verify the behavior
of the SUT with combinations of input values. The main requirement for doing
this type of testing is that we must either enumerate the expected result for each
input value (or combination) or use a Calculated Value (see Derived Value on
page 718) without introducing Production Logic in Test (see Conditional Test
Logic on page 200). A Loop-Driven Test suffers from many of the same issues
associated with a Tabular Test, however, because we are hiding many tests inside
a single Test Method (and, therefore, Testcase Object).

Motivating Example

The following example includes some of the runit (Ruby Unit) tests from the Web
site publishing infrastructure I built in Ruby while writing this book. All of the
Simple Success Tests (see Test Method) for my cross-referencing tags went through
the same sequence of steps: defi ning the input XML, defi ning the expected HTML,
stubbing out the output fi le, setting up the handler for the XML, extracting the
resulting HTML, and comparing it with the expected HTML.

 def test_extref
 # setup
 sourceXml = "<extref id='abc'/>"
 expectedHtml = "abc"
 mockFile = MockFile.new
 @handler = setupHandler(sourceXml, mockFile)
 # execute
 @handler.printBodyContents
 # verify
 assert_equals_html(expectedHtml, mockFile.output,
 "extref: html output")
 end

 def testTestterm_normal
 sourceXml = "<testterm id='abc'/>"
 expectedHtml = "abc"

3 This is because most members of the xUnit terminate the Test Method on the fi rst failed
assertion.

Parame-
terized Test

www.it-ebooks.info

http://www.it-ebooks.info/

611

 mockFile = MockFile.new
 @handler = setupHandler(sourceXml, mockFile)
 @handler.printBodyContents
 assert_equals_html(expectedHtml, mockFile.output,
 "testterm: html output")
 end

 def testTestterm_plural
 sourceXml ="<testterms id='abc'/>"
 expectedHtml = "abcs"
 mockFile = MockFile.new
 @handler = setupHandler(sourceXml, mockFile)
 @handler.printBodyContents
 assert_equals_html(expectedHtml, mockFile.output,
 "testterms: html output")
 end

Even though we have already factored out much of the common logic into the
setupHandler method, some Test Code Duplication remains. In my case, I had at
least 20 tests that followed this same pattern (with lots more on the way), so I
felt it was worthwhile to make these tests really easy to write.

Refactoring Notes

Refactoring to a Parameterized Test is a lot like refactoring to a Custom Asser-
tion. The main difference is that we include the calls to the SUT made as part of
the exercise SUT phase of the test within the code to which we apply the Extract
Method [Fowler] refactoring. Because these tests are virtually identical once we
have defi ned our fi xture and expected results, the rest can be extracted into the
Parameterized Test.

Example: Parameterized Test

In the following tests, we have reduced each test to two steps: initializing two
variables and calling a utility method that does all the real work. This utility
method is a Parameterized Test.

 def test_extref
 sourceXml = "<extref id='abc' />"
 expectedHtml = "abc"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")
 end

 def test_testterm_normal
 sourceXml = "<testterm id='abc'/>"
 expectedHtml = "abc"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<testterm>")

 Parameterized Test

Parame-
terized Test

www.it-ebooks.info

http://www.it-ebooks.info/

612 Chapter 24 Test Organization Patterns

 end

 def test_testterm_plural
 sourceXml = "<testterms id='abc'/>"
 expectedHtml = "abcs"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<plural>")
 end

The succinctness of these tests is made possible by defi ning the Parameterized
Test as follows:

 def generateAndVerifyHtml(sourceXml, expectedHtml,
 message, &block)
 mockFile = MockFile.new
 sourceXml.delete!("\t")
 @handler = setupHandler(sourceXml, mockFile)
 block.call unless block == nil
 @handler.printBodyContents
 actual_html = mockFile.output
 assert_equal_html(expectedHtml,
 actual_html,
 message + "html output")
 actual_html
 end

What distinguishes this Parameterized Test from a Verifi cation Method is that
it contains the fi rst three phases of the Four-Phase Test (from setup to verify),
whereas the Verifi cation Method performs only the exercise SUT and verify re-
sult phases. Note that our tests did not need the teardown phase because we are
using Garbage-Collected Teardown (page 500).

Example: Independent Tabular Test

Here’s an example of the same tests coded as a single Independent Tabular
Test:

 def test_a_href_Generation
 row("extref" ,"abc","abc.html","abc")
 row("testterm" ,'abc',"abc.html","abc")
 row("testterms",'abc',"abc.html","abcs")
 end

 def row(tag, id, expected_href_id, expected_a_contents)
 sourceXml = "<" + tag + " id='" + id + "'/>"
 expectedHtml = ""
 + expected_a_contents + ""
 msg = "<" + tag + "> "
 generateAndVerifyHtml(sourceXml, expectedHtml, msg)
 end

Parame-
terized Test

www.it-ebooks.info

http://www.it-ebooks.info/

613

Isn’t this a nice, compact representation of the various test conditions? I simply
did an In-line Temp [Fowler] refactoring on the local variables sourceXml and
expectedHtml in the argument list of generateAndVerify and “munged” the various
Test Methods together into one. Most of the work involved something we won’t
have to do in real life: squeeze the table down to fi t within the page-width limit
for this book. That constraint forced me to abridge the text in each row and
rebuild the HTML and the expected XML within the row method. I chose the
name row to better align this example with the MbUnit example provided later in
this section but I could have called it something else like test_element.

Unfortunately, from the Test Runner’s (page 377) perspective, this is a single
test, unlike the earlier examples. Because the tests all reside within the same
Test Method, a failure in any row other than the last will cause a loss of infor-
mation. In this example, we need not worry about Interacting Tests because
generateAndVerify builds a new test fi xture each time it is called. In the real world,
however, we have to be aware of that possibility.

Example: Incremental Tabular Test

Because a Tabular Test is defi ned in a single Test Method, it will run on a single
Testcase Object. This opens up the possibility of building up series of actions.
Here’s an example provided by Clint Shank on his blog:

public class TabularTest extends TestCase {
 private Order order = new Order();
 private static final double tolerance = 0.001;

 public void testGetTotal() {
 assertEquals("initial", 0.00, order.getTotal(), tolerance);
 testAddItemAndGetTotal("first", 1, 3.00, 3.00);
 testAddItemAndGetTotal("second",3, 5.00, 18.00);
 // etc.
 }

 private void testAddItemAndGetTotal(String msg,
 int lineItemQuantity,
 double lineItemPrice,
 double expectedTotal) {
 // setup
 LineItem item = new LineItem(lineItemQuantity,
 lineItemPrice);
 // exercise SUT
 order.addItem(item);
 // verify total
 assertEquals(msg,expectedTotal,order.getTotal(),tolerance);
 }
}

 Parameterized Test

Parame-
terized Test

www.it-ebooks.info

http://www.it-ebooks.info/

614 Chapter 24 Test Organization Patterns

Note how each row of the Incremental Tabular Test builds on what was already
done by the previous row.

Example: Tabular Test with Framework Support (MbUnit)

Here’s an example from the MbUnit documentation that shows how to use the
[RowTest] attribute to indicate that a test is a Parameterized Test and another
attribute [Row(x,y,...)] to specify the parameters to be passed to it.

[RowTest()]
[Row(1,2,3)]
[Row(2,3,5)]
[Row(3,4,8)]
[Row(4,5,9)]
public void tAdd(Int32 x, Int32 y, Int32 expectedSum)
{
 Int32 Sum;
 Sum = this.Subject.Add(x,y);
 Assert.AreEqual(expectedSum, Sum);
}

Except for the syntactic sugar of the [Row(x,y,...)] attributes, this code sure looks
similar to the previous example. It doesn’t suffer from the loss of Defect Local-
ization, however, because each row is considered a separate test. It would be a
simple matter to convert the previous example to this format using the “fi nd and
replace” feature in a text editor.

Example: Loop-Driven Test (Enumerated Values)

The following test uses a loop to exercise the SUT with various sets of input
values:

 public void testMultipleValueSets() {
 // Set up fixture
 Calculator sut = new Calculator();
 TestValues[] testValues = {
 new TestValues(1,2,3),
 new TestValues(2,3,5),
 new TestValues(3,4,8), // special case!
 new TestValues(4,5,9)
 };

 for (int i = 0; i < testValues.length; i++) {
 TestValues values = testValues[i];
 // Exercise SUT
 int actual = sut.calculate(values.a, values.b);
 // Verify result

Parame-
terized Test

www.it-ebooks.info

http://www.it-ebooks.info/

615

 assertEquals(message(i), values.expectedSum, actual);
 }
 }

 private String message(int i) {
 return "Row "+ String.valueOf(i);
 }

In this case we enumerated the expected value for each set of test inputs. This
strategy avoids Production Logic in Test.

Example: Loop-Driven Test (Calculated Values)

This next example is a bit more complex:

 public void testCombinationsOfInputValues() {
 // Set up fixture
 Calculator sut = new Calculator();
 int expected; // TBD inside loops

 for (int i = 0; i < 10; i++) {
 for (int j = 0; j < 10; j++) {
 // Exercise SUT
 int actual = sut.calculate(i, j);

 // Verify result
 if (i==3 & j==4) // Special case
 expected = 8;
 else
 expected = i+j;

 assertEquals(message(i,j), expected, actual);
 }
 }
 }

 private String message(int i, int j) {
 return "Cell(" + String.valueOf(i)+ ","
 + String.valueOf(j) + ")";
}

Unfortunately, it suffers from Production Logic in Test because of the need to
deal with the special case.

Further Reading

See the documentation for MbUnit for more information on the [RowTest] and
[Row()] attributes. Likewise, see http://www.ddsteps.org for a description of
the DDSteps extension for JUnit; while its name suggests a tool that supports

 Parameterized Test

Parame-
terized Test

www.it-ebooks.info

http://www.ddsteps.org
http://www.it-ebooks.info/

616 Chapter 24 Test Organization Patterns

Data-Driven Testing, the examples given are Parameterized Tests. More argu-
ments for Tabular Test can be found on Clint Shank’s blog at http://clintshank.
javadevelopersjournal.com/tabulartests.htm.

Parame-
terized Test

www.it-ebooks.info

http://clintshank.javadevelopersjournal.com/tabulartests.htm
http://clintshank.javadevelopersjournal.com/tabulartests.htm
http://www.it-ebooks.info/

617

Testcase Class per Class

How do we organize our Test Methods onto Testcase Classes?

We put all the Test Methods for one SUT class onto a single Testcase Class.

As the number of Test Methods (page 348) grows, we need to decide on which
Testcase Class (page 373) to put each Test Method. Our choice of a test organi-
zation strategy affects how easily we can get a “big picture” view of our tests. It
also affects our choice of a fi xture setup strategy.

Using a Testcase Class per Class is a simple way to start off organizing our
tests.

How It Works

We create a separate Testcase Class for each class we wish to test. Each Testcase
Class acts as a home to all the Test Methods that are used to verify the behavior
of the SUT class.

TestcaseClass

Fixture B

Fixture A

SUT Class

testMethod_B_1

testMethod_B_2

testMethod_A_1

testMethod_A_2
feature_1

feature_2Exercise

Exercise

Creation

Creation

TestcaseClass

Fixture B

Fixture A

SUT Class

testMethod_B_1

testMethod_B_2

testMethod_A_1

testMethod_A_2
feature_1

feature_2Exercise

Exercise

Creation

Creation

 Testcase Class per Class

Testcase
Class per
Class

www.it-ebooks.info

http://www.it-ebooks.info/

618 Chapter 24 Test Organization Patterns

When to Use It

Using a Testcase Class per Class is a good starting point when we don’t have very
many Test Methods or we are just starting to write tests for our SUT. As the number
of tests increases and we gain a better understanding of our test fi xture require-
ments, we may want to split the Testcase Class into multiple classes. This choice
will result in either Testcase Class per Fixture (page 631; if we have a small number
of frequently used starting points for our tests) or Testcase Class per Feature
(page 624; if we have several distinct features to test). As Kent Beck would say,
“Let the code tell you what to do!”

Implementation Notes

Choosing a name for the Testcase Class is pretty simple: Just use the SUT class-
name, possibly prefi xed or suffi xed with “Test.” The method names should try
to capture at least the starting state (fi xture) and the feature (method) being
exercised, along with a summary of the parameters to be passed to the SUT. Given
these requirements, we likely won’t have “room” for the expected outcome in the
method name, so the test reader must look at the Test Method body to determine
the expected outcome.

The creation of the fi xture is the primary implementation concern when using
a Testcase Class per Class. Confl icting fi xture requirements will inevitably arise
among the various Test Methods, which makes use of Implicit Setup (page 424)
diffi cult and forces us to use either In-line Setup (page 408) or Delegated Set-
up (page 411). A second consideration is how to make the nature of the fi x-
ture visible within each test method so as to avoid Obscure Tests (page 186).
Delegated Setup (using Creation Methods; see page 415) tends to lead to more
readable tests unless the In-line Setup is very simple.

Example: Testcase Class per Class

Here’s an example of using the Testcase Class per Class pattern to structure
the Test Methods for a Flight class that has three states (Unscheduled, Scheduled,
and AwaitingApproval) and four methods (schedule, requestApproval, deSchedule, and
approve. Because the class is stateful, we need at least one test for each state for
each method.

public class FlightStateTest extends TestCase {

 public void testRequestApproval_FromScheduledState() throws Exception {
 Flight flight = FlightTestHelper.getAnonymousFlightInScheduledState();

Testcase
Class per

Class

www.it-ebooks.info

http://www.it-ebooks.info/

619

 try {
 flight.requestApproval();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "requestApproval",
 e.getRequest());
 assertTrue("isScheduled()", flight.isScheduled());
 }
 }

 public void testRequestApproval_FromUnsheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 flight.requestApproval();
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }

 public void testRequestApproval_FromAwaitingApprovalState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {
 flight.requestApproval();
 fail("not allowed in awaitingApproval state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "requestApproval",
 e.getRequest());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }

 public void testSchedule_FromUnscheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 flight.schedule();
 assertTrue("isScheduled()", flight.isScheduled());
 }

 public void testSchedule_FromScheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInScheduledState();
 try {
 flight.schedule();
 fail("not allowed in scheduled state");

 Testcase Class per Class

Testcase
Class per
Class

www.it-ebooks.info

http://www.it-ebooks.info/

620 Chapter 24 Test Organization Patterns

 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "schedule",
 e.getRequest());
 assertTrue("isScheduled()", flight.isScheduled());
 }
 }

 public void testSchedule_FromAwaitingApprovalState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {
 flight.schedule();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "schedule",
 e.getRequest());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }

 public void testDeschedule_FromScheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInScheduledState();
 flight.deschedule();
 assertTrue("isUnscheduled()", flight.isUnscheduled());
 }

 public void testDeschedule_FromUnscheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 try {
 flight.deschedule();
 fail("not allowed in unscheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "deschedule",
 e.getRequest());
 assertTrue("isUnscheduled()", flight.isUnscheduled());
 }
 }

 public void testDeschedule_FromAwaitingApprovalState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {

Testcase
Class per

Class

www.it-ebooks.info

http://www.it-ebooks.info/

621

 flight.deschedule();
 fail("not allowed in awaitingApproval state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "deschedule",
 e.getRequest());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }

 public void testApprove_FromScheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInScheduledState();
 try {
 flight.approve("Fred");
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "approve",
 e.getRequest());
 assertTrue("isScheduled()", flight.isScheduled());
 }
 }

 public void testApprove_FromUnsheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 try {
 flight.approve("Fred");
 fail("not allowed in unscheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "approve",
 e.getRequest());
 assertTrue("isUnscheduled()", flight.isUnscheduled());
 }
 }

 public void testApprove_FromAwaitingApprovalState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 flight.approve("Fred");
 assertTrue("isScheduled()", flight.isScheduled());
 }

 public void testApprove_NullArgument() throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();

 Testcase Class per Class

Testcase
Class per
Class

www.it-ebooks.info

http://www.it-ebooks.info/

622 Chapter 24 Test Organization Patterns

 try {
 flight.approve(null);
 fail("Failed to catch no approver");
 } catch (InvalidArgumentException e) {
 assertEquals("e.getArgumentName()",
 "approverName", e.getArgumentName());
 assertNull("e.getArgumentValue()",
 e.getArgumentValue());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }

 public void testApprove_InvalidApprover() throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {
 flight.approve("John");
 fail("Failed to validate approver");
 } catch (InvalidArgumentException e) {
 assertEquals("e.getArgumentName()",
 "approverName",
 e.getArgumentName());
 assertEquals("e.getArgumentValue()",
 "John",
 e.getArgumentValue());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }
}

This example uses Delegated Setup of a Fresh Fixture (page 311) to achieve a
more declarative style of fi xture construction. Even so, this class is getting rather
large and keeping track of the Test Methods is becoming a bit of a chore. Even
the “big picture” provided by our IDE is not that illuminating; we can see the test
conditions being exercised but cannot tell what the expected outcome should be
without looking at the method bodies (Figure 24.1).

Testcase
Class per

Class

www.it-ebooks.info

http://www.it-ebooks.info/

623

Figure 24.1 Testcase Class per Class example as seen in the Package Explorer
of the Eclipse IDE. Note how both the starting state and event are included in
the Test Method names.

 Testcase Class per Class

Testcase
Class per
Class

www.it-ebooks.info

http://www.it-ebooks.info/

624 Chapter 24 Test Organization Patterns

Testcase Class per Feature

How do we organize our Test Methods onto Testcase Classes?

We group the Test Methods onto Testcase Classes based on which testable
feature of the SUT they exercise.

As the number of Test Methods (page 348) grows, we need to decide on which
Testcase Class (page 373) to put each Test Method. Our choice of a test organi-
zation strategy affects how easily we can get a “big picture” view of our tests. It
also affects our choice of a fi xture setup strategy.

Using a Testcase Class per Feature gives us a systematic way to break up a
large Testcase Class into several smaller ones without having to change our Test
Methods.

How It Works

We group our Test Methods onto Testcase Classes based on which feature of the
Testcase Class they verify. This organizational scheme allows us to have smaller
Testcase Classes and to see at a glance all the test conditions for a particular
feature of the class.

Fixture B

Fixture A

SUT Class

Feature2TestcaseClass

testMethod_A

 Outputs)

testMethod_B

Feature1TestcaseClass

testMethod_A

testMethod_B

Creation

feature_1

feature_2

Creation

Exercise

Exercise

Fixture B

Fixture A

SUT Class

Feature2TestcaseClass

testMethod_A

 Outputs)

testMethod_B

Feature1TestcaseClass

testMethod_A

testMethod_B

Creation

feature_1

feature_2

Creation

Exercise

Exercise

Testcase
Class per

Feature

www.it-ebooks.info

http://www.it-ebooks.info/

625

When to Use It

We can use a Testcase Class per Feature when we have a signifi cant number of Test
Methods and we want to make the specifi cation of each feature of the SUT more
obvious. Unfortunately, Testcase Class per Feature does not make each individual
Test Method any simpler or easier to understand; only Testcase Class per Fixture
(page 631) helps on that front. Likewise, it doesn’t make much sense to use
Testcase Class per Feature when each feature of the SUT requires only one or two
tests; in that case, we can stick with a single Testcase Class per Class (page 617).

Note that having a large number of features on a class is a “smell” indicating
the possibility that the class might have too many responsibilities. We typically
use Testcase Class per Feature when we are writing customer tests for methods
on a service Facade [GOF].

Variation: Testcase Class per Method

When a class has methods that take a lot of different parameters, we may have
many tests for the one method. We can group all of these Test Methods onto a
single Testcase Class per Method and put the rest of the Test Methods onto one
or more other Testcase Classes.

Variation: Testcase Class per Feature

Although a “feature” of a class is typically a single operation or function, it may
also be a set of related methods that operate on the same instance variable of
the object. For example, the set and get methods of a Java Bean would be con-
sidered a single (and trivial) “feature” of the class that contains those methods.
Similarly, a Data Access Object [CJ2EEP] would provide methods to both read
and write objects. It is diffi cult to test these methods in isolation, so we can treat
the reading and writing of one kind of object as a feature.

Variation: Testcase Class per User Story

If we are doing highly incremental development (such as we might do with eXtreme
Programming), it can be useful to put the new Test Methods for each story into a
different Testcase Class. This practice prevents commit-related confl icts when dif-
ferent people are working on different stories that affect the same SUT class. The
Testcase Class per User Story pattern may or may not end up being the same as
Testcase Class per Feature or Testcase Class per Method, depending on how we
partition our user stories.

 Testcase Class per Feature

Testcase
Class per
Feature

www.it-ebooks.info

http://www.it-ebooks.info/

626 Chapter 24 Test Organization Patterns

Implementation Notes

Because each Testcase Class represents the requirements for a single feature of
the SUT, it makes sense to name the Testcase Class based on the feature it veri-
fi es. Similarly, we can name each test method based on which test condition of
the SUT is being verifi ed. This nomenclature allows us to see all the test condi-
tions at a glance by merely looking at the names of the Test Methods of the
Testcase Class.

One consequence of using Testcase Class per Feature is that we end up with
a larger number of Testcase Classes for a single production class. Because we
still want to run all the tests for this class, we should put these Testcase Classes
into a single nested folder, package, or namespace. We can use an AllTests Suite
(see Named Test Suite on page 592) to aggregate all of the Testcase Classes into
a single test suite if we are using Test Enumeration (page 399).

Motivating Example

This example uses the Testcase Class per Class pattern to structure the Test
Methods for a Flight class that has three states (Unscheduled, Scheduled, and Await-
ingApproval) and four methods (schedule, requestApproval, deSchedule, and approve.
Because the class is stateful, we need at least one test for each state for each
method. (In the interest of saving trees, I’ve omitted many of the method bodies;
please refer to Testcase Class per Class for the full listing.)

public class FlightStateTest extends TestCase {

 public void testRequestApproval_FromScheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInScheduledState();
 try {
 flight.requestApproval();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "requestApproval",
 e.getRequest());
 assertTrue("isScheduled()", flight.isScheduled());
 }
 }

 public void testRequestApproval_FromUnsheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();

Testcase
Class per

Feature

www.it-ebooks.info

http://www.it-ebooks.info/

627

 flight.requestApproval();
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }

 public void testRequestApproval_FromAwaitingApprovalState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {
 flight.requestApproval();
 fail("not allowed in awaitingApproval state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "requestApproval",
 e.getRequest());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }

 public void testSchedule_FromUnscheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 flight.schedule();
 assertTrue("isScheduled()", flight.isScheduled());
 }

 public void testSchedule_FromScheduledState()
 throws Exception {
 // I've omitted the bodies of the rest of the tests to
 // save a few trees
 }
}

This example uses Delegated Setup (page 411) of a Fresh Fixture (page 311)
to achieve a more declarative style of fi xture construction. Even so, this class is
getting rather large and keeping track of the Test Methods is becoming a bit of
a chore. Because the Test Methods on this Testcase Class require four distinct
methods, it is a good example of a test that can be improved through refactoring
to Testcase Class per Feature.

Refactoring Notes

We can reduce the size of each Testcase Class and make the names of the Test
Methods more meaningful by converting them to follow the Testcase Class per
Feature pattern. First, we determine how many classes we want to create and

 Testcase Class per Feature

Testcase
Class per
Feature

www.it-ebooks.info

http://www.it-ebooks.info/

628 Chapter 24 Test Organization Patterns

which Test Methods should go into each one. If some Testcase Classes will end
up being smaller than others, it makes the job easier if we start by building the
smaller classes. Next, we do an Extract Class [Fowler] refactoring to create
one of the new Testcase Classes and give it a name that describes the feature it
exercises. Then, we do a Move Method [Fowler] refactoring (or a simple “cut
and paste”) on each Test Method that belongs in this new class along with any
instance variables it uses.

We repeat this process until we are down to just one feature in the original
Testcase Class; we then rename that class based on the feature it exercises. At
this point, each of the Testcase Classes should compile and run—but we still
aren’t completely done. To get the full benefi t of the Testcase Class per Feature
pattern, we have one fi nal step to carry out. We should do a Rename Method
[Fowler] refactoring on each of the Test Methods to better refl ect what the Test
Method is verifying. As part of this refactoring, we can remove any mention
of the feature being exercised from each Test Method name—that informa-
tion should be captured in the name of the Testcase Class. This leaves us with
“room” to include both the starting state (the fi xture) and the expected result
in the method name. If we have multiple tests for each feature with different
method arguments, we’ll need to fi nd a way to include those aspects of the
test conditions in the method name, too.

Another way to perform this refactoring is simply to make copies of the orig-
inal Testcase Class and rename them as described above. Then we simply delete
the Test Methods that aren’t relevant for each class. We do need to be careful
that we don’t delete all copies of a Test Method; a less critical oversight is to
leave a copy of the same method in several Testcase Classes. We can avoid both
of the potential errors by making one copy of the original Testcase Class for
each of the features and rename them as described above. Then we simply de-
lete the Test Methods that aren’t relevant for each class. When we are done, we
simply delete the original Testcase Class.

Example: Testcase Class per Feature

In this example, we have converted the previously mentioned set of tests to use
Testcase Class per Feature.

public class TestScheduleFlight extends TestCase {

 public void testUnscheduled_shouldEndUpInScheduled()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 flight.schedule();
 assertTrue("isScheduled()", flight.isScheduled());

Testcase
Class per

Feature

www.it-ebooks.info

http://www.it-ebooks.info/

629

 }

 public void testScheduledState_shouldThrowInvalidRequestEx()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInScheduledState();
 try {
 flight.schedule();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "schedule",
 e.getRequest());
 assertTrue("isScheduled()", flight.isScheduled());
 }
 }

 public void testAwaitingApproval_shouldThrowInvalidRequestEx()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {
 flight.schedule();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "schedule",
 e.getRequest());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }
}

Except for their names, the Test Methods really haven’t changed here. Because the
names include the pre-conditions (fi xture), the feature being exercised, and the
expected outcome, they help us see the big picture when we look at the list of tests
in our IDE’s “outline view” (see Figure 24.2). This satisfi es our need for Tests as
Documentation (see page 23).

 Testcase Class per Feature

Testcase
Class per
Feature

www.it-ebooks.info

http://www.it-ebooks.info/

630 Chapter 24 Test Organization Patterns

Figure 24.2 Testcase Class per Feature example as seen in the Package Explorer
of the Eclipse IDE. Note how we do not need to include the starting state in the
Test Method names, leaving room for the name of the method being called and
the expected end state.

Testcase
Class per

Feature

www.it-ebooks.info

http://www.it-ebooks.info/

631

Testcase Class per Fixture

How do we organize our Test Methods onto Testcase Classes?

We organize Test Methods into Testcase Classes based on commonality
of the test fi xture.

As the number of Test Methods (page 348) grows, we need to decide on which
Testcase Class (page 373) to put each Test Method. Our choice of a test organi-
zation strategy affects how easily we can get a “big picture” view of our tests. It
also affects our choice of a fi xture setup strategy.

Using a Testcase Class per Fixture lets us take advantage of the Implicit
Setup (page 424) mechanism provided by the Test Automation Framework
(page 298).

How It Works

We group our Test Methods onto Testcase Classes based on which test fi xture
they require as a starting point. This organization allows us to use Implicit
Setup to move the entire fi xture setup logic into the setUp method, thereby allow-
ing each test method to focus on the exercise SUT and verify outcome phases of
the Four-Phase Test (page 358).

Fixture B

Fixture A

SUT Class

FixtureBTestcaseClass

testMethod_1

testMethod_2

FixtureATestcaseClass

testMethod_2

setUp

setUp

feature_1

feature_2

Creation

Creation

Exercise

Exercise

FixtureATestcaseClass

testMethod_1

Fixture B

Fixture A

SUT Class

FixtureBTestcaseClass

testMethod_1

testMethod_2

FixtureATestcaseClass

testMethod_2

setUp

setUp

feature_1

feature_2

Creation

Creation

Exercise

Exercise

FixtureATestcaseClass

testMethod_1

 Testcase Class per Fixture

Testcase
Class per
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

632 Chapter 24 Test Organization Patterns

When to Use It

We can use the Testcase Class per Fixture pattern whenever we have a group of
Test Methods that need an identical fi xture and we want to make each test method
as simple as possible. If each test needs a unique fi xture, using Testcase Class per
Fixture doesn’t make a lot of sense because we will end up with a large number
of single-test classes; in such a case, it would be better to use either Testcase
Class per Feature (page 624) or simply Testcase Class per Class (page 617).

One benefi t of Testcase Class per Fixture is that we can easily see whether we
are testing all the operations from each starting state. We should end up with
the same lineup of test methods on each Testcase Class, which is very easy to see
in an “outline view” or “method browser” of an IDE. This attribute makes the
Testcase Class per Fixture pattern particularly useful for discovering Missing Unit
Tests (see Production Bugs on page 268) long before we go into production.

Testcase Class per Fixture is a key part of the behavior-driven development style
of testing/specifi cation. It leads to very short test methods, often featuring only a
single assertion per test method. When combined with a test method naming con-
vention that summarizes the expected outcome of the test, this pattern leads to
Tests as Documentation (see page 23).

Implementation Notes

Because we set up the fi xture in a method called by the Test Automation Frame-
work (the setUp method), we must use an instance variable to hold a reference to
the fi xture we created. In such a case, we must be careful not to use a class vari-
able, as it can lead to a Shared Fixture (page 317) and the Erratic Tests (page 228)
that often accompany this kind of fi xture. [The sidebar “There’s Always an
Exception” on page 384 lists xUnit members that don’t guarantee Independent
Tests (see page 42) when we use instance variables.]

Because each Testcase Class represents a single test fi xture confi guration, it
makes sense to name the Testcase Class based on the fi xture it creates. Similarly,
we can name each test method based on the method of the SUT being exercised,
the characteristics of any arguments passed to the SUT method, and the expected
outcome of that method call.

One side effect of using Testcase Class per Fixture is that we end up with
a larger number of Testcase Classes. We may want to fi nd a way to group the
various Testcase Classes that verify a single SUT class. One way to do so is to
create a nested folder, package, or namespace to hold just these test classes. If
we are using Test Enumeration (page 399), we’ll also want to create an AllTests

Testcase
Class per

Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

633

Suite (see Named Test Suite on page 592) to aggregate all the Testcase Class per
Fixtures into a single suite.

Another side effect is that the tests for a single feature of the SUT are spread
across several Testcase Classes. This distribution may be a good thing if the
features are closely related to one another because it highlights their interdepen-
dency. Conversely, if the features are somewhat unrelated, their dispersal may
be disconcerting. In such a case, we can either refactor to use Testcase Class per
Feature or apply an Extract Class [Fowler] refactoring on the SUT if we decide
that this symptom indicates that the class has too many responsibilities.

Motivating Example

The following example uses Testcase Class per Class to structure the Test Methods
for a Flight class that has three states (Unscheduled, Scheduled, and AwaitingApproval)
and four methods (schedule, requestApproval, deSchedule, and approve). Because the
class is stateful, we need at least one test for each state for each method. (In the
interest of saving trees, I’ve omitted many of the method bodies; please refer to
Testcase Class per Class for the full listing.)

public class FlightStateTest extends TestCase {

 public void testRequestApproval_FromScheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInScheduledState();
 try {
 flight.requestApproval();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "requestApproval",
 e.getRequest());
 assertTrue("isScheduled()", flight.isScheduled());
 }
 }

 public void testRequestApproval_FromUnsheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 flight.requestApproval();
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }

 public void testRequestApproval_FromAwaitingApprovalState()
 throws Exception {

 Testcase Class per Fixture

Testcase
Class per
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

634 Chapter 24 Test Organization Patterns

 Flight flight = FlightTestHelper.
 getAnonymousFlightInAwaitingApprovalState();
 try {
 flight.requestApproval();
 fail("not allowed in awaitingApproval state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "requestApproval",
 e.getRequest());
 assertTrue("isAwaitingApproval()",
 flight.isAwaitingApproval());
 }
 }

 public void testSchedule_FromUnscheduledState()
 throws Exception {
 Flight flight = FlightTestHelper.
 getAnonymousFlightInUnscheduledState();
 flight.schedule();
 assertTrue("isScheduled()", flight.isScheduled());
 }

 public void testSchedule_FromScheduledState()
 throws Exception {
 // I've omitted the bodies of the rest of the tests to
 // save a few trees
 }
}

This example uses Delegated Setup (page 411) of a Fresh Fixture (page 311)
to achieve a more declarative style of fi xture construction. Even so, this class is
getting rather large and keeping track of the Test Methods is becoming a bit of a
chore. Because the Test Methods on this Testcase Class require three distinct test
fi xtures (one for each state the fl ight can be in), it is a good example of a test that
can be improved through refactoring to Testcase Class per Fixture.

Refactoring Notes

We can remove Test Code Duplication (page 213) in the fi xture setup and make
the Test Methods easier to understand by converting them to use the Testcase
Class per Fixture pattern. First, we determine how many classes we want to cre-
ate and which Test Methods should go into each one. If some Testcase Classes
will end up being smaller than others, it will reduce our work if we start with
the smaller ones. Next, we do an Extract Class refactoring to create one of the
Testcase Classes and give it a name that describes the fi xture it requires. Then,
we do a Move Method [Fowler] refactoring on each Test Method that belongs
in this new class, along with any instance variables it uses.

Testcase
Class per

Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

635

We repeat this process until we are down to just one fi xture in the original
class; we can then rename that class based on the fi xture it creates. At this point,
each of the Testcase Classes should compile and run—but we still aren’t com-
pletely done. To get the full benefi t of the Testcase Class per Fixture pattern,
we have two more steps to complete. First, we should factor out any common
fi xture setup logic from each of the Test Methods into the setUp method, result-
ing in an Implicit Setup. This type of setup is made possible because the Test
Methods on each class have the same fi xture requirements. Second, we should
do a Rename Method [Fowler] refactoring on each of the Test Methods to bet-
ter refl ect what the Test Method is verifying. We can remove any mention of the
starting state from each Test Method name, because that information should
be captured in the name of the Testcase Class. This refactoring leaves us with
“room” to include both the action (the method being called plus the nature of
the arguments) and the expected result in the method name.

As described in Testcase Class per Fixture, we can also refactor to this pat-
tern by making one copy of the Testcase Class (suitably named) for each fi xture,
deleting the unnecessary Test Methods from each one, and fi nally deleting the
old Testcase Class.

Example: Testcase Class per Fixture

In this example, the earlier set of tests has been converted to use the Testcase
Class per Fixture pattern. (In the interest of saving trees, I’ve shown only one of
the resulting Testcase Classes; the others look pretty similar.)

public class TestScheduledFlight extends TestCase {

 Flight scheduledFlight;

 protected void setUp() throws Exception {
 super.setUp();
 scheduledFlight = createScheduledFlight();
 }

 Flight createScheduledFlight() throws InvalidRequestException{
 Flight newFlight = new Flight();
 newFlight.schedule();
 return newFlight;
 }

 public void testDeschedule_shouldEndUpInUnscheduleState()
 throws Exception {
 scheduledFlight.deschedule();
 assertTrue("isUnsched", scheduledFlight.isUnscheduled());
 }

 Testcase Class per Fixture

Testcase
Class per
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

636 Chapter 24 Test Organization Patterns

 public void testRequestApproval_shouldThrowInvalidRequestEx(){
 try {
 scheduledFlight.requestApproval();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "requestApproval", e.getRequest());
 assertTrue("isScheduled()",
 scheduledFlight.isScheduled());
 }
 }

 public void testSchedule_shouldThrowInvalidRequestEx() {
 try {
 scheduledFlight.schedule();
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "schedule", e.getRequest());
 assertTrue("isScheduled()",
 scheduledFlight.isScheduled());
 }
 }

 public void testApprove_shouldThrowInvalidRequestEx()
 throws Exception {
 try {
 scheduledFlight.approve("Fred");
 fail("not allowed in scheduled state");
 } catch (InvalidRequestException e) {
 assertEquals("InvalidRequestException.getRequest()",
 "approve", e.getRequest());
 assertTrue("isScheduled()",
 scheduledFlight.isScheduled());
 }
 }
}

Note how much simpler each Test Method has become! Because we have used
Intent-Revealing Names [SBPP] for each of the Test Methods, we can use the
Tests as Documentation. By looking at the list of methods in the “outline view”
of our IDE, we can see the starting state (fi xture), the action (method being
called), and the expected outcome (what it returns or the post-test state)—all
without even opening up the method body (Figure 24.3).

Testcase
Class per

Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

637

Figure 24.3 The tests for our Testcase Class per Fixture as seen in the Package
Explorer of the Eclipse IDE. Note how we do not need to include the name of
the method being called in the Test Method names, leaving room for the starting
state and the expected end state.

This “big picture” view of our tests makes it clear that we are only testing
the approve method arguments when the Flight is in the awaitingApproval state. We
can now decide whether that limitation is a shortcoming of the tests or part of
the specifi cation (i.e., the result of calling approve is “undefi ned” for some states
of the Flight).

 Testcase Class per Fixture

Testcase
Class per
Fixture

www.it-ebooks.info

http://www.it-ebooks.info/

638 Chapter 24 Test Organization Patterns

Testcase Superclass

Where do we put our test code when it is in reusable Test Utility Methods?

We inherit reusable test-specifi c logic from an abstract
Testcase Super class.

As we write tests, we will invariably fi nd ourselves needing to repeat the same logic
in many, many tests. Initially, we may just “clone and twiddle” as we write addi-
tional tests that need the same logic. Ultimately, we may introduce Test Utility Meth-
ods (page 599) to hold this logic—but where do we put the Test Utility Methods?

A Testcase Superclass is one option as a home for our Test Utility Methods.

How It Works

We defi ne an abstract superclass to hold the reusable Test Utility Method that
should be available to several Testcase Classes (page 373). We make the methods
that will be reused visible to subclasses (e.g., protected in Java). We then use this
abstract class as the superclass (base class) for any tests that wish to reuse the
logic. The logic can be accessed simply by calling the method as though it were
defi ned on the Testcase Class itself.

Testcase
Class

testMethod_1

testMethod_n

Fixture

Testcase
Superclass

Test Utility
Method_1

SUT

Test Utility
Method_2

Testcase
Class

testMethod_1

testMethod_n

Fixture

Testcase
Superclass

Test Utility
Method_1

SUT

Test Utility
Method_2

Testcase
Superclass

Also known as:
Abstract

Testcase,
Abstract Test

Fixture,
Testcase

Baseclass

www.it-ebooks.info

http://www.it-ebooks.info/

639

When to Use It

We can use a Testcase Superclass if we wish to reuse Test Utility Methods between
several Testcase Classes and can fi nd or defi ne a Testcase Superclass from which
we can subclass all tests that require the logic.

This pattern assumes that our programming language supports inheritance,
we are not already using inheritance for some other confl icting purpose, and
the Test Utility Method doesn’t need access to specifi c types that are not visible
from the Testcase Superclass.

The decision between a Testcase Superclass and a Test Helper (page 643) comes
down to type visibility. The client classes need to see the Test Utility Method, and
the Test Utility Method needs to see the types and classes it depends on. When it
doesn’t depend on many types/classes or when everything it depends on is visible
from a single place, we can put the Test Utility Method into a common Testcase
Superclass we defi ne for our project or company. If the Test Utility Method
depends on types/classes that cannot be seen from a single place that all clients
can access, it may be necessary to put it on a Test Helper in the appropriate test
package or subsystem.

Variation: Test Helper Mixin

In languages that support mixins, Test Helper Mixins give us the best of both
worlds. As with a Test Helper, we can choose which Test Helper Mixins to in-
clude without being constrained by a single-inheritance hierarchy. As with a Test
Helper Object (see Test Helper), we can hold a test-specifi c state in the mixin but
we don’t have to instantiate and delegate that task to a separate object. As with a
Testcase Superclass, we can access everything as methods and attributes on self.

Implementation Notes

In variants of xUnit that require all Testcase Classes to be subclasses of a Test-
case Superclass provided by the Test Automation Framework (page 298), we
defi ne that class as the superclass of our Testcase Superclass. In variants that use
annotations or method attributes to identify the Test Method (page 348), we can
subclass any class that we fi nd useful.

We can implement the methods on the Testcase Superclass either as class
methods or as instance methods. For any stateless Test Utility Methods, it is
perfectly reasonable to use class methods. If it isn’t possible to use class meth-
ods for some reason, we can work with instance methods. Either way, because
the methods are inherited, we can access them as though they were defi ned
on the Testcase Class itself. If our language supports managing the visibility

 Testcase Superclass

Testcase
Superclass

www.it-ebooks.info

http://www.it-ebooks.info/

640 Chapter 24 Test Organization Patterns

of methods, we must ensure that we make the methods visible enough (e.g.,
protected in Java).

Motivating Example

The following example shows a Test Utility Method that is on the Testcase
Class:

public class TestRefactoringExample extends TestCase {
 public void testAddOneLineItem_quantity1() {
 Invoice inv = createAnonInvoice();
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 assertInvoiceContainsOnlyThisLineItem(inv, expItem);
 }

 void assertInvoiceContainsOnlyThisLineItem(
 Invoice inv,
 LineItem expItem) {
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("",expItem, actual);
 }
}

This Test Utility Method is not reusable outside this particular class or its
subclasses.

Refactoring Notes

We can make the Test Utility Method more reusable by moving it to a Testcase
Superclass by using a Pull Up Method [Fowler] refactoring. Because the method
is inherited by our Testcase Class, we can access it as if the method were
defi ned locally. If the Test Utility Method accesses any instance variables, we
must perform a Pull Up Field [Fowler] refactoring to move those variables to
a place where the Test Utility Method can see them. In languages that have
visibility restrictions, we may need to make the fi elds visible to subclasses (e.g.,
default or protected in Java) if Test Methods on the Testcase Class need to access
the fi elds as well.

Testcase
Superclass

www.it-ebooks.info

http://www.it-ebooks.info/

641

Example: Testcase Superclass

Because the method is inherited by our Testcase Class, we can access it as if it
were defi ned locally. Thus the usage looks identical.

public class TestRefactoringExample extends OurTestCase {
 public void testAddItemQuantity_severalQuantity_v12(){
 // Fixture Setup
 Customer cust = createACustomer(new BigDecimal("30"));
 Product prod = createAProduct(new BigDecimal("19.99"));
 Invoice invoice = createInvoice(cust);
 // Exercise SUT
 invoice.addItemQuantity(prod, 5);
 // Verify Outcome
 LineItem expected = new LineItem(invoice, prod, 5,
 new BigDecimal("30"), new BigDecimal("69.96"));
 assertContainsExactlyOneLineItem(invoice, expected);
 }
}

The only difference is the class in which the method is defi ned and its visibility:

public class OurTestCase extends TestCase {
 void assertContainsExactlyOneLineItem(Invoice invoice,
 LineItem expected) {
 List lineItems = invoice.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actItem = (LineItem)lineItems.get(0);
 assertLineItemsEqual("",expected, actItem);
 }
}

Example: Test Helper Mixin

Here are some tests written in Ruby using Test::Unit:

 def test_extref
 # setup
 sourceXml = "<extref id='abc'/>"
 expectedHtml = "abc"
 mockFile = MockFile.new
 @handler = setupHandler(sourceXml, mockFile)
 # execute
 @handler.printBodyContents
 # verify
 assert_equals_html(expectedHtml, mockFile.output,
 "extref: html output")
 end

 def testTestterm_normal
 sourceXml = "<testterm id='abc'/>"

 Testcase Superclass

Testcase
Superclass

www.it-ebooks.info

http://www.it-ebooks.info/

642 Chapter 24 Test Organization Patterns

 expectedHtml = "abc"
 mockFile = MockFile.new
 @handler = setupHandler(sourceXml, mockFile)
 @handler.printBodyContents
 assert_equals_html(expectedHtml, mockFile.output,
 "testterm: html output")
 end

 def testTestterm_plural
 sourceXml ="<testterms id='abc'/>"
 expectedHtml = "abcs"
 mockFile = MockFile.new
 @handler = setupHandler(sourceXml, mockFile)
 @handler.printBodyContents
 assert_equals_html(expectedHtml, mockFile.output,
 "testterms: html output")
 end

These tests contain a fair bit of Test Code Duplication (page 213). We can address
this issue by using an Extract Method [Fowler] refactoring to create a Test Utility
Method. We can then make the Test Utility Method more reusable by moving it
to a Test Helper Mixin using a Pull Up Method refactoring. Because the mixed-in
functionality is considered part of our Testcase Class, we can access it as if it were
defi ned locally. Thus the usage looks identical.

class CrossrefHandlerTest < Test::Unit::TestCase
 include HandlerTest

 def test_extref
 sourceXml = "<extref id='abc' />"
 expectedHtml = "abc"
 generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")
 end

The only difference is the location where the method is defi ned and its visibility.
In particular, Ruby requires mixins to be defi ned in a module rather than a class.

module HandlerTest
 def generateAndVerifyHtml(sourceXml, expectedHtml,
 message, &block)
 mockFile = MockFile.new
 sourceXml.delete!("\t")
 @handler = setupHandler(sourceXml, mockFile)
 block.call unless block == nil
 @handler.printBodyContents
 actual_html = mockFile.output
 assert_equal_html(expectedHtml,
 actual_html,
 message + "html output")
 actual_html
 end

Testcase
Superclass

www.it-ebooks.info

http://www.it-ebooks.info/

643

Test Helper

Where do we put our test code when it is in reusable Test Utility Methods?

We defi ne a helper class to hold any Test Utility Methods we want
to reuse in several tests.

As we write tests, we will invariably fi nd ourselves needing to repeat the same
logic in many, many tests. Initially, we may just “clone and twiddle” as we write
additional tests that need the same logic. Ultimately, we may introduce Test
Utility Methods (page 599) to hold this logic—but where should we put such
reusable logic?

A Test Helper is one possible choice of home for reusable test logic.

How It Works

We defi ne a separate class to hold the reusable Test Utility Methods that should
be available to several Testcase Classes (page 373). In each test that wishes to use
this logic, we access the logic either using static method calls or via an instance
created specifi cally for the purpose.

When to Use It

We can use a Test Helper if we wish to share logic or variables between several
Testcase Classes and cannot (or choose not to) fi nd or defi ne a Testcase Super-
class (page 638) from which we might otherwise subclass all tests that require
this logic. We might pursue this course in several circumstances: Perhaps our

Testcase
Class

testMethod_1

testMethod_n

Fixture

SUT

Test Helper

Test Utility
Method_1

Test Utility
Method_2

Testcase
Class

testMethod_1

testMethod_n

Fixture

SUT

Test Helper

Test Utility
Method_1

Test Utility
Method_2

 Test Helper

Test Helper

www.it-ebooks.info

http://www.it-ebooks.info/

644 Chapter 24 Test Organization Patterns

programming language doesn’t support inheritance (e.g., Visual Basic 5 or 6),
perhaps we are already using inheritance for some other confl icting purpose,
or perhaps the Test Utility Method needs access to specifi c types that are not
visible from the Testcase Superclass.

The decision between a Test Helper and a Testcase Superclass comes down
to type visibility. The client classes need to see the Test Utility Method, and the
Test Utility Method needs to see all the types and classes it depends on. When
it doesn’t depend on many types/classes or when everything it depends on is
visible from a single place, we can put the Test Utility Method into a common
Testcase Superclass we defi ne for our project or company. If the Test Utility
Method depends on types/classes that cannot be seen from a single place that all
clients can access, it may be necessary to put it on a Test Helper in the appropri-
ate test package or subsystem. In larger systems with many groups of domain
objects, it is common practice to have one Test Helper for each group (package)
of related domain objects.

Variation: Test Fixture Registry

A Registry [PEAA] is a well-known object that can be accessed from anywhere
in a program. We can use the Registry to store and retrieve objects from dif-
ferent parts of our program or tests. (Registry objects are often confused with
Singletons [GOF], which are also well known but have only a single instance.
With a Registry object, there may be one or more instances—we don’t really
care.) A Test Fixture Registry gives the tests the ability to access the same fi xture
as other tests in the same test run. Depending on how we implement our Test
Helper, we may choose to provide a different instance of the Test Fixture Regis-
try for each Test Runner (page 377) in an effort to prevent a Test Run War (see
Erratic Test on page 228). A common example of a Test Fixture Registry is the
Database Sandbox (page 650).

A Test Fixture Registry is typically used with a Setup Decorator (page 447) or
with Lazy Setup (page 435); it isn’t needed with Suite Fixture Setup (page 441)
because only tests on the same Testcase Class need to share the fi xture. In such
a case, using a fi xture holding class variable works well for this purpose.

Variation: Object Mother

The Object Mother pattern is simply an aggregate of several other patterns, each
of which makes a small but signifi cant contribution to making the test fi xture easier
to manage. The Object Mother consists of one or more Test Helpers that provide
Creation Methods (page 415) and Attachment Methods (see Creation Method),
which our tests then use to create ready-to-use test fi xture objects. Object Mothers

Test Helper

www.it-ebooks.info

http://www.it-ebooks.info/

645

often provide several Creation Methods that create instances of the same class,
where each method results in a test object in a different starting state (a Named
State Reaching Method; see Creation Method). The Object Mother may also have
the ability to delete the objects it creates automatically—an example of Automated
Teardown (page 503).

Because there is no single, crisp defi nition of what someone means by “Object
Mother,” it is advisable to refer to the individual patterns (such as Automated
Teardown) when referring to specifi c capabilities of the Object Mother.

Implementation Notes

The methods on the Test Helper can be implemented as either class methods or
instance methods depending on the degree to which we want to keep the tests
from interacting.

Variation: Test Helper Class

If all of the Test Utility Methods are stateless, the simplest approach is to imple-
ment the functionality of the Test Helper as class methods and then to have the
tests access those methods using the ClassName.methodName (or equivalent) notation.
If we need to hold references to fi xture objects, we could place them in class
variables. We need to be careful to avoid inadvertently creating a Shared
Fixture (page 317), however—unless, of course, that is exactly what we are
trying to do. In such a case, we are actually building a Test Fixture Registry.

Variation: Test Helper Object

If we can’t use class methods for some reason, we can work with instance meth-
ods instead. In this case, the client test will need to create an instance of the Test
Helper class and store it in an instance variable; the methods can then be accessed
via this variable. This pattern is a good approach when the Test Helper holds
references to fi xture or SUT objects and we want to make sure that we don’t creep
into a Shared Fixture situation. It is also useful when the Test Helper stores expec-
tations for a set of Mock Objects (page 544), because this pattern ensures that we
can verify the calls are interleaved between the Mock Objects correctly.

Motivating Example

The following example shows a Test Utility Method that is on the Testcase Class:

public class TestUtilityExample extends TestCase {

 public void testAddOneLineItem_quantity1() {

 Test Helper

Test Helper

www.it-ebooks.info

http://www.it-ebooks.info/

646 Chapter 24 Test Organization Patterns

 Invoice inv = createAnonInvoice();
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 assertInvoiceContainsOnlyThisLineItem(inv, expItem);
 }

 void assertInvoiceContainsOnlyThisLineItem(
 Invoice inv,
 LineItem expItem) {
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("",expItem, actual);
 }
}

This Test Utility Method is not reusable outside this particular class.

Refactoring Notes

We can make a Test Utility Method more reusable by moving it to a Test Helper
class. This transformation is often as simple as doing a Move Method [Fowler]
refactoring to our Test Helper class. One potential problem arises when we have
used instance variables to pass arguments to or return data from the Test Utility
Method. These “global data” need to be converted to explicit arguments and
return values before we can perform the Move Method refactoring.

Example: Test Helper with Class Methods

In this modifi ed version of the preceding test, we have turned the Test Utility
Method into a class method on a Test Helper Class so we can access it via the
classname without creating an instance:

public class TestUtilityExample extends TestCase {
 public void testAddOneLineItem_quantity1_staticHelper() {
 Invoice inv = createAnonInvoice();
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 TestHelper.assertContainsExactlyOneLineItem(inv, expItem);
 }
}

Test Helper

www.it-ebooks.info

http://www.it-ebooks.info/

647

Example: Test Helper with Instance Methods

In this example, we have moved the Test Utility Method to a Test Helper as an
instance method. Note that we must now access the method via an object refer-
ence (a variable that holds an instance of the Test Helper).

public class TestUtilityExample extends TestCase {
 public void testAddOneLineItem_quantity1_instanceHelper() {
 Invoice inv = createAnonInvoice();
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 TestHelper helper = new TestHelper();
 helper.assertInvContainsExactlyOneLineItem(inv, expItem);
 }
}

 Test Helper

Test Helper

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

649

CHAPTER 25

Database Patterns

Patterns in This Chapter

Database Sandbox. 650

Stored Procedure Test . 654

Table Truncation Teardown . 661

Transaction Rollback Teardown . 668

Database
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

650 Chapter 25 Database Patterns

Database Sandbox

How do we develop and test software that depends on a database?

We provide a separate test database for each developer or tester.

Many applications use a database to store the persistent state of the application.
At least some of the tests for such an application will require accessing the data-
base. Unfortunately, a database is a primary cause of Erratic Tests (page 228) due
to the fact that data may persist between tests. A major goal in keeping tests from
interacting is ensuring that the test fi xtures used by each test do not overlap. This
is especially diffi cult when the development environment contains only a single
test database and all tests run by all developers run against the same database.

A Database Sandbox is one way to keep the tests from interacting by acciden-
tally accessing the same records in the database.

How It Works

We provide each user with a separate, self-consistent sandbox in which to work.
This sandbox includes the user’s own copy of any code plus—most importantly—the
user’s own copy of the database. Such an arrangement allows each user to modify
the database in any way he or she sees fi t and to exercise the application with tests
without worrying about any interactions between the user’s own tests and the tests
conducted by other users.

When to Use It

We should use a Database Sandbox whenever we are building or modifying an
application that depends on a database for a signifi cant portion of its functionality.

SUT
Setup

Exercise
Verify

Teardown

Database

Fixture

Developer 1

Database

SUT
Setup

Exercise
Verify

Teardown

Fixture

Developer 2

SUT
Setup

Exercise
Verify

Teardown

Database

Fixture

Developer 1

Database

SUT
Setup

Exercise
Verify

Teardown

Fixture

Developer 2

Database
Sandbox

www.it-ebooks.info

http://www.it-ebooks.info/

651

This need is especially evident if we have chosen to use a Shared Fixture (page 317).
Using a Database Sandbox will help us avoid Test Run Wars (see Erratic Test)
between different users of the database. Depending on how we have chosen to
implement the Database Sandbox, it may or may not allow different users to
modify the structure of the database. A Database Sandbox will not prevent Un-
repeatable Tests (see Erratic Test) or Interacting Tests (see Erratic Test), however,
because it merely separates different users (and their test runs) from one another;
tests within a single test run may continue to share a test fi xture.

Implementation Notes

The application needs to be made confi gurable so that the database to be used
in testing can be changed without modifying the code. Typically, this goal is
accomplished by reading the database confi guration information from a proper-
ties fi le that is customized in each user’s environment.

A Database Sandbox can be implemented in many different ways. Fundamentally,
the choice comes down to whether we give each user a separate database instance or
just simulate one. In general, giving each user a real separate database instance is the
preferred choice. This scheme may not always be feasible, however—especially if the
database vendor’s licensing structure makes it cost prohibitive.

Variation: Dedicated Database Sandbox

We give each developer, tester, or test user a separate database instance. This is
typically accomplished by installing a lightweight database technology in each
user’s test environment. Examples of lightweight database technologies include
MySql and Personal Oracle. The database instance can be installed on the user’s
own machine, on a shared test server, or on a dedicated “virtual server” running
on shared server hardware.

A Dedicated Database Sandbox is the preferred solution because it provides
the greatest fl exibility. It allows a developer to modify the database schema,
load his or her own test data, and so on.

Variation: DB Schema per Test Runner

With DB Schema per Test Runner, we give each developer, tester, or test user
what appears to be a separate database instance by using built-in database sup-
port for multiple schemas.

One considerable advantage that the DB Schema per Test Runner pattern
enjoys relative to the Dedicated Database Sandbox pattern is that we can share
an Immutable Shared Fixture (see Shared Fixture) defi ned in a common schema
and put each user’s mutable fi xture in his or her own private schema. Note that

 Database Sandbox

Database
Sandbox

www.it-ebooks.info

http://www.it-ebooks.info/

652 Chapter 25 Database Patterns

this scheme does not allow the user to modify the structure of the database
(at least not to the same degree as is possible with a Dedicated Database Sandbox).
It also forces all users, including both developers and testers, to use the same
database structure. This can create logistical issues when database structure
upgrades need to be rolled out.

Variation: Database Partitioning Scheme

We give each developer, tester, or test user a separate set of data within a single
Database Sandbox. Each user can modify that data as he or she sees fi t but is not
allowed to modify the data assigned to other users.

This approach requires less database administration overhead but more data
administration overhead than with the other ways to implement a Database
Sandbox. Because it does not allow developers to modify the database schema,
a Database Partitioning Scheme is not appropriate for evolutionary database
development. It is, however, appropriate for preventing Interacting Tests when
applied to different tests run from the same Test Runner. That is, we give each
test a unique key such as a CustomerNumber that it uses for all data. As a conse-
quence, other tests within the same test run use different data. This pattern can
be combined with many of the other variations of Database Sandbox to prevent
Interacting Tests when using a Shared Fixture. Note that this pattern does not
prevent Unrepeatable Tests unless we also use Distinct Generated Values (see
Generated Value on page 723).

Motivating Example

The following test uses Literal Values for the arguments to a constructor of a
Product that is persisted into a database instance shared among several developers.
The name of the Product must be unique:

 public void testProductPrice_HCV() {
 // Setup
 Product product =
 new Product(88, // ID
 "Widget", // Name
 new BigDecimal("19.99")); // Price
 // Exercise SUT
 // ...
 }

Unfortunately, we may end up with a Test Run War when we run this test against a
shared database instance regardless of how effectively we tear down the Product after
each test. This is because we are trying to create the same Product that the same test
run from another Test Runner might be in the process of using at the same time.

Database
Sandbox

www.it-ebooks.info

http://www.it-ebooks.info/

653

Refactoring Notes

There are no code changes required of our test when we create a Dedicated
Database Sandbox for each developer and tester. Therefore, tests should not
have to do anything special to run completely independently of tests being run
from other Test Runners (page 377). There is a small change required of the
SUT, however, to allow the SUT to connect to different database instances based
on confi guration data. How we make this change varies with the technology we
use and is beyond the scope of this book.

We can convert the test to use a Database Partitioning Scheme by replacing
the Literal Values with calls to the appropriate getUnique method passing an ID
specifi c to the Test Runner as a seed.

Example: Database Partitioning Scheme

Here is the same test using a Database Partitioning Scheme to ensure that each
test uses a different set of products. For the getUniqueString method, we pass a
string based on the MAC address of our computer.

 public void testProductPrice_DPS() {
 // Setup
 Product product =
 new Product(getUniqueInt(), // ID
 getUniqueString(getMacAddress()), // Name
 new BigDecimal("19.99")); // Price
 // Exercise SUT
 // ...
 }

 static int counter = 0;

 int getUniqueInt() {
 counter++;
 return counter;
 }

 BigDecimal getUniqueBigDecimal() {
 return new BigDecimal(getUniqueInt());
 }

 String getUniqueString(String baseName) {
 return baseName.concat(String.valueOf(getUniqueInt()));
 }

This test can now be run from several different computers against the same
shared database instance without fear of a Test Run War.

 Database Sandbox

Database
Sandbox

www.it-ebooks.info

http://www.it-ebooks.info/

654 Chapter 25 Database Patterns

Stored Procedure Test

How can we verify logic independently when we have stored procedures?

We write Fully Automated Tests for each stored procedure.

Many applications that use a database to store the persistent state of the appli-
cation also use stored procedures and triggers to improve performance and do
common processing on updates.

A Stored Procedure Test is a way to apply automated testing practices to this
code that lives inside the database.

How It Works

We write unit tests for the stored procedures independent of the client application
software. These tests may be layer-crossing tests or round-trip tests, depending
on the nature of the store procedure(s) being tested.

When to Use It

We should write Stored Procedure Tests whenever we have nontrivial logic in
stored procedures. This pattern will help us verify that the stored procedures—our

Application Environment

Database

Stored
Procedure

Proxy

Stored

Procedure

Testcase Class

testMethod_1

testMethod_2

Testcase Class

testMethod_1

testMethod_2

Application Environment

Database

Stored
Procedure

Proxy

Stored

Procedure

Testcase Class

testMethod_1

testMethod_2

Testcase Class

testMethod_1

testMethod_2

Stored
Procedure

Test

www.it-ebooks.info

http://www.it-ebooks.info/

655

SUT for the purposes of these tests—are working properly independently of the
client application. This consideration is particularly important when more than
one application will use the stored procedures or when the stored procedures are
being developed by a different development team. Stored Procedure Tests are
particularly important when we cannot ensure the procedures are tested ade-
quately simply by exercising the application software (a form of Indirect Testing;
see Obscure Test on page 186). Using Stored Procedure Tests also helps us to
enumerate all the conditions under which the stored procedure could be called
and what should happen in each circumstance. The very act of thinking about
these circumstances is likely to improve the design—a common result of doing
test-fi rst development.

Implementation Notes

There are two fundamentally different ways to implement Stored Procedure Tests:
(1) We can write the tests in the same programming language as the stored proce-
dure and run them in the database or (2) we can write the tests in our application
programming language and access the stored procedure via a Remote Proxy [GOF].
We might even write tests both ways. For example, the stored-procedure developers
might write unit tests in the database programming language, whereas the applica-
tion developers might prepare some acceptance tests in the application programming
language to run as part of the application build.

Either way, we need to decide how the test will set up the fi xture (the “before”
state of the database) and verify the expected outcome (the “after” state of the
database as well as any expected actions such as cascading deletes). The test may
interact directly with the database to insert/verify the data (a form of Back Door
Manipulation; see page 327) or it could use another stored procedure (a form of
round-trip test).

Variation: In-Database Stored Procedure Test

One advantage of the xUnit approach to automated testing is that the tests are
written in the same language as the code we are testing. This makes it easier for the
developers to learn how to automate the tests without learning a new program-
ming language, debugger, and so on. Extending this idea to its logical conclusion,
it makes sense to test stored procedures using tests that are written in the stored-
procedure programming language. Naturally, we will need to run these tests inside
the database. Unfortunately, that requirement may make it hard to run them as
part of the Integration Build [SCM].

This variation on the Stored Procedure Test pattern is appropriate when we
have more experience writing code in the stored-procedure language and/or

 Stored Procedure Test

Stored
Procedure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

656 Chapter 25 Database Patterns

environment than in the application environment and it is not essential that
all tests be run from a single place. For example, a database or data services
team that is writing stored procedures for use by other teams would fi nd this
approach attractive. Another circumstance in which it would be appropriate
to use In-Database Stored Procedure Tests arises when the procedures are
stored in a different source code repository than the application logic. Using
In-Database Stored Procedure Test allows us to store the tests in the same
repository as the SUT (in this case, the stored procedures).

In-Database Stored Procedure Tests may allow somewhat more thorough
unit testing (and test-driven development) of the stored procedures because we
may have better access to implementation details of the stored procedure from
our tests. Of course, this violation of encapsulation could result in Overspecifi ed
Software (see Fragile Test on page 239). If the client code uses a data access layer,
we must still write unit tests for that software in the application programming
language to ensure that we handle errors correctly (e.g., failure to connect).

Some databases support several programming languages. In such a case,
we can choose to use the more test-friendly programming language for our
tests but write the stored procedures in the more traditional stored-procedure
programming language. For example, Oracle databases support both PLSQL
and Java, so we could use JUnit tests to verify our PLSQL stored procedures.
Likewise, Microsoft’s SQL Server supports C#, so we could use NUnit tests
written in C# to verify the stored procedures written in Transact-SQL.

Variation: Remoted Stored Procedure Test

The purpose of Remoted Stored Procedure Tests is to allow us to write the tests in
the same language as the unit tests for the client application logic. We must access
the stored procedure via a Remote Proxy [GOF] that hides the mechanics of inter-
acting with that procedure. This proxy can be structured as either a Service Facade
[CJ2EEP] or a Command [GOF] (such as Java’s JdbcOdbcCallableStatement).

Remoted Stored Procedure Tests are, in effect, component tests in that they
treat the stored procedure as a “black box” component. Because Remoted Stored
Procedure Tests do not run inside the database, we are more likely to write them
as round-trip tests (calling other stored procedures to set up the fi xture, verify
the outcome, and perform other necessary tasks) unless we have an easy way
to insert or verify data. Some members of the xUnit family have extensions that
are specifi cally intended to facilitate this behavior (e.g., DbUnit for Java and
NDbUnit for .NET languages).

This solution is more appropriate if we want to keep all our tests in a single
programming language. The Remoted Stored Procedure Test pattern makes it
easier to run all the tests every time we check in changes to the application code.

Stored
Procedure

Test

www.it-ebooks.info

http://www.it-ebooks.info/

657

Testing Stored Procedures with JUnit

On an early XP project, our application was mandated to use stored
procedures being developed by another group. It seemed that every time
we integrated our Java with those developers’ PLSQL code, we found
serious bugs in the fundamental behavior of their stored procedures.
We were writing automated tests using JUnit for our code. Although we
were sure that writing unit tests for the stored procedures would clarify
the interface contract and improve the quality of the other group’s code,
we couldn’t force the other team to write unit tests. Nor had utPLSQL
even been invented at that point.

We decided to try writing unit tests for the stored procedures in the xUnit
family member we were comfortable with: JUnit. Because we had to write
JDBC code to access the stored procedures anyway, we defi ned JUnit tests
for each stored procedure via the JDBC PreparedStatement classes that we
had built. The tests exercised the basic behavior of the stored behaviors
and a few of the more obvious failure cases. Whenever we received a new
version of the stored procedures, we would run the JUnit tests before we
even tried to exercise the procedures from our application code. Needless
to say, many of the tests failed.

We sat down with the developers who were building the stored proce-
dures and showed them our tests—including how they were failing left,
right, and center. Needless to say, the developers were a bit embarrassed
but they agreed that our tests were correct. They went off to fi x the stored
procedures and gave us a new version to test. The revision fared somewhat
better but still produced some failures. Then a very important thing hap-
pened: The members of the other group asked for a copy of the tests we
had written and instructions on how to run them for themselves. Before
long, these developers were writing their own PLSQL unit tests in JUnit!

This capability is particularly useful if the stored procedures are being writ-
ten and/or modifi ed by the same team that is developing the client code. We
can also use Remoted Stored Procedure Tests when another team is provid-
ing the stored procedures and we are not confi dent in those developers’ ability
to write defect-free code (probably because they are not writing In-Database
Stored Procedure Tests for their code). In this situation, we can use the Remot-
ed Stored Procedure Tests as a form of acceptance test for their code. See the
sidebar “Testing Stored Procedures with JUnit” for an illustration of how this
setup worked on one project.

 Stored Procedure Test

Stored
Procedure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

658 Chapter 25 Database Patterns

One disadvantage of using Remoted Stored Procedure Tests is that they will
likely cause the test suite to run more slowly because the tests require the database
to be available and populated with data. The tests for the stored procedures can
be put into a separate Subset Suite (see Named Test Suite on page 592) so that
they need not be run with all the in-memory tests. This can signifi cantly speed up
test execution, thereby avoiding Slow Tests (page 253).

Remoted Stored Procedure Tests also come in handy when logic written
in our programming language of choice already has unit tests and we need to
move that logic into the database. By using a Remoted Stored Procedure Test,
we can avoid rewriting the tests in a different programming language and Test
Automation Framework (page 298), which can in turn save time and money.
This pattern also enables us to avoid any translation errors when recoding the
logic, so we can be sure the recoded logic really does produce the same results.

Motivating Example

Here is an example of a stored procedure written in PLSQL:

CREATE OR REPLACE PROCEDURE calc_secs_between (
 date1 IN DATE,
 date2 IN DATE,
 secs OUT NUMBER
)
IS
BEGIN
 secs := (date2 - date1) * 24 * 60 * 60;
END;
/

This sample was taken from the examples that come with the utPLSQL tool. In real
life we might not bother testing this code because it is so simple (but then again,
maybe not?) but it will work just fi ne to illustrate how we could go about testing it.

Refactoring Notes

This example doesn’t deal so much with refactoring as with adding a missing test.
Let’s fi nd a way to write one. We will see what is involved by using the two main
variants: In-Database Stored Procedure Test and Remote Stored Procedure Test.

Example: In-Database Stored Procedure Test

This example uses utPLSQL, the xUnit family member for PLSQL, to automate
tests that run inside the database:

Stored
Procedure

Test

www.it-ebooks.info

http://www.it-ebooks.info/

659

CREATE OR REPLACE PACKAGE BODY ut_calc_secs_between
IS
 PROCEDURE ut_setup
 IS
 BEGIN
 NULL;
 END;

 PROCEDURE ut_teardown
 IS
 BEGIN
 NULL;
 END;

 -- For each program to test...
 PROCEDURE ut_CALC_SECS_BETWEEN
 IS
 secs PLS_INTEGER;
 BEGIN
 CALC_SECS_BETWEEN (
 DATE1 => SYSDATE
 '
 DATE2 => SYSDATE
 '
 SECS => secs
);

 utAssert.eq (
 'Same dates',
 secs,
 0
);
 END ut_CALC_SECS_BETWEEN;

END ut_calc_secs_between;
/

This test uses many of the familiar xUnit patterns. It is one of several tests we
would normally write for this stored procedure—one test for each possible
scenario. (This sample was taken from the examples that come with the utPLSQL
tool. Not being a PLSQL programmer, I did not want to mess with the formatting
in case it mattered!)

Example: Remoted Stored Procedure Test

To test this stored procedure in our normal programming and test execution
environment, we must fi rst fi nd or create a Remote Proxy for it in our unit-testing
environment of choice. Then we can write our unit tests in the usual manner.

 Stored Procedure Test

Stored
Procedure
Test

www.it-ebooks.info

http://www.it-ebooks.info/

660 Chapter 25 Database Patterns

The following test uses JUnit to automate tests that run outside the database and
call our PLSQL stored procedure remotely:

public class StoredProcedureTest extends TestCase {
 public void testCalcSecsBetween_SameTime() {
 // Setup
 TimeCalculatorProxy SUT = new TimeCalculatorProxy();
 Calendar cal = new GregorianCalendar();
 long now = cal.getTimeInMillis();
 // Exercise
 long timeDifference = SUT.calc_secs_between(now,now);
 // Verify
 assertEquals(0, timeDifference);
 }
}

We have reduced the complexity of the original test to a simple test of a function
by hiding the JdbcOdbcCallableStatement behind a Service Facade. Looking at this
example, it is diffi cult to tell that we are not testing a Java method. We would prob-
ably have additional Expected Exception Tests (see Test Method on page 348)
to verify failed connections and other problems.

Stored
Procedure

Test

www.it-ebooks.info

http://www.it-ebooks.info/

661

Table Truncation Teardown

How do we tear down the Test Fixture when it is in a relational database?

We truncate the tables modifi ed during the test to tear down the fi xture.

A large part of making tests repeatable and robust is ensuring that the test fi xture
is torn down after each test. Leftover objects and database records, as well as
open fi les and connections, can at best cause performance degradation and at
worst cause tests to fail or systems to crash. While some of these resources may
be cleaned up automatically by garbage collection, others may be left hanging if
they are not torn down explicitly.

Writing teardown code that can be relied upon to clean up properly in all pos-
sible circumstances is challenging and time-consuming. It involves understand-
ing what could be left over for each possible outcome of the test and writing
code to deal with that possibility. This Complex Teardown (see Obscure Test on
page 186) introduces a fair bit of Conditional Test Logic (page 200) and—worst
of all—Untestable Test Code (see Hard-to-Test Code on page 209).

When testing a system that uses a relational database, we can take advantage
of the database’s capabilities by using the TRUNCATE command to remove all data
from a table we have modifi ed.

How It Works

When we no longer need a persistent fi xture, we issue a TRUNCATE command for
each table in the fi xture. It blasts all data out of the tables very effi ciently with
no side effects (e.g., triggers).

Data

Setup

Exercise

Verify

Teardown

SUT

Fixture

Truncate

Insert

UpdateExercise

Data

Setup

Exercise

Verify

Teardown

SUT

Fixture

Truncate

Insert

UpdateExercise

 Table Truncation Teardown

Table
Truncation
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

662 Chapter 25 Database Patterns

When to Use It

We often turn to Table Truncation Teardown when we are using a Persistent
Fresh Fixture (see Fresh Fixture on page 311) strategy with an SUT that includes
a database. It is rarely our fi rst choice, however. That distinction goes to Transac-
tion Rollback Teardown (page 668). Nevertheless, Table Truncation Teardown
is a better choice for use with a Shared Fixture (page 317), as this type of fi xture,
by defi nition, outlives any one test. By contrast, using Transaction Rollback
Teardown with a Shared Fixture would require a very long-running transaction.
While not impossible, such a long-lived transaction is troublesome.

Before we can use Table Truncation Teardown, we must satisfy a couple of
criteria. The fi rst requirement is that we really want all data in the affected tables
removed. The second requirement is that each Test Runner (page 377) has its
own Database Sandbox (page 650). Table Truncation Teardown will not work if
we are using a Database Partitioning Scheme (see Database Sandbox) to isolate
users or tests from one another. It is ideally suited for use with a DB Schema per
Test Runner (see Database Sandbox), especially when we are implementing an
Immutable Shared Fixture (see Shared Fixture) as a separate shared schema in the
database. This allows us to blast away all the Fresh Fixture data in our own
Database Sandbox without affecting the Immutable Shared Fixture.

If we are not using a transactional database, the closest approximation is
Automated Teardown (page 503), which deletes only those records that were
created by the test. Automated Teardown does not depend on the database
transactions to do the work for it, but it does involve more development work
on our part. We can also avoid the need to do teardown entirely by using Delta
Assertions (page 485).

Implementation Notes

Besides the usual “Where do we put the teardown code?” decision, implementa-
tion of Table Truncation Teardown needs to deal with the following questions:

• How do we actually delete the data—that is, which database commands
do we use?

• How do we deal with foreign key constraints and triggers?

• How do we ensure consistency when we are using an object-relational
mapping (ORM)?

Some databases support the TRUNCATE command directly. Where this is the case, the
obvious choice is to use this command. Oracle, for example, supports TRUNCATE.

Table
Truncation
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

663

Otherwise, we may have to use a DELETE * FROM table-name command instead. The TRUN-
CATE or DELETE commands can be issued using In-line Teardown (page 509—called
from within each Test Method; see page 348) or Implicit Teardown (page 516—
called from the tearDown method). Some people prefer to use this command with
Lazy Teardown because it ensures that the tables are empty at the beginning of
the test in cases where those tables would be affected by extraneous data.

Database foreign key constraints can be a problem for Table Truncation
Teardown if our database does not offer something similar to Oracle’s ON
DELETE CASCADE option. In Oracle, if the command to truncate a table includes the
ON DELETE CASCADE option, then rows dependent on the truncated table rows are
deleted as well. If our database does not cascade deletes, we must ensure that
the tables are truncated in the order required by the schema. Schema changes
can invalidate this order, resulting in failures in the teardown code. Fortunately,
such failures are easy to detect: A test error tells us that our teardown needs
adjusting. Correction is fairly straightforward—typically, we just need to reor-
der the TRUNCATE commands. We could, of course, come up with a way to issue
the TRUNCATE commands in the correct order dynamically based on the dependen-
cies between the tables. Usually, however, it is enough to encapsulate this trun-
cation logic behind a Test Utility Method (page 599).

If we want to avoid the side effects of triggers and other complications for
databases where TRUNCATE is not supported, we can disable the constraints and/or
triggers for the duration of the test. We should take this step only if other tests
exercise the SUT with the constraints and triggers in place.

If we are using an ORM layer such as Toplink, (N)Hibernate, or EJB 3.0,
we may need to force the ORM to clear its cache of objects already read from
the database so that subsequent object lookups do not fi nd the recently deleted
objects. For example, NHibernate provides the ClearAllCaches method on the
TransactionManager for this purpose.

Variation: Lazy Teardown

A teardown technique that works with only a few styles of Shared Fixtures is
Lazy Teardown. With this pattern, the fi xture must be destroyable at an arbitrary
point in time. Thus we cannot depend on “remembering” what needs to be torn
down; it must be obvious without any “memory.” Table Truncation Teardown
fi ts the bill because how we perform teardown is exactly the same whenever we
choose to do it. We simply issue the table truncation commands during fi xture
setup before setting up the new fi xture.

Table
Truncation
Teardown

 Table Truncation Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

664 Chapter 25 Database Patterns

Motivating Example

The following test attempts to use Guaranteed In-line Teardown (see In-line
Teardown) to remove all the records it created:

 [Test]
 public void TestGetFlightsByOrigin_NoInboundFlights()
 {
 // Fixture Setup
 long OutboundAirport = CreateTestAirport("1OF");
 long InboundAirport = CreateTestAirport("1IF");
 FlightDto ExpFlightDto = null;
 try
 {
 ExpFlightDto =
 CreateTestFlight(OutboundAirport, InboundAirport);
 // Exercise System
 IList FlightsAtDestination1 =
 Facade.GetFlightsByOriginAirport(InboundAirport);
 // Verify Outcome
 Assert.AreEqual(0, FlightsAtDestination1.Count);
 }
 finally
 {
 Facade.RemoveFlight(ExpFlightDto.FlightNumber);
 Facade.RemoveAirport(OutboundAirport);
 Facade.RemoveAirport(InboundAirport);
 }
 }

This code is neither easy to write nor correct!1 Trying to keep track of the many
objects the SUT has created and then tear them down one by one in a safe man-
ner is very tricky.

Refactoring Notes

We can avoid most of the issues with coordinating In-line Teardown of mul-
tiple resources in a safe way by using Table Truncation Teardown and blasting
away all the airports in one fell swoop.2 Most of the refactoring work involves
deleting the existing teardown code from the fi nally clause and inserting a call to
cleanDatabase. We then implement this method using the truncation commands.

1 See In-line Teardown for an explanation of what is wrong here.
2 This assumes that we start with no airports and want to end with no airports. If we
want to delete just these specifi c airports, we cannot use Table Truncation Teardown.

Table
Truncation
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

665

Example: Table Truncation (Delegated) Teardown Test

This is what the test looks like when we are done:

 public void TestGetFlightsByOrigin_NoInboundFlight_TTTD()
 {
 // Fixture Setup
 long OutboundAirport = CreateTestAirport("1OF");
 long InboundAirport = 0;
 FlightDto ExpectedFlightDto = null;
 try
 {
 InboundAirport = CreateTestAirport("1IF");
 ExpectedFlightDto =
 CreateTestFlight(OutboundAirport,InboundAirport);
 // Exercise System
 IList FlightsAtDestination1 =
 Facade.GetFlightsByOriginAirport(InboundAirport);
 // Verify Outcome
 Assert.AreEqual(0,FlightsAtDestination1.Count);
 }
 finally
 {
 CleanDatabase();
 }
 }

This example uses Delegated Teardown (see In-line Teardown) to keep the
teardown code visible. Normally, however, we would use Implicit Teardown
by putting this logic into the tearDown method. The try/catch ensures that clean-
Database is run but it does not ensure that a failure inside cleanDatabase will not
prevent the teardown from completing.

Example: Lazy Teardown Test

Here is the same example converted to use Lazy Teardown:

 [Test]
 public void TestGetFlightsByOrigin_NoInboundFlight_LTD()
 {
 // Lazy Teardown
 CleanDatabase();
 // Fixture Setup
 long OutboundAirport = CreateTestAirport("1OF");
 long InboundAirport = 0;
 FlightDto ExpectedFlightDto = null;
 InboundAirport = CreateTestAirport("1IF");
 ExpectedFlightDto =
 CreateTestFlight(OutboundAirport, InboundAirport);
 // Exercise System

Table
Truncation
Teardown

 Table Truncation Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

666 Chapter 25 Database Patterns

 IList FlightsAtDestination1 =
 Facade.GetFlightsByOriginAirport(InboundAirport);
 // Verify Outcome
 Assert.AreEqual(0,FlightsAtDestination1.Count);
 }

By moving the call to cleanDatabase to the front of the Test Method, we ensure
that the database is in the state we expect it. This code cleans up whatever the
last test did, regardless of whether that test provided proper teardown. It also
takes care of anything added to the relevant tables since the last test was run. It
has the added benefi t of eliminating the need for the try/fi nally construct, thereby
making the test simpler and easier to understand.

Example: Table Truncation Teardown Using SQL

This implementation of the cleanDatabase method uses SQL statements constructed
within the code:

 public static void CleanDatabase() {
 string[] tablesToTruncate =
 new string[] {"Airport","City","Airline_Cd","Flight"};
 IDbConnection conn = getCurrentConnection();
 IDbTransaction txn = conn.BeginTransaction();
 try {
 foreach (string eachTableToTruncate in tablesToTruncate)
 {
 TruncateTable(txn, eachTableToTruncate);
 }
 txn.Commit();
 conn.Close();
 } catch (Exception e) {
 txn.Rollback();
 } finally {
 conn.Close();
 }
 }

 private static void TruncateTable(IDbTransaction txn,
 string tableName)
 {
 const string C_DELETE_SQL = "DELETE FROM {0}";

 IDbCommand cmd = txn.Connection.CreateCommand();
 cmd.Transaction = txn;
 cmd.CommandText = string.Format(C_DELETE_SQL, tableName);

 cmd.ExecuteNonQuery();
 }

Table
Truncation
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

667

Because we are using SQL Server as the database, we had to implement our own
TruncateTable method that issues a Delete * from ... SQL command. We would not
have to take this step if our database implemented TRUNCATE directly.

Example: Table Truncation Teardown Using ORM

Here is the implementation of the cleanDatabase method using NHibernate, an
ORM layer:

 public static void CleanDatabase() {
 ISession session =
 TransactionManager.Instance.CurrentSession;
 TransactionManager.Instance.BeginTransaction();
 try {
 // We need to delete only the root classes because
 // cascade rules will delete all related child entities
 session.Delete("from Airport");
 session.Delete("from City");
 session.Flush();
 TransactionManager.Instance.Commit();
 } catch (Exception e) {
 Console.Write(e);
 throw e;
 } finally {
 TransactionManager.Instance.CloseSession();
 }
 }

When using an ORM, we read, write, and delete domain objects; the tool deter-
mines which underlying tables they map to and takes the appropriate actions.
Because we have chosen to make City and Airport “root” (parent) objects, any
subordinate (child) objects such as the Flights are deleted automatically when
the root is deleted. This approach further decouples us from the details of the
table implementations.

 Table Truncation Teardown

Table
Truncation
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

668 Chapter 25 Database Patterns

Transaction Rollback Teardown

How do we tear down the Test Fixture when it is in a relational database?

We roll back the uncommitted test transaction as part of the teardown.

A large part of making tests repeatable and robust is ensuring that the test fi x-
ture is torn down after each test. Leftover objects and database records, as well
as open fi les and connections, can at best cause performance degradation and at
worst cause tests to fail or systems to crash. While some of these resources may
be cleaned up automatically by garbage collection, others may be left hanging if
they are not torn down explicitly.

Writing teardown code that can be relied upon to clean up properly in all
possible circumstances is challenging and time-consuming. It involves under-
standing what could be left over for each possible outcome of the test and
writing code to deal with this case. This Complex Teardown (see Obscure Test
on page 186) introduces a fair bit of Conditional Test Logic (page 200) and—
worst of all—Untestable Test Code (see Hard-to-Test Code on page 209).

We can avoid making any lasting changes to the database contents by not
committing the transaction and taking advantage of the rollback capabilities of
the database.

How It Works

Our test starts a new test transaction, sets up the fi xture, exercises the SUT, and
verifi es the outcome of the test. Each of these steps may involve interacting with

Data

Setup

Exercise

Verify

Teardown

SUT

Fixture

Rollback

Start Transaction

Insert

UpdateExercise

Data

Setup

Exercise

Verify

Teardown

SUT

Fixture

Rollback

Start Transaction

Insert

UpdateExercise

Transaction
Rollback

Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

669

the database. At the end of the test, the test rolls back the test transaction, which
prevents any of the changes from becoming persistent.

When to Use It

We can use Transaction Rollback Teardown when we are using a Fresh Fix-
ture (page 311) approach with an SUT that includes a database that supports
rolling back a transaction. There are, however, some prerequisites for using
Transaction Rollback Teardown.

In particular, the SUT must expose methods that are normally called in the
context of an existing transaction by a Humble Transaction Controller (see
Humble Object on page 695). That is, the methods should not start their own
transaction and must never commit a transaction. If we are doing test-driven
development, this design will come about as a result of applying the Transac-
tion Rollback Teardown pattern as we write our code. If we are retrofi tting the
tests to existing software, we may need to refactor the code to use a Humble
Transaction Controller before we can use Transaction Rollback Teardown.

The nice thing about Transaction Rollback Teardown is that it leaves the
database in exactly the same state as it was when we started the test, regard-
less of what changes we made to the database contents during the test. As a
result, we do not need to determine what needs to be cleaned up and what does
not. Changes to the database schema or contents do not affect our teardown
logic. Clearly, this pattern is much simpler to apply than Table Truncation Tear-
down (page 661).

The usual caveats apply to any tests that run against a real database; such
tests will take approximately 50 (yes, 50!) times as long to run as tests that
do not access the database. This testing approach will almost surely result in
Slow Tests (page 253) unless we replace the real database with an In-Memory
Database (see Fake Object on page 551) for most of our tests. Because we are
depending on the transactional properties of the database, a simple Fake Data-
base (see Fake Object) will probably not be suffi cient unless it supports ACID.

Another prerequisite with Transaction Rollback Teardown is that we cannot
do anything that results in a commit anywhere in the tests or the code they exer-
cise. The sidebar “Transaction Rollback Pain” on page 670 describes examples
of where commits can sneak in and cause havoc.

 Transaction Rollback Teardown

Transaction
Rollback
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

670 Chapter 25 Database Patterns

Transaction Rollback Pain

John Hurst sent me an e-mail in which he described some of the issues his
team had encountered using Transaction Rollback Teardown. He writes:

We used Transaction Rollback Teardown for our database integra-
tion tests for a while, after a discussion on TheServerSide during
which Rod Johnson advocated the approach. I gathered his main
motivation for using it was for performance; a rollback is usually
a lot faster than repriming the database in a new transaction for
the next test. Indeed, we did fi nd it somewhat faster than our pre-
vious approach. We used Spring’s excellent AbstractTransactionalData-
SourceSpringContextTests base class, which supports most of what you
need to do for this pattern out of the box.

However, I chose to abandon this pattern after a few months.
Here are the drawbacks I came across with this approach:

1. You lose some test isolation. In the way we implemented this
pattern, anyway, each test assumed the database was in a cer-
tain base starting condition, and the rollback would revert it
to that condition. In our current model, each test is respon-
sible—usually via a base class’s setUp()—for priming the data-
base into a known state.

2. You can’t see what’s in the database when something goes
wrong. If your test fails, you usually want to examine the
database to see what happened. If you’ve rolled back all the
changes, it makes it harder to fi nd the bug.

3. You have to be very careful not to inadvertently commit
during your test. Yes, the code under test has declarative
transaction management, and does nothing surprising. But
we occasionally would need to do things in the test setup
like drop and recreate a sequence to reset its value. This,
being DDL, commits any outstanding transaction—and
confused programmers.

4. You can’t easily mix in tests that do need to commit changes.
Lately I have added some PLSQL stored procedures and tests.
Some of the stored procedures do explicit commits. I cannot
mix these in the same JUnit suite with tests that assume the
database always remains in a certain state.

I apologize if my terminology isn’t consistent with what’s in your
book. Also, my experience is probably a little limited; I’ve only

Transaction
Rollback

Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

671

tried this approach in a Spring environment and I prefer to do most
things in a “Spring” way. Finally, I am sure these limitations can be
and are worked around in various ways. It’s just that, for our team,
this pattern turned out to be more trouble than it was worth.

Don’t get me wrong—I DO think the pattern should be included.
I just think the consequences should be noted, and maybe it isn’t
for everyone.

Implementation Notes

A few members of the xUnit family support Transaction Rollback Teardown
directly; open-source extensions may be available for other members. If nothing
is available, coding this teardown logic is not very complicated. The more signifi -
cant implementation consideration is giving the tests access to nontransactional
methods on the SUT. Most domain model objects are nontransactional, so this
requirement should not be a problem for unit tests of domain objects. We are
more likely to experience a problem when we are writing Subcutaneous Tests
(see Layer Test on page 337) against a Service Facade [CJ2EEP] because these
methods often perform transaction control. If this is the case, we will need to
expose a nontransactional version of the methods by refactoring to the Humble
Transaction Controller pattern. We could either use a transactional Decorator
[GOF] as a separate object or simply have the transactional methods delegate to
the nontransactional versions of the methods on self. This approach is called a
Poor Man’s Humble Object (see Humble Object).

If the methods exist but are not visible to the client, we will need to expose
them to the test. We can do so either by making the methods to be tested pub-
lic or by exposing them indirectly via a Test-Specifi c Subclass (page 579). We
could also do an Extract Testable Component (page 735) refactoring to move
the nontransactional versions of the methods to a different class and make them
visible to the test from there.

Any reading of the updated data in the database must occur within the
context of the same transaction. This normally is not a problem except when
we are trying to simulate or test concurrency. If we are using an ORM layer
such as Toplink, (N)Hibernate, or EJB 3.0, we may need to force the ORM
to write the changes made to the objects to the database so that methods that
read the database directly (from within the same transactional context) can
see them. For example, EJB 3.0 provides the EntityManager.fl ush static method
for exactly this purpose.

 Transaction Rollback Teardown

Transaction
Rollback
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

672 Chapter 25 Database Patterns

Motivating Example

The following test attempts to use Guaranteed In-line Teardown (see In-line
Teardown on page 509) to remove all the records it created:

 public void testGetFlightsByOriginAirport_NoInboundFlights()
 throws Exception {
 // Fixture Setup
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = createTestAirport("1IF");
 FlightDto expFlightDto = null;
 try {
 expFlightDto = createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0, flightsAtDestination1.size());
 } finally {
 facade.removeFlight(expFlightDto.getFlightNumber());
 facade.removeAirport(outboundAirport);
 facade.removeAirport(inboundAirport);
 }
 }

This code is neither easy to write nor correct!3 Trying to keep track of all objects
the SUT has created and then tear them down one by one in a safe manner is
very tricky.

Refactoring Notes

We can avoid most of the issues related to coordinating In-line Teardown of
multiple resources in a safe way by using Transaction Rollback Teardown and
blasting away all changes to the objects in one fell swoop. Most of the refactor-
ing work consists of deleting the existing teardown code from the fi nally clause
and inserting a call to the abortTransaction method. We also need to make the call
to beginTransaction before we do any fi xture setup, and we have to modify the
Creation Methods (page 415) to ensure that they do not commit a transaction.
To do so, we have them call a nontransactional version of the methods on the
Service Facade.

3 See In-line Teardown for an explanation of what is wrong here.

Transaction
Rollback

Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

673

Example: Object Transaction Rollback Teardown

Here is what the test looks like when we are done:

 public void testGetFlightsByOrigin_NoInboundFlight_TRBTD()
 throws Exception {
 // Fixture Setup
 TransactionManager.beginTransaction();
 BigDecimal outboundAirport = createTestAirport("1OF");
 BigDecimal inboundAirport = null;
 FlightDto expectedFlightDto = null;
 try {
 inboundAirport = createTestAirport("1IF");
 expectedFlightDto =
 createTestFlight(outboundAirport, inboundAirport);
 // Exercise System
 List flightsAtDestination1 =
 facade.getFlightsByOriginAirport(inboundAirport);
 // Verify Outcome
 assertEquals(0,flightsAtDestination1.size());
 } finally {
 TransactionManager.abortTransaction();
 }
 }

In this refactored test, we have replaced the multiple lines of teardown code
in the fi nally clause with a single call to abortTransaction. We still need the fi nally
clause because this example is using In-line Teardown; we could easily move this
call to the TransactionManager to the tearDown method because it is so generic.

In this example, Transaction Rollback Teardown undoes the fi xture setup
performed by the various Creation Methods we called earlier in the test. The
fi xture objects have not yet been committed to the database. Because getFlights-
FromAirport is being called within the context of the transaction, however, it
returns the newly added but not yet committed fl ights. (That is the “C” for
“consistent” in ACID working on our behalf!)

 private BigDecimal createTestAirport(String airportName)
 throws FlightBookingException {
 BigDecimal newAirportId =
 facade._createAirport(airportName,
 " Airport" + airportName,
 "City" + airportName);
 return newAirportId;
 }

 Transaction Rollback Teardown

Transaction
Rollback
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

674 Chapter 25 Database Patterns

The creation method calls the nontransactional version of the facade method (an
example of a Poor Man’s Humble Object):

 public BigDecimal createAirport(String airportCode,
 String name,
 String nearbyCity)
 throws FlightBookingException{
 TransactionManager.beginTransaction();
 BigDecimal airportId = _createAirport(airportCode, name, nearbyCity);
 TransactionManager.commitTransaction();
 return airportId;
 }

 // private, nontransactional version for use by tests
 BigDecimal _createAirport(String airportCode,
 String name,
 String nearbyCity)
 throws DataException, InvalidArgumentException {
 Airport airport =
 dataAccess.createAirport(airportCode,name,nearbyCity);
 logMessage("CreateFlight", airport.getCode());
 return airport.getId();
 }

If the method we were exercising (e.g., getFlightsFromAirport) did modify the state
of the SUT and did begin and end its own transaction, we would have to do a
similar refactoring on it as well.

Example: Database Transaction Rollback Teardown

The fi rst example hid the database from the code behind a data access layer that
returned or accepted objects. This is common practice when using the Domain
Model [PEAA] pattern for organizing the business logic. Transaction Rollback
Teardown is typically used when manipulating the database directly in our ap-
plication logic (a style known as a Transaction Script [PEAA]). The following
example illustrates this approach using .NET row sets (or something similar):

 [TestFixture]
 public class TransactionRollbackTearDownTest
 {
 private SqlConnection _Connection;
 private SqlTransaction _Transaction;

 public TransactionRollbackTearDownTest()
 {
 }

 [SetUp]

Transaction
Rollback

Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

675

 public void Setup()
 {
 string dbConnectionString = ConfigurationSettings.
 AppSettings.Get("DbConnectionString");
 _Connection = new SqlConnection(dbConnectionString);
 _Connection.Open();
 _Transaction = _Connection.BeginTransaction();
 }

 [TearDown]
 public void TearDown()
 {
 _Transaction.Rollback();
 _Connection.Close();
 // Avoid NUnit "instance behavior" bug
 _Transaction = null;
 _Connection = null;
 }

 [Test]
 public void AnNUnitTest()
 {
 const string C_INSERT_SQL =
 "INSERT INTO Invoice(Amount, Tax, CustomerId)" +
 " VALUES({0}, {1}, {2})";
 SqlCommand cmd = _Connection.CreateCommand();
 cmd.Transaction = _Transaction;
 cmd.CommandText = string.Format(
 C_INSERT_SQL,
 new object[] {"100.00", "7.00", 2001});
 // Exercise SUT
 cmd.ExecuteNonQuery();
 // Verify result
 // etc.
 }
 }
}

This example uses Implicit Setup (page 424) to establish the connection and
start the transaction. After the Test Method (page 348) has run, it uses Implicit
Teardown (page 516) to roll back the transaction and close the connection. We
assign null to the instance variables because NUnit does not create a separate
Testcase Object (page 382) for each Test Method, unlike most other members of
xUnit. See the sidebar “There’s Always an Exception” on page 384 for details.

 Transaction Rollback Teardown

Transaction
Rollback
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

677

Chapter 26

Design-for-Testability
Patterns

Patterns in This Chapter

Dependency Injection . 678

Dependency Lookup . 686

Humble Object . 695

Test Hook . 709

Design-for-
Testability
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

678 Chapter 26 Design-for-Testability Patterns

Dependency Injection

How do we design the SUT so that we can replace its
dependencies at runtime?

The client provides the depended-on object to the SUT.

Almost every piece of code depends on some other classes, objects, modules, or
procedures. To unit-test a piece of code properly, we would like to isolate the
code from its dependencies. This isolation is diffi cult to achieve if those depen-
dencies are hard-coded in the form of literal classnames.

Dependency Injection is a way to allow the normal coupling between a SUT
and its dependencies to be broken during automated testing.

How It Works

We avoid hard-coding the names of classes on which we depend into our code by
providing some other means for the client or system confi guration to tell the SUT
which objects to use for each dependency as it is executed. As part of the design
of the SUT, we arrange to pass the dependency in to the SUT through the “front
door.” That is, the means to specify the dependency becomes part of the API of
the SUT. We can include it as an argument with each method call, include it on the
constructor, or make it a settable attribute (property).

When to Use It

We need to provide a means to substitute a depended-on component (DOC)
to make it easy to use a Test Double (page 522) while testing our code. Static

DOC

Test
Double

Creation

Creation

SUT Usage

Client

Exercise

Setup
Exercise

Verify
Teardown

Usage Usage

DOC

Test
Double

Creation

Creation

SUT Usage

Client

Exercise

Setup
Exercise

Verify
Teardown

Usage Usage

Dependency
Injection

www.it-ebooks.info

http://www.it-ebooks.info/

679

binding—that is, specifying exact types or classes at compile time—severely limits
our options regarding how the software is confi gured as it runs. Dynamic binding
creates much more fl exible software by deferring the decision of exactly which
type or class to use until runtime. Dependency Injection is a good choice for com-
municating which class to use when we are designing the software from scratch. It
offers a natural way to design the code when we are doing test-driven development
(TDD) because many of the tests we write for dependent objects seek to replace a
DOC with a Test Double.

When we don’t have complete control over the code we are testing, such as when
we are retrofi tting tests to existing code,1 we may need to use some other means
to introduce the Test Doubles. If the SUT uses Dependency Lookup (page 686) to
fi nd the DOC, we can override the lookup mechanism to return the Test Double.
We can also use a Test-Specifi c Subclass (page 579) of the SUT to return a Test
Double as long as access to the DOC remains encapsulated behind a method call.

Implementation Notes

Introducing Dependency Injection requires solving two problems. First, we must
be able to use a Test Double wherever the real DOC is used. This constraint is
primarily an issue in statically typed languages because we must convince the
compiler to allow us to pass off a Test Double as the real thing. Second, we must
provide a way to tell the SUT to use the Test Double.

Type Compatibility

Whichever way we choose to install the dependency into the SUT, we must also
ensure that the Test Double we want to replace it with is “type compatible” with
the code that uses the Test Double. This is most easily accomplished if both the
real component and the Test Double implement the same interface (in statically
typed languages) or have the same signature (in dynamically typed languages).
A quick way to introduce a Test Double into existing code is to do an Extract
Interface [Fowler] refactoring on the real DOC and then have the Test Double
implement the new interface.

Installing the Test Double

There are a number of different ways to tell the SUT to use the Test Double, but they
all involve replacing a hard-coded name with a mechanism that determines the type
of object to use at execution time. The three basic options are as follows:

1 “If it ain’t broke, don’t change it (even to improve the testability)” is a common, albeit
somewhat misguided, constraint in these circumstances.

Dependency
Injection

 Dependency Injection

www.it-ebooks.info

http://www.it-ebooks.info/

680 Chapter 26 Design-for-Testability Patterns

• Parameter Injection: We pass the dependency directly to the SUT as we
invoke it.

• Constructor Injection: We tell the SUT which DOC to use when we
construct it.

• Setter Injection: We tell the SUT about the DOC sometime between
when we construct it and when we exercise it.

Each of these three variations of Dependency Injection can be hand-coded. Another
option is to use an “Inversion of Control” (IoC) framework to link the various
components together at runtime. This scheme avoids superfl uous diversity in how
Dependency Injection is implemented across the application and can simplify the
process of reconfi guring the application for different deployment models.

Variation: Parameter Injection

Parameter Injection is a form of Dependency Injection in which the SUT does not
keep or initialize a reference to the DOC; instead, it is passed in as an argument of
the method being called on the SUT. All clients of the SUT—whether they are tests
or production code—supply the DOC. As a consequence, the SUT is more indepen-
dent of the context because it makes no assumptions about the dependency other
than its usage interface. The main drawback is that Parameter Injection forces the
client to know about the dependency, which is more appropriate in some circum-
stances than in others. Most of the other variants of Dependency Injection move
this knowledge somewhere other than the client or at least make it optional.

Parameter Injection is advocated by the original paper on Mock Objects (page 544)
[ET]. It is especially effective when we are doing true TDD because that’s when we
have the greatest control over the design. It is possible to introduce Parameter In-
jection in an optional fashion by providing an alternative signature for the method
in question with the extra parameter; we can then have the more traditional style
method create the instance of the dependency and call the method that takes the de-
pendency as a parameter.

Variation: Constructor Injection

Both Constructor Injection and Setter Injection involve storing a reference to the
DOC as an attribute (fi eld or instance variable) of the SUT. With Dependency
Injection, the fi eld is initialized from a constructor argument. The SUT may
optionally provide a simpler constructor that calls this constructor with the
value normally used in production. When a test wants to replace the real DOC
with a Test Double, it passes in the Test Double to the constructor when it
builds the SUT.

Dependency
Injection

www.it-ebooks.info

http://www.it-ebooks.info/

681

This approach to introducing Dependency Injection works well when the
code includes only one or two constructors and they have small argument
lists. Constructor Injection is the only approach that works if the DOC is an
active object that creates its own thread of execution during construction;
such behavior would make for Hard-to-Test Code (page 209), and we should
probably consider turning it into a Humble Executable (see Humble Object
on page 695). If we have a large number of dependencies as constructor argu-
ments, we probably need to refactor the code to remove this code smell.

Variation: Setter Injection

As with Constructor Injection, the SUT holds a reference to the DOC as an attri-
bute (fi eld) that is initialized in the constructor. Where it differs is that the attribute
is exposed to the client either as a public attribute or via a “setter” method. When
a test wants to replace the real DOC with a Test Double, it assigns to the exposed
attribute (or calls the setter with) an instance of the Test Double. This approach
works well when constructing the real DOC has no unpleasant side effects and
assuming that nothing can happen automatically between the constructor call and
the point at which the test calls the setter for the property. Setter Injection cannot
be used if the SUT performs any signifi cant processing in the constructor that relies
on the dependency. In that case, we must use Constructor Injection. If constructing
the real DOC has deleterious side effects, we can avoid creating it via the construc-
tor by modifying the SUT to use Lazy Initialization [SBPP] to instantiate the DOC
the fi rst time the SUT needs to use it.

Retrofi tting Dependency Injection

When the SUT does not support any of these options “out of the box,” we may
be able to retrofi t this capability via a Test-Specifi c Subclass. If the actual class
to be used is normally retrieved from confi guration data, this retrieval should be
done by some component other than the SUT and the class then passed to the
SUT using Dependency Injection. Such a use of the Humble Object pattern for
the client or confi guration decouples the SUT from the environment and ensures
that tests do not need to set up some external dependency (the confi guration fi le)
to introduce the Test Double.

Another possibility is to use aspect-oriented programming (AOP) to insert
the Dependency Injection mechanism into the development environment. For
example, we might inject the decision to use the Test Double or inject the test-
specifi c logic—the Test Double—directly into the SUT. I don’t think we have
enough experience with using AOP to call this a pattern just yet.

Dependency
Injection

 Dependency Injection

www.it-ebooks.info

http://www.it-ebooks.info/

682 Chapter 26 Design-for-Testability Patterns

Motivating Example

The following test cannot be made to pass “as is”:

 public void testDisplayCurrentTime_AtMidnight() {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

This test almost always fails because it depends on the current time being returned
to the SUT by a DOC. The test cannot control the values being returned by that
component, the DefaultTimeProvider. Therefore, this test will pass only when the
system time is exactly midnight.

 public String getCurrentTimeAsHtmlFragment() {
 Calendar currentTime;
 try {
 currentTime = new DefaultTimeProvider().getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.
 }

Because the SUT is hard-coded to use a particular class to retrieve the time, we
cannot replace the DOC with a Test Double. That constraint makes this test
nondeterministic and pretty much useless. We need to fi nd a way to gain control
over the indirect inputs of the SUT.

Refactoring Notes

We can use a Replace Dependency with Test Double (page 522) refactoring to
gain control over the time. Setter Injection can be introduced into existing code if
we have control over the code and the method in question is not widely used or if
we have refactoring tools that support the Introduce Parameter [JBrains] refactor-
ing. Failing that, we can use an Extract Method [Fowler] refactoring to create the
new method signature that takes the Dependency Injection as an argument and
leave the old method as an Adapter [GOF] that calls the new method.

Dependency
Injection

www.it-ebooks.info

http://www.it-ebooks.info/

683

Example: Parameter Injection

Here’s the test rewritten to use Parameter Injection:

 public void testDisplayCurrentTime_AtMidnight_PI() {
 // Fixture setup
 // Test Double instantiation
 TimeProvider tpStub = new MidnightTimeProvider();
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Exercise SUT using Test Double
 String result = sut.getCurrentTimeAsHtmlFragment(tpStub);
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

In this case, only the test will use the new signature. The existing code can use
the old signature and the method adapter instantiates the real dependency object
before passing it in.

 public String getCurrentTimeAsHtmlFragment(
 TimeProvider timeProviderArg) {
 Calendar currentTime;
 try {
 currentTime = timeProviderArg.getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.
 }

Example: Constructor Injection

Here’s the same test rewritten to use Constructor Injection:

 public void testDisplayCurrentTime_AtMidnight_CI()
 throws Exception {
 // Fixture setup
 // Test Double instantiation
 TimeProvider tpStub = new MidnightTimeProvider();
 // Instantiate SUT injecting Test Double
 TimeDisplay sut = new TimeDisplay(tpStub);
 // Exercise SUT
 String expectedTimeString =
 "12:01 AM";
 // Verify outcome

 Dependency Injection

Dependency
Injection

www.it-ebooks.info

http://www.it-ebooks.info/

684 Chapter 26 Design-for-Testability Patterns

 assertEquals("12:01 AM",
 expectedTimeString,
 sut.getCurrentTimeAsHtmlFragment());
 }

To convert the SUT to use Constructor Injection, we can do an Introduce Field
[JetBrains] refactoring to hold the DOC in a fi eld that is initialized in the existing
constructor. We can then do an Introduce Parameter refactoring to modify all
callers of the existing constructor so that they pass the real DOC as a parameter
of the constructor. If we cannot or do not want to modify all existing callers of the
constructor, we can defi ne a new constructor that takes the DOC as a parameter
and modify the existing constructor to instantiate the real DOC and pass it in to
our new constructor.

public class TimeDisplay {

 private TimeProvider timeProvider;

 public TimeDisplay() { // backwards compatible constructor
 timeProvider = new DefaultTimeProvider();
 }
 public TimeDisplay(TimeProvider timeProvider) { // new constructor
 this.timeProvider = timeProvider;
 }

Another approach is to do an Extract Method refactoring on the call to the con-
structor and then use Move Method [Fowler] refactoring to move it to an Object
Factory (see Dependency Lookup). That would result in Dependency Lookup.

Example: Setter Injection

Here is the same test refactored to use Setter Injection:

 public void testDisplayCurrentTime_AtMidnight_SI()
 throws Exception {
 // Fixture setup
 // Test Double instantiation
 TimeProvider tpStub = new MidnightTimeProvider();
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Test Double installation
 sut.setTimeProvider(tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

Dependency
Injection

www.it-ebooks.info

http://www.it-ebooks.info/

685

Note the call to setTimeProvider to install the Hard-Coded Test Double (page 568).
If we had used a Confi gurable Test Double (page 558), its confi guration would
occur immediately before the call to setTimeProvider.

To refactor the SUT to support Setter Injection, we can do an Introduce
Field refactoring to hold the DOC in a variable that is initialized in the exist-
ing constructor and call the DOC via this fi eld. We can then expose the fi eld
either directly or via a setter so that the test can override its value. Here is the
refactored version of the SUT:

public class TimeDisplay {

 private TimeProvider timeProvider;

 public TimeDisplay() {
 timeProvider = new DefaultTimeProvider();
 }
 public void setTimeProvider(TimeProvider provider) {
 this.timeProvider = provider;
 }
 public String getCurrentTimeAsHtmlFragment()
 throws TimeProviderEx {
 Calendar currentTime;
 try {
 currentTime = getTimeProvider().getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.

Here we chose to use a getter to retrieve the DOC. We could just as easily have
used the timeProvider fi eld directly.

 Dependency Injection

Dependency
Injection

www.it-ebooks.info

http://www.it-ebooks.info/

686 Chapter 26 Design-for-Testability Patterns

Dependency Lookup

How do we design the SUT so that we can replace its
dependencies at runtime?

The SUT asks another object to return the depended-on object
before it uses it.

Almost every piece of code depends on some other classes, objects, modules, or
procedures. To unit-test a piece of code properly, we would like to isolate it from
its dependencies. Such isolation is diffi cult to achieve, however, if those depen-
dencies are hard-coded within the code in the form of literal classnames.

Dependency Lookup is a way to allow the normal coupling between a SUT
and its dependencies to be broken during automated testing.

How It Works

We avoid hard-coding the names of classes on which the SUT depends into
our code because static binding severely limits our options regarding how the
software is confi gured as it runs. Instead, we hard-code that name of a “compo-
nent broker” that returns a ready-to-use object. The component broker provides
some means for the client software or perhaps a system confi guration manager
to tell the SUT in question which objects to use for each component request.

DOC

Test
Double

Creation

Creation

SUT
UsageClient

Setup

Exercise

Verify

Teardown

Usage

Exercise
or

Configuration
with Test Double

Usage

Find or Create

DOC

Test
Double

Creation

Creation

SUT
UsageClient

Setup

Exercise

Verify

Teardown

Usage

Exercise
or

Configuration
with Test Double

Usage

Find or Create

Dependency
Lookup

Also known as:
Service Locator,
Object Factory,

Component
Broker,

Component
Registry

www.it-ebooks.info

http://www.it-ebooks.info/

687

When to Use It

Dependency Lookup is most appropriate when we need to retrieve DOCs
from deep inside the system and it would be too messy to pass the Test Double
(page 522) in from the client. A good example of such a situation is when we
want to replace the data access layer of the system with a Fake Database (see
Fake Object on page 551) or In-Memory Database (see Fake Object) to speed
up execution of the automated customer tests. It would be too complex for each
Subcutaneous Test (see Layer Test on page 337) to pass the Fake Database in
through the Service Facade [CJ2EEP] and all the way down to the data access layer.
Using Dependency Lookup allows the test or even a Setup Decorator (page 447)
to use a “confi guration facade” to install the Fake Database, which the SUT can
magically use without any further ado. Jeremy Miller writes:

You cannot understate the value of using a Service Locator for automated
testing. We routinely use alternative dependencies in testing, both to deal
with diffi cult dependencies and for test performance. For example, in a
functional test we’ll collapse a Web site and a backing application server
into a single process for better performance.

Dependency Lookup tends to be a lot simpler to retrofi t onto existing legacy
software because it affects only those places where object construction actually
occurs; we do not need to modify every intermediate object or method, as we
might have to do with Dependency Injection (page 678). It is also much simpler
to retrofi t existing round-trip tests so that they use a Fake Object to speed them
up by wrapping them in a Setup Decorator. With this scheme, we do not have
to change each test; instead, we can create new instances of the SUT in each
test and still have the test use the same Fake Object because the Service Locator
remembers it across tests.2

The main alternative to Dependency Lookup is to provide a substitution
mechanism within the SUT using Dependency Injection. This approach is gen-
erally preferable for unit tests because it makes the replacement of the DOC
more obvious and directly connected to exercising the SUT. Another option is
to use AOP to install test-specifi c logic using the development tools rather than
modifying the design of the software. The least preferred solution is to use a
Test Hook (page 709) within the SUT to avoid calling the DOC or within the
DOC so that it behaves in a test-specifi c way.

2 We call these tests “bimodal” or “multimodal” because they can be run with both real
and fake DOCs.

 Dependency Lookup

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

688 Chapter 26 Design-for-Testability Patterns

The well-known intermediary may be called a “Service Locator,” “Object
Factory,” “Component Broker,” or “Component Registry.” While these names
imply different semantics (new versus existing objects), this need not be the case.
For performance reasons, we may choose to return new objects from a “Service
Locator” or “previously enjoyed” objects from an Object Factory. To simplify
this discussion, the term “Component Broker” is used here.

Implementation Notes

A desire to use a Test Double when testing our code implies a need to make DOCs
substitutable. This constraint rules out hard-coding the names of classes on which
we depend into our code because static binding severely limits our options regard-
ing how the software is confi gured as it runs. One way to avoid this issue is to
have the SUT delegate DOC fabrication to another object. Of course, this scheme
implies we need a way to get a reference to that object. We solve this recursive
problem by having a well-known object act as an intermediary between the test
and the DOC. This well-known object is referenced by a hard-coded classname.
To be useful for installing Test Doubles, this well-known object must supply a
mechanism by which the test can specify the object to be returned.

Dependency Lookup has the following characteristics:

• Either a Singleton [GOF], a Registry [PEAA], or some kind of Thread-
Specifi c Storage [POSA2]

• An interface that fully encapsulates which implementation we are using

• A built-in substitution mechanism for replacing the returned object
with a Test Double

• Access via well-known global name

The Dependency Lookup mechanism returns an object that can be used directly
by the client. The nature of the actual object returned determines whether it is
more appropriate to call it a “Service Locator” or an “Object Factory.” Once
the object is retrieved, the SUT uses it directly. During testing, the test arranges
for the Dependency Lookup mechanism to return a test-specifi c object.

Encapsulated Implementation

A major requirement of Dependency Lookup is the existence of a well-known
object to which we can delegate our requests for DOCs. This well-known

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

689

object could be a Singleton, a Registry, or some kind of Thread-Specifi c Storage
mechanism.3

The “Component Broker” should encapsulate its implementation from the
client (our SUT). That is, the interface provided by the “Component Broker”
should not expose whether it is a Singleton or a Registry or whether some type
of Thread-Specifi c Storage mechanism is in use under the covers. In fact, the
test environment may want to provide a different implementation specifi cally to
avoid issues caused by Singletons in tests, such as a Substitutable Singleton (see
Test-Specifi c Subclass on page 579).

Substitution Mechanism

When a test wants to replace the real DOC with a Test Double, it needs a way
to tell the “Component Broker” that a Test Double should be returned instead
of the real component. The “Component Broker” may provide a confi guration
interface to confi gure it with the object to be returned or the test can replace the
component Registry with a suitable Test-Specifi c Subclass. It may also need to
provide a way to restore the original or default confi guration of the broker so
that the confi guration used in one test does not “leak” into another test, effec-
tively changing the “Component Broker” into a Shared Fixture (page 317).

A less desirable confi guration alternative is to have the “Component Broker”
read the classnames to be constructed for each request from a confi guration fi le.
This approach poses several problems, however. First, the test must write the
fi le as part of fi xture setup unless the test offers a way to replace the fi le access
mechanism. This is sure to result in Slow Tests (page 253). Second, this scheme
will not work with Confi gurable Test Doubles (page 558) unless the confi gura-
tion fi le can also provide initialization data for the object. Finally, the need to
write a fi le opens the door to Interacting Tests (see Erratic Test on page 228)
because different tests may need different confi guration information.

If the “Component Broker” must return objects based on confi guration data,
a better solution is to have a separate Humble Object (page 695) read the fi le
and call a confi guration interface on the “Component Broker.” The test can
then use this same interface to confi gure the broker on a per-test basis.

3 The main difference is that a Singleton has only a single instance, whereas a Registry
makes no such promise. Thread-Specifi c Storage allows objects to access “global” data
via a well-known object, where the data accessed is specifi c to a particular thread; the
same object might retrieve different data depending on which thread is being run.

 Dependency Lookup

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

690 Chapter 26 Design-for-Testability Patterns

Motivating Example

The following test cannot be made to pass “as is”:

 public void testDisplayCurrentTime_AtMidnight() {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

This test almost always fails because it assumes that the current time will
be returned to the SUT by a DOC. The test cannot control which values are
returned by that component (the DefaultTimeProvider), however, so this test will
pass only when the system time is exactly midnight.

 public String getCurrentTimeAsHtmlFragment() {
 Calendar currentTime;
 try {
 currentTime = new DefaultTimeProvider().getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.
 }

Because the SUT is hard-coded to use a particular class to retrieve the time, we
cannot replace the DOC with a Test Double. That makes this test nondeter-
ministic and pretty much useless. We need to fi nd a way to gain control over
the indirect inputs of the SUT.

Refactoring Notes

The fi rst step to making this behavior testable is to replace the hard-coded
classname with a call to a “Service Locator”:

 public String getCurrentTimeAsHtmlFragment() {
 Calendar currentTime;
 try {
 TimeProvider timeProvider =
 (TimeProvider) ServiceLocator.getInstance().
 findService("Time");
 currentTime = timeProvider.getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

691

Although we could have provided a class method to avoid the chained method
calls, that step would just move the getInstance into the class method. The next
refactoring step depends on whether we have a confi guration interface on our
“Service Locator.” If it makes sense to confi gure the production version of the
“Service Locator,” we can introduce the confi guration mechanism directly into
it (as illustrated in the next example). Otherwise, we can simply override what
the Service Locator returns in a Test-Specifi c Subclass (as illustrated in the sec-
ond example).

Example: Confi gurable Registry

This version of the test has been modifi ed to use the confi guration interface on
the “Service Locator” to install a Test Double:

 public void testDisplayCurrentTime_AtMidnight_CSL() {
 // Fixture setup
 // Test Double configuration
 MidnightTimeProvider tpStub = new MidnightTimeProvider();
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Test Double installation
 ServiceLocator.getInstance().registerServiceForName(tpStub, "Time");
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

The code in the SUT was described previously. The code for the Confi guration
Interface (see Confi gurable Test Double) of the Confi gurable Registry follows:

public class ServiceLocator {
 protected ServiceLocator() {};

 protected static ServiceLocator soleInstance = null;

 public static ServiceLocator getInstance() {
 if (soleInstance==null)
 soleInstance = new ServiceLocator();
 return soleInstance;
 }

 private HashMap providers = new HashMap();

 public ServiceProvider findService(String serviceName) {
 return (ServiceProvider) providers.get(serviceName);

 Dependency Lookup

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

692 Chapter 26 Design-for-Testability Patterns

 }

 // configuration interface
 public void registerServiceForName(ServiceProvider provider,
 String serviceName) {
 providers.put(serviceName, provider);
 }
}

The interesting thing about this example is our use of a Confi guration Interface on
a production class rather than a Test Double. In fact, the Confi gurable Registry
avoids the need to use a Test Double by providing the test with a mechanism to
alter the service component the Confi gurable Registry returns.

Example: Substituted Singleton

This version of the test deals with a nonconfi gurable Dependency Lookup
mechanism by replacing the soleInstance of the “Service Locator” with a Sub-
stituted Singleton (see Test-Specifi c Subclass). To ensure the reusability of the
confi guration interface of the Substituted Singleton, we pass the TimeProvider Test
Stub (page 529) as an argument to overrideSoleInstance.

 public void testDisplayCurrentTime_AtMidnight_TSS() {
 // Fixture setup
 // Test Double configuration
 MidnightTimeProvider tpStub = new MidnightTimeProvider();

 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Test Double installation
 // Replaces the entire Service Locator with one that
 // always returns our Test Stub
 ServiceLocatorTestSingleton.overrideSoleInstance(tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

Note how the test overrides the object normally returned by getInstance with an
instance of a Test-Specifi c Subclass. The code for the Singleton follows:

public class ServiceLocator {
 protected ServiceLocator() {};

 protected static ServiceLocator soleInstance = null;

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

693

 public static ServiceLocator getInstance() {
 if (soleInstance==null)
 soleInstance = new ServiceLocator();
 return soleInstance;
 }

 private HashMap providers = new HashMap();

 public ServiceProvider findService(String serviceName) {
 return (ServiceProvider) providers.get(serviceName);
 }
}

Note that we had to make the constructor and soleInstance protected rather than
private to allow them to be overridden by the subclass. Finally, here is the code
for the Substituted Singleton:

public class ServiceLocatorTestSingleton extends ServiceLocator {
 private ServiceProvider tpStub;

 private ServiceLocatorTestSingleton(TimeProvider newTpStub) {
 this.tpStub = newTpStub;
 };

 // Installation interface
 static ServiceLocatorTestSingleton
 overrideSoleInstance(TimeProvider tpStub) {
 // We could save the real instance before reassigning
 // soleInstance so we could restore it later, but we'll
 // forego that complexity for this example
 soleInstance = new ServiceLocatorTestSingleton(tpStub);
 return (ServiceLocatorTestSingleton) soleInstance;
 }

 // Overridden superclass method
 public ServiceProvider findService(String serviceName) {
 return tpStub; // Hard-coded; ignores serviceName
 }
}

Because it cannot see the private HashMap of providers, this code simply returns
the contents of the tpStub fi eld that it initialized in the constructor.

About the Name

Choosing a name for this pattern was tough. Service Locator and Component
Broker were already in widespread use. Both are good names for use in their
particular circumstance. Unfortunately, neither name can encompass the other,
so I had to come up with another name that unifi ed the two major variants.

 Dependency Lookup

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

694 Chapter 26 Design-for-Testability Patterns

The name Dependency Injection was already in widespread use for the alter-
nate pattern; a desire for consistency with that name led to using Dependency
Lookup. See the sidebar “What’s in a (Pattern) Name?” on page 576 for more
on this decision-making process.

Dependency
Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

695

Humble Object

How can we make code testable when it is too closely coupled
to its environment?

We extract the logic into a separate, easy-to-test component that is decoupled
from its environment.

We are often faced with trying to test software that is closely coupled to
some kind of framework. Examples include visual components (e.g., widgets,
dialogs) and transactional component plug-ins. Testing these objects is diffi cult
because constructing all the objects with which our SUT needs to interact may
be expensive—or even impossible. In other cases, objects may be hard to test
because they run asynchronously; examples include active objects (e.g., threads,
processes, Web servers) and user interfaces. These objects’ asynchronicity intro-
duces uncertainty, a requirement for interprocess coordination, and the need
for delays into tests. Faced with these thorny issues, developers often just give
up on testing this kind of code. The result: Production Bugs (page 268) caused
by Untested Code and Untested Requirements.

Humble Object is a way to bring the logic of these hard-to-instantiate objects
under test in a cost-effective manner.

Teardown

Setup

Exercise

Verify

Testable

Component

Impossible
Dependency

Fixture
Humble
Object

Teardown

Setup

Exercise

Verify

Testable

Component

Impossible
Dependency

Fixture
Humble
Object

 Humble Object

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

696 Chapter 26 Design-for-Testability Patterns

How It Works

We extract all the logic from the hard-to-test component into a component that
is testable via synchronous tests. This component implements a service interface
consisting of methods that expose the logic of the untestable component; the
only difference is that these methods are accessible via synchronous method
calls. As a result, the Humble Object component becomes a very thin adapter
layer that contains very little code. Each time the framework calls the Humble
Object, this object delegates its responsibilities to the testable component. If
the testable component needs any information from the context, the Humble
Object is responsible for retrieving it and passing it to the testable component.
The Humble Object code is typically so simple that we often don’t bother writing
tests for it because it can be quite diffi cult to set up the environment needed to run
those tests.

When to Use It

We can and should introduce a Humble Object whenever we have nontrivial
logic in a component that is problematic to instantiate because it depends on a
framework or can be accessed only asynchronously. There are lots of reasons
for objects being hard to test; consequently, there are lots of variations in how
we break the dependencies that are required. The following variations are the
most common examples of Humble Object—but we shouldn’t be surprised if
we sometimes need to invent our own variation.

Variation: Humble Dialog

Graphical user interface (GUI) frameworks require us to provide objects to
represent our pages and controls. These objects provide logic to translate user
actions into the underlying system actions and to translate the system responses
back into user recognizable behavior. This logic may involve invoking the
application behind the user interface and/or modifying the state of this or other
visual objects.

Visual objects are very diffi cult to test effi ciently because they are tightly
coupled to the presentation framework that invokes them. To be effective, a
test would need to simulate that environment to provide the visual object with
all the information and facilities it requires. Further complicating the issue is
the fact that these frameworks often run in their own thread of control, which
means that we must use asynchronous tests. These tests are challenging to write,
and they often result in Slow Tests (page 253) and Nondeterministic Tests (see
Erratic Test on page 228). Under these circumstances, we may benefi t by using

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

697

a Humble Object to move all of the controller and view-updating logic out of
the framework-dependent object and into a testable object.

Variation: Humble Executable

Many programs contain active objects. Active objects have their own thread of
execution so they can do things in parallel with other activities of the system.
Examples of active objects include anything that runs in a separate process (e.g.,
Windows applications in .exe fi les) or thread (in Java, any object that imple-
ments Runnable). These objects may be launched directly by the client, or they
may be started automatically, process requests from a queue, and send replies
via a return message. Either way, we must write asynchronous tests (complete
with interprocess coordination and/or explicit delays and Neverfail Tests; see
Production Bugs) to verify their behavior.

The Humble Executable pattern provides a way to bring the logic of the exe-
cutable under test without incurring the delays that might otherwise lead to Slow
Tests and Nondeterministic Tests. We extract all the logic from the executable into
a component that is testable via synchronous tests. This component implements
a service interface consisting of methods that expose all logic of the executable;
the only difference is that these methods are accessible via synchronous method
calls. The testable component may be a Windows DLL, a Java JAR containing a
Service Facade [CJ2EEP] class, or some other language component or class that
exposes the services of the executable in a testable way.

The Humble Executable component itself contains very little code. All it
does in its thread of control is to load the testable component (if a True Hum-
ble Object) and delegate to it. As a result, the Humble Executable requires
only one or two tests to verify that it performs this load/delegate function
correctly. Although these tests still take seconds to execute, they have a much
smaller impact on the overall test suite execution time because so few of them
exist. Given that this code will not change very often, these tests can even
be omitted from the suite of tests that developers execute before check-in to
speed up test suite execution times. Of course, we would still prefer to run the
Humble Executable tests as part of the automated build process.

Variation: Humble Transaction Controller

Many applications use databases to persist their state. Fixture setup with databases
can be slow and complex, and leftover fi xtures can wreak havoc with subsequent
tests and test runs. If we are using a Shared Fixture (page 317), the fi xture’s persis-
tence may lead to Erratic Tests. Humble Transaction Controller facilitates testing of
the logic that runs within the transaction by making it possible for the test to control

 Humble Object

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

698 Chapter 26 Design-for-Testability Patterns

the transaction. As a consequence, we can exercise the logic, verify the outcome, and
then abort the transaction, leaving no trace of our activity in the database.

To implement Humble Transaction Controller, we use an Extract Method
[Fowler] refactoring to move all the logic we want to test out of the code that
controls the transaction and into a separate method that knows nothing about
transaction control and that can be called by the test. Because the caller con-
trols the transaction, the test can start, commit (if it so chooses), and (most
commonly) roll back the transaction. In this case, the behavior—not the
dependencies—causes us to bypass the Humble Object when we are testing
the business logic. As a result, we are more likely to be able to get away with a
Poor Man’s Humble Object.

As for the Humble Object, it contains no business logic. Thus the only behavior
that needs to be tested is whether the Humble Object commits and rolls back the
transaction properly based on the outcome of the methods it calls. We can write a
test that replaces the testable component with a Test Stub (page 529) that throws
an exception and then verify that this activity results in a rollback of the transac-
tion. If we are using a Poor Man’s Humble Object, the stub would be implemented
as a Subclassed Test Double (see Test-Specifi c Subclass on page 579) that overrides
the “real” methods with methods that throw exceptions.

Many of the major application server technologies support this pattern either
directly or indirectly by taking transaction control away from the business objects
that we write. If we are building our software without using a transaction control
framework, we may need to implement our own Humble Transaction Controller.
See the “Implementation Notes” section for some ideas on how we can enforce
the separation.

Variation: Humble Container Adapter

Speaking of “containers,” we often have to implement specifi c interfaces to
allow our objects to run inside an application server (e.g., the “EJB session
bean” interface). Another variation on the Humble Object pattern is to design
our objects to be container-independent and then have a Humble Container
Adapter adapt them to the interface required by container. This strategy makes
our logic components easy to test outside the container, which dramatically
reduces the time required for an “edit–compile–test” cycle.

Implementation Notes

We can make the logic that normally runs inside the Humble Object testable in
several different ways. All of these techniques share one commonality: They in-
volve exposing the logic so that it can be verifi ed using synchronous tests. They

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

699

vary, however, in terms of how the logic is exposed. Regardless of how logic ex-
posure occurs, test-driven purists would prefer that tests verify that the Humble
Object is calling the extracted logic properly. This can be done by replacing the
real logic methods with some kind of Test Double (page 522) implementation.

Variation: Poor Man’s Humble Object

The simplest way to isolate and expose each piece of logic we want to verify is
to place it into a separate method. We can do so by using an Extract Method
refactoring on in-line logic and then making the resulting method visible from
the test. Of course, this method cannot require anything from the context. Ideally
everything the method needs to do its work will be passed in as arguments but this
information could also be placed in fi elds. Problems may arise if the testable com-
ponent needs to call methods to access information it needs and those methods
are dependent on the (nonexistent/faked) context, as this dependency makes
writing the tests more complex.

This approach, which constitutes the “poor man’s” Humble Object, works well
if no obstacles prevent the instantiation of the Humble Object (e.g., automatically
starting its thread, no public constructor, unsatisfi able dependencies). Use of a Test-
Specifi c Subclass can also help break these dependencies by providing a test-friendly
constructor and exposing private methods to the test.

When testing a Subclassed Humble Object or a Poor Man’s Humble Object,
we can build the Test Spy (page 538) as a Subclassed Test Double of the Humble
Object to record when the methods in question were called. We can then use
assertions within the Test Method (page 348) to verify that the values recorded
match the values expected.

Variation: True Humble Object

At the other extreme, we can put the logic we want to test into a separate class
and have the Humble Object delegate to an instance of it. This approach, which
was implied in the introduction to this pattern, will work in almost any circum-
stance where we have complete control over the code.

Sometimes the host framework requires that its objects hold certain responsi-
bilities that we cannot move elsewhere. For example, a GUI framework expects
its view objects to contain data for the controls of the GUI and the data that
those controls display on the screen. In these cases we must either give the test-
able object a reference to the Humble Object and have it manipulate the data for
that object or put some minimal update logic in the Humble Object and accept
that it won’t be covered by automated tests. The former approach is almost
always possible and is always preferable.

 Humble Object

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

700 Chapter 26 Design-for-Testability Patterns

To refactor to a True Humble Object, we normally do a series of Extract
Method refactorings to decouple the public interface of the Humble Object
from the implementation logic we plan to delegate. Then we do an Extract Class
[Fowler] refactoring to move all the methods—except the ones that defi ne the
public interface of the Humble Object—to the new “testable” class. We introduce
an attribute (a fi eld) to hold a reference to an instance of the new class and initial-
ize it to an instance of the new class either as part of the constructor or using
Lazy Initialization [SBPP] in each interface method.

When testing a True Humble Object (where the Humble Object delegates to a
separate class), we typically use a Lazy Mock Object (see Mock Object on page
544) or Test Spy to verify that the extracted class is called correctly. By contrast,
using the more common Active Mock Object (see Mock Object) is problematic
in this situation because the assertions are made on a different thread from the
Testcase Object (page 382) and failures won’t be detected unless we fi nd a way
to channel them back to the test thread.

To ensure that the extracted testable component is instantiated properly, we
can use an observable Object Factory (see Dependency Lookup on page 686) to
construct the extracted component. The test can register as a listener to verify
the correct method is called on the factory. We can also use a regular factory
object and replace it during the test with a Mock Object or Test Stub to monitor
which factory method was called.

Variation: Subclassed Humble Object

In between the extremes of the Poor Man’s Humble Object and the True Humble
Object are approaches that involve clever use of subclassing to put the logic into
separate classes while still allowing them to be on a single object. A number of
different ways to do this are possible, depending on whether the Humble Object
class needs to subclass a specifi c framework class. I won’t go into a lot of detail
here as this technique is very specifi c to the language and runtime environment.
Nevertheless, you should recognize that the basic options are either having the
framework-dependent class inherit the logic to be tested from a superclass
or having the class delegate to an abstract method that is implemented by a
subclass.

Motivating Example (Humble Executable)

In this example, we are testing some logic that runs in its own thread and
processes each request as it arrives. In each test, we start up the thread, send
it some messages, and wait long enough so that our assertions pass. Unfortu-
nately, it takes several seconds for the thread to start up, become initialized,

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

701

and process the fi rst request. Thus the test fails sporadically unless we include
a two-second delay after starting the thread.

public class RequestHandlerThreadTest extends TestCase {
 private static final int TWO_SECONDS = 3000;

 public void testWasInitialized_Async()
 throws InterruptedException {
 // Setup
 RequestHandlerThread sut = new RequestHandlerThread();
 // Exercise
 sut.start();
 // Verify
 Thread.sleep(TWO_SECONDS);
 assertTrue(sut.initializedSuccessfully());
 }

 public void testHandleOneRequest_Async()
 throws InterruptedException {
 // Setup
 RequestHandlerThread sut = new RequestHandlerThread();
 sut.start();
 // Exercise
 enqueRequest(makeSimpleRequest());
 // Verify
 Thread.sleep(TWO_SECONDS);
 assertEquals(1, sut.getNumberOfRequestsCompleted());
 assertResponseEquals(makeSimpleResponse(), getResponse());
 }
}

Ideally, we would like to test the thread with each kind of transaction individu-
ally to achieve better Defect Localization (see page 22). Unfortunately, if we did
so our test suite would take many minutes to run because each test includes a
delay of several seconds. Another problem is that the tests won’t result in an error
if our active object has an exception in its own thread.

A two-second delay may not seem like a big deal, but consider what happens
when we have a dozen such tests. It would take us almost half a minute to run
these tests. Contrast this performance with that of normal tests—we can run
several hundred of those tests each second. Testing via the executable is affecting
our productivity negatively. For the record, here’s the code for the executable:

public class RequestHandlerThread extends Thread {
 private boolean _initializationCompleted = false;
 private int _numberOfRequests = 0;

 public void run() {
 initializeThread();
 processRequestsForever();
 }

 Humble Object

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

702 Chapter 26 Design-for-Testability Patterns

 public boolean initializedSuccessfully() {
 return _initializationCompleted;
 }

 void processRequestsForever() {
 Request request = nextMessage();
 do {
 Response response = processOneRequest(request);
 if (response != null) {
 putMsgOntoOutputQueue(response);
 }
 request = nextMessage();
 } while (request != null);
 }
}

To avoid the distraction of the business logic, I have already used an Extract
Method refactoring to move the real logic into the method processOneRequest.
Likewise, the actual initialization logic is not shown here; suffi ce it to say that
this logic sets the variable _initializationCompleted when it fi nishes successfully.

Refactoring Notes

To create a Poor Man’s Humble Object, we expose the methods to make them
visible from the test. (If the code used in-line logic, we would do an Extract
Method refactoring fi rst.) If there were any dependencies on the context, we
would need to do an Introduce Parameter [JBrains] refactoring or an Introduce
Field [JetBrains] refactoring so that the processOneRequest method need not access
anything from the context.

To create a true Humble Object, we can do an Extract Class refactoring on the
executable to create the testable component, leaving behind just the Humble Object
as an empty shell. This step typically involves doing the Extract Method refactoring
described above to separate the logic we want to test (e.g., the initializeThread
method and the processOneRequest method) from the logic that interacts with the
context of the executable. We then do an Extract Class refactoring to introduce the
testable component class (essentially a single Strategy [GOF] object) and move all
methods except the public interface methods over to it. The Extract Class refac-
toring includes introducing a fi eld to hold a reference to the new object and creating
an instance. It also includes fi xing all of the public methods so that they call the
methods that were moved to the new testable class.

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

703

Example: Poor Man’s Humble Executable

Here is the same set of tests rewritten as a Poor Man’s Humble Object:

 public void testWasInitialized_Sync()
 throws InterruptedException {
 // Setup
 RequestHandlerThread sut = new RequestHandlerThread();
 // Exercise
 sut.initializeThread();
 // Verify
 assertTrue(sut.initializedSuccessfully());
 }

 public void testHandleOneRequest_Sync()
 throws InterruptedException {
 // Setup
 RequestHandlerThread sut = new RequestHandlerThread();
 // Exercise
 Response response = sut.processOneRequest(makeSimpleRequest());
 // Verify
 assertEquals(1, sut.getNumberOfRequestsCompleted());
 assertResponseEquals(makeSimpleResponse(), response);
 }

Here, we have made the methods initializeThread and processOneRequest public so
that we can call them synchronously from the test. Note the absence of a delay in
this test. This approach works well as long as we can instantiate the executable
component easily.

Example: True Humble Executable

Here is the code for our SUT refactored to use a True Humble Executable:

public class HumbleRequestHandlerThread extends Thread
implements Runnable {
 public RequestHandler requestHandler;

 public HumbleRequestHandlerThread() {
 super();
 requestHandler = new RequestHandlerImpl();
 }

 public void run() {
 requestHandler.initializeThread();
 processRequestsForever();
 }

 public boolean initializedSuccessfully() {

 Humble Object

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

704 Chapter 26 Design-for-Testability Patterns

 return requestHandler.initializedSuccessfully();
 }

 public void processRequestsForever() {
 Request request = nextMessage();
 do {
 Response response =
 requestHandler.processOneRequest(request);
 if (response != null) {
 putMsgOntoOutputQueue(response);
 }
 request = nextMessage();
 } while (request != null);
 }

Here, we have moved the method processOneRequest to a separate class that we
can instantiate easily. Below is the same test rewritten to take advantage of the
extracted component. Note the absence of a delay in this test.

 public void testNotInitialized_Sync()
 throws InterruptedException {
 // Setup/Exercise
 RequestHandler sut = new RequestHandlerImpl();
 // Verify
 assertFalse("init", sut.initializedSuccessfully());
 }

 public void testWasInitialized_Sync()
 throws InterruptedException {
 // Setup
 RequestHandler sut = new RequestHandlerImpl();
 // Exercise
 sut.initializeThread();
 // Verify
 assertTrue("init", sut.initializedSuccessfully());
 }

 public void testHandleOneRequest_Sync()
 throws InterruptedException {
 // Setup
 RequestHandler sut = new RequestHandlerImpl();
 // Exercise
 Response response = sut.processOneRequest(makeSimpleRequest());
 // Verify
 assertEquals(1, sut.getNumberOfRequestsDone());
 assertResponseEquals(makeSimpleResponse(), response);
 }

Because we have introduced delegation to another object, we should probably
verify that the delegation occurs properly. The next test verifi es that the Humble

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

705

Object calls the initializeThread method and the processOneRequest method on the
newly created testable component:

 public void testLogicCalled_Sync()
 throws InterruptedException {
 // Setup
 RequestHandlerRecordingStub mockHandler =
 new RequestHandlerRecordingStub();
 HumbleRequestHandlerThread sut = new HumbleRequestHandlerThread();
 // Mock Installation
 sut.setHandler(mockHandler);
 sut.start();
 // Exercise
 enqueRequest(makeSimpleRequest());
 // Verify
 Thread.sleep(TWO_SECONDS);
 assertTrue("init", mockHandler.initializedSuccessfully());
 assertEquals(1, mockHandler.getNumberOfRequestsDone());
 }

Note that this test does require at least a small delay to allow the thread to
start up. The delay is shorter, however, because we have replaced the real logic
component with a Test Double that responds instantly and only one test now
requires the delay. We could even move this test to a separate test suite that is
run less frequently (e.g., only during the automated build process) to ensure that
all tests performed before each check-in run quickly.

The other signifi cant thing to note is that we are using a Test Spy rather
than a Mock Object. Because the assertions done by the Mock Object would be
raised in a different thread from the Test Method, the Test Automation Frame-
work (page 298)—in this example, JUnit—won’t catch them. As a consequence,
the test might indicate “pass” even though assertions in the Mock Object are
failing. By making the assertions in the Test Method, we avoid having to do
something special to relay the exceptions thrown by the Mock Object back to
the thread in which the Test Method is executing.

The preceding test verifi ed that our Humble Object actually delegates to
the Test Spy that we have installed. It would also be a good idea to verify that
our Humble Object actually initializes the variable holding the delegate to the
appropriate class. Here’s a simple way to do so:

 public void testConstructor() {
 // Exercise
 HumbleRequestHandlerThread sut = new HumbleRequestHandlerThread();
 // Verify
 String actualDelegateClass = sut.requestHandler.getClass().getName();
 assertEquals(RequestHandlerImpl.class.getName(),
 actualDelegateClass);
 }

 Humble Object

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

706 Chapter 26 Design-for-Testability Patterns

This Constructor Test (see Test Method) verifi es that a specifi c attribute has been
initialized.

Example: Humble Dialog

Many development environments let us build the user interface visually by
dragging and dropping various objects (“widgets”) onto a canvas. They let us
add behavior to these visual objects by selecting one of several possible actions
or events specifi c to that visual object and typing logic into the code window
presented by the IDE. This logic may involve invoking the application behind
the user interface or it may involve modifying the state of this or some other
visual object.

Visual objects are very diffi cult to test effi ciently because they are tightly
coupled to the presentation framework that invokes them. To provide the
visual object with all the information and facilities it requires, the test would
need to simulate that environment—quite a challenge. This makes testing very
complicated, so much so that many development teams don’t bother testing
the presentation logic at all. This lack of testing, not surprisingly, often leads to
Production Bugs caused by untested code and Untested Requirements.

To create the Humble Dialog, we extract all the logic from the view com-
ponent into a nonvisual component that is testable via synchronous tests. If
this component needs to update the view object’s (Humble Dialog’s) state, the
Humble Dialog is passed in as an argument. When testing the nonvisual com-
ponent, we typically replace the Humble Dialog with a Mock Object that is
confi gured with the indirect input values and the expected behavior (indirect
outputs). In GUI frameworks that require the Humble Dialog to register itself
with the framework for each event it wishes to see, the nonvisual component can
register itself instead of the Humble Dialog (as long as that doesn’t introduce
unmanageable dependencies on the context). This fl exibility makes the Humble
Dialog even simpler because the events go directly to the nonvisual component
and require no delegation logic.

The following code sample is taken from a VB view component (.ctl) that
includes some nontrivial logic. It is part of a custom plug-in we built for Mercury
Interactive’s TestDirector tool.

 ' Interface method, TestDirector will call this method
 ' to display the results.
Public Sub ShowResultEx(TestSetKey As TdTestSetKey, _
 TSTestKey As TdTestKey, _
 ResultKey As TdResultKey)

Humble
Object

www.it-ebooks.info

http://www.it-ebooks.info/

707

 Dim RpbFiles As OcsRpbFiles
 Set RpbFiles = getTestResultFileNames(ResultKey)
 ResultsFileName = RpbFiles.ActualResultFileName
 ShowFileInBrowser ResultsFileName
End Sub

Function getTestResultFileNames(ResultKey As Variant) As OcsRpbFiles
 On Error GoTo Error
 Dim Attachments As Collection
 Dim thisTest As Run
 Dim RpbFiles As New OcsRpbFiles

 Call EnsureConnectedToTd

 Set Attachments = testManager.GetAllAttachmentsOfRunTest(ResultKey)
 Call RpbFiles.LoadFromCollection(Attachments, "RunTest")
 Set getTestResultFileNames = RpbFiles
 Exit Function
Error:
 ' do something ...
End Function

Ideally, we would like to test the logic. Unfortunately, we cannot construct the
objects passed in as parameters because they don’t have public constructors.
Passing in objects of some other type isn’t possible either, because the types of
the function parameters are hard-coded to be specifi c concrete classes.

We can do an Extract Testable Component (page 735) refactoring on the ex-
ecutable to create the testable component, leaving behind just the Humble Dialog
as an empty shell. This approach typically involves doing several Extract Method
refactorings (already done in the original example to make the refactoring easier
to understand), one for each chunk of logic that we want to move. We then do
an Extract Class refactoring to create our new testable component class. The
Extract Class refactoring may include both Move Method [Fowler] and Move
Field [Fowler] refactorings to move the logic and the data it requires out of the
Humble Dialog and into the new testable component.

Here’s the same view converted to a Humble Dialog:

 ' Interface method, TestDirector will call this method
 ' to display the results.
Public Sub ShowResultEx(TestSetKey As TdTestSetKey, _
 TSTestKey As TdTestKey, _
 ResultKey As TdResultKey)
 Dim RpbFiles As OcsRpbFiles
 Call EnsureImplExists
 Set RpbFiles = Implementation.getTestResultFileNames(ResultKey)

Humble
Object

 Humble Object

www.it-ebooks.info

http://www.it-ebooks.info/

708 Chapter 26 Design-for-Testability Patterns

 ResultsFileName = RpbFiles.ActualResultFileName
 ShowFileInBrowser ResultsFileName
End Sub

Private Sub EnsureImplExists()
 If Implementation Is Nothing Then
 Set Implementation = New OcsScriptViewerImpl
 End If
End Sub

Here’s the testable component OcsScriptViewerImpl that the Humble Object calls:

' ResultViewer Implementation:
Public Function getTestResultFileNames(ResultKey As Variant) As OcsRpbFiles
 On Error GoTo Error

 Dim Attachments As Collection
 Dim thisTest As Run
 Dim RpbFiles As New OcsRpbFiles

 Call EnsureConnectedToTd

 Set Attachments = testManager.GetAllAttachmentsOfRunTest(ResultKey)
 Call RpbFiles.LoadFromCollection(Attachments, "RunTest")
 Set getTestResultFileNames = RpbFiles
 Exit Function
Error:
 ' do something ...
End Function

We could now instantiate this OcsScriptViewerImpl class easily and write VbUnit
tests for it. I’ve omitted the tests for space reasons because they don’t really show
anything particularly interesting.

Example: Humble Transaction Controller

Transaction Rollback Teardown (page 668) contains an example of writing tests
that bypass the Humble Transaction Controller.

Further Reading

See http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf
for Michael Feathers’ original write-up of the Humble Dialog pattern.

Humble
Object

www.it-ebooks.info

http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf
http://www.it-ebooks.info/

709

Test Hook

How do we design the SUT so that we can replace its dependencies at runtime?

We modify the SUT to behave differently during the test.

Almost every piece of code depends on some other classes, objects, modules, or
procedures. To unit-test a piece of code properly, we would like to isolate it from
its dependencies. Such isolation is diffi cult to achieve if those dependencies are
hard-coded within the code in the form of literal classnames.

Test Hook is a “method of last resort” for introducing test-specifi c behavior
during automated testing.

How It Works

We modify the behavior of the SUT to support testing by putting a hook directly
into the SUT or into a DOC. This approach implies that we use some kind of
testing fl ag that can be checked in the appropriate place.

When to Use It

Sometimes it is appropriate to use this “pattern of last resort” when we cannot
use either Dependency Injection (page 678) or Dependency Lookup (page 686).
In this situation, we use a Test Hook because we have no other way to address
the Untested Code (see Production Bugs on page 268) caused by a Hard-Coded
Dependency (see Hard-to-Test Code on page 209).

DOCSUT

UsageExercise
If

Testing?

No

Production
Logic

Test-
Specific
Logic

Setup

Exercise

Verify

Teardown

If
Testing?

YesNo

Production
Logic

Test-
Specific
Logic

Yes

DOCSUT

UsageExercise
If

Testing?

No

Production
Logic

Test-
Specific
Logic

Setup

Exercise

Verify

Teardown

If
Testing?

YesNo

Production
Logic

Test-
Specific
Logic

Yes

 Test Hook

Test Hook

www.it-ebooks.info

http://www.it-ebooks.info/

710 Chapter 26 Design-for-Testability Patterns

A Test Hook may be the only way to introduce Test Double (page 522)
behavior when we are programming in a procedural language that does not
support objects, function pointers, or any other form of dynamic binding.

Test Hooks can be used as a transition strategy to bring legacy code under
the testing umbrella. We can introduce testability using the Test Hooks and then
use those Tests as Safety Net (see page 24) while we refactor for even more test-
ability. At some point we should be able to discard the initial round of tests that
required the Test Hooks because we have enough “modern” tests to protect us.

Implementation Notes

The essence of the Test Hook pattern is that we insert some code into the SUT
that lets us test it. Regardless of how we insert this code into the SUT, the code
itself can either

• Divert control to a Test Double instead of the real object, or

• Be the Test Double within the real object, or

• Be a test-specifi c Decorator [GOF] that delegates to the real object
when in production.

The fl ag that indicates testing is in progress can be a compile-time constant,
which may, for example, cause the compiler to optimize out all the testing logic.
In languages that support preprocessors or compiler macros, such constructs
may also be used to remove the Test Hook before the code enters the production
phase. The value of the fl ag can also be read in from confi guration data or stored
in a global variable that the test sets directly.

Motivating Example

The following test cannot be made to pass “as is”:

 public void testDisplayCurrentTime_AtMidnight() {
 // fixture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

This test almost always fails because it depends on a DOC to return the current
time to the SUT. The test cannot control the values returned by that component,

Test Hook

www.it-ebooks.info

http://www.it-ebooks.info/

711

the DefaultTimeProvider. As a consequence, this test will pass only when the system
time is exactly midnight.

 public String getCurrentTimeAsHtmlFragment() {
 Calendar currentTime;
 try {
 currentTime = new DefaultTimeProvider().getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.
 }

Because the SUT is hard-coded to use a particular class to retrieve the time, we
cannot replace the DOC with a Test Double. As a result, this test is nondeter-
ministic and pretty much useless. We need to fi nd a way to gain control over the
indirect inputs of the SUT.

Refactoring Notes

We can introduce a Test Hook by creating a fl ag that can be checked into the
SUT. We then wrap the production code with an if/then/else control structure
and put the test-specifi c logic into the then clause.

Example: Test Hook in System Under Test

Here’s the production code modifi ed to accommodate testing via a Test Hook:

 public String getCurrentTimeAsHtmlFragment() {
 Calendar theTime;
 try {
 if (TESTING) {
 theTime = new GregorianCalendar();
 theTime.set(Calendar.HOUR_OF_DAY, 0);
 theTime.set(Calendar.MINUTE, 0);}
 else {
 theTime = new DefaultTimeProvider().getTime();
 }
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.

Here we have implemented the testing fl ag as global constant, which we can
edit as necessary. This fl exibility implies a separate build step is necessary for
versions of the system to be tested. Such a strategy is somewhat safer than using
a dynamic confi guration parameter or member variable because many compilers
will optimize this hook right out of the object code.

 Test Hook

Test Hook

www.it-ebooks.info

http://www.it-ebooks.info/

712 Chapter 26 Design-for-Testability Patterns

Example: Test Hook in Depended-on Component

We can also introduce a Test Hook by putting the hook into a DOC rather than
into the SUT:

 public Calendar getTime() throws TimeProviderEx {
 Calendar theTime = new GregorianCalendar();
 if (TESTING) {
 theTime.set(Calendar.HOUR_OF_DAY, 0);
 theTime.set(Calendar.MINUTE, 0);}
 else {
 // just return the calendar
 }
 return theTime;
 };

This approach is somewhat better because we are not modifying the SUT as we
test it.

Test Hook

www.it-ebooks.info

http://www.it-ebooks.info/

713

Chapter 27

Value Patterns

Patterns in This Chapter

Literal Value . 714

Derived Value . 718

Generated Value . 723

Dummy Object . 728

Value
Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

714 Chapter 27 Value Patterns

Literal Value

How do we specify the values to be used in tests?

We use literal constants for object attributes and assertions.

BigDecimal expectedTotal = new BigDecimal("99.95");

The values we use for the attributes of objects in our test fi xture and the expect-
ed outcome of our test are often related to one another in a way that is defi ned
in the requirements. Getting these values—and, in particular, the relationship
between the pre-conditions and the post-conditions—right is crucial because it
drives the correct behavior into the SUT.

Literal Values are a popular way to specify the values of attributes of objects
in a test.

How It Works

We use a literal constant of the appropriate type for each attribute of an
object or for use as an argument of a method call to the SUT or an Assertion
Method (page 362). The expected values are calculated by hand, calculator, or
spreadsheet and hard-coded within the test as Literal Values.

When to Use It

Using a Literal Value in-line makes it very clear which value is being used; there
is no doubt about the value’s identity because it is right in front of our face.
Unfortunately, using Literal Values can make it diffi cult to see the relationships
between the values used in various places in the test, which may in turn lead to
Obscure Tests (page 186). It certainly makes sense to use Literal Values if the
testing requirements specify which values are to be used and we want to make it
clear that we are, in fact, using those values. [We might sometimes consider us-
ing a Data-Driven Test (page 288) instead to avoid the effort and transcription
errors associated with copying the data into test methods.]

One downside of using a Literal Value is that we might use the same value
for two unrelated attributes; if the SUT happens to use the wrong one, tests
may pass even though they should not. If the Literal Value is a fi lename or a key
used to access a database, the meaning of the value is lost—the content of the
fi le or record actually drives the behavior of the SUT. Using a Literal Value as
the key does nothing to help the reader understand the test in such a case, and
we are likely to suffer from Obscure Tests.

Also known as:
Hard-Coded

Value, Constant
Value

Literal Value

www.it-ebooks.info

http://www.it-ebooks.info/

715

If the values in the expected outcome can be derived from the values in the
fi xture setup logic, we will be more likely to use the Tests as Documentation
(see page 23) if we use Derived Values (page 718). Conversely, if the values are
not important to the specifi cation of the logic being tested, we should consider
using Generated Values (page 723).

Implementation Notes

The most common way to use a Literal Value is with literal constants within
the code. When the same value needs to be used in several places in the test
(typically during fi xture setup and result verifi cation), this approach can
obscure the relationship between the test pre-conditions and post-conditions.
Introducing an evocatively named symbolic constant can make this relationship
much clearer. Likewise, if we cannot use a self-describing value, we can still make
the code easier to use by defi ning a suitably named symbolic constant and using
it wherever we would have used the Literal Value.

Variation: Symbolic Constant

When we need to use the same Literal Value in several places in a single Test
Method (page 348) or within several distinct tests, it is a good practice to use a
Symbolic Constant instead of a Literal Value. A Symbolic Constant is function-
ally equivalent to a Literal Value but reduces the likelihood of High Test Mainte-
nance Cost (page 265).

Variation: Self-Describing Value

When several attributes of an object need the same kind of value, using different
values provides advantages by helping us to prove that the SUT is working with
the correct attribute. When an attribute or argument is an unconstrained string,
it can be useful to choose a value that describes the role of the value in the test
(a Self-Describing Value). For example, using “Not an existing customer” for
the name of a customer might be more helpful to the reader than using “Joe
Blow,” especially when we are debugging or when the attributes are included in
the test failure output.

Example: Literal Value

Because Literal Value is usually the starting point when writing tests, I’ll dis-
pense with a motivating example and cut straight to the chase. Here’s an
example of the Literal Value pattern in action. Note the use of Literal Values
in both the fi xture setup logic and the assertion.

 Literal Value

Literal Value

www.it-ebooks.info

http://www.it-ebooks.info/

716 Chapter 27 Value Patterns

 public void testAddItemQuantity_1() throws Exception {
 Product product = new Product("Widget", 19.95);
 Invoice invoice = new Invoice();
 // Exercise
 invoice.addItemQuantity(product, 1);
 // Verify
 List lineItems = invoice.getLineItems();
 LineItem actualItem = (LineItem)lineItems.get(0);
 assertEquals(new BigDecimal("19.95"),
 actualItem.getExtendedPrice());
 }

The Product constructor requires both a name and a cost. The assertion on the
extendedCost of the lineItem requires a value for the total cost of the product for
that line item. In this example, we included these values as hard-coded literal
constants. In the next example, we’ll use symbolic constants instead.

Refactoring Notes

We can reduce the Test Code Duplication (page 213) in the form of the hard-
coded Literal Value of 19.95 by doing a Replace Magic Number with Symbolic
Constant [Fowler] refactoring.

Example: Symbolic Constant

This refactored version of the original test replaces the duplicated Literal Value
of the widget’s price (19.95) with a suitably named Symbolic Constant that is
used during fi xture setup as well as result verifi cation:

 public void testAddItemQuantity_1s() throws Exception {
 BigDecimal widgetPrice = new BigDecimal("19.95");
 Product product = new Product("Widget", widgetPrice);
 Invoice invoice = new Invoice();
 // Exercise
 invoice.addItemQuantity(product, 1);
 // Verify
 List lineItems = invoice.getLineItems();
 LineItem actualItem = (LineItem)lineItems.get(0);
 assertEquals(widgetPrice, actualItem.getExtendedPrice());
 }

Literal Value

www.it-ebooks.info

http://www.it-ebooks.info/

717

Example: Self-Describing Value

This refactored version of the test provides a Self-Describing Value for the
mandatory name argument passed to the Product constructor. This value is
not used by the method we are testing; it is merely stored for later access by
another method we are not testing here.

 public void testAddItemQuantity_1b() throws Exception {
 BigDecimal widgetPrice = new BigDecimal("19.95");
 Product product = new Product("Irrelevant product name",
 widgetPrice);
 Invoice invoice = new Invoice();
 // Exercise
 invoice.addItemQuantity(product, 1);
 // Verify
 List lineItems = invoice.getLineItems();
 LineItem actualItem = (LineItem)lineItems.get(0);
 assertEquals(widgetPrice, actualItem.getExtendedPrice());
 }

Example: Distinct Value

This test needs to verify that the item’s name is taken from the product’s name.
We’ll use a Distinct Value for the name and the SKU so we can tell them apart.

 public void testAddItemQuantity_1c() throws Exception {
 BigDecimal widgetPrice = new BigDecimal("19.95");
 String name = "Product name";
 String sku = "Product SKU";
 Product product = new Product(name, sku, widgetPrice);
 Invoice invoice = new Invoice();
 // Exercise
 invoice.addItemQuantity(product, 1);
 // Verify
 List lineItems = invoice.getLineItems();
 LineItem actualItem = (LineItem)lineItems.get(0);
 assertEquals(name, actualItem.getName());
 }

This also happens to be an example of a self-describing value.

 Literal Value

Literal Value

www.it-ebooks.info

http://www.it-ebooks.info/

718

Derived Value

How do we specify the values to be used in tests?

We use expressions to calculate values that can be derived from
other values.

BigDecimal expectedTotal = itemPrice.multiply(QUANTITY);

The values we use for the attributes of objects in our test fi xtures and the result
verifi cation parts of our tests are often related to one another in a way that is
defi ned in the requirements. Getting these values—and, in particular, the rela-
tionship between the pre-conditions and the post-conditions—right is crucial
because it drives the correct behavior into the SUT and helps the tests act as
documentation of our software.

Often, some of these values can be derived from other values in the same test.
In these cases the benefi ts from using our Tests as Documentation (see page 23)
are improved if we show the derivation by calculating the values using the appro-
priate expression.

How It Works

Computers are really good at math and string concatenation. We can avoid
doing the math in our head (or with a calculator) by coding the math for
expected results as arguments of the Assertion Method (page 362) calls directly
into the tests. We can also use Derived Values as arguments for fi xture object
creation and as method arguments when exercising the SUT.

Derived Values, by their very nature, encourage us to use variables or symbolic
constants to hold the values. These variables/constants can be initialized at com-
pile time (constants), during class or Testcase Object (page 382) initialization,
during fi xture setup, or within the body of the Test Method (page 348).

When to Use It

We should use a Derived Value whenever we have values that can be derived in
some deterministic way from other values in our tests. The main drawback of using
Derived Values is that the same math error (e.g., rounding errors) could appear in
both the SUT and the tests. To be safe, we might want to code a few of the patho-
logical test cases using Literal Values (page 714) just in case such a problem might
be present. If the values we are using must be unique or don’t affect the logic in the
SUT, we may be better off using Generated Values (page 723) instead.

Also known as:
Calculated

Value

Derived
Value

Chapter 27 Value Patterns

www.it-ebooks.info

http://www.it-ebooks.info/

719

We can use a Derived Value either as part of fi xture setup (Derived Input
or One Bad Attribute) or when determining the expected values to be com-
pared with those generated by the SUT (Derived Expectation). These uses are
described in a bit more detail later in this section.

Variation: Derived Input

Sometimes our test fi xture contains similar values that the SUT might compare
or use to base its logic on the difference between them. For example, a Derived
Input might be calculated in the fi xture setup portion of the test by adding the
difference to a base value. This operation makes the relationship between the
two values explicit. We can even put the value to be added in a symbolic constant
with an Intent-Revealing Name [SBPP] such as MAXIMUM_ALLOWABLE_TIME_DIFFERENCE.

Variation: One Bad Attribute

A Derived Input is often employed when we need to test a method that takes a
complex object as an argument. For example, thorough “input validation” testing
requires that we exercise the method with each of the attributes of the object set to
one or more possible invalid values to ensure that it handles all of these cases cor-
rectly. Because the fi rst rejected value could cause termination of the method, we
must verify each bad attribute in a separate call to the SUT; each of these calls, in
turn, should be done in a separate test method (each should be a Single-Condition
Test; see page 45). We can instantiate the invalid object easily by fi rst creating a
valid object and then replacing one of its attributes with an invalid value. It is best
to create the valid object using a Creation Method (page 415) so as to avoid Test
Code Duplication (page 213).

Variation: Derived Expectation

When some value produced by the SUT should be related to one or more of the
values we passed in to the SUT as arguments or as values in the fi xture, we can
often derive the expected value from the input values as the test executes rather
than using precalculated Literal Values. We then use the result as the expected
value in an Equality Assertion (see Assertion Method).

Motivating Example

The following test doesn’t use Derived Values. Note the use of Literal Values in
both the fi xture setup logic and the assertion.

 public void testAddItemQuantity_2a() throws Exception {
 BigDecimal widgetPrice = new BigDecimal("19.99");

 Derived Value

Derived
Value

www.it-ebooks.info

http://www.it-ebooks.info/

720 Chapter 27 Value Patterns

 Product product = new Product("Widget", widgetPrice);
 Invoice invoice = new Invoice();
 // Exercise
 invoice.addItemQuantity(product, 5);
 // Verify
 List lineItems = invoice.getLineItems();
 LineItem actualItem = (LineItem)lineItems.get(0);
 assertEquals(new BigDecimal("99.95"),
 actualItem.getExtendedPrice());
 }

Test readers may have to do some math in their heads to fully appreciate the
relationship between the values in the fi xture setup and the value in the result
verifi cation part of the test.

Refactoring Notes

To make this test more readable, we can replace any Literal Values that are actu-
ally derived from other values with formulas that calculate these values.

Example: Derived Expectation

The original example contained only one line item for fi ve instances of the prod-
uct. We therefore calculated the expected value of the extended price attribute by
multiplying the unit price by the quantity, which makes the relationship between
the values explicit.

 public void testAddItemQuantity_2b() throws Exception {
 BigDecimal widgetPrice = new BigDecimal("19.99");
 BigDecimal numberOfUnits = new BigDecimal("5");
 Product product = new Product("Widget", widgetPrice);
 Invoice invoice = new Invoice();
 // Exercise
 invoice.addItemQuantity(product, numberOfUnits);
 // Verify
 List lineItems = invoice.getLineItems();
 LineItem actualItem = (LineItem)lineItems.get(0);
 BigDecimal totalPrice = widgetPrice.multiply(numberOfUnits);
 assertEquals(totalPrice, actualItem.getExtendedPrice());
 }

Note that we have also introduced symbolic constants for the unit price and
quantity to make the expression even more obvious and to reduce the effort of
changing the values later.

Derived
Value

www.it-ebooks.info

http://www.it-ebooks.info/

721

Example: One Bad Attribute

Suppose we have the following Customer Factory Method [GOF], which takes
a CustomerDto object as an argument. We want to write tests to verify what occurs
when we pass in invalid values for each of the attributes in the CustomerDto. We
could create the CustomerDto in-line in each Test Method with the appropriate
attribute initialized to some invalid value.

 public void testCreateCustomerFromDto_BadCredit() {
 // fixture setup
 CustomerDto customerDto = new CustomerDto();
 customerDto.firstName = "xxx";
 customerDto.lastName = "yyy";
 // etc.
 customerDto.address = createValidAddress();
 customerDto.creditRating = CreditRating.JUNK;
 // exercise the SUT
 try {
 sut.createCustomerFromDto(customerDto);
 fail("Expected an exception");
 } catch (InvalidInputException e) {
 assertEquals("Field", "Credit", e.field);
 }
 }

 public void testCreateCustomerFromDto_NullAddress() {
 // fixture setup
 CustomerDto customerDto = new CustomerDto();
 customerDto.firstName = "xxx";
 customerDto.lastName = "yyy";
 // etc.
 customerDto.address = null;
 customerDto.creditRating = CreditRating.AAA;
 // exercise the SUT
 try {
 sut.createCustomerFromDto(customerDto);
 fail("Expected an exception");
 } catch (InvalidInputException e) {
 assertEquals("Field", "Address", e.field);
 }
 }

The obvious problem with this code is that we end up with a lot of Test Code
Duplication because we need at least one test per attribute. The problem
becomes even worse if we are doing incremental development: We will require
more tests for each newly added attribute, and we will have to revisit all existing
tests to add the new attribute to the Factory Method signature.

 Derived Value

Derived
Value

www.it-ebooks.info

http://www.it-ebooks.info/

722 Chapter 27 Value Patterns

The solution is to defi ne a Creation Method that produces a valid instance of
the CustomerDto (by doing an Extract Method [Fowler] refactoring on one of the
tests) and uses it in each test to create a valid DTO. Then we simply replace one
of the attributes with an invalid value in each of the tests. Each test now has an
object with One Bad Attribute, with each one invalid in a slightly different way.

 public void testCreateCustomerFromDto_BadCredit_OBA() {
 CustomerDto customerDto = createValidCustomerDto();
 customerDto.creditRating = CreditRating.JUNK;
 try {
 sut.createCustomerFromDto(customerDto);
 fail("Expected an exception");
 } catch (InvalidInputException e) {
 assertEquals("Field", "Credit", e.field);
 }
 }

 public void testCreateCustomerFromDto_NullAddress_OBA() {
 CustomerDto customerDto = createValidCustomerDto();
 customerDto.address = null;
 try {
 sut.createCustomerFromDto(customerDto);
 fail("Expected an exception");
 } catch (InvalidInputException e) {
 assertEquals("Field", "Address", e.field);
 }
 }

Derived
Value

www.it-ebooks.info

http://www.it-ebooks.info/

723

Generated Value

How do we specify the values to be used in tests?

We generate a suitable value each time the test is run.

BigDecimal uniqueCustomerNumber = getUniqueNumber();

When initializing the objects in the test fi xture, one issue that must be dealt
with is the fact that most objects have various attributes (fi elds) that need to be
supplied as arguments to the constructor. Sometimes the exact values to be used
affect the outcome of the test. More often than not, however, it is important
only that each object use a different value. When the precise values of these
attributes are not important to the test, it is important not to have them visible
within the test!

Generated Values are used in conjunction with Creation Methods (page 415)
to help us remove this potentially distracting information from the test.

How It Works

Instead of deciding which values to use in our tests while we are coding the tests,
we generate the values when we actually execute the tests. We can then pick values
to satisfy specifi c criteria such as “must be unique in the database” that can be
determined only as the test run unfolds.

When to Use It

We use a Generated Value whenever we cannot or do not want to specify the test
values until the test is executing. Perhaps the value of an attribute is not expected
to affect the outcome of the test and we don’t want to be bothered to defi ne Literal
Values (page 714), or perhaps we need to ensure some quality of the attribute that
can be determined only at runtime. In some cases, the SUT requires the value of an
attribute to be unique; using a Generated Value can ensure that this criterion is
satisfi ed and thereby prevent Unrepeatable Tests (see Erratic Test on page 228) and
Test Run Wars (see Erratic Test) by reducing the likelihood of a test confl icting with
its parallel incarnation in another test run. Optionally, we can use this distinct value
for all attributes of the object; object recognition then becomes very easy when we
inspect the object in a debugger.

One thing to be wary of is that different values could expose different
bugs. For example, a single-digit number may be formatted correctly, whereas
a multidigit number might not (or vice versa). Generated Values can result

 Generated Value

Generated
Value

www.it-ebooks.info

http://www.it-ebooks.info/

724 Chapter 27 Value Patterns

in Nondeterministic Tests (see Erratic Test); if we encounter nondeterminism
(sometimes the test passes and then fails during the very next run), we must
check the SUT code to see whether differences in value could be the root cause.

In general, we shouldn’t use a Generated Value unless the value must be
unique because of the nondeterminism such a value may introduce. The obvi-
ous alternative is to use a Literal Value. A less obvious alternative is to use a
Derived Value (page 718), especially when we must determine the expected
results of a test.

Implementation Notes

We can generate values in a number of ways. The appropriateness of each tech-
nique depends on the circumstance.

Variation: Distinct Generated Value

When we need to ensure that each test or object uses a different value, we can take
advantage of Distinct Generated Values. In such a case, we can create a set of util-
ity functions that will return unique values of various types (e.g., integers, strings,
fl oating-point numbers). The various getUnique methods can all be built upon an
integer sequence number generator. For numbers that must be unique within the
scope of a shared database, we can use database sequences or a sequence table.
For numbers that must be unique within the scope of a particular test run, we can
use an in-memory sequence number generator (e.g., use a Java static variable that
is incremented before usage). In-memory sequence numbers that start from the
number 1 each time a test suite is run offer a useful quality: The values generated
in each test are the same for each run and can simplify debugging.

Variation: Random Generated Value

One way to obtain good test coverage without spending a lot of time analyzing
the behavior and generating test conditions is to use different values each time
we run the tests. Using a Random Generated Value is one way to accomplish
this goal. While use of such values may seem like a good idea, it makes the tests
nondeterministic (Nondeterministic Tests) and can make debugging failed tests
very diffi cult. Ideally, when a test fails, we want to be able to repeat that test
failure on demand. To do so, we can log the Random Generated Value as the test
is run and show it as part of the test failure. We then need to fi nd a way to force
the test to use that value again while we are troubleshooting the failed test. In
most cases, the effort required outweighs the potential benefi t. Of course, when
we need this technique, we really need it.

Generated
Value

www.it-ebooks.info

http://www.it-ebooks.info/

725

Variation: Related Generated Value

An optional enhancement is to combine a Generated Value with a Derived Value
by using the same generated integer as the root for all attributes of a single object.
This result can be accomplished by calling getUniqueInt once and then using that
value to build unique strings, fl oating-point numbers, and other values. With a
Related Generated Value, all fi elds of the object contain “related” data, which
makes the object easier to recognize when debugging. Another option is to sepa-
rate the generation of the root from the generation of the values by calling gener-
ateNewUniqueRoot explicitly before calling getUniqueInt, getUniqueString, and so on.

Another nice touch for strings is to pass a role-describing argument to the
function that is combined with the unique integer key to make the code more
intent-revealing. Although we could also pass such arguments to the other
functions, of course we wouldn’t be able to build them into an integer value.

Motivating Example

The following test uses Literal Values for the arguments to a constructor:

 public void testProductPrice_HCV() {
 // Setup
 Product product =
 new Product(88, // ID
 "Widget", // Name
 new BigDecimal("19.99")); // Price
 // Exercise
 // ...
 }

Refactoring Notes

We can convert the test to use Distinct Generated Values by replacing the Literal
Values with calls to the appropriate getUnique method. These methods simply
increment a counter each time they are called and use that counter value as the
root for construction of an appropriately typed value.

Example: Distinct Generated Value

Here is the same test using a Distinct Generated Value. For the getUniqueString
method, we’ll pass a string describing the role (“Widget Name”).

 public void testProductPrice_DVG() {
 // Setup
 Product product =

 Generated Value

Generated
Value

www.it-ebooks.info

http://www.it-ebooks.info/

726 Chapter 27 Value Patterns

 new Product(getUniqueInt(), // ID
 getUniqueString("Widget"), // Name
 getUniqueBigDecimal()); // Price
 // Exercise
 // ...
 }

 static int counter = 0;

 int getUniqueInt() {
 counter++;
 return counter;
 }

 BigDecimal getUniqueBigDecimal() {
 return new BigDecimal(getUniqueInt());
 }

 String getUniqueString(String baseName) {
 return baseName.concat(String.valueOf(getUniqueInt()));
 }

This test uses a different generated value for each argument of the constructor
call. The numbers generated in this way are consecutive but the test reader still
needs to look at a specifi c attribute when debugging to get a consistent view. We
probably should not generate the price value if the logic we were testing was
related to price calculation because that would force our verifi cation logic to
accommodate different total costs.

Example: Related Generated Value

We can ensure that all values used by the test are obviously related by separating
the generation of the root value from the construction of the individual values.
In the following example, we’ve moved the generation of the root to the setUp
method so each test method gets a new value only once. The methods that
retrieve the various values (e.g., getUniqueString) simply use the previously gener-
ated root when deriving the Generated Values.

 public void testProductPrice_DRVG() {
 // Setup
 Product product =
 new Product(getUniqueInt(), // ID
 getUniqueString("Widget"), // Name
 getUniqueBigDecimal()); // Price
 // Exercise
 // ...
 }

Generated
Value

www.it-ebooks.info

http://www.it-ebooks.info/

727

 static int counter = 0;

 public void setUp() {
 counter++;
 }

 int getUniqueInt() {
 return counter;
 }

 String getUniqueString(String baseName) {
 return baseName.concat(String.valueOf(getUniqueInt()));
 }

 BigDecimal getUniqueBigDecimal() {
 return new BigDecimal(getUniqueInt());
 }

If we looked at this object in an object inspector or database or if we dumped
part of it to a log, we could readily tell which object we were looking at regard-
less of which fi eld we happened to see.

 Generated Value

Generated
Value

www.it-ebooks.info

http://www.it-ebooks.info/

728 Chapter 27 Value Patterns

Dummy Object

How do we specify the values to be used in tests when the only usage is as
irrelevant arguments of SUT method calls?

We pass an object that has no implementation as an argument of a method
called on the SUT.

Invoice inv = new Invoice(new DummyCustomer());

Getting the SUT into the right state to start a test often requires calling other
methods of the SUT. These methods commonly take as arguments objects that
are stored in instance variables for later use. Often, these objects (or at least
some attributes of these objects) are never used in the code that we are actu-
ally testing. Instead, we create them solely to conform to the signature of some
method we must call to get the SUT into the right state. Constructing these
objects can be nontrivial and adds unnecessary complexity to the test.

In these cases, a Dummy Object can be passed as an argument, eliminating
the need to build a real object.

How It Works

We create an instance of some object that can be instantiated easily and with
no dependencies; we then pass that instance as the argument of the method of
the SUT. Because it won’t actually be used within the SUT, we don’t need any
implementation for this object. If any of the methods of the Dummy Object are
invoked, the test really should throw an error. Trying to invoke a nonexistent
method will typically produce that result.

When to Use It

We can use Dummy Objects whenever we need to use objects as attributes of
other objects or arguments of methods on the SUT or other fi xture objects. Using
Dummy Objects helps us avoid Obscure Tests (page 186) by leaving out the
irrelevant code that would be necessary to build real objects and by making it
clear which objects and values are not used by the SUT.

If we need to control the indirect inputs or verify the indirect outputs of
the SUT, we should probably use a Test Stub (page 529) or a Mock Object
(page 544) instead. If the object will be used by the SUT but we cannot provide
the real object, we should consider providing a Fake Object (page 551) that
provides just enough behavior for the test to execute.

Also known as:
Dummy,
Dummy

Parameter,
Dummy Value,

Placeholder,
Stub

Dummy
Object

www.it-ebooks.info

http://www.it-ebooks.info/

729

We can use one of the value patterns when the SUT really does need to
use the object in some way. Either a Literal Value (page 714), a Generated
Value (page 723), or a Derived Value (page 718) may be appropriate, depend-
ing on the circumstance.

Variation: Dummy Argument

We can use a Dummy Argument whenever methods of the SUT take objects as
arguments1 and those objects are not relevant to the test.

Variation: Dummy Attribute

We can use a Dummy Attribute whenever we are creating objects that will be
used as part of the fi xture or as arguments of SUT methods, and some of the
attributes of those objects are not relevant to the test.

Implementation Notes

The simplest implementation of a Dummy Object is to pass a null value as the
argument. This approach works even in a statically typed language such as Java,
albeit only if the method being called doesn’t check for null arguments. If the
method complains when we pass it null, we’ll need to employ a slightly more
sophisticated implementation. The biggest disadvantage to using null is that it is
not very descriptive.

In dynamically typed languages such as Ruby, Perl, and Python, the actual
type of the object will never be checked (because it will never be used), so we
can use any class such as String or Object. In such a case, it is useful to give the
object a Self-Describing Value (see Literal Value) such as “Dummy Customer.”

In statically typed languages (such as Java, C#, and C++), we must ensure that
the Dummy Object is type compatible with the parameter it is to match. Type
compatibility is much easier to achieve if the parameter has an abstract type
(e.g., an Interface in Java) because we can create our own trivial implementation
of the type or pass a suitable Pseudo-Object (see Hard-Coded Test Double on
page 568). If the parameter type is a concrete class, we may be able to create

1 From Wikipedia: Parameters are also commonly referred to as arguments, although ar-
guments are more properly thought of as the actual values or references assigned to the
parameter variables when the subroutine is called at runtime. When discussing code that
is calling into a subroutine, any values or references passed into the subroutine are the
arguments, and the place in the code where these values or references are given is the
parameter list. When discussing the code inside the subroutine defi nition, the variables in
the subroutine’s parameter list are the parameters, while the values of the parameters at
runtime are the arguments.

 Dummy Object

Dummy
Object

www.it-ebooks.info

http://www.it-ebooks.info/

730 Chapter 27 Value Patterns

a trivial instance of it or we may need to create an instance of a Test-Specifi c
Subclass (page 579) within our test.

Some Mock Object frameworks have Test Utility Methods (page 599) that
will generate a Dummy Object for a specifi ed class that takes a String argument
for a Self-Describing Value.

While the Dummy Object may, in fact, be null, it is not the same as a Null
Object [PLOPD3]. A Dummy Object is not used by the SUT, so its behavior is
either irrelevant or it should throw an exception when executed. In contrast, a
Null Object is used by the SUT but is designed to do nothing. That’s a small but
very important distinction!

Motivating Example

In this example, we are testing the Invoice but we require a Customer to instantiate
the invoice. The Customer requires an Address, which in turn requires a City. Thus
we fi nd ourselves creating several additional objects just to set up the fi xture. But
if we know that the behavior we are testing should not access the Customer at all,
why do we need to create it and all the objects on which it depends?

 public void testInvoice_addLineItem_noECS() {
 final int QUANTITY = 1;
 Product product = new Product(getUniqueNumberAsString(),
 getUniqueNumber());
 State state = new State("West Dakota", "WD");
 City city = new City("Centreville", state);
 Address address = new Address("123 Blake St.", city, "12345");
 Customer customer= new Customer(getUniqueNumberAsString(),
 getUniqueNumberAsString(),
 address);
 Invoice inv = new Invoice(customer);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 assertLineItemsEqual("",expItem, actual);
 }

This test is quite cluttered as a result of the extra object creation. How is the
behavior we are testing related to the Address and City? From this test, we can
only assume that there is some relation. But this misleads the test reader!

Dummy
Object

www.it-ebooks.info

http://www.it-ebooks.info/

731

Refactoring Notes

If the objects in the fi xture are not relevant to the test, they should not be visible in
the test. Therefore, we should try to eliminate the need to create all these objects.
We could try passing in null for the Customer. In this case, the constructor checks for
null and rejects it, so we have to fi nd another way.

The solution is to replace the object that is not important to our test with a
Dummy Object. In dynamically typed languages, we could just pass in a string.
In statically typed languages such as Java and C#, however, we must pass in a
type-compatible object. In this case, we have chosen to do an Extract Interface
[Fowler] refactoring on Customer to create a new interface and then create a new
implementation class called DummyCustomer. Of course, as part of the Extract Inter-
face refactoring, we must replace all references to Customer with the new interface
name so that the DummyCustomer will be acceptable. A less intrusive option would
be to use a Test-Specifi c Subclass of Customer that adds a test-friendly constructor.

Example: Dummy Values and Dummy Objects

Here’s the same test using a Dummy Object instead of the Product name and the
Customer. Note how much simpler the fi xture setup has become!

 public void testInvoice_addLineItem_DO() {
 final int QUANTITY = 1;
 Product product = new Product("Dummy Product Name",
 getUniqueNumber());
 Invoice inv = new Invoice(new DummyCustomer());
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 assertLineItemsEqual("", expItem, actual);
 }

Using a Dummy Object for the name of the Product was simple because it is a
string and has no uniqueness requirement. Thus we were able to use a Self-
Describing Value. We were not able to use a Dummy Object for the Product
number because it must be unique, so we left it as a Generated Value. The
Customer was a bit trickier because the LineItem’s constructor expected a non-
null object. Because this example is written in Java, the method parameter is
strongly typed; for this reason, we needed to create an alternative implemen-
tation of the ICustomer interface with a no-argument constructor to simplify
in-line construction. Because the DummyCustomer is never used, we have created

 Dummy Object

Dummy
Object

www.it-ebooks.info

http://www.it-ebooks.info/

732 Chapter 27 Value Patterns

it in-line rather than declaring a variable to hold it. This choice reduces the
fi xture setup code by one line, and the presence of the in-line constructor call
within the call to the Invoice constructor reinforces the message that we need
the Dummy Object only for the constructor call and not for the rest of the test.
Here is the code for the DummyCustomer:

public class DummyCustomer implements ICustomer {

 public DummyCustomer() {
 // Real simple; nothing to initialize!
 }

 public int getZone() {
 throw new RuntimeException("This should never be called!");
 }
}

We have implemented the DummyCustomer class with just those methods declared in
the interface; because each method throws an exception, we know when it is hit.
We could also have used a Pseudo-Object for the DummyCustomer. In other circum-
stances we might have been able to simply pass in null or construct a dummy
instance of the real class. The major problem with the latter technique is that we
won’t know for sure if the Dummy Object is actually used.

Further Reading

When [UTwJ] refers to a “dummy object,” these authors are referring to what
this book terms a Test Stub. See Mocks, Fakes, Stubs, and Dummies in Appen-
dix B for a more thorough comparison of the terminology used in various books
and articles. The JMock and NMock frameworks for testing with Mock Objects
support auto-generation of Dummy Objects.

Dummy
Object

www.it-ebooks.info

http://www.it-ebooks.info/

733

PART IV

Appendixes

Appendixes

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

735

Appendix A

Test Refactorings

Extract Testable Component

You want to be able to test the logic easily but the component is
too closely tied to its context to allow such testing.

Extract the logic you want to test into a separate component
that is designed for testability and is independent of the context in

which it is run.

Implementation Notes

We extract the logic from the untestable component into a component that is
testable via synchronous tests, leaving behind all the ties to the context. This
usually means that anything required by the testable component logic from the
context is retrieved by the untestable component and passed in to the testable
component as arguments of the methods under test or constructor methods.
The untestable component then contains very little code and is considered to
be a Humble Object (page 695). It simply retrieves the information the testable
component requires from the context, instantiates the testable component, and
delegates to it. All interactions with the new testable component consist of
synchronous method calls.

The testable component may be a Windows DLL, a Java JAR containing
a Service Facade [CJ2EEP] class, or some other language component or class
that exposes the services of the executable in a testable way. The untestable
code may be an executable, a dialog box or some other presentation compo-
nent, logic that is executed inside a transaction, or even a complex test method.
Extraction of the testable component should leave behind a Humble Object that
requires very little, if any, testing.

Also known as:
Sprout Class
[WEwLC]

Extract
Testable
Component

www.it-ebooks.info

http://www.it-ebooks.info/

736

Depending on the nature of the untestable component, we may choose to
write tests for the delegation logic or we may be unable to do so because the
logic is so closely tied to the context. If we do write tests for it, we require only
one or two tests to verify that the instantiation and delegation occur correctly.
Because this code will not change very often, these tests are much less critical
than other tests and can even be omitted from the suite of tests that developers
execute before check-in if we want to speed up test suite execution times. Of
course, we would still prefer to run them from the automated build process.

Further Reading

This refactoring is similar to an Extract Interface [Fowler] refactoring and
an Extract Implementer [Fowler] refactoring, except that Extract Testable
Component does not require keeping the same interface. It can also be
viewed as a special case of the Extract Class [Fowler] refactoring.

In-line Resource

Tests that depend on an unseen external resource create
a Mystery Guest problem.

Move the contents of an external resource into the fi xture
setup logic of the test.

From [RTC]:

To remove the dependency between a test method and some external
resource, we incorporate that resource in the test code. This is done by
setting up a fi xture in the test code that holds the same contents as the
resource. This fi xture is then used instead of the resource to run the test.
A simple example of this refactoring is putting the contents of a fi le that
is used into some string in the test code.

If the contents of the resource are large, chances are high that you are
also suffering from Eager Tests (see Assertion Roulette on page 224).
Consider applying an Extract Method [Fowler] refactoring or a Minimize
Data (page 738) refactoring.

In-line
Resource

Appendix A Test Refactorings

www.it-ebooks.info

http://www.it-ebooks.info/

Implementation Notes

The problem with tests that depend on an external resource is that we cannot see
the pre-conditions of the test. The resource may be a fi le sitting in the fi le system,
the contents of a database, or some other object created outside the test. None of
these Prebuilt Fixtures (page 429) is visible to the test reader. The solution is to
make them visible by including the resource in-line within the test. The simplest
way to do so is to create the resource from within the test itself. For example,
we could build the contents of a text fi le by writing to the fi le rather than just
referring to a preexisting fi le. If we delete the fi le at the end of the test, this step
also moves us from a Prebuilt Fixture approach to a Persistent Fresh Fixture
(see Fresh Fixture on page 311) approach. As a result, our tests may execute
somewhat more slowly.

A more innovative way to in-line the external resource is to replace the
actual resource with a Test Stub (page 529) that is initialized within the test. The
contents of the resource then become visible to the test reader. When the system
under test (SUT) executes, it uses the Test Stub instead of the real resource.

Another option is to refactor the design of the SUT so as to improve its test-
ability. We can apply the Extract Testable Component (page 735) refactoring
to the part of the SUT that uses the contents of the resource so that it can be
tested directly without actually accessing an external resource. That is, the test
passes the contents of the resource to the logic that uses it. We can also test the
Humble Object (page 695) that reads the resource independently by replacing
the extracted component with a Test Stub or Mock Object (page 544).

Make Resource Unique

Several tests are accidentally creating or using the same
resource in a Shared Fixture.

Make the name of any resources used by a test unique.

From [RTC]:

A lot of problems originate from the use of overlapping resource names,
either between different tests run by the same user or between simultaneous
test runs done by different users.

Such problems can easily be prevented (or repaired) by using unique
identifi ers for all resources that are allocated—for example, by including
a time stamp. When you also include the name of the test responsible for

Make
Resource
Unique

737 Make Resource Unique

www.it-ebooks.info

http://www.it-ebooks.info/

738

allocating the resource in this identifi er, you will have fewer problems
fi nding tests that do not properly release their resources.

Implementation Notes

We make the name of any resources used by a test unique across all tests by using a
Distinct Generated Value (see Generated Value on page 723) as part of the
name. Ideally, the name should include the name of the test that “owns” the
resource. To avoid Interacting Tests (see Erratic Test on page 228), we include a
time stamp in the name of any resources created by the tests and use Automated
Teardown (page 503) to delete those resources at the end of the test.

Minimize Data

The test fi xture is too large, making the test hard to understand.

We remove things from the fi xture until we have a Minimal Fixture.

From [RTC]:

Minimize the data that is set up in fi xtures to the bare essentials. This will
have two advantages: (1) It makes them more suitable as documentation,
and (2) your tests will be less sensitive to changes.

Implementation Notes

Reducing the data in our test fi xture to the bare minimum results in a Minimal Fix-
ture (page 302) that helps the tests achieve Tests as Documentation (see page 23).
How we do this depends on how our Test Methods (page 348) are organized into
Testcase Classes (page 373).

When our Test Methods are organized via the Testcase Class per Fixture pat-
tern (page 631) and we believe we have a General Fixture (see Obscure Test on
page 186), we can remove the fi xture setup logic for any parts of the fi xture that
we suspect are not used by the tests. It is best to remove this logic incrementally
so that if a test fails, we can undo our most recent change and try again.

When our Test Methods are organized as a Testcase Class per Feature (page 624)
or a Testcase Class per Class (page 617), Minimize Data may also involve copying
fi xture setup logic from the setUp method of a Testcase Class or Setup Decora-
tor (page 447) into each test that needs the fi xture. Assuming the collection of

Also known as:
Reduce Data

Minimize
Data

Appendix A Test Refactorings

www.it-ebooks.info

http://www.it-ebooks.info/

739

objects in the Shared Fixture (page 317) is overkill for any one test, we can
use a series of Extract Method [Fowler] refactorings to create a set of Creation
Methods (page 415), which we then call from the tests. Next, we remove the
calls to the Creation Methods from the setUp method and put them into only
those Test Methods that require that part of the original fi xture. The fi nal step
would be to convert any fi xture-holding instance variables into local variables.

Replace Dependency with Test Double

The dependencies of an object being tested get in the way of running tests.

Break the dependency by replacing a depended-on component
with a Test Double.

Implementation Notes

The fi rst step is to choose the form of dependency substitution. Dependency
Injection (page 678) is the best option for unit tests, whereas Dependency Look-
up (page 686) often works better for customer tests. We then refactor the SUT
to support this choice or design the capability into the SUT as we do test-driven
development. The next decision is whether to use a Fake Object (page 551), a
Test Stub (page 529), a Test Spy (page 538), or a Mock Object (page 544) based
on how the Test Double will be used by the test. This decision is described in
Chapter 11, Using Test Doubles.

If we are using a Test Stub or Mock Object, we must decide whether we
want to use a Hard-Coded Test Double (page 568) or a Confi gurable Test
Double (page 558). The trade-offs are discussed in Chapter 11 and in the
detailed descriptions of the patterns. That decision then dictates the shape of
our test—for example, Tests that use Mock Objects are more “front-loaded”
by the construction of the Mock Object.

Finally, we modify our test to construct, optionally confi gure, and then install
the Mock Object. We may also have to add a call to the verifi cation method for
some kinds of Mock Objects. In statically typed languages, we may have to do
an Extract Interface [Fowler] refactoring before we can introduce the fake imple-
mentation. We then use this interface as the type of the variable that holds the
reference to the substitutable dependency.

 Replace Dependency with Test Double

Replace
Dependency
with Test
Double

www.it-ebooks.info

http://www.it-ebooks.info/

740

Setup External Resource

The SUT depends on the contents of an external resource that is
acting as a Mystery Guest in our test.

Create an external resource within the fi xture setup logic of
the test rather than using a predefi ned resource.

From [RTC]:

If it is necessary for a test to rely on external resources, such as directories,
databases, or fi les, make sure the test that uses them explicitly creates
or allocates these resources before testing, and releases them when done
(take precautions to ensure the resource is also released when tests fail).

Implementation Notes

When our SUT must use an external resource such as a fi le and we absolutely,
positively cannot replace the access mechanism with a Test Stub (page 529) or Fake
Object (page 551), we may need to live with the fact that we have to use an external
resource. The problems with external resources are obvious: The test reader can-
not tell what they contain; those resources may disappear unexpectedly, causing
tests to fail because of Resource Optimism (see Erratic Test on page 228); and the
resources may result in Interacting Tests (see Erratic Test) and Test Run Wars (see
Erratic Test). Setup External Resource does not help us with the last problem but
it does avoid the problems of a Mystery Guest (see Obscure Test on page 186) and
Resource Optimism.

To implement the Setup External Resource refactoring, we simply pull the
contents of the external resource into our Test Method (page 348), setUp method,
or a Test Utility Method (page 599) called by them. Using the contents we con-
struct the external resource within our test code, thereby making it evident to the
test reader exactly what the test depends on. This approach also guarantees that
the resource exists because we create it in every test run.

Setup
External

Resource

Appendix A Test Refactorings

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

xUnit Terminology

Mocks, Fakes, Stubs, and Dummies

Are you confused about what someone means when that individual says “test
stub” or “mock object”? Do you sometimes feel that the person you are talking
to is using a very different defi nition? Well, you are not alone!

The terminology for the various kinds of Test Doubles (page 522) is confusing
and inconsistent. Different authors use different terms to mean the same thing.
And sometimes they mean different things even when they use the same term!
Ouch! (See the sidebar “What’s in a (Pattern) Name?” on page 576 for why I
think names are important.)

Part of my reason for writing this book was to try to establish some consistency
in the terminology, thereby giving people a set of names with clear defi nitions of
what they mean. In this appendix, I provide a list of the current sources and cross-
reference the terminology they use with the terminology used in this book.

Role Descriptions

The table on page 742 is a summary of what I mean by each of the major Test
Double pattern names.

Mocks,
Fakes, Stubs,
and
Dummies

741

www.it-ebooks.info

http://www.it-ebooks.info/

742R
o

le
D

escrip
tio

n
s

A
ppen

d
ix

B
xU

n
it T

erm
in

o
lo

g
y

Pattern Purpose Has Behavior Injects Indirect Handles Indirect Values Provided Examples
 Inputs into SUT Outputs of SUT by Test(er)

Test Double Generic name
(page 522) for family

Dummy Object Attribute or No No, never No, never No Null,
(page 728) method parameter called called “Ignored String,”
 new Object()

Test Stub Verify indirect Yes Yes Ignores them Inputs
(page 529) inputs of SUT

Test Spy Verify indirect Yes Optional Captures them Inputs (optional)
(page 538) outputs of SUT for later
 verifi cation

Mock Object Verify indirect Yes Optional Verifi es Inputs (optional)
(page 544) outputs of SUT correctness and expected
 against outputs.
 expectations

Fake Object Run Yes No Uses them None In-memory
(page 551) (unrunnable) database
 tests (faster) emulator

Temporary Stand in for Yes No Uses them None In-memory
Test Stub procedural code database
(see Test Stub) not yet written emulator

www.it-ebooks.info

http://www.it-ebooks.info/

743

Terminology Cross-Reference

The following table lists some sources of confl icting defi nitions just to make it
clear what the mapping is to the pattern names used in this book.

• Unit Testing with Java [UTwJ] uses the term “Dummy Object” to refer
to what this book calls a “Fake Object.”

• Pragmatic Unit Testing [PUT] describes a “Stub” as an empty imple-
mentation of a method. This is a common interpretation in the proce-
dural world; in the object world, however, it is typically called a Null
Object [PLOPD3].

• Some of the early Mock Objects literature could be interpreted to equate
a “Stub” with a “Mock Object.” The distinction between the two has since
been clarifi ed in [MRNO] and [MAS].

 Sources and Names Used in Them

Pattern Astels Beck Feathers Fowler jMock UTWJ OMG Pragmatic Recipes

Test Double or
Double stand-in

Dummy Stub Dummy Stub
Object

Test Fake Fake Stub Stub Dummy Mock Fake
Stub

Test Spy Dummy Spy

Mock Mock Mock Mock Mock Mock Mock Mock
Object

Fake Dummy
Object

Tempo- Stub
rary
Test
Stub

OMG’s Stub
CORBA
Stub

 Terminology Cross-Reference

Terminology
Cross-
Reference

www.it-ebooks.info

http://www.it-ebooks.info/

744

• The CORBA standard1 and other remote-procedure call specifi cations
use the terms “stubs” and “skeletons” to refer to the automatically
generated code for the near- and far-end implementations of a remote
interface defi ned in IDL. (I’ve included this information here because it
is another use of a term that is commonly used in the TDD and auto-
mated developer testing community.)

The sources quoted in the preceding table are provided here:

Source Description Citation Publisher

Astels Book: Test-Driven Development [TDD-APG] Prentice Hall

Beck Book: Test-Driven Development [TDD-BE] Addison-Wesley

Feathers Book: Working Effectively with [WEwLC] Prentice Hall
Legacy Code

Fowler Blog: Mocks Aren’t Stubs [MAS] martinfowler.com

jMock Paper: Mock Roles, Not Objects [MRNO] ACM (OOPSLA)

UTWJ Book: Unit Testing in Java [UTwJ] Morgan
 Kaufmann

OMG Object Management Group’s OMG
CORBA specifi cations

Pragmatic Book: Pragmatic Unit Testing [PUT] Pragmatic Pro-
with NUnit grammers

Recipes Book: JUnit Recipes Manning

xUnit Terminology Cross-Reference

The following table maps the terminology used in this book to the terminology
used by specifi c members of the xUnit family. This list is not intended to be
exhaustive but rather is meant to illustrate the adaptations of the standard xUnit
terminology to the idioms and culture of each language and community.

1 CORBA is an acronym for Common Object Request Broker Architecture. This
standard is defined by the Object Management Group.

xUnit
Terminology

Cross-
Reference

Appendix B xUnit Terminology

www.it-ebooks.info

http://www.it-ebooks.info/

745

xU
n

it T
erm

in
o

lo
g

y C
ro

ss-R
eferen

ce

xU
n

it
Term

in
o

lo
g

y
C

ro
ss-

R
eferen

ce

Continued...

Tool Book Term

Language xUnit Testcase Test Suite Test Fixture Fixture Suite Suite Expected
 Member Class Factory Method setup teardown Fixture Fixture Exception
 Setup Teardown Test

Java 1.4 JUnit 3.8.2 Subclass of static suite() testXxx() setUp() tearDown() Not Not Subclass of
 TestCase applicable applicable Expected
 Exception Test

Java 5 JUnit 4.0+ import org. static suite() @Test @Before @After @Before @After @Exception
 junit.Test Class Class

.NET CsUnit [TestFixture] [Suite] [Test] [SetUp] [TearDown] Not Not [Expected
 applicable applicable Exception()]

.NET NUnit 2.0 [TestFixture] [Suite] [Test] [SetUp] [TearDown] Not Not [Expected
 applicable applicable Exception()]

.NET NUnit 2.1+ [TestFixture] [Suite] [Test] [SetUp] [TearDown] [Test [TestFixture [Expected
 Fixture TearDown] Exception()]
 SetUp]

.NET MbUnit 2.0 [TestFixture] [Suite] [Test] [SetUp] [TearDown] [Fixture [Fixture [Expected
 Setup] Teardown] Exception()]

.NET MSTest [TestClass] Not [Test [Test [Test [Class [Class [Expected
 applicable Method] Initialize] Cleanup] Initialize] Cleanup] Exception()]

PHP PHPUnit Subclass of static suite() testXxx() setUp() tearDown() Not Not Subclass of
 TestCase applicable applicable Expected
 Exception Test

www.it-ebooks.info

http://www.it-ebooks.info/

746

xU
n

it
Term

in
o

lo
g

y
C

ro
ss-

R
eferen

ce

A
ppen

d
ix

B
xU

n
it T

erm
in

o
lo

g
y

Tool Book Term

Language xUnit Testcase Test Suite Test Fixture Fixture Suite Suite Expected
 Member Class Factory Method Setup Teardown Fixture Fixture Exception
 Teardown Test

 Python PyUnit Subclass of Test testXxx setUp tearDown Not Not assert raise
 unittest. Loader() applicable applicable
 TestCase

Ruby Test::Unit Subclass of Classname. testXxx() setup() teardown Not Not assert_raise
 Test::Unit:: suite() applicable applicable
 TestCase

Smalltalk SUnit Superclass: TestSuite testXxx setUp tearDown To be To be should:raise:
 TestCase named: determined determined

VB 6 VbUnit Implements Implements TestXxx() IFixture_ IFixture_ IFixture IFixture on error...
 IFixture ISuite Setup() TearDown Frame_ Frame_
 Create() Destroy

SAP ABAP ABAP Unit FOR Automatic Any setup teardown class_setup class_ To be
 TESTING teardown determined

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C

xUnit Family Members

This (incomplete) list of members of the xUnit family of test automation
frameworks is included here to illustrate the diversity of the family and the
extent to which automated unit testing is supported in various programming
languages. This appendix also includes comments about specifi c capabilities of
some members of the family. A much more complete and up-to-date list can be
found at http://xprogramming.com/software.htm.

ABAP Object Unit

The member of the xUnit family for SAP’s ABAP programming language. ABAP
Object Unit is more or less a direct port of JUnit to ABAP except for the fact that
it cannot catch exceptions encountered within the system under test (SUT).

ABAP Object Unit is available for download at http://www.abapunittests.
com, along with articles about unit testing in ABAP. See ABAP Unit for versions
of SAP/ABAP starting with 6.40.

ABAP Unit

The member of the xUnit family for versions of SAP’s ABAP programming lan-
guage starting with Basis version 6.40 (NetWeaver 2004s). The most notable
aspect of ABAP Unit is its special support that allows tests to be stripped from
the code as the code is “transported” from the acceptance test environment to
the production environment.

ABAP Unit is available directly from SAP AG as part of the NetWeaver 2004s
development tools. More information on unit testing in ABAP is available in
the SAP documentation and from http://www.abapunittests.com. See ABAP
Object Unit for versions of SAP/ABAP prior to Basis version 6.40 (NetWeaver
2004s).

xUnit Family
Members

747

www.it-ebooks.info

http://www.abapunittests.com
http://www.abapunittests.com
http://www.abapunittests.com
http://xprogramming.com/software.htm
http://www.it-ebooks.info/

748

CppUnit

The member of the xUnit family for the C++ programming language. It is
available for download from http://cppunit.sourceforge.net. Another option
for some .NET programmers is NUnit.

CsUnit

The member of the xUnit family for the C# programming language. It is available
from http://www.csunit.org. Another option for .NET programmers is NUnit.

CUnit

The member of the xUnit family for the C programming language. Details can
be found at http://cunit.sourceforge.net/doc/index.html.

DbUnit

An extension of the JUnit framework intended to simplify testing of databases.
It can be downloaded from http://www.dbunit.org/.

IeUnit

The member of the xUnit family for testing Web pages rendered in Microsoft’s
Internet Explorer browser using JavaScript and DHTML. It can be downloaded
from http://ieunit.sourceforge.net/.

JBehave

One of the fi rst of a new generation of xUnit members designed to make tests
written as part of TDD more useful Tests as Specifi cation. The main difference
between JBehave and more traditional members of the xUnit family is that
JBehave eschews the “test” terminology and replaces it with terms more appro-
priate for specifi cation—that is, “fi xture” becomes “context,” “assert” becomes
“should,” and so on. JBehave is available at http://jbehave.codehaus.org. RSpec
is the Ruby equivalent.

JUnit

The member of the xUnit family for the Java programming language. JUnit was
rewritten in late 2005 to take advantage of the annotations introduced in Java
1.5. It can be downloaded from http://www.junit.org.

xUnit Family
Members

Appendix C xUnit Family Members

www.it-ebooks.info

http://www.csunit.org
http://cunit.sourceforge.net/doc/index.html
http://www.dbunit.org/
http://www.junit.org
http://cppunit.sourceforge.net
http://ieunit.sourceforge.net/
http://jbehave.codehaus.org
http://www.it-ebooks.info/

749

MbUnit

The xUnit family member for the C# programming language. MbUnit’s main
claim to fame is its direct support for Parameterized Tests. It is available from
http://www.nunit.orgmbunit.com. Other options for .NET programmers include
NUnit, CsUnit, and MSTest.

MSTest

Microsoft’s member of xUnit family does not seem to have a formal name
other than its namespace Microsoft.VisualStudio.TestTools.UnitTesting but most
people refer to it as MSTest. Technically, it is just the name of the Command-
Line Test Runner mstest.exe. MSTest’s main claim to fame is that it ships with
Visual Studio 2005 Team System. It does not appear to be available in the less
expensive versions of Visual Studio or for free download. MSTest includes a
number of innovative features, such as direct support for Data-Driven Tests.
Information is available on MSDN at http://msdn.microsoft.com/en-us/library/
ms182516.aspx. Other (and cheaper) options for .NET programmers include
NUnit, CsUnit, and MbUnit.

NUnit

The member of the xUnit family for the .NET programming languages. It is
available from http://www.nunit.org. Other options for C# programmers in-
clude CsUnit, MbUnit, and MSTest.

PHPUnit

The member of the xUnit family for the PHP programming language. Accord-
ing to Sebastian Bergmann, “PHPUnit is a complete port of JUnit 3.8. On top
of this original feature set it adds out-of-the-box support for Mock Objects,
Code Coverage, Agile Documentation, and Incomplete and Skipped Tests.” More
information about PHPUnit can be found at http://www.phpunit.de, including the
free book on PHPUnit.

PyUnit

The member of the xUnit family written to support Python programmers. It is a full
port of JUnit. More information can be found at http://pyunit.sourceforge.net/.

 xUnit Family Members

xUnit Family
Members

www.it-ebooks.info

http://www.nunit.orgmbunit.com
http://www.nunit.org
http://www.phpunit.de
http://msdn.microsoft.com/en-us/library/ms182516.aspx
http://msdn.microsoft.com/en-us/library/ms182516.aspx
http://pyunit.sourceforge.net/
http://www.it-ebooks.info/

750

RSpec

One of the fi rst of a new generation of xUnit members designed to make tests
written as part of TDD more useful Tests as Specifi cation. The main differ-
ence between RSpec and more traditional members of the xUnit family is that
RSpec eschews the “test” terminology and replaces it with terms more appropri-
ate for specifi cation—for example, “fi xture” becomes “context,” Test Methods
becomes “specify,” “assert” becomes “should,” and so on. RSpec is available at
http://rspec.rubyforge.org. JBehave is the Java equivalent.

runit

One member of the xUnit family for the Ruby programming language. It is
a wrapper on Test::Unit that adds additional functionality. It is available at
www.rubypeople.org.

SUnit

The self-proclaimed “mother of all unit-testing frameworks.” SUnit is the mem-
ber of the xUnit family for the Smalltalk programming language. It is available
for download at http://sunit.sourceforge.net.

Test::Unit

The member of the xUnit family for the Ruby programming language. It is
available for download from http://www.rubypeople.org and comes as part of
the “Ruby Development Tools” feature for the Eclipse IDE framework.

TestNG

A member of the xUnit family for Java that behaves a bit differently from
JUnit. TestNG specifi cally supports dependencies between tests and the shar-
ing of the test fi xture between Test Methods. More information is available at
http://testng.org.

utPLSQL

The member of the xUnit family for the PLSQL database programming lan-
guage. You can get more information and download the source for this tool
at http://utplsql.sourceforge.net/. A plug-in that integrates utPLSQL into the
Oracle toolset is available at http://www.ounit.com.

xUnit Family
Members

Appendix C xUnit Family Members

www.it-ebooks.info

http://rspec.rubyforge.org
www.rubypeople.org
http://sunit.sourceforge.net
http://www.rubypeople.org
http://utplsql.sourceforge.net/
http://www.ounit.com
http://testng.org
http://www.it-ebooks.info/

751

VB Lite Unit
Another member of the xUnit family written to support Visual Basic and VBA
(Visual Basic for Applications). “VB Lite Unit is a reliable, lightweight unit-testing
tool for Visual Basic and VBA written by Steve Jorgensen. The driving principle
behind VB Lite Unit was to create the simplest, most reliable unit-testing tool
possible that would still do everything that usually matters for doing test-driven
development in VB 6 or VBA. Things that don’t work or don’t work reliably
in VB and VBA are avoided, such as attempts at introspection to identify the
test methods.” Another option for VB and VBA programmers is VbUnit. For
VB.NET programmers, options include NUnit, CsUnit, and MbUnit.

VbUnit
The member of the xUnit family written to support Visual Basic 6.0. It was the
fi rst member of the xUnit family to support Suite Fixture Setup and introduced
the concept of calling a Testcase Class “test fi xture.”

One major quirk of VbUnit is that when an Assertion Method fails the test,
it writes the messages into the failure log immediately rather than just raising
an error that is then caught by the Test Runner. The practical implication of
this behavior is that it becomes diffi cult to test Custom Assertions because the
messages in the logs are not prevented by the normal Expected Exception Test
construct. The work-around is to run the Custom Assertion Tests inside an
“Encapsulated Test Runner.”

Another quirk is that VbUnit is one of the few members of the xUnit family that is
not free (as in beer). It is available from http://www.vbunit.org. There used to
be a free version available—who knows, it may reappear some day. Another
option for VB and VBA programmers is VB Lite Unit. For VB.NET program-
mers, options include NUnit, CsUnit, and MbUnit.

xUnit
The generic name for any Test Automation Framework for unit testing that is
patterned on JUnit or SUnit. The xUnit test framework for most languages can
be found at http://xprogramming.com or http://en.wikipedia.org/wiki/XUnit.
Another place to look for both unit test and customer test tools is http://www.
opensourcetesting.org.

 xUnit Family Members

xUnit Family
Members

www.it-ebooks.info

http://www.vbunit.org
http://www.opensourcetesting.org
http://www.opensourcetesting.org
http://xprogramming.com
http://en.wikipedia.org/wiki/XUnit
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix D

Tools

The following tools are mentioned at some point within this book. This section
describes their purpose and how they relate to xUnit test automation in just a
wee bit more detail.

Ant

A build automation tool used in the Java community. NAnt is the equivalent for
.NET projects.

AntHill

A continuous integration tool used in the Java community.

BPT

A commercial Scripted Test tool that allows less technically advanced users to
compose tests from reusable test components that are the result of Refactored
Recorded Tests. It can also be used to specify reusable test components to be
built by more technically oriented test automaters. More information can be
found on Mercury Interactive’s Web site. As this book went to press, Mercury
Interactive was in the process of being acquired by Hewlett-Packard, so the URL
may have changed.

Canoo WebTest

A framework for preparing Scripted Tests written in XML. Conceptually, Canoo
WebTest is similar to Fit in that it allows us to defi ne our own domain-specifi c
testing language for defi ning customer tests. More information can be found at
http://webtest.canoo.com and http://webtest-community.canoo.com.

Tools

753

www.it-ebooks.info

http://webtest.canoo.com
http://webtest-community.canoo.com
http://www.it-ebooks.info/

754

Cruise Control

A continuous integration tool used in the Java community. Cruise Control.net is
the equivalent for .NET projects.

DDSteps

A Data-Driven Test extension for JUnit. “DDSteps is a JUnit extension for
building data driven test cases. In a nutshell, DDSteps lets you parameterize
your test cases, and run them more than once using different data.” See http://
www.ddsteps.org for more information.

EasyMock

A static Mock Object generation toolkit for Java tests. Because EasyMock uses a
Confi guration Mode for specifying the expectations, the tests look a bit strange
and may take a bit of getting used to. More information can be found at http://
www.easymock.org.

eCATT

The Recorded Test tool that comes with SAP’s development tools. More infor-
mation can be found at http://www.sap.com and at http://www.sdn.sap.com.

Eclipse

A Java integrated development environment (IDE) and platform for rich client
applications. Eclipse was originally created by IBM and is now managed by the
Eclipse Foundation. Several of the language-specifi c plug-ins are integrated with
the corresponding xUnit family member. For example, the Java IDE includes JUnit
and the Ruby Development Tools IDE includes Test::Unit. Eclipse is available for
download from http://www.eclipse.org.

Fit

The framework conceived by Ward Cunningham that made it possible for cus-
tomers to write automated tests. Fit separates the work of defi ning the tests using
tables in Web pages or spreadsheets from the programming work of exercising the
SUT. While Fit was once a particular tool, it is now a specifi cation for a fam-
ily of tools implemented in a variety of languages, including Java, .NET, Ruby,

Tools

Appendix D Tools

www.it-ebooks.info

http://www.ddsteps.org
http://www.easymock.org
http://www.easymock.org
http://www.sap.com
http://www.sdn.sap.com
http://www.eclipse.org
http://www.ddsteps.org
http://www.it-ebooks.info/

755

and Python. Some members of the family are simply test execution frameworks;
others, such as Fitnesse, include test authoring and versioning capabilities. All
should implement the same set of standard fi xtures. More information can be
found at Ward’s Web site (http://fi t.c2.com) or in the book [FitB] he co-wrote
with Rick Mudgridge.

FitNesse

A Fit test authoring tool conceived by (Uncle) Bob Martin of Object Mentor.
FitNesse provides a wiki-like test authoring system with a set of predefi ned Fit
fi xtures that makes it possible for customers to write and run automated tests.
More information can be found at http://www.fi tnesse.org.

HttpUnit

A front end that layers on top of JUnit to allow tests to exercise a Web applica-
tion via the HTTP protocol. HttpUnit bypasses the browser, so it is not suitable
for use with applications that make extensive use of on-page scripting (e.g.,
AJAX). See http://httpunit.sourceforge.net for more information.

Idea

A Java IDE that offers rich support for refactoring. The Idea Web site [JBrains]
contains fairly detailed descriptions of many of the refactorings. The same group
also offers a very popular refactoring plug-in for Visual Studio, called ReSharper.

JFCUnit

A JUnit front end that layers on top of HttpUnit to allow tests to exercise a
Web application via the HTTP protocol. JFCUnit provides a number of Test
Utility Methods that form a Higher-Level Language for expressing tests of Web
applications. Because it is a layer on top of HttpUnit, it bypasses the browser.
Thus JFCUnit is not suitable for use with applications that make extensive use
of on-page scripting (e.g., AJAX). See http://jfcunit.sourceforge.net for more
information.

JMock

A widely used dynamic Mock Object framework for Java tests. The fl uent
Confi guration Interface used for specifying the expectations makes the tests
highly readable. More information can be found at http://www.jmock.org.

 Tools

Tools

www.it-ebooks.info

http://www.fitnesse.org
http://jfcunit.sourceforge.net
http://www.jmock.org
http://fit.c2.com
http://httpunit.sourceforge.net
http://www.it-ebooks.info/

756

NMock

A widely used dynamic Mock Object framework for .NET tests. The fl uent
Confi guration Interface used for specifying the expectations makes the tests
highly readable. More information can be found at http://nmock.org.

QTP (QuickTest Professional)

A commercial Recorded Test tool that allows less technically advanced users to
record tests as they use an application. In conjunction with the “Expert View” of
the Recorded Tests, QTP can also be used to refactor the tests into reusable test
components that are appropriate for use by less technically adept test automa-
ters. More information can be found on Mercury Interactive’s Web site. As this
book went to press, Mercury Interactive was in the process of being acquired by
Hewlett-Packard, so the URL has probably changed.

ReSharper

A refactoring plug-in for Visual Studio by JetBrains, the makers of the Idea IDE.
Their Web site [JBrains] contains fairly detailed descriptions of many of the
refactorings.

Visual Studio

Microsoft’s integrated development environment intended for developing .NET
applications software. Visual Studio comes in several versions (at various price
points), some of which include MSTest and code/test refactoring support. Third-
party plug-ins are also available for both refactoring (see [JBrains]) and xUnit
(see CsUnit, MbUnit, and NUnit).

Watir

“Web Application Testing in Ruby.” This set of components allows us to drive
Internet Explorer from Scripted Tests written in the Ruby programming language.
More information can be found at http://wtr.rubyforge.org/.

Tools

Appendix D Tools

www.it-ebooks.info

http://nmock.org
http://wtr.rubyforge.org/
http://www.it-ebooks.info/

Appendix E

Goals and Principles

Name Page Relation Base Name Chapter

Bug Repellent 22 Bug Repellent Chapter 3, Goals of
 Test Automation

Communicate 41 Communicate Chapter 5, Principles
Intent Intent of Test Automation

Defect 22 Defect Chapter 3, Goals of
Localization Localization Test Automation

Design for 40 Design for Chapter 5, Principles
Testability Testability of Test Automation

Do No Harm 24 Do No Harm Chapter 3, Goals of
 Test Automation

Don’t Modify 41 Don’t Modify Chapter 5, Principles
the SUT the SUT of Test Automation

Ensure Commen- 47 Ensure Commen- Chapter 5, Principles
surate Effort and surate Effort and of Test Automation
Responsibility Responsibility

Executable 22 Alias Tests as Chapter 3, Goals of
Specifi cation Specifi cation Test Automation

Expressive Tests 28 Expressive Tests Chapter 3, Goals of
 Test Automation

Front Door First 40 Alias Use the Front Chapter 5, Principles
 Door First of Test Automation

Fully Automated 26 Fully Automated Chapter 3, Goals of
Test Test Test Automation

Higher Level 41 Alias Communicate Chapter 5, Principles of
Language Intent Test Automation

Continued...

Goals and
Principles

757

www.it-ebooks.info

http://www.it-ebooks.info/

758

Name Page Relation Base Name Chapter

Independent Test 42 Alias Keep Tests Chapter 5, Principles
 Independent of Test Automation

Isolate the SUT 43 Isolate the SUT Chapter 5, Principles
 of Test Automation

Keep Test Logic 45 Keep Test Logic Chapter 5, Principles of
Out of Production Out of Production Test Automation
Code Code

Keep Tests 42 Keep Tests Chapter 5, Principles of
Independent Independent Test Automation

Minimize Test 44 Minimize Test Chapter 5, Principles of
Overlap Overlap Test Automation

Minimize 44 Minimize Chapter 5, Principles of
Untestable Code Untestable Code Test Automation

No Test Logic in 45 Keep Test Logic Out Chapter 5, Principles of
Production Code of Production Code Test Automation

No Test Risk 21 Alias Do No Harm Chapter 5, Principles of
 Test Automation

Repeatable Test 26 Repeatable Test Chapter 3, Goals of
 Test Automation

Robust Test 29 Robust Test Chapter 3, Goals of
 Test Automation

Safety Net 24 Alias Tests as Safety Net Chapter 3, Goals of
 Test Automation

Self-Checking 26 Self-Checking Chapter 3, Goals of
Test Test Test Automation

Separation of 28 Separation of Chapter 3, Goals of
Concerns Concerns Test Automation

Simple Tests 28 Simple Tests Chapter 3, Goals of
 Test Automation

Single Condition 45 Alias Verify One Chapter 5, Principles of
Test Condition per Test of Test Automation

Single Glance 41 Alias Communicate Chapter 5, Principles of
Readable Intent Test Automation

Test Concerns 47 Test Concerns Chapter 5, Principles of
Separately Separately Test Automation

Test-Driven 40 Alias Write the Tests Chapter 5, Principles of
Development First Test Automation

Goals and
Principles

Appendix E Goals and Principles

www.it-ebooks.info

http://www.it-ebooks.info/

759

Name Page Relation Base Name Chapter

Test First 40 Alias Write the Tests Chapter 5, Principles of
Development First Test Automation

Tests as 23 Tests as Chapter 3, Goals of
Documentation Documentation Test Automation

Tests as Safety 24 Tests as Safety Chapter 3, Goals of
Net Net Test Automation

Tests as 22 Tests as Chapter 3, Goals of
Specifi cation Specifi cation Test Automation

Use the Front 40 Use the Front Chapter 5, Principles of
Door First Door First Test Automation

Verify One 45 Verify One Chapter 5, Principles of
Condition per Condition per Test Automation
Test Test

Write the Tests 40 Write the Tests Chapter 5, Principles of
First First Test Automation

 Goals and Principles

Goals and
Principles

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix F

Smells, Aliases, and Causes

Name Page Relationship Base Name Chapter

Assertion 224 Assertion Chapter 16, Behavior
Roulette Roulette Smells

Asynchronous 210 Cause of Hard-to-Test Chapter 15, Code
Code Code Smells

Asynchronous 255 Cause of Slow Tests Chapter 16, Behavior
Test Smells

Behavior 242 Cause of Fragile Test Chapter 16, Behavior
Sensitivity Smells

Buggy Tests 260 Buggy Tests Chapter 17, Project
 Smells

Complex 206 Cause of Conditional Test Chapter 15, Code
Teardown Logic Smells

Complex Test 186 Alias Obscure Test Chapter 15, Code
 Smells

Conditional Test 200 Conditional Test Chapter 15, Code
Logic Logic Smells

Conditional 203 Cause of Conditional Test Chapter 15, Code
Verifi cation Logic Logic Smells

Context 245 Cause of Fragile Test Chapter 16, Behavior
Sensitivity Smells

Cut-and-Paste 214 Cause of Test Code Chapter 15, Code
Code Reuse Duplication Smells

Data Sensitivity 243 Cause of Fragile Test Chapter 16, Behavior
 Smells

Developers Not 263 Developers Not Chapter 17, Project
Writing Tests Writing Tests Smells

Continued...

Smells,
Aliases,
and Causes

761

www.it-ebooks.info

http://www.it-ebooks.info/

762

Name Page Relationship Base Name Chapter

Eager Test 224 Cause of Assertion Roulette Chapter 16, Behavior
 Smells

Equality 221 Cause of Test Logic in Chapter 15, Code
Pollution Production Smells

Erratic Test 228 Erratic Test Chapter 16, Behavior
 Smells

Flexible Test 202 Cause of Conditional Test Chapter 15, Code
 Logic Smells

For Tests Only 219 Cause of Test Logic in Chapter 15, Code
 Production Smells

Fragile Fixture 246 Cause of Fragile Test Chapter 16, Behavior
 Smells

Fragile Test 239 Fragile Test Chapter 16, Behavior
 Smells

Frequent 248 Frequent Chapter 16, Behavior
Debugging Debugging Smells

General Fixture 190 Cause of Obscure Test Chapter 15, Code
 Smells

Hard-to-Test 209 Hard-to-Test Chapter 15, Code
Code Code Smells

Hard-Coded 210 Alias Hard-to-Test Chapter 15, Code
Dependency Code Smells

Hard-Coded 194 Cause of Obscure Test Chapter 15, Code
Test Data Smells

High Test 265 High Test Chapter 17, Project
Maintenance Cost Maintenance Smells
 Cost

Highly Coupled 210 Cause of Hard-to-Test Chapter 15, Code
Code Code Smells

Indented Test 200 Alias Conditional Test Chapter 15, Code
Code Logic Smells

Indirect Testing 196 Cause of Obscure Test Chapter 15, Code
 Smells

Infrequently 268 Cause of Production Bugs Chapter 17, Project
Run Tests Smells

Smells,
Aliases,

and Causes

Appendix F Smells, Aliases, and Causes

www.it-ebooks.info

http://www.it-ebooks.info/

763

Name Page Relationship Base Name Chapter

Interacting 231 Cause of Erratic Test Chapter 16, Behavior
Test Suites Smells

Interacting Tests 229 Cause of Erratic Test Chapter 16, Behavior
 Smells

Interface 241 Cause of Fragile Test Chapter 16, Behavior
Sensitivity Smells

Irrelevant 192 Cause of Obscure Test Chapter 15, Code
Information Smells

Lonely Test 232 Cause of Erratic Test Chapter 16, Behavior
 Smells

Long Test 186 Alias Obscure Test Chapter 15, Code
 Smells

Lost Test 269 Cause of Production Bugs Chapter 17, Project
 Smells

Manual 248 Alias Frequent Chapter 16, Behavior
Debugging Debugging Smells

Manual Event 281 Cause of Manual Chapter 16, Behavior
Injection Intervention Smells

Manual Fixture 250 Cause of Manual Chapter 16, Behavior
Setup Intervention Smells

Manual 250 Manual Chapter 16, Behavior
Intervention Intervention Smells

Manual Result 251 Cause of Manual Chapter 16, Behavior
Verifi cation Intervention Smells

Missing Assertion 226 Cause of Assertion Chapter 16, Behavior
Message Roulette Smells

Missing Unit 271 Cause of Production Bugs Chapter 17, Project
Test Smells

Multiple Test 207 Cause of Conditional Test Chapter 15, Code
Conditions Logic Smells

Mystery Guest 188 Cause of Obscure Test Chapter 15, Code
 Smells

Neverfail Test 274 Cause of Production Bugs Chapter 17, Project
 Smells

Nondeterministic 237 Cause of Erratic Test Chapter 16, Behavior
Test Smells

Smells,
Aliases,
and Causes

 Smells, Aliases, and Causes

Continued...

www.it-ebooks.info

http://www.it-ebooks.info/

764

Name Page Relationship Base Name Chapter

Not Enough 263 Cause of Developers Not Chapter 17, Project
Time Writing Tests Smells

Obscure Test 186 Obscure Test Chapter 15, Code
 Smells

Overcoupled 246 Alias Fragile Test Chapter 16, Behavior
Test Smells

Overspecifi ed 246 Cause of Fragile Test Chapter 16, Behavior
Software Smells

Production 268 Production Bugs Chapter 17, Project
Bugs Smells

Production 204 Cause of Conditional Chapter 15, Code
Logic in Test Test Logic Smells

Reinventing the 215 Cause of Test Code Chapter 15, Code
Wheel Duplication Smells

Resource 233 Cause of Erratic Test Chapter 16, Behavior
Leakage Smells

Resource 233 Cause of Erratic Test Chapter 16, Behavior
Optimism Smells

Sensitive 246 Cause of Fragile Test Chapter 16, Behavior
Equality Smells

Slow Component 254 Cause of Slow Tests Chapter 16, Behavior
Usage Smells

Slow Tests 253 Slow Tests Chapter 16, Behavior
 Smells

Test Code 213 Test Code Chapter 15, Code
Duplication Duplication Smells

Test Dependency 220 Cause of Test Logic in Chapter 15, Code
in Production Production Smells

Test Logic in 217 Test Logic in Chapter 15, Code
Production Production Smells

Test Run War 235 Cause of Erratic Test Chapter 16, Behavior
 Smells

Too Many Tests 256 Cause of Slow Tests Chapter 16, Behavior
 Smells

Unrepeatable 234 Cause of Erratic Test Chapter 16, Behavior
Test Smells

Untestable 211 Cause of Hard-to-Test Chapter 15, Code
Test Code Code Smells

Smells,
Aliases,

and Causes

Appendix F Smells, Aliases, and Causes

www.it-ebooks.info

http://www.it-ebooks.info/

765

Name Page Relationship Base Name Chapter

Untested Code 271 Cause of Production Bugs Chapter 17, Project
 Smells

Untested 272 Cause of Production Bugs Chapter 17, Project
Requirement Smells

Verbose Test 186 Alias Obscure Test Chapter 15, Code
 Smells

Wrong Test 264 Cause of Developers Not Chapter 17, Project
Automation Writing Tests Smells
Strategy

 Smells, Aliases, and Causes

Smells,
Aliases,
and Causes

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix G

Patterns, Aliases, and
Variations

Name Page Relationship Base Name Chapter

Abstract Setup 449 Variation Setup Decorator Chapter 20, Fixture
Decorator Setup Patterns

Abstract Test 638 Alias Testcase Chapter 24, Test
Fixture Superclass Organization
 Patterns

Abstract 638 Alias Testcase Chapter 24, Test
Testcase Superclass Organization
 Patterns

AllTests Suite 593 Variation Named Test Suite Chapter 24, Test
 Organization
 Patterns

Anonymous 417 Variation Creation Method Chapter 20, Fixture
Creation Method Setup Patterns

Argument- 371 Variation Assertion Message Chapter 19, xUnit
Describing Basics Patterns
Message

Assertion- 371 Variation Assertion Message Chapter 19, xUnit
Identifying Basics Patterns
Message

Assertion 370 Assertion Message Chapter 19, xUnit
Message Basics Patterns

Assertion 362 Assertion Method Chapter 19, xUnit
Method Basics Patterns

Attachment 418 Variation Creation Method Chapter 20, Fixture
Method Setup Patterns

Continued...

Patterns,
Aliases, and
Variations

767

www.it-ebooks.info

http://www.it-ebooks.info/

768

Name Page Relationship Base Name Chapter

Automated 505 Variation Automated Chapter 22, Fixture
Exercise Teardown Teardown Patterns
Teardown

Automated 504 Variation Automated Chapter 22, Fixture
Fixture Teardown Teardown Teardown Patterns

Automated 503 Automated Chapter 22, Fixture
Teardown Teardown Teardown Patterns

Automated 285 Alias Scripted Test Chapter 18, Test
Unit Test Strategy Patterns

Back Door 327 Back Door Chapter 18, Test
Manipulation Manipulation Strategy Patterns

Back Door 329 Variation Back Door Chapter 18, Test
Setup Manipulation Strategy Patterns

Back Door 330 Variation Back Door Chapter 18, Test
Teardown Manipulation Strategy Patterns

Back Door 329 Variation Back Door Chapter 18, Test
Verifi cation Manipulation Strategy Patterns

Behavior- 580 Variation Test-Specifi c Chapter 23, Test
Exposing Subclass Double Patterns
Subclass

Behavior- 580 Variation Test-Specifi c Chapter 23, Test
Modifying Subclass Double Patterns
Subclass

Behavior 468 Behavior Chapter 21, Result
Verifi cation Verifi cation Verifi cation Patterns

Bespoke 474 Alias Custom Assertion Chapter 21, Result
Assertion Verifi cation Patterns

Built-in Test 281 Variation Recorded Test Chapter 18, Test
Recording Strategy Patterns

Calculated 718 Alias Derived Value Chapter 27, Value
Values Patterns

Capture/ 278 Alias Recorded Test Chapter 18, Test
Playback Test Strategy Patterns

Chained Tests 454 Chained Tests Chapter 20, Fixture
 Setup Patterns

Cleanup Method 602 Variation Test Utility Chapter 24, Test
 Method Organization
 Patterns

Patterns,
Aliases, and

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

769

Name Page Relationship Base Name Chapter

Command-Line 379 Variation Test Runner Chapter 19, xUnit
Test Runner Basics Patterns

Component 686 Alias Dependency Chapter 26, Design-
Broker Lookup for-Testability
 Patterns

Component 686 Alias Dependency Chapter 26, Design-
Registry Lookup for-Testability
 Patterns

Component Test 340 Variation Layer Test Chapter 18, Test
 Strategy Patterns

Confi gurable 558 Alias Confi gurable Chapter 23, Test
Mock Object Test Double Double Patterns

Confi gurable 558 Confi gurable Chapter 23, Test
Test Double Test Double Double Patterns

Confi gurable 558 Alias Confi gurable Chapter 23, Test
Test Spy Test Double Double Patterns

Confi gurable 558 Alias Confi gurable Chapter 23, Test
Test Stub Test Double Double Patterns

Confi guration 560 Variation Confi gurable Chapter 23, Test
Interface Test Double Double Patterns

Confi guration 560 Variation Confi gurable Chapter 23, Test
Mode Test Double Double Patterns

Constant Value 714 Alias Literal Value Chapter 27, Value
 Patterns

Constructor 680 Variation Dependency Chapter 26, Design-
Injection Injection for-Testability
 Patterns

Constructor Test 351 Variation Test Method Chapter 19, xUnit
 Basics Patterns

Creation Method 415 Creation Method Chapter 20, Fixture
 Setup Patterns

Custom 474 Custom Assertion Chapter 21, Result
Assertion Verifi cation Patterns

Custom 477 Variation Custom Assertion Chapter 21, Result
Assertion Test Verifi cation Patterns

Custom Equality 476 Variation Custom Assertion Chapter 21, Result
Assertion Verifi cation Patterns

Continued...

 Patterns, Aliases, and Variations

Patterns,
Aliases, and
Variations

www.it-ebooks.info

http://www.it-ebooks.info/

770

Name Page Relationship Base Name Chapter

DB Schema per 651 Variation Database Sandbox Chapter 25, Database
Test-Runner Patterns

Data Loader 330 Variation Back Door Chapter 18, Test
 Manipulation Strategy Patterns

Data Retriever 331 Variation Back Door Chapter 18, Test
 Manipulation Strategy Patterns

Data-Driven Test 288 Data-Driven Test Chapter 18, Test
 Strategy Patterns

Data-Driven Test 290 Variation Data-Driven Test Chapter 18, Test
Framework (Fit) Strategy Patterns

Data-Driven Test 300 Variation Test Automation Chapter 18, Test
Frameworks Framework Strategy Patterns

Database 331 Variation Back Door Chapter 18, Test
Extraction Script Manipulation Strategy Patterns

Database 652 Variation Database Sandbox Chapter 25, Database
Partitioning Patterns
Scheme

Database 330 Variation Back Door Chapter 18, Test
Population Script Manipulation Strategy Patterns

Database 650 Database Sandbox Chapter 25, Database
Sandbox Patterns

Decorated 449 Variation Setup Decorator Chapter 20, Fixture
Lazy Setup Setup Patterns

Dedicated 651 Variation Database Sandbox Chapter 25, Database
Database Sandbox Patterns

Delegated Setup 411 Delegated Setup Chapter 20, Fixture
 Setup Patterns

Delegated 511 Variation In-line Teardown Chapter 22, Fixture
Teardown Teardown Patterns

Delta Assertion 485 Delta Assertion Chapter 21, Result
 Verifi cation Patterns

Dependency 352 Variation Test Method Chapter 19, xUnit
Initialization Test Basics Patterns

Dependency 678 Dependency Chapter 26, Design-
Injection Injection for-Testability
 Patterns

Patterns,
Aliases, and

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

771

Name Page Relationship Base Name Chapter

Dependency 686 Dependency Chapter 26, Design-
Lookup Lookup for-Testability
 Patterns

Derived 719 Variation Derived Value Chapter 27, Value
Expectation Patterns

Derived Input 719 Variation Derived Value Chapter 27, Value
 Patterns

Derived Value 718 Derived Value Chapter 27, Value
 Patterns

Diagnostic 476 Variation Custom Assertion Chapter 21, Result
Assertion Verifi cation Patterns

Direct Test 401 Variation Test Enumeration Chapter 19, xUnit
Method Basics Patterns
Invocation

Distinct 724 Variation Generated Value Chapter 27, Value
Generated Value Patterns

Domain 476 Variation Custom Assertion Chapter 21, Result
Assertion Verifi cation Patterns

Dummy 728 Alias Dummy Object Chapter 27, Value
 Patterns

Dummy 729 Variation Dummy Object Chapter 27, Value
Argument Patterns

Dummy 729 Variation Dummy Object Chapter 27, Value
Attribute Patterns

Dummy Object 728 Dummy Object Chapter 27, Value
 Patterns

Dummy 728 Alias Dummy Object Chapter 27, Value
Parameter Patterns

Dummy Value 728 Alias Dummy Object Chapter 27, Value
 Patterns

Dynamically 561 Variation Confi gurable Chapter 23, Test
Generated Test Double Double Patterns
Test Double

Entity Chain 531 Variation Test Stub Chapter 23, Test
Snipping Double Patterns

Equality 365 Variation Assertion Method Chapter 19, xUnit
Assertion Basics Patterns

Continued...

 Patterns, Aliases, and Variations

Patterns,
Aliases, and
Variations

www.it-ebooks.info

http://www.it-ebooks.info/

772

Name Page Relationship Base Name Chapter

Expectation- 371 Variation Assertion Message Chapter 19, xUnit
Describing Basics Patterns
Message

Expected 470 Alias Behavior Chapter 21, Result
Behavior Verifi cation Verifi cation Patterns

Expected 470 Variation Behavior Chapter 21, Result
Behavior Verifi cation Verifi cation Patterns
Specifi cation

Expected 366 Variation Assertion Method Chapter 19, xUnit
Exception Basics Patterns
Assertion

Expected 350 Variation Test Method Chapter 19, xUnit
Exception Test Basics Patterns

Expected Object 464 Alias State Verifi cation Chapter 21, Result
 Verifi cation Patterns

Expected State 464 Variation State Verifi cation Chapter 21, Result
Specifi cation Verifi cation Patterns

External Test 280 Variation Recorded Test Chapter 18, Test
Recording Strategy Patterns

Fake Database 553 Variation Fake Object Chapter 23, Test
 Double Patterns

Fake Object 551 Fake Object Chapter 23, Test
 Double Patterns

Fake Service 553 Variation Fake Object Chapter 23, Test
Layer Double Patterns

Fake Web 553 Variation Fake Object Chapter 23, Test
Service Double Patterns

File System 380 Variation Test Runner Chapter 19, xUnit
Test Runner Basics Patterns

Finder Method 600 Variation Test Utility Chapter 24, Test
 Method Organization
 Patterns

Fixture Setup 456 Variation Chained Tests Chapter 20, Fixture
Testcase Setup Patterns

Four-Phase Test 358 Four-Phase Test Chapter 19, xUnit
 Basics Patterns

Framework- 424 Alias Implicit Setup Chapter 20, Fixture
Invoked Setup Setup Patterns

Patterns,
Aliases, and

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

773

Name Page Relationship Base Name Chapter

Framework- 516 Alias Implicit Teardown Chapter 22, Fixture
Invoked Teardown Patterns
Teardown

Fresh Context 311 Alias Fresh Fixture Chapter 18, Test
 Strategy Patterns

Fresh Fixture 311 Fresh Fixture Chapter 18, Test
 Strategy Patterns

Fuzzy Equality 365 Variation Assertion Method Chapter 19, xUnit
Assertion Basics Patterns

Garbage- 500 Garbage- Chapter 22, Fixture
Collected Collected Teardown Patterns
Teardown Teardown

Generated Value 723 Generated Value Chapter 27, Value
 Patterns

Global Fixture 430 Variation Prebuilt Fixture Chapter 20, Fixture
 Setup Patterns

Graphical 378 Variation Test Runner Chapter 19, xUnit
Test Runner Basics Patterns

Guard Assertion 490 Guard Assertion Chapter 21, Result
 Verifi cation Patterns

Hand-Built 560 Variation Confi gurable Chapter 23, Test
Test Double Test Double Double Patterns

Hand-Scripted 285 Alias Scripted Test Chapter 18, Test
Test Strategy Patterns

Hand-Written 285 Alias Scripted Test Chapter 18, Test
Test Strategy Patterns

Hard-Coded 568 Alias Hard-Coded Chapter 23, Test
Mock Object Test Double Double Patterns

Hard-Coded 449 Variation Setup Decorator Chapter 20, Fixture
Setup Decorator Setup Patterns

Hard-Coded 568 Hard-Coded Chapter 23, Test
Test Double Test Double Double Patterns

Hard-Coded 568 Alias Hard-Coded Chapter 23, Test
Test Stub Test Double Double Patterns

Hard-Coded 714 Alias Literal Value Chapter 27, Value
Value Patterns

Continued...

 Patterns, Aliases, and Variations

Patterns,
Aliases, and
Variations

www.it-ebooks.info

http://www.it-ebooks.info/

774

Name Page Relationship Base Name Chapter

Hooked Setup 424 Alias Implicit Setup Chapter 20, Fixture
 Setup Patterns

Hooked 516 Alias Implicit Teardown Chapter 22, Fixture
Teardown Teardown Patterns

Humble 698 Variation Humble Object Chapter 26, Design-
Container for-Testability
Adapter Patterns

Humble Dialog 696 Variation Humble Object Chapter 26, Design-
 for-Testability
 Patterns

Humble 697 Variation Humble Object Chapter 26, Design-
Executable for-Testability
 Patterns

Humble Object 695 Humble Object Chapter 26, Design-
 for-Testability
 Patterns

Humble 697 Variation Humble Object Chapter 26, Design-
Transaction for-Testability
Controller Patterns

Immutable 323 Variation Shared Fixture Chapter 18, Test
Shared Fixture Strategy Patterns

Implicit Setup 424 Implicit Setup Chapter 20, Fixture
 Setup Patterns

Implicit 516 Implicit Teardown Chapter 22, Fixture
Teardown Teardown Patterns

Imposter 522 Alias Test Double Chapter 23, Test
 Double Patterns

In-Database 655 Variation Stored Procedure Chapter 25, Database
Stored Procedure Test Patterns
Test

In-Memory 553 Variation Fake Object Chapter 23, Test
Database Double Patterns

Incremental 609 Variation Parameterized Test Chapter 24, Result
Tabular Test Verifi cation Patterns

Incremental Tests 322 Variation Shared Fixture Chapter 18, Test
 Strategy Patterns

Indirect Output 541 Variation Test Spy Chapter 23, Test
Registry Double Patterns

Patterns,
Aliases, and

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

775

Name Page Relationship Base Name Chapter

In-line Setup 408 In-line Setup Chapter 20, Fixture
 Setup Patterns

In-line Teardown 509 In-line Teardown Chapter 22, Fixture
 Teardown Patterns

Inner Test 570 Variation Hard-Coded Chapter 23, Test
Double Test Double Double Patterns

Interaction 468 Alias Behavior Chapter 21, Result
Testing Verifi cation Verifi cation Patterns

Layer Test 337 Layer Test Chapter 18, Test
 Strategy Patterns

Layer-Crossing 327 Alias Back Door Chapter 18, Test
Test Manipulation Strategy Patterns

Layered Test 337 Alias Layer Test Chapter 18, Test
 Strategy Patterns

Lazy Setup 435 Lazy Setup Chapter 20, Fixture
 Setup Patterns

Lazy Teardown 663 Variation Table Truncation Chapter 25, Database
 Teardown Patterns

Leftover Fixture 317 Alias Shared Fixture Chapter 18, Test
 Strategy Patterns

Literal Value 714 Literal Value Chapter 27, Value
 Patterns

Loop-Driven 610 Variation Parameterized Chapter 24, Result
Test Test Verifi cation Patterns

Minimal Fixture 302 Minimal Fixture Chapter 18, Test
 Strategy Patterns

Minimal 302 Alias Minimal Fixture Chapter 18, Test
Context Strategy Patterns

Mock Object 544 Mock Object Chapter 23, Test
 Double Patterns

Naive In-line 511 Variation In-line Teardown Chapter 22, Fixture
Teardown Teardown Patterns

Naive xUnit 292 Variation Data-Driven Test Chapter 18, Test
Test Interpreter Strategy Patterns

Named State 417 Variation Creation Method Chapter 20, Fixture
Reaching Method Setup Patterns

Continued...

Patterns,
Aliases, and
Variations

 Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

776

Name Page Relationship Base Name Chapter

Named Test Suite 592 Named Test Suite Chapter 24, Test
 Organization
 Patterns

Object Attribute 476 Variation Custom Assertion Chapter 21, Result
Equality Assertion Verifi cation Patterns

Object Factory 686 Alias Dependency Chapter 26, Design-
 Lookup for-Testability
 Patterns

Object Mother 644 Variation Test Helper Chapter 24, Test
 Organization
 Patterns

One Bad 719 Variation Derived Value Chapter 27, Value
Attribute Patterns

Parameter 680 Variation Dependency Chapter 26, Design-
Injection Injection for-Testability
 Patterns

Parameterized 417 Variation Creation Method Chapter 20, Fixture
Anonymous Setup Patterns
Creation Method

Parameterized 417 Variation Creation Method Chapter 20, Fixture
Creation Setup Patterns
Method

Parameterized 449 Variation Setup Decorator Chapter 20, Fixture
Setup Decorator Setup Patterns

Parameterized 607 Parameterized Test Chapter 21, Result
Test Verifi cation Patterns

Per-Run Fixture 323 Variation Shared Fixture Chapter 18, Test
 Strategy Patterns

Persistence Layer 339 Variation Layer Test Chapter 18, Test
Test Strategy Patterns

Persistent Fresh 314 Variation Fresh Fixture Chapter 18, Test
Fixture Strategy Patterns

Placeholder 728 Alias Dummy Object Chapter 27, Value
 Patterns

Poor Man’s 699 Variation Humble Object Chapter 26, Design-
Humble Object for-Testability
 Patterns

Patterns,
Aliases, and

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

777

Name Page Relationship Base Name Chapter

Prebuilt Context 429 Alias Prebuilt Fixture Chapter 20, Fixture
 Setup Patterns

Prebuilt Fixture 429 Prebuilt Fixture Chapter 20, Fixture
 Setup Patterns

Presentation 338 Variation Layer Test Chapter 18, Test
Layer Test Strategy Patterns

Private Fixture 311 Alias Fresh Fixture Chapter 18, Test
 Strategy Patterns

Procedural 470 Variation Behavior Chapter 21, Result
Behavior Verifi cation Verifi cation Patterns
Verifi cation

Procedural State 463 Variation State Verifi cation Chapter 21, Result
Verifi cation Verifi cation Patterns

Procedural 526 Variation Test Stub Chapter 23, Test
Test Stub Double Patterns

Programmatic 285 Alias Scripted Test Chapter 18, Test
Test Strategy Patterns

Pseudo-Object 571 Variation Hard-Coded Chapter 23, Test
 Test Double Double Patterns

Pushdown 450 Variation Setup Decorator Chapter 20, Fixture
Decorator Setup Patterns

Random 724 Variation Generated Value Chapter 27, Value
Generated Value Patterns

Record and 278 Alias Recorded Test Chapter 18, Test
Playback Test Strategy Patterns

Recorded Test 278 Recorded Test Chapter 18, Test
 Strategy Patterns

Refactored 280 Variation Recorded Test Chapter 18, Test
Recorded Test Strategy Patterns

Related 725 Variation Generated Value Chapter 27, Value
Generated Value Patterns

Remoted Stored 656 Variation Stored Procedure Chapter 25, Database
Procedure Test Test Patterns

Responder 530 Variation Test Stub Chapter 23, Test
 Double Patterns

Retrieval 540 Variation Test Spy Chapter 23, Test
Interface Double Patterns

Continued...

 Patterns, Aliases, and Variations

Patterns,
Aliases, and
Variations

www.it-ebooks.info

http://www.it-ebooks.info/

778

Name Page Relationship Base Name Chapter

Reuse Test for 418 Variation Creation Method Chapter 20, Fixture
Fixture Setup Setup Patterns

Reused Fixture 317 Alias Shared Fixture Chapter 18, Test
 Strategy Patterns

Robot User Test 278 Alias Recorded Test Chapter 18, Test
 Strategy Patterns

Robot User 299 Variation Test Automation Chapter 18, Test
Test Framework Framework Strategy Patterns

Row Test 609 Alias Parameterized Test Chapter 24, Test
Organization Patterns

SUT API 601 Alias Test Utility Chapter 24, Test
Encapsulation Method Organization
 Patterns

SUT 601 Variation Test Utility Chapter 24, Test
Encapsulation Method Organization
Method Patterns

Saboteur 530 Variation Test Stub Chapter 23, Test
 Double Patterns

Scripted Test 285 Scripted Test Chapter 18, Test
 Strategy Patterns

Self Shunt 540 Variation Hard-Coded Chapter 23, Test
 Test Double Double Patterns

Self-Describing 715 Variation Literal Value Chapter 27, Value
Value Patterns

Service Layer 339 Variation Layer Test Chapter 18, Test
Test Strategy Patterns

Service Locator 686 Alias Dependency Chapter 26, Design-
 Lookup for-Testability
 Patterns

Setter Injection 681 Variation Dependency Chapter 26, Design-
 Injection for-Testability
 Patterns

Setup Decorator 447 Setup Decorator Chapter 20, Fixture
 Setup Patterns

Shared Context 317 Alias Shared Fixture Chapter 18, Test
 Strategy Patterns

Shared Fixture 317 Shared Fixture Chapter 18, Test
 Strategy Patterns

Patterns,
Aliases, and

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

779

Name Page Relationship Base Name Chapter

Shared Fixture 491 Variation Guard Assertion Chapter 21, Result
State Assertion Verifi cation Patterns

Shared Setup 424 Alias Implicit Setup Chapter 20, Fixture
Method Setup Patterns

Simple Success 349 Variation Test Method Chapter 19, xUnit
Test Basics Patterns

Single-Layer Test 337 Alias Layer Test Chapter 18, Test
 Strategy Patterns

Single-Outcome 366 Variation Assertion Method Chapter 19, xUnit
Assertion Basics Patterns

Single Test Suite 593 Variation Named Test Suite Chapter 24, Test
 Organization
 Patterns

Slow Tests 318 Variation Shared Fixture Chapter 18, Test
 Strategy Patterns

Spy 538 Alias Test Spy Chapter 23, Test
 Double Patterns

Stale Fixture 317 Alias Shared Fixture Chapter 18, Test
 Strategy Patterns

Standard Context 305 Alias Standard Fixture Chapter 18, Test
 Strategy Patterns

Standard Fixture 305 Standard Fixture Chapter 18, Test
 Strategy Patterns

State-Exposing 580 Variation Test-Specifi c Chapter 23, Test
Subclass Subclass Double Patterns

State Verifi cation 462 State Verifi cation Chapter 21, Result
 Verifi cation Patterns

State-Based 462 Alias State Verifi cation Chapter 21, Result
Testing Verifi cation Patterns

Stated Outcome 366 Variation Assertion Method Chapter 19, xUnit
Assertion Basics Patterns

Statically 561 Variation Confi gurable Chapter 23, Test
Generated Test Test Double Double Patterns
Double

Stored Procedure 654 Stored Procedure Chapter 25, Database
Test Test Patterns

Stub 529 Alias Test Stub Chapter 23, Test
 Double Patterns

Continued...

 Patterns, Aliases, and Variations

Patterns,
Aliases, and
Variations

www.it-ebooks.info

http://www.it-ebooks.info/

780

Name Page Relationship Base Name Chapter

Stub 728 Alias Dummy Object Chapter 27, Value
 Patterns

Subclassed 700 Variation Humble Object Chapter 26, Design-
Humble Object for-Testability
 Patterns

Subclassed 581 Alias Test-Specifi c Chapter 23, Test
Singleton Subclass Double Patterns

Subclassed 581 Alias Test-Specifi c Chapter 23, Test
Test Double Subclass Double Patterns

Subcutaneous 340 Variation Layer Test Chapter 18, Test
Test Strategy Patterns

Subset Suite 593 Variation Named Test Suite Chapter 24, Test
 Organization
 Patterns

Substitutable 581 Alias Test-Specifi c Chapter 23, Test
Singleton Subclass Double Patterns

Substituted 581 Variation Test-Specifi c Chapter 23, Test
Singleton Subclass Double Patterns

Suite of Suites 388 Variation Test Suite Object Chapter 19, xUnit
 Basics Patterns

Suite Fixture 441 Suite Fixture Chapter 20, Fixture
Setup Setup Setup Patterns

Symbolic 715 Variation Literal Value Chapter 27, Value
Constant Patterns

Table Truncation 661 Table Truncation Chapter 25, Database
Teardown Teardown Patterns

Tabular Test 609 Variation Parameterized Chapter 24, Test
 Test Organization
 Patterns

Teardown 511 Variation In-line Teardown Chapter 22, Fixture
Guard Clause Teardown Patterns

Temporary 530 Variation Test Stub Chapter 23, Test
Test Stub Double Patterns

Test Automation 298 Test Automation Chapter 18, Test
Framework Framework Strategy Patterns

Test Bed 429 Alias Prebuilt Fixture Chapter 20, Fixture
 Setup Patterns

Patterns,
Aliases, and

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/

781

Name Page Relationship Base Name Chapter

Test Discovery 393 Test Discovery Chapter 19, xUnit
 Basics Patterns

Test Double 522 Test Double Chapter 23, Test
 Double Patterns

Test Double 569 Variation Hard-Coded Chapter 23, Test
Class Test Double Double Patterns

Test Double 580 Variation Test-Specifi c Chapter 23, Test
Subclass Subclass Double Patterns

Test Double as 332 Variation Back Door Chapter 18, Test
Back Door Manipulation Strategy Patterns

Test Enumeration 399 Test Enumeration Chapter 19, xUnit
 Basics Patterns

Test Fixture 373 Alias Testcase Class Chapter 19, xUnit
 Basics Patterns

Test Fixture 644 Variation Test Helper Chapter 24, Test
Registry Organization
 Patterns

Test Helper 643 Test Helper Chapter 24, Test
 Organization
 Patterns

Test Helper 645 Variation Test Helper Chapter 24, Test
Class Organization
 Patterns

Test Helper 639 Variation Testcase Chapter 24, Test
Mixin Superclass Organization
 Patterns

Test Helper 645 Variation Test Helper Chapter 24, Test
Object Organization
 Patterns

Test Hook 709 Test Hook Chapter 26, Design-
 for-Testability
 Patterns

Test Method 348 Test Method Chapter 19, xUnit
 Basics Patterns

Test Method 394 Variation Test Discovery Chapter 19, xUnit
Discovery Basics Patterns

Test Method 401 Variation Test Enumeration Chapter 19, xUnit
Enumeration Basics Patterns

 Patterns, Aliases, and Variations

Patterns,
Aliases, and
Variations

Continued...

www.it-ebooks.info

http://www.it-ebooks.info/

782

Name Page Relationship Base Name Chapter

Test Method 404 Variation Test Selection Chapter 19, xUnit
Selection Basics Patterns

Test Object 503 Alias Automated Chapter 22, Fixture
Registry Teardown Teardown Patterns

Test Runner 377 Test Runner Chapter 19, xUnit
 Basics Patterns

Test Selection 403 Test Selection Chapter 19, xUnit
 Basics Patterns

Test Spy 538 Test Spy Chapter 23, Test
 Double Patterns

Test Spy 568 Alias Hard-Coded Chapter 23, Test
 Test Double Double Patterns

Test Stub 529 Test Stub Chapter 23, Test
 Double Patterns

Test Suite 400 Variation Test Enumeration Chapter 19, xUnit
Enumeration Basics Patterns

Test Suite 399 Alias Test Enumeration Chapter 19, xUnit
Factory Basics Patterns

Test Suite Object 387 Test Suite Object Chapter 19, xUnit
 Basics Patterns

Test Suite Object 293 Variation Data-Driven Test Chapter 18, Test
Generator Strategy Patterns

Test Suite Object 293 Variation Data-Driven Test Chapter 18, Test
Simulator Strategy Patterns

Test Suite 388 Variation Test Suite Object Chapter 19, xUnit
Procedure Basics Patterns

Test Tree 380 Variation Test Runner Chapter 19, xUnit
Explorer Basics Patterns

Test Utility 599 Test Utility Chapter 24, Test
Method Method Organization
 Patterns

Test Utility Test 603 Variation Test Utility Chapter 24, Test
 Method Organization
 Patterns

Test-Specifi c 579 Alias Test-Specifi c Chapter 23, Test
Extension Subclass Double Patterns

Test-Specifi c 579 Test-Specifi c Chapter 23, Test
Subclass Subclass Double Patterns

Appendix G Patterns, Aliases, and Variations

Patterns,
Aliases, and

Variations

www.it-ebooks.info

http://www.it-ebooks.info/

783

Name Page Relationship Base Name Chapter

Testcase Class 373 Testcase Class Chapter 19, xUnit
 Basics Patterns

Testcase Class 394 Variation Test Discovery Chapter 19, xUnit
Discovery Basics Patterns

Testcase Class 625 Variation Testcase Class Chapter 24, Test
per Method per Feature Organization
 Patterns

Testcase Class 625 Variation Testcase Class Chapter 24, Test
per User Story per Feature Organization
 Patterns

Testcase Class 404 Variation Test Selection Chapter 19, xUnit
Selection Basics Patterns

Testcase Class 388 Variation Test Suite Object Chapter 19, xUnit
Suite Basics Patterns

Testcase Class 617 Testcase Class Chapter 24, Test
per Class per Class Organization
 Patterns

Testcase Class 624 Testcase Class Chapter 24, Test
per Feature per Feature Organization
 Patterns

Testcase Class 631 Testcase Class Chapter 24, Test
per Fixture per Fixture Organization
 Patterns

Testcase Object 382 Testcase Object Chapter 19, xUnit
 Basics Patterns

Testcase 638 Testcase Chapter 24, Test
Superclass Superclass Organization
 Patterns

Testing by 337 Alias Layer Test Chapter 18, Test
Layers Strategy Patterns

The xUnit 300 Variation Test Automation Chapter 18, Test
Family Framework Strategy Patterns

Transaction 668 Transaction Chapter 25, Database
Rollback Rollback Patterns
Teardown Teardown

Transient 314 Variation Fresh Fixture Chapter 18, Test
Fresh Fixture Strategy Patterns

 Patterns, Aliases, and Variations

Patterns,
Aliases, and
Variations

Continued...

www.it-ebooks.info

http://www.it-ebooks.info/

784

Name Page Relationship Base Name Chapter

True Humble 699 Variation Humble Object Chapter 26, Design-
Object for-Testability
 Patterns

Unfi nished 494 Unfi nished Chapter 21, Result
Test Assertion Test Assertion Verifi cation Patterns

Verifi cation 477 Variation Custom Assertion Chapter 21, Result
Method Verifi cation Patterns

Appendix G Patterns, Aliases, and Variations

Patterns,
Aliases, and

Variations

www.it-ebooks.info

http://www.it-ebooks.info/

785

Glossary

This glossary contains the author’s defi nitions of the terms used throughout this
book.

acceptance test

A customer test that the customer of the software plans to run to help the customer
decide whether he or she will accept the software system. Acceptance tests are usually
run manually after all automated customer tests have passed. They exercise all
layers of the system—from the user interface back to the database—and should
include any integration with other systems on which the application depends.

accessor

A method that provides access to an instance variable of an object either by
returning its value or by providing a way to set its value.

ACID

The four qualities of transactions that modern databases ensure:

• Atomic: A transaction is all or nothing.

• Consistent: All operations within a transaction see the same view of the
world.

• Independent: Transactions are independent of one another (no cross-
transaction leakage of changes).

• Durable: Once committed, the changes made within a transaction are
permanent (they don’t just vanish for no reason!).

agile method

A method of executing projects (typically, but not always, restricted to software)
that reduces the cost of change and allows customers of the software to have
more control over how much they spend and what they get for their money. Agile

Also known as:
user
acceptance
test (UAT)

www.it-ebooks.info

http://www.it-ebooks.info/

786 Glossary

methods include eXtreme Programming, SCRUM, Feature-Driven Development
(FDD), and Dynamic Systems Development Method (DSDM), among many
others. A core practice of most agile methods is the use of automated unit tests.

annotation

A way of indicating something about something. JUnit version 4.0 uses annota-
tions to indicate which classes are Testcase Classes and which methods are Test
Methods; NUnit uses .NET attributes for this purpose.

anonymous inner class

An inner class in Java that is defi ned without a unique name. Anonymous inner
classes are often used when defi ning Hard-Coded Test Doubles.

anti-pattern

A pattern that shouldn’t be used because it is known to produce less than optimal
results. Code smells, or their underlying causes, are a kind of anti-pattern.

application programming interface (API)

The means by which other software can invoke some piece of functionality. In
object-oriented software, an API consists of the classes and their publicly acces-
sible methods. In procedural software, it consists of the module or package name
plus the publicly accessible procedures.

aspect-oriented programming

An advanced software modularization technique that allows improved separa-
tion of concerns by “weaving” cross-cutting concerns into code after the affected
software has been built but before it is executed.

assertion

A statement that something should be true. In xUnit-style Test Automation
Frameworks, an assertion takes the form of an Assertion Method that fails when
the actual outcome passed to it does not match the expected outcome.

www.it-ebooks.info

http://www.it-ebooks.info/

787 Glossary

asynchronous test

A test that runs in a separate thread of control from the system under test (SUT)
and interacts with it using asynchronous (i.e., “real”) messages. An asynchro-
nous test must coordinate its steps with those of the SUT because this interac-
tion is not managed automatically by the runtime system. An asynchronous
test may have to include delays to give the SUT enough time to fi nish execution
before inspecting the outcome. Contrast this with a synchronous test, which
interacts with the SUT via simple method calls.

attribute

A characteristic of something. The members of the xUnit family for the .NET
languages use class and method attributes to indicate which classes are Testcase
Classes and which methods are Test Methods. The term attribute is also a syn-
onym for “instance variable” in some circles.

back door

An alternative interface to a system under test (SUT) that test software can use
to inject indirect inputs into the SUT. A database is a common example of a
back door, but it could also be any component that can be either manipulated to
return test-specifi c values or replaced by a Test Double. Contrast this with the
front door: the application programming interface (API).

BDUF

“Big design up front” is the classic “waterfall” approach to software design.
In BDUF, all requirements must be understood early in the project, and the
software is designed to support those requirements in a single design “phase.”
Contrast this with the emergent design favored by agile projects.

behavior-driven development

A variation on the test-driven development process wherein the focus of the
tests is to clearly describe the expected behavior of the system under test (SUT).
The emphasis is on Tests as Documentation rather than merely using tests for
verifi cation.

Behavior-driven development can be done using traditional members of the
xUnit family. New “members” of the family, however, have been built specifi -
cally to emphasize the change in focus. They include changes in terminology

www.it-ebooks.info

http://www.it-ebooks.info/

788 Glossary

(e.g., “test” becomes “spec”; “fi xture” becomes “context”) and more explicit
framework support for clarity of the specifi cation.

behavior smell

A test smell we encounter while compiling or running tests. We don’t have to be
particularly observant to notice behavior smells, as they will present themselves
to us via compile errors or test failures. See also: code smell, project smell.

black box

A piece of software that we treat as an opaque object whose internal workings
cannot be seen. Tests written for the black box can verify only externally visible
behavior and are independent of the implementation inside the system under
test (SUT).

block

A block of code that can be run. Many programming languages (most notably,
Smalltalk and Ruby) use blocks (also known as “block closures”) as a way of
passing a chunk of code to a method, which can then run the code in its own
context. Java’s anonymous inner classes are a way to achieve the same thing
without direct support for blocks. C# uses delegates for the same purpose.

block closure

See block.

boundary value

An input value for a system under test (SUT) that is immediately adjacent to the
boundary between two equivalence classes. Tests using two adjacent boundary
values help us verify that the behavior changes with exactly the right input and
that we don’t have “off by one” problems.

built-in self-test

A means of organizing test code in which the tests live inside the same module
or class as the production code and are run automatically when the system is
initialized.

www.it-ebooks.info

http://www.it-ebooks.info/

789 Glossary

business logic

The core logic related to the domain model of a business system. Because busi-
ness logic usually refl ects the results of many independent business decisions, it
often seems anything but logical!

class attribute

An attribute that is placed on a class in the source code to tell the compiler or
runtime system that this class is “special.” In some variants of xUnit, class at-
tributes are used to indicate that a class is a Testcase Class.

class method

A method that is associated with a class rather than an object. Class methods can be
invoked using a classname.methodname notation [e.g., Assert.assertEquals(message,
expected, actual);] and do not require an instance of the class to be invoked. Class
methods cannot access instance methods or instance variables of objects; that is,
they do not have access to self or this. In Java, a class method is called a static
method. Other languages may use different names or keywords.

class variable

A variable that is associated with a class rather than an instance of the class and
is typically used to access information that all instances need to share. In some
languages, class variables can be accessed using the syntax classname.variable-
name (e.g., TestHelper.lineFeedCharacter;). That is, they do not need to be accessed
via self or this. In Java, a class variable is called a static variable. Other lan-
guages may use different names or keywords.

closure

See block.

code smell

The “classic” bad smell, as fi rst described by Martin Fowler in [Ref]. Test au-
tomaters must recognize code smells that arise as they maintain test code. Code
smells typically affect maintenance cost of tests but may also be early warning
signs of behavior smells to follow.

See also: test smell, behavior smell, project smell.

www.it-ebooks.info

http://www.it-ebooks.info/

790 Glossary

component

A larger part of the overall system that is often separately deployable. Component-
based development involves decomposing the overall functionality into a series
of individual components that can be built and deployed separately. This allows
sharing of the components between applications that need the same functionality.
Each component is a consequence of one or more design decisions, although its
behavior may also be traced back to some aspect of the requirements.

Components can take many forms, depending on the technology being
employed. The Windows platform uses dynamic linked libraries (DLLs) or
assemblies as components. The Java platform uses Java Archives (JARs). A
service-oriented architecture (SOA) uses Web Services as its large-grained
components. The components may implement front-end logic (e.g., a “File
Open Dialog”) or back-end logic (e.g., a “Customer Persistence” component).
A component can and should be verifi ed using component tests before the
overall application is tested using customer tests.

component test

A test that verifi es the behavior of some component of the overall system. The
component is a consequence of one or more design decisions, although its be-
havior may also be traced back to some aspect of the requirements. There is
no need for component tests to be readable, recognizable, or verifi able by the
customer or business domain expert. Contrast this with a customer test, which
is derived almost entirely from the requirements and should be verifi able by
the customer, and with a unit test, which verifi es a much smaller component. A
component test lies somewhere in between these two extremes.

During test-driven development, component tests are written after the cus-
tomer tests are written and the overall design is solidifi ed. They are written as
the architectural decisions are made but before the individual units are designed
or coded. They are usually automated using a member of the xUnit family.

constructor

A special method used in some object-oriented programming languages to con-
struct a brand-new object. It often has the same name as the class and is typically
called automatically by the runtime system whenever the special operation new is
invoked. A Complete Constructor Method [SBPP] returns a ready-to-use object
that requires no additional tweaking; this usually implies arguments must be
passed to the constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

791 Glossary

continuous integration

The agile software development practice of integrating software changes continu-
ously. In practice, developers typically integrate their changes every few hours to
days. Continuous integration often includes the practice of an automated build
that is triggered by each check-in. The build process typically runs all automated
tests and may even run tests that aren’t run before check-in because they take
too long. The build is considered to have “failed” if any tests fail. When the
build fails, teams typically consider getting the build working again to be the top
priority; only code changes aimed at fi xing the build are allowed until a successful
build has occurred.

control point

How the test asks the system under test (SUT) to do something for it. A control
point could be created for the purpose of setting up or tearing down the fi xture
or it could be used during the exercise SUT phase of the test. It is a kind of in-
teraction point. Some control points are provided strictly for testing purposes;
they should not be used by the production code because they bypass input
validation or short-circuit the normal life cycle of the SUT or some object on
which it depends.

customer test

A test that verifi es the behavior of a slice of the visible functionality of the over-
all system. The system under test (SUT) may consist of the entire system or a
fully functional top-to-bottom slice (“module”) of the system. A customer test
should be independent of the design decisions made while building the SUT.
That is, we should require the same set of customer tests regardless of how we
choose to build the SUT. (Of course, how the customer tests interact with the
SUT may be affected by high-level software architecture decisions.)

data access layer

A way of keeping data access logic from permeating the application code by put-
ting it into a separate component that encapsulates the database.

depended-on component (DOC)

An individual class or a large-grained component on which the system under
test (SUT) depends. The dependency is usually one of delegation via method

Also known as:
data access
object (DAO),
data abstraction
layer (DAL)

www.it-ebooks.info

http://www.it-ebooks.info/

792 Glossary

calls. In test automation, the DOC is primarily of interest in that we need to be
able to observe and control its interactions with the SUT to get complete test
coverage.

design pattern

A pattern that we can use to solve a particular software design problem. Most
design patterns are programming language independent; the language-specifi c
ones are typically called “coding idioms.” Design patterns were fi rst popularized
by the book Design Patterns [GOF].

design for testability

A way of ensuring that code is easily tested by making sure that testing require-
ments are considered as the code is designed. When doing test-driven develop-
ment, design for testability occurs as a natural side effect of development

developer test

Another name for an automated unit test that is prepared by someone playing
the developer role on an eXtreme Programming project.

DfT

See design for testability.

direct input

A test may interact with the system under test (SUT) directly via its “front door”
or public application programming interface (API) or indirectly via its “back
door.” The stimuli injected by the test into the SUT via its front door are direct
inputs of the SUT. Direct inputs may consist of method or function calls to an-
other component or messages sent on a message channel (e.g., MQ or JMS) and
the arguments or contents thereof.

direct output

A test may interact with the system under test (SUT) directly via its “front door”
or public application programming interface (API) or indirectly via its “back
door.” The responses received by the test from the SUT via its front door are

Also known as:
DfT

www.it-ebooks.info

http://www.it-ebooks.info/

793 Glossary

direct outputs of the SUT. Direct outputs may consist of the return values of
method or function calls, updated arguments passed by reference, exceptions
raised by the SUT, or messages received on a message channel (e.g., MQ or JMS)
from the SUT.

document-driven development

A development process that focuses on producing documents that describe
how the code will be structured and then coding from those documents. Docu-
ment-driven development is normally associated with “big design up front”
(BDUF, also known as “waterfall”) software development. Contrast this with
test-driven development, which focuses on producing working code one test
at a time.

domain layer

The layer of a Layered Architecture [DDD, PEAA, WWW] that corresponds to
the domain model. See Eric Evans’ book, Domain-Driven Design [DDD].

domain model

A model of the problem domain that may form the basis of the object model
in the business domain layer of a software application. See Eric Evans’ book,
Domain-Driven Design [DDD].

DTO

Short for the Data Transfer Object [CJ2EEP] design pattern.

dynamic binding

Deferring the decision about which piece of software to transfer control to until
execution time. The same method name can be used to invoke different behavior
(method bodies) based on the class of the object on which it is invoked; the latter
class is determined only at execution time. Dynamic binding is the opposite of
static binding; it is also called polymorphism (from the Latin, meaning “taking
on many shapes”).

EDD

See example-driven development.

www.it-ebooks.info

http://www.it-ebooks.info/

emergent design

The opposite of BDUF (big design up front). Emergent design involves letting
the right design be discovered as the software slowly evolves to pass one test at
a time during test-driven development.

endoscopic testing

A testing technique pioneered by the authors of the original Mock Object paper
[ET], which involves testing software from the inside.

entity object

An object that represents an entity concept from a domain. Entity objects typi-
cally have a life cycle that is represented as their state. Contrast this with a
service object, which has no single state. EJB Entity Beans are one example of
an entity object.

equivalence class

A test condition identifi cation technique that reduces the number of tests
required by grouping together inputs that should result in the same output or
that should exercise the same logic in the system. This organization allows
us to focus our tests on key boundary values at which the expected output
changes.

example-driven development (EDD)

A reframing of the test-driven development process to focus on the “executable
specifi cation” aspect of the tests. The act of providing examples is more intuitive
to many people; it doesn’t carry the baggage of “testing” software that doesn’t
yet exist.

exercise SUT

After the fi xture setup phase of testing, the test stimulates the system under
test (SUT) logic that is to be tested. This phase of the testing process is called
exercise SUT.

Also known as:
domain object

Glossary794

www.it-ebooks.info

http://www.it-ebooks.info/

expectation

What a test expects the system under test (SUT) to have done. When we are
using Mock Objects to verify the indirect outputs of the SUT, we load each
Mock Object with the expected method calls (including the expected argu-
ments); these are called the expectations.

expected outcome

The outcome that we verify after exercising the system under test (SUT).
A Self-Checking Test verifi es the expected outcome using calls to Assertion
Methods.

exploratory testing

Interactive testing of an application without a specifi c script in hand. The tester
“explores” the system, making up theories about how it should behave based
on what the application has already done and then testing those theories to see
if they hold up. While there is no rigid plan, exploratory testing is a disciplined
activity that is more likely to fi nd real bugs than rigidly scripted tests.

eXtreme Programming

An agile software development methodology that showcases pair programming,
automated unit testing, and short iterations.

factory

A method, object, or class that exists to build other objects.

false negative

A situation in which a test passes even though the system under test (SUT) is
not working properly. Such a test is said to give a false-negative indication or a
“false pass.”

See also: false positive.

false positive

A situation in which a test fails even though the system under test (SUT) is
working properly. Such a test is said to give a false-positive indication or a

 Glossary 795

www.it-ebooks.info

http://www.it-ebooks.info/

“false failure.” The terminology comes from statistical science and relates to
our attempt to calculate the probability of some observation error occurring.
For example, in medicine we run tests to fi nd out if a medical condition is pres-
ent; if it is, the test is “positive.” It is useful to know the probability that a test
might indicate that a condition (such as diabetes) is present when it is not—that
is, a false “positive.” If we think of software tests as a way of determining
whether a condition (a particular defect or bug) is present, a test that reports a
defect (a test failure or error) when it is not, in fact, present is giving us a false
positive.

See also: false negative. Wikipedia [Wp] has an extensive description under
the topic “Type I and type II errors.”

fault insertion test

A kind of test in which a deliberate fault is introduced in one part of the sys-
tem to verify that another part reacts to the error appropriately. Initially, the
faults were related to hardware but the same concept is now applied to software
faults as well. Replacing a depended-on component (DOC) with a Saboteur that
throws an exception is an example of a software fault insertion test.

feature

A testable unit of functionality that can be built onto the evolving software sys-
tem. In eXtreme Programming, a user story corresponds roughly to a feature.

Fit test

A test that uses the Fit testing framework; most commonly a customer test.

fi xture

See test fi xture (disambiguation).

fi xture (Fit)

In Fit, the Adapter [GOF] that interprets the Fit table and invokes methods on
the system under test (SUT), thereby implementing a Data-Driven Test. For
meanings in other contexts, see test fi xture (disambiguation), test fi xture (in
xUnit), and test fi xture (in NUnit).

Glossary796

www.it-ebooks.info

http://www.it-ebooks.info/

fi xture holding class variable

A class variable of a Testcase Class that is used to hold a reference to the test
fi xture. It typically holds a reference to a Shared Fixture.

fi xture holding instance variable

An instance variable of a Testcase Object that is used to hold a reference to the
test fi xture. It typically holds a reference to a Fresh Fixture that is set up using
Implicit Setup.

fi xture holding local variable

A local variable of a Test Method that is used to hold a reference to the test fi x-
ture. It typically holds a reference to a Fresh Fixture that is set up within the test
method using In-line Setup or returned from Delegated Setup.

fi xture setup

Before the desired logic of the system under test (SUT) can be exercised, the pre-
conditions of the test need to be set up. Collectively, all objects (and their states)
are called the test fi xture (or test context), and the phase of the test that sets up
the test fi xture is called fi xture setup.

fi xture teardown

After a test is run, the test fi xture that was built by the test should be destroyed.
This phase of the test is called fi xture teardown.

fl uent interface

A style of object constructor API that results in easy-to-understand statements.
The Confi guration Interface provided by the Mock Object toolkit JMock is an
example of a fl uent interface.

front door

The public application programming interface (API) of a piece of software. Con-
trast this with the back door.

 Glossary 797

www.it-ebooks.info

http://www.it-ebooks.info/

function pointer

From Wikipedia [Wp]: “A function pointer is a type of pointer in C, C++, D, and
other C-like programming languages. When dereferenced, a function pointer in-
vokes a function, passing it zero or more arguments like a normal function.”

functional test (common usage)

A black-box test of the end-user functionality of an application. The agile com-
munity is trying to avoid this usage of “functional test” because of the potential for
confusion when talking about verifying functional (as opposed to nonfunctional or
extra-functional properties) properties of a unit or component. This book uses the
terms “customer test” and “acceptance test” for a functional test of the entire appli-
cation and “unit test” for a functional test of an individual unit of the application.

functional test (contrast with extra-functional test)

A test that verifi es the functionality implemented by a piece of software. De-
pending on the scope of the software, a functional test may be a customer test,
a unit test, or a component test.

In some circles a functional test is a customer test. This usage becomes con-
fusing, however, when we talk about testing nonfunctional or extra-functional
properties of the system under test (SUT). This book uses the terms “customer
test” and “acceptance test” for a functional test of the entire application and
“unit test” for a functional test of an individual unit of the application.

garbage collection

A mechanism that automatically recovers the memory used by any objects that
are no longer accessible. Many modern object-oriented programming environ-
ments provide garbage collection.

global variable

A variable that is global to a whole program. A global variable is accessible
from anywhere within the program and never goes out of scope, although the
memory to which it refers can be deallocated explicitly.

green bar

Many Graphical Test Runners portray the progress of the test run using a prog-
ress bar. As long as all tests have passed, the bar stays green. When any tests fail,
the indicator changes to a red bar.

Also known as:
procedure

variable,
delegate in

.NET languages

Glossary798

www.it-ebooks.info

http://www.it-ebooks.info/

GUI

Graphical user interface.

happy path

The “normal” path of execution through a use case or through the software that
implements it; also known as the “sunny day” scenario. Nothing goes wrong,
nothing out of the ordinary happens, and we swiftly and directly achieve the
user’s or caller’s goal.

Hollywood principle

What directors in Hollywood tell aspiring actors at mass-casting calls: “Don’t
call us; we’ll call you (if we want you).” In software, this concept is often called
inversion of control (IOC).

IDE

Integrated development environment. An environment that provides tools to edit,
compile, execute, and (typically) test code within a single development tool.

incremental delivery

A method of building and deploying a software system in stages and releasing
the software as each stage, called an “increment,” is completed. This approach
results in earlier delivery to the user of a working system, where the capabilities
of the system increase over time. In agile methods, the increment of functionality
is the feature or user story. Incremental delivery goes beyond iterative develop-
ment and incremental development, however, by actually putting the functional-
ity into production on a regular basis. This idea is summarized by the following
mantra: “Deliver early, deliver often.”

incremental development

A method of building a software system in stages such that the functionality built
to date can be tested before the next stage is started. This approach allows for
the earlier delivery to the user of a working system, where the capabilities of the
system increase over time (see incremental delivery). In agile methods, the incre-
ment of functionality is the feature or user story. Incremental development goes
beyond iterative development, however, in that it promises to produce working,

 Glossary 799

www.it-ebooks.info

http://www.it-ebooks.info/

testable, and potentially deployable software with every iteration. With incre-
mental delivery, we also promise to “Deliver early, deliver often.”

indirect input

When the behavior of the system under test (SUT) is affected by the values returned
by another component whose services it uses, we call those values the indirect in-
puts of the SUT. Indirect inputs may consist of actual return values of functions,
updated (out) parameters of procedures or subroutines, and any errors or excep-
tions raised by the depended-on component (DOC). Testing of the SUT behavior
with indirect inputs requires the appropriate control point on the “back side” of
the SUT. We often use a Test Stub to inject the indirect inputs into the SUT.

indirect output

When the behavior of the system under test (SUT) includes actions that cannot
be observed through the public application programming interface (API) of the
SUT but that are seen or experienced by other systems or application compo-
nents, we call those actions the indirect outputs of the SUT. Indirect outputs
may consist of method or function calls to another component, messages sent
on a message channel (e.g., MQ or JMS), and records inserted into a database or
written to a fi le. Verifi cation of the indirect output behaviors of the SUT requires
the use of appropriate observation points on the “back side” of the SUT. Mock
Objects are often used to implement the observation point by intercepting the
indirect outputs of the SUT and comparing them to the expected values.

See also: outgoing interface.

inner class

A class in Java that is defi ned inside another class. Anonymous inner classes are
defi ned inside a method, whereas inner classes are defi ned outside a method. In-
ner classes are often used when defi ning Hard-Coded Test Doubles.

instance method

A method that is associated with an object rather than the class of the object. An
instance method is accessible only from within or via an instance of the class.
It is typically used to access information that is expected to differ from one
instance to another.

Also known as:
outgoing
interface

800 Glossary

Also known as:
member
variable

www.it-ebooks.info

http://www.it-ebooks.info/

The exact syntax used to access an instance method varies from language to
language. The most common syntax is objectReference.methodName(). When
referenced from within other methods on the object, some languages require an
explicit reference to the object (e.g., this.methodName() or self methodName);
other languages simply assume that any unqualifi ed references to methods are
references to instance methods.

instance variable

A variable that is associated with an object rather than the class of object. An instance
variable is accessible only from within or via an instance of the class. It is typically
used to access information that is expected to differ from one instance to another.

interaction point

A point at which a test interacts with the system under test (SUT). An interac-
tion point can be either a control point or an observation point.

interface

In general, a fully abstract class that defi nes only the public methods that all im-
plementers of the interface must provide. In Java, an interface is a type defi nition
that does not provide any implementation. In most single-inheritance languages,
a class may implement any number of interfaces, even though it can extend
(subclass) only one other class.

inversion of control (IOC)

A control paradigm that distinguishes software frameworks from “toolkits” or
components. The framework calls the software plug-in (rather than the reverse).
In the real world, inversion of control is often called the Hollywood principle.
With the advent of automated unit testing, a class of framework known as an
inversion of control framework has sprung up specifi cally to simplify the re-
placement of depended-on components (DOCs) with Test Doubles.

IOC

See inversion of control.

Also known as:
member
function

 Glossary 801

www.it-ebooks.info

http://www.it-ebooks.info/

iterative development

A method of building a software system using time-boxed “iterations.” Each
iteration is planned and then executed. At the end of the “time box,” the status
of all the work is reviewed and the next iteration is planned. The strict time-
boxing prevents “runaway development,” where the state of the system is never
assessed because nothing is ever fi nished. Unlike incremental development, itera-
tive development does not require working software to be delivered at the end
of each iteration.

layer-crossing test

A test that either sets up the fi xture or verifi es the outcome using Back Door
Manipulation, which involves using a “back door” of the system under test
(SUT) such as a database. Contrast this with a round-trip test.

legacy software

In the test-driven development community, any software that does not have a
Safety Net of Fully Automated Tests.

liveware

The people who use our software. They are usually assumed to be much more
intelligent than either the software or the hardware but they can also be rather
unpredictable.

local variable

A variable that is associated with a block of code rather than an object or class.
A local variable is accessible only from within the code block; it goes out of
scope when the block of code returns to its caller.

manual test

A test that is executed by a person interacting with the system under test (SUT).
The user may be following some sort of “test script” (not to be confused with a
Scripted Test) or doing ad hoc or exploratory testing.

Also known as:
wetware,

mushware

Glossary802

www.it-ebooks.info

http://www.it-ebooks.info/

meta object

An object that holds data that controls the behavior of another object. A meta
object protocol is the interface by which the meta object is constructed or con-
fi gured.

metatest

A test that verifi es the behavior of one or more tests. Such a test is mostly used
during test-driven development, when we are writing tests as examples or course
material and we want to ensure that tests are, indeed, failing to illustrate a par-
ticular problem.

method attribute

An attribute that is placed on a method in the source code to tell the compiler
or runtime system that this method is “special.” In some xUnit family members,
method attributes are used to indicate that a method is a Test Method.

mixin

Functionality intended to be inherited by another class as part of that class’s
implementation without implying specialization (“kind of” relationship) of the
providing class.

“The term mixin comes from an ice cream store in Somerville, Massachu-
setts, where candies and cakes were mixed into the basic ice cream fl avors. This
seemed like a good metaphor to some of the object-oriented programmers who
used to take a summer break there, especially while working with the object-
oriented programming language SCOOPS” (SAMS Teach Yourself C++ in 21
Days, 4th ed., p. 458).

module

In legacy programming environments (and probably a few current ones, too):
An independently compilable unit of source code (e.g., the “fi le I/O module”)
that is later linked into the fi nal executable. Unlike a component, this kind of
module is typically not independently deployable. It may or may not have a cor-
responding set of unit tests or component tests.

When describing the functionality of a software system or application: A
complete vertical chunk of the application that provides a particular piece of
functionality (e.g., the “Customer Management Module”) that can be used

 Glossary 803

www.it-ebooks.info

http://www.it-ebooks.info/

somewhat independently of the other modules. It would have a corresponding
set of acceptance tests and may be the unit of incremental delivery.

need-driven development

A variation on the test-driven development process where code is written from the
outside in and all depended-on code is replaced by Mock Objects that verify the
expected indirect outputs of the code being written. This approach ensures that
the responsibilities of each software unit are well understood before they are
coded, by virtue of having unit tests inspired by examples of real usage. The
outermost layer of software is written using storytest-driven development. It
should have examples of usage by real clients (e.g., a user interface driving the
Service Facade [CJ2EEP]) in addition to the customer tests.

object-relational mapping (ORM)

A middleware component that translates between the object-oriented domain
model of an application and the table-oriented view presented by a relational
database management system.

observation point

The means by which the test observes the behavior of the system under test
(SUT). This kind of interaction point can be used to inspect the post-exercise
state of the SUT or to monitor interactions between the SUT and its depended-
on components. Some observation points are provided strictly for the tests; they
should not be used by the production code because they may expose private
implementation details of the SUT that cannot be depended on not to change.

ORM

See object-relational mapping.

outgoing interface

A component (e.g., a class or a collection of classes) often depends on other
components to implement its behavior. The interfaces it uses to access these
components are known as outgoing interfaces, and the inputs and outputs trans-
mitted via test interfaces are called indirect inputs and indirect outputs. Outgoing
interfaces may consist of method or function calls to another component, mes-
sages sent on a message channel (e.g., MQ or JMS), or records inserted into a

Glossary804

www.it-ebooks.info

http://www.it-ebooks.info/

database or written to a fi le. Testing the behavior of the system under test (SUT)
with outgoing interfaces requires special techniques such as Mock Objects to
intercept and verify the usage of outgoing interfaces.

pattern

A solution to a recurring problem. A pattern has a context in which it is typically
applied and forces that help you choose one pattern over another based on that
context. Design patterns are a particular kind of pattern. Organizational pat-
terns are not discussed in this book.

pattern language

A collection of patterns that work together to lead the reader from a very high-
level problem to a very detailed solution customized for his or her particular
context. When a pattern language achieves this goal, it is said to be “genera-
tive”; this characteristic differentiates a pattern language from a simple collec-
tion of patterns. Refer to “A Pattern Language for Pattern Writing” [APLfPW]
to learn more about how to write a pattern language.

polymorphism

Dynamic binding. The word is derived from the Latin, meaning “taking on
many shapes.”

presentation layer

The part of a Layered Architecture [DDD, PEAA, WWW] that contains the
presentation logic.

presentation logic

The logic embedded in the presentation layer of a business system. It decides
which screen to show, which items to put on menus, which items or buttons to
enable or disable, and so on.

procedure variable

A variable that refers to a procedure or function rather than a piece of data.
It allows the code to be called to be determined at runtime (dynamic binding)
rather than at compile time. The actual procedure to be invoked is assigned to

Also known as:
function pointer,
delegate
(in .NET
languages)

 Glossary 805

www.it-ebooks.info

http://www.it-ebooks.info/

the variable either during program initialization or during execution. Procedure
variables were a precursor to true object-oriented programming languages
(OOPLs). Early OOPLs such as C++ were built by using tables (arrays) of data
structures containing procedure variables to implement the method (member
function) dispatch tables for classes.

production

In IT shops, the environment in which applications being used by real users run.
This environment is distinguished from the various testing environments, such
as “acceptance,” “integration,” “development,” and “qual” (short for “quality
assessment or assurance”).

production code

In IT shops, the environment in which applications run is often called produc-
tion. Production code is the code that we are writing for eventual deployment
to this environment, whether the code is to be shipped in a product or deployed
into “production.” Compare to “test code.”

programmer test

A developer test.

project smell

A symptom that something has gone wrong on the project. Its underlying root
cause is likely to be one or more code smells or behavior smells. Because project
managers rarely run or write tests, project smells are likely the fi rst hint they
have that something may be less than perfect in test automation land.

pull

A concept from lean manufacturing that states that things should be produced
only once a real demand for them exists. In a “pull system,” upstream (i.e.,
subcomponent) assembly lines produce only enough products to replace the
items withdrawn from the pool that buffers them from the downstream assem-
bly lines. In software development, this idea can be translated as follows: “We
should only write methods that have already been called by other software and
only handle those cases that the other software actually needs.” This approach
avoids speculation and the writing of unnecessary software, which is one of

Also known as:
pull system

Glossary806

www.it-ebooks.info

http://www.it-ebooks.info/

software development’s key forms of inventory (which is considered waste in
lean systems).

red bar

Many Graphical Test Runners portray the progress of the test run using a prog-
ress bar that starts off green in color. When any tests fail, this indicator changes
to a red bar.

refactoring

Changing the structure of existing code without changing its behavior. Refactor-
ing is used to improve the design of existing code, often as a fi rst step before add-
ing new functionality. The authoritative source for information on refactoring is
Martin Fowler’s book [Ref].

refl ection

The ability of a software program to examine its own structure as it is executing.
Refl ection is often used in software development tools to facilitate adding new
capabilities.

regression test

A test that verifi es that the behavior of a system under test (SUT) has not
changed. Most regression tests are originally written as either unit tests or ac-
ceptance tests, but are subsequently included in the regression test suite to keep
that functionality from being accidentally changed.

result verifi cation

After the exercise SUT phase of the Four-Phase Test, the test verifi es that the
expected (correct) outcome has actually occurred. This phase of the test is called
result verifi cation.

retrospective

A process whereby a team reviews its processes and performance for the pur-
pose of identifying better ways of working. Retrospectives are often conducted
at the end of a project (called a project retrospective) to collect data and make
recommendations for future projects. They have more impact if they are done

Also known as:
postmortem,
postpartum

 Glossary 807

www.it-ebooks.info

http://www.it-ebooks.info/

regularly during a project. Agile projects tend to do retrospectives after at least
every release (called a release retrospective) and often after every iteration
(called an iteration retrospective.)

root cause analysis

A process wherein the cause of a failure or bug is traced back to all possible
contributing factors. A root cause analysis helps us avoid treating symptoms by
identifying the true sources of our problems. A number of techniques for doing
root cause analysis exist, including Toyota’s “fi ve why’s” [TPS].

round-trip test

A test that interacts only via the “front door” (public interface) of the system
under test (SUT). Compare with layer-crossing test.

service object

An object that provides a service to other objects. Service objects typically do
not have a life cycle of their own; any state they do contain tends to be an aggre-
gate of the states of the entity objects that they vend. The interface of a service
object is often defi ned via a Service Facade [CJ2EEP] class. EJB Session Beans
are one example of a service object.

setter

A method provided by an object specifi cally to set the value of one of its attri-
butes. By convention, it either has the same name as the attribute or its name
includes the prefi x “set” (e.g., setName).

smell

A symptom of a problem. A smell doesn’t necessarily tell us what is wrong, be-
cause it may have several possible causes. A smell must pass the “sniffability
test”—that is, it must grab us by the nose and say, “Something is wrong here.” To
fi gure out exactly what the smell means, we must perform root cause analysis.

We classify smells based on where we fi nd them. The most common kinds
are (production) code smells, test smells, and project smells. Test smells may be
either (test) code smells or behavior smells.

Also known as:
service

component

808 Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

spike

In agile methods such as eXtreme Programming, a time-boxed experiment used
to obtain enough information to estimate the effort required to implement a new
kind of functionality.

stateless

An object that does not maintain any state between invocations of its opera-
tions. That is, each request is self-contained and does not require that the same
server object be used for a series of requests.

static binding

Resolving exactly which piece of software we will transfer control to at compile
time. Static binding is the opposite of dynamic binding.

static method

In Java, a method that the compiler resolves at compile time (rather than at run-
time using dynamic binding). This behavior is the opposite of dynamic (or virtual
in C++). A static method is also a class method because only class methods can
be resolved at compile time in Java. A static method is not necessarily a class
method in all languages, however. For example:

Assert.assertEquals(message, expected, actual);

static variable

In Java, a variable (fi eld) that the compiler resolves at compile time rather than
at runtime using dynamic binding. A static variable is also a class variable be-
cause only class variables can be resolved at compile time in Java. Being static
(i.e., not dynamic) does not necessarily imply that something is associated with
a class (rather than an instance) in all languages.

STDD

See storytest-driven development.

story

See user story.

 Glossary 809

www.it-ebooks.info

http://www.it-ebooks.info/

storytest

A customer test that is the “confi rmation” part of the user story “trilogy”: card,
conversation, confi rmation [XPC]. When the storytests are written before any
software is developed, we call the process storytest-driven development.

storytest-driven development (STDD)

A variation of the test-driven development process that entails writing (and
usually automating) customer tests before the development of the correspond-
ing functionality begins. This approach ensures that integration of the various
software units verifi ed by the unit tests results in a usable whole. The term
“storytest-driven development” was fi rst coined by Joshua Kerievsky as part of
his methodology “Industrial XP” [IXP].

STTCPW

“The simplest thing that could possibly work.” This approach is commonly
used on XP projects when someone is over-engineering the software by trying to
anticipate future requirements.

substitutable dependency

A software component may depend on any number of other components. If we are
to test this component by itself, we must be able to replace the other components
with Test Doubles—that is, each component must be a substitutable dependency.
We can turn something into a substitutable dependency in several ways, including
Dependency Injection, Dependency Lookup, and Test-Specifi c Subclass.

synchronous test

A test that interacts with the system under test (SUT) using normal (synchronous)
method calls that return the results that the test will make assertions against. A
synchronous test does not need to coordinate its steps with those of the SUT; this
activity is managed automatically by the runtime system. Contrast this with an
asynchronous test, which runs in a separate thread of control from the SUT.

system under test (SUT)

Whatever thing we are testing. The SUT is always defi ned from the perspective of
the test. When we are writing unit tests, the SUT is whatever class (also known

Also known as:
AUT, CUT,
MUT, OUT

Glossary810

www.it-ebooks.info

http://www.it-ebooks.info/

as CUT), object (also known as OUT), or method (also known as MUT) we are
testing; when we are writing customer tests, the SUT is probably the entire appli-
cation (also known as AUT) or at least a major subsystem of it. The parts of the
application that we are not verifying in this particular test may still be involved
as a depended-on component (DOC).

task

The unit of work assignment (or volunteering) in eXtreme Programming. One
or more tasks may be involved in delivering a user story (a feature).

TDD

See test-driven development.

test

A procedure, whether manually executed or automated, that can be used to
verify that the system under test (SUT) is behaving as expected. Often called a
test case.

test automater

The person or project role that is responsible for building the tests. Sometimes
a “subject matter expert” may be responsible for coming up with the tests to be
automated by the test automater.

test case

Usually a synonym for “test.” In xUnit, it may also refer to a Testcase Class,
which is actually a Test Suite Factory as well as a place to put a set of related
Test Methods.

test code

Code written specifi cally to test other code (either production or other test code).

test condition

A particular behavior of the system under test (SUT) that we need to verify. It
can be described as the following collection of points:

 Glossary 811

www.it-ebooks.info

http://www.it-ebooks.info/

• If the SUT is in some state S1, and

• We exercise the SUT in some way X, then

• The SUT should respond with R and

• The SUT should be in state S2.

test context

Everything a system under test (SUT) needs to have in place so that we can ex-
ercise the SUT for the purpose of verifying its behavior. For this reason, RSpec
calls the test fi xture (as used in xUnit) a “context.”

Context: a set fruits with
 contents = {apple, orange, pear}
Exercise: remove orange from the fruits set
Verify: fruits set contents = {apple, pear}

In this example, the fi xture consists of a single set and is created directly in the
test. How we choose to construct the fi xture has very far-reaching ramifi cations
for all aspects of test writing and maintenance.

test database

A database instance that is used primarily for the execution of tests. It should
not be the same database as is used in production!

test debt

I fi rst became aware of the concept of various kinds of debts via the Industrial
XP mailing list on the Internet. The concept of “debt” is a metaphor for “not
doing enough of” something. To get out of debt, we must put extra effort into
the something we were not doing enough of. Test debt arises when we do not
write all of the necessary tests. As a result, we have “unprotected code” in that
the code could break without causing any tests to fail.

test-driven bug fi xing

A way of fi xing bugs that entails writing and automating unit tests that reproduce
each bug before we begin debugging the code and fi xing the bug; the bug-fi xing
extension of test-driven development.

812 Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

test-driven development (TDD)

A development process that entails writing and automating unit tests before the
development of the corresponding units begins. TDD ensures that the responsi-
bilities of each software unit are well understood before they are coded. Unlike
test-fi rst development, test-driven development is typically meant to imply that
the production code is made to work one test at a time (a characteristic called
emergent design).

See also: storytest-driven development.

test driver

A person doing test-driven development.

test driving

The act of doing test-driven development.

test error

When a test is run, an error that keeps the test from running to completion. The
error may be explicitly raised or thrown by the system under test (SUT) or by
the test itself, or it may be thrown by the runtime system (e.g., operating system,
virtual machine). In general, it is much easier to debug a test error than a test
failure because the cause of the problem tends to be much more local to where
the test error occurs. Compare with test failure and test success.

test failure

When a test is run and the actual outcome does not match the expected out-
come. Compare with test error and test success.

test-fi rst development

A development process that entails writing and automating unit tests before the
development of the corresponding units begins. Test-fi rst development ensures
that the responsibilities of each software unit are well understood before that
unit is coded. Unlike test-driven development, test-fi rst development merely says
that the tests are written before the production code; it does not imply that the
production code is made to work one test at a time (emergent design). Test-fi rst

 Glossary 813

www.it-ebooks.info

http://www.it-ebooks.info/

development may be applied at the unit test or customer test level, depending on
which tests we have chosen to automate.

test fi xture (disambiguation)

In generic xUnit: All the things we need to have in place to run a test and expect
a particular outcome. The test fi xture comprises the pre-conditions of the test;
that is, it is the “before” picture of the SUT and its context. See also: test fi xture
(in xUnit) and test context.

In NUnit and VbUnit: The Testcase Class. See also: test fi xture (in NUnit).
In Fit: The adapter that interprets the Fit table and invokes methods on the

system under test (SUT), thereby implementing a Data-Driven Test.
See also: fi xture (Fit).

test fi xture (in NUnit)

In NUnit (and in VbUnit and most .NET implementations of xUnit): The Test-
case Class on which the Test Methods are implemented. We add the attribute
[TestFixture] to the class that hosts the Test Methods.

Some members of the xUnit family assume that an instance of the Testcase
Class “is a” test context; NUnit is a good example. This interpretation assumes
we are using the Testcase Class per Fixture approach to organizing the tests.
When we choose to use a different way of organizing the tests, such as Testcase
Class per Class or Testcase Class per Feature, this merging of the concepts of
test context and Testcase Class can be confusing. This book uses “test fi xture”
to mean “the pre-conditions of the test” (also known as the test context) and
Testcase Class to mean “the class that contains the Test Methods and any code
needed to set up the test context.”

test fi xture (in xUnit)

In xUnit: All the things we need to have in place to run a test and expect a par-
ticular outcome (i.e., the test context). Some variants of xUnit keep the concept
of the test context separate from the Testcase Class that creates it; JUnit and its
direct ports fall into this camp. Setting up the test fi xture is the fi rst phase of the
Four-Phase Test. For meanings of the term “test fi xture” in other contexts, see
test fi xture (disambiguation).

Glossary814

Also known as:
Testcase Class

Also known as:
test context

www.it-ebooks.info

http://www.it-ebooks.info/

test-last development

A development process that entails executing unit tests after the development of
the corresponding units is fi nished. Unlike test-fi rst development, test-last devel-
opment merely says that testing should be done before the code goes into pro-
duction; it does not imply that the tests are automated. Traditional QA (quality
assurance) testing is inherently test-last development unless the tests are pre-
pared as part of the requirements phase of the project and are shared with the
development team.

test maintainer

The person or project role responsible for maintaining the tests as the system
or application evolves. Most commonly, this person is enhancing the system
with new functionality or fi xing bugs. The test maintainer could also be who-
ever is called in when the automated tests fail for whatever reason. If the test
maintainer is doing the enhancements by writing tests fi rst, he or she is also a
test driver.

test package

In languages that provide packages or namespaces, a package or name that
exists for the purpose of hosting Testcase Classes.

test reader

Anyone who has reason to read tests, including a test maintainer or test driver.
This individual may be reading the tests primarily for the purpose of under-
standing what the system under test (SUT) is supposed to do (Tests as Docu-
mentation) or as part of a test maintenance or software development activity.

test result

A test or test suite can be run many times, each time yielding a different test
result.

test run

A test or test suite can be run many times, each time yielding a different test
result. Some commercial test automation tools record the results of each test run
for prosperity.

 Glossary 815

www.it-ebooks.info

http://www.it-ebooks.info/

test smell

A symptom of a problem in test code. A smell doesn’t necessarily tell us what is
wrong because it may have several possible causes. Like all smells, a test smell
must pass the “sniffability test”—that is, it must grab us by the nose and say,
“Something is wrong here.”

test-specifi c equality

Tests and the system under test (SUT) may have different ideas about what con-
stitutes equality of two objects. In fact, this understanding may differ from one
test to another. It is not advisable to modify the defi nition of equality within the
SUT to match the tests’ expectations, as this practice leads to Equality Pollution.
Making individual Equality Assertions on many attributes of an object is not the
answer either, as it can result in Obscure Tests and Test Code Duplication. In-
stead, build one or more Custom Assertions that meets your tests’ needs.

test stripper

A step or program in the build process that removes all the test code from the
compiled and linked executable.

test success

A situation in which a test is run and all actual outcomes match the expected
outcomes. Compare with test failure and test error.

test suite

A way to name a collection of tests that we want to run together.

Unifi ed Modeling Language (UML)

From Wikipedia [Wp]: “[A] nonproprietary specifi cation language for object
modeling. UML is a general-purpose modeling language that includes a stan-
dardized graphical notation used to create an abstract model of a system,
referred to as a UML model.”

Glossary816

www.it-ebooks.info

http://www.it-ebooks.info/

unit test

A test that verifi es the behavior of some small part of the overall system. What
turns a test into a unit test is that the system under test (SUT) is a very small subset
of the overall system and may be unrecognizable to someone who is not involved
in building the software. The actual SUT may be as small as a single object or
method that is a consequence of one or more design decisions, although its behav-
ior may also be traced back to some aspect of the functional requirements. Unit
tests need not be readable, recognizable, or verifi able by the customer or business
domain expert. Contrast this with a customer test, which is derived almost entirely
from the requirements and which should be verifi able by the customer. In eXtreme
Programming, unit tests are also called developer tests or programmer tests.

use case

A way of describing the functionality of a system in terms of what its users are
trying to achieve and what the system needs to do to achieve their goals. Unlike
user stories, use cases may cover many different scenarios yet are often not test-
able independently.

user acceptance test (UAT)

See acceptance test.

user story

The unit of incremental development in eXtreme Programming. We must INVEST
in good user stories—that is, each user story must be Independent, Negotiable,
Valuable, Estimatable, Small, and Testable [XP123]. A user story corresponds
roughly to a “feature” in non-eXtreme Programming terminology and is typically
decomposed into one or more tasks to be carried out by project team members.

verify outcome

After the exercise SUT phase of the test, the test compares the actual outcome—
including returned values, indirect outputs, and the post-test state of the system
under test (SUT)—with the expected outcome. This phase of the test is called
the verify outcome phase.

Also known as:
story, feature

 Glossary 817

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

819

References

[AP]
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis

Published by: John Wiley (1998)
ISBN: 0-471-19713-0
By: William J. Brown et al.

This book describes common problems on software projects and suggests
how to eliminate them by changing the architecture or project organization.

[APLfPW]
A Pattern Language for Pattern Writing

In: Pattern Languages of Program Design 3 [PLoPD3], pp. 529–574.
Published by: Addison-Wesley (1998)
By: Gerard Meszaros and James Doble

As the patterns community has accumulated experience in writing and
reviewing patterns and pattern languages, we have begun to develop insight
into pattern-writing techniques and approaches that have been observed to
be particularly effective at addressing certain recurring problems. This pat-
tern language attempts to capture some of these “best practices” of pattern
writing, both by describing them in pattern form and by demonstrating them
in action. As such, this pattern language is its own running example.

Further Reading

Full text of this paper is available online in PDF form at http://Pattern-
WritingPatterns.gerardmeszaros.com and in HTML form, complete with a
hyperlinked table of contents, at http://hillside.net/patterns/writing/pattern-
writingpaper.htm.

www.it-ebooks.info

http://Pattern-WritingPatterns.gerardmeszaros.com
http://Pattern-WritingPatterns.gerardmeszaros.com
http://hillside.net/patterns/writing/patternwritingpaper.htm
http://hillside.net/patterns/writing/patternwritingpaper.htm
http://www.it-ebooks.info/

[ARTRP]
Agile Regression Testing Using Record and Playback

http://AgileRegressionTestPaper.gerardmeszaros.com
By: Gerard Meszaros and Ralph Bohnet

This paper was presented at XP/Agile Universe 2003. It describes how we
built a “record and playback” test mechanism into a safety-critical appli-
cation to make it easier to regression test it as it was ported from OS2 to
Windows.

[CJ2EEP]
Core J2EE™ Patterns, Second Edition: Best Practices and Design Strategies

Published by: Prentice Hall (2003)
ISBN: 0-131-42246-4
By: Deepak Alur, Dan Malks, and John Crupi

This book catalogs the core patterns of usage of Enterprise Java Beans
(EJB), which are a key part of the Java 2 Enterprise Edition. Examples
include Session Facade [CJ2EEP].

[DDD]
Domain-Driven Design: Tackling Complexity in the Heart of Software

Published by: Addison-Wesley (2004)
ISBN: 0-321-12521-5
By: Eric Evans

This book is a good introduction to the process of using a domain model
as the heart of a software system.

Readers learn how to use a domain model to make complex
development effort more focused and dynamic. A core of best
practices and standard patterns provides a common language for
the development team.

References820

www.it-ebooks.info

http://AgileRegressionTestPaper.gerardmeszaros.com
http://www.it-ebooks.info/

[ET]
Endo-Testing

http://www.connextra.com/aboutUs/mockobjects.pdf
By: Tim Mackinnon, Steve Freeman, and Philip Craig

This paper, which was presented at XP 2000 in Sardinia, describes the use
of Mock Objects (page 544) to facilitate testing of the behavior of an object
by monitoring its behavior while it is executing.

Unit testing is a fundamental practice in eXtreme Programming,
but most nontrivial code is diffi cult to test in isolation. It is hard
to avoid writing test suites that are complex, incomplete, and
diffi cult to maintain and interpret. Using Mock Objects for
unit testing improves both domain code and test suites. These
objects allow unit tests to be written for everything, simplify
test structure, and avoid polluting domain code with testing
infrastructure.

[FaT]
Frameworks and Testing

In: Proceedings of XP2002
http://www.agilealliance.org/articles/roockstefanframeworks/fi le
By: Stefan Roock

This paper is mandatory reading for framework builders. It describes four
kinds of automated testing that should accompany a framework, including
the ability to test a plug-in’s compliance with the framework’s protocol and
a testing framework that makes it easier to test applications built on the
framework.

 References 821

www.it-ebooks.info

http://www.connextra.com/aboutUs/mockobjects.pdf
http://www.agilealliance.org/articles/roockstefanframeworks/file
http://www.it-ebooks.info/

[FitB]
Fit for Developing Software

Published by: Addison-Wesley (2005)
ISBN: 0-321-26934-9
By: Rick Mugridge and Ward Cunningham

This book is a great introduction to the use of Data-Driven Tests (page 288)
for preparing customer tests, whether as part of agile or traditional projects.
This is what I wrote for inclusion as “advance praise”:

Wow! This is the book I wish I had on my desk when I did
my fi rst storytest-driven development project. It explains the
philosophy behind the Fit framework and a process for using it
to interact with the customers to help defi ne the requirements of
the project. It makes Fit so easy and approachable that I wrote
my fi rst FitNesse tests before I even I fi nished the book.

Further Reading

More information on Fit can be found at Ward’s Web site, http://fi t.c2.com.

[GOF]
Design Patterns: Elements of Reusable Object-Oriented Software

Published by: Addison-Wesley (1995)
ISBN: 0-201-63361-2
By: Erich Gamma, Richard Helm, Ralph Johnson, and John M.Vlissides

This book started the patterns movement. In it, the “Gang of Four” describe
23 recurring patterns in object-oriented software systems. Examples include
Composite [GOF], Factory Method [GOF], and Facade [GOF].

References822

www.it-ebooks.info

http://fit.c2.com
http://www.it-ebooks.info/

[HoN]
Hierarchy of Needs

From Wikipedia [Wp]:

Maslow’s hierarchy of needs is a theory in psychology that Abraham
Maslow proposed in his 1943 paper “A Theory of Human Motivation,”
which he subsequently extended. His theory contends that as humans meet
“basic needs,” they seek to satisfy successively “higher needs” that occupy
a set hierarchy. . . .

Maslow’s hierarchy of needs is often depicted as a pyramid consisting of
fi ve levels: The four lower levels are grouped together as defi ciency needs
associated with physiological needs, while the top level is termed growth
needs associated with psychological needs. While our defi ciency needs must
be met, our being needs are continually shaping our behavior. The basic
concept is that the higher needs in this hierarchy only come into focus once
all the needs that are lower down in the pyramid are mainly or entirely
satisfi ed. Growth forces create upward movement in the hierarchy, whereas
regressive forces push prepotent needs farther down the hierarchy.

[IEAT]
Improving the Effectiveness of Automated Tests

http://FasterTestsPaper.gerardmeszaros.com.
By: Gerard Meszaros, Shaun Smith, and Jennitta Andrea

This paper was presented at XP2001 in Sardinia, Italy. It describes a number
of issues that reduce the speed and effectiveness of automated unit tests and
suggests ways to address them.

[IXP]
Industrial XP

http://ixp.industriallogic.com.

Industrial XP is a “branded” variant of eXtreme Programming created
by Joshua Kerievsky of Industrial Logic. It includes a number of practices
required to scale eXtreme Programming to work in larger enterprises, such
as “Project Chartering.”

 References 823

www.it-ebooks.info

http://FasterTestsPaper.gerardmeszaros.com
http://ixp.industriallogic.com
http://www.it-ebooks.info/

[JBrains]
JetBrains

http://www.jetbrains.com.

JetBrains builds software development tools that automate (among other
things) refactoring. Its Web site contains a list of all refactorings that the
company’s various tools support, including some that are not described in
[Ref].

[JNI]
JUnit New Instance

http://www.martinfowler.com/bliki/JunitNewInstance.html

This article by Martin Fowler provides the background for why it makes
sense for JUnit and many of its ports to create a new instance of the Testcase
Class (page 373) for each Test Method (page 348).

[JuPG]
JUnit Pocket Guide

Published by: O’Reilly
ISBN: 0-596-00743-4
By: Kent Beck

This 80-page, small-format book is an excellent summary of key features
of JUnit and best practices for writing tests. Being small enough to fi t in a
pocket, it doesn’t go into much detail, but it does give us an idea of what is
possible and where to look for details.

[LSD]
Lean Software Development : An Agile Toolkit

Published by: Addison-Wesley (2003)
ISBN: 0-321-15078-3
By: Mary Poppendieck and Tom Poppendieck

This excellent book describes 22 “thinking tools” that are used to work
quickly and effectively in many domains. The authors describe how to
apply these tools to software development. If you want to understand why
agile development methods work, this book is a must read!

References824

www.it-ebooks.info

http://www.jetbrains.com
http://www.martinfowler.com/bliki/JunitNewInstance.html
http://www.it-ebooks.info/

[MAS]
Mocks Aren’t Stubs

http://www.martinfowler.com/articles/mocksArentStubs.html
By: Martin Fowler

This article clarifi es the difference between Mock Objects (page 544) and
Test Stubs (page 529). It goes on to describe the two fundamentally differ-
ent approaches to test-driven development engendered by these differences:
“classical TDD” versus “mockist TDD.”

[MRNO]
Mock Roles, Not Objects

Paper presented at OOPSLA 2004 in Vancouver, British Columbia, Canada.
By: Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes

This paper describes the use of Mock Objects (page 544) to help the developer
discover the signatures of the objects on which the class being designed and
tested depends. This approach allows the design of the supporting classes to
be deferred until after the client classes have been coded and tested. Members
can obtain this paper at the ACM portal http://portal.acm.org/ft_gateway.
cfm?id=1028765&type=pdf; nonmembers of the ACM can fi nd it at http://
joe.truemesh.com/MockRoles.pdf.

[PEAA]
Patterns of Enterprise Application Architecture

Published by: Addison-Wesley (2003)
ISBN: 0-321-12742-0
By: Martin Fowler

This book is an indispensable handbook of architectural patterns that
are applicable to any enterprise application platform. It is a great way
to understand how the various approaches to developing large business
systems differ.

 References 825

www.it-ebooks.info

http://www.martinfowler.com/articles/mocksArentStubs.html
http://portal.acm.org/ft_gateway.cfm?id=1028765&type=pdf
http://portal.acm.org/ft_gateway.cfm?id=1028765&type=pdf
http://joe.truemesh.com/MockRoles.pdf
http://joe.truemesh.com/MockRoles.pdf
http://www.it-ebooks.info/

[PiJV1]
Patterns in Java, Volume 1: A Catalog of Reusable Design Patterns Illustrated
with UML

Published by: Wiley Publishing (2002)
ISBN: 0-471-22729-3
By: Mark Grand

A catalog of design patterns commonly used in Java.

Further Reading
http://www.markgrand.com/id1.html

[PLoPD3]
Pattern Languages of Program Design 3

Published by: Addison-Wesley (1998)
ISBN: 0-201-31011-2
Edited by: Robert C. Martin, Dirk Riehle, and Frank Buschmann

A collection of patterns originally workshopped at the Pattern Languages
of Programs (PLoP) conferences.

[POSA2]
Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent
and Networked Objects

Published by: Wiley & Sons (2000)
ISBN: 0-471-60695-2
By: Douglas Schmidt, Michael Stal, Hans Robert, and Frank Buschmann

This book is the second volume in the highly acclaimed Pattern-Oriented
Software Architecture (POSA) series. POSA1 was published in 1996;
hence this book is referred to as POSA2. It presents 17 interrelated pat-
terns that cover core elements of building concurrent and networked sys-
tems: service access and confi guration, event handling, synchronization,
and concurrency.

References826

www.it-ebooks.info

http://www.markgrand.com/id1.html
http://www.it-ebooks.info/

[PUT]
Pragmatic Unit Testing

Published by: Pragmatic Bookshelf
ISBN: 0-9745140-2-0 (In C# with NUnit)
ISBN: 0-9745140-1-2 (In Java with JUnit)
By: Andy Hunt and Dave Thomas

This book by the “pragmatic programmers” introduces the concept of
automated unit testing in a very approachable way. Both versions lower
the entry barriers by focusing on the essentials without belaboring the
fi ner points. They also include a very good section on how to determine
which tests you need to write for a particular class or method.

[RDb]
Refactoring Databases: Evolutionary Database Design

Published by: Addison-Wesley (2006)
ISBN: 0-321-29353-3
By: Pramodkumar J. Sadalage and Scott W. Ambler

This book is a good introduction to techniques for applying agile principles
to development of database-dependent software. It describes techniques
for eliminating the need to do “big design up front” on the database. It
deserves to be on the bookshelf of every agile developer who needs to work
with a database. A summary of the contents can be found at http://www.
ambysoft.com/books/refactoringDatabases.html.

[Ref]
Refactoring: Improving the Design of Existing Code

Published by: Addison-Wesley (1999)
ISBN: 0-201-48567-2
By: Martin Fowler et al.

This book offers a good introduction to the process of refactoring software.
It introduces a number of “code smells” and suggests ways to refactor the
code to eliminate those smells.

 References 827

www.it-ebooks.info

http://www.ambysoft.com/books/refactoringDatabases.html
http://www.ambysoft.com/books/refactoringDatabases.html
http://www.it-ebooks.info/

[RTC]
Refactoring Test Code

Paper presented at XP2001 in Sardinia, Italy
By: Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok

This paper was the fi rst to apply the concept of “code smells” to test code.
It described a collection of 12 “test smells” and proposed a set of refac-
torings that could be used to improve the code. The original paper can be
found at http://homepages.cwi.nl/~leon/papers/xp2001/xp2001.pdf.

[RtP]
Refactoring to Patterns

Published by: Addison-Wesley (2005)
ISBN: 0-321-21335-1
By: Joshua Kerievsky

This book deals with the marriage of refactoring (the process of improving
the design of existing code) with patterns (the classic solutions to recurring
design problems). Refactoring to Patterns suggests that using patterns to
improve an existing design is a better approach than using patterns early in
a new design, whether the code is years old or minutes old. We can improve
designs with patterns by applying sequences of low-level design transfor-
mations, known as refactorings.

[SBPP]
Smalltalk Best Practice Patterns

Published by: Prentice Hall (1997)
ISBN: 0-13-476904-X
By: Kent Beck

This book describes low-level programming patterns that are used in good
object-oriented software. On the back cover, Martin Fowler wrote:

Kent’s Smalltalk style is the standard I aim to emulate in my
work. This book does not just set that standard, but also explains
why it is the standard. Every Smalltalk developer should have it
close at hand.

While Smalltalk is no longer the dominant object-oriented development
language, many of the patterns established by Smalltalk programmers have
been adopted as the standard way of doing things in the mainstream object-
oriented development languages. The patterns in this book remain highly
relevant even if the examples are in Smalltalk.

References828

www.it-ebooks.info

http://homepages.cwi.nl/~leon/papers/xp2001/xp2001.pdf
http://www.it-ebooks.info/

[SCMP]
Software Confi guration Management Patterns: Effective Teamwork, Practical
Integration

Published by: Addison-Wesley (2003)
ISBN: 0-201-74117-1
By: Steve Berczuk (with Brad Appleton)

This book describes, in pattern form, the how’s and why’s of using a source
code confi guration management system to synchronize the activities of
multiple developers on a project. The practices described here are equally
applicable to agile and traditional projects.

Further Reading

http://www.scmpatterns.com

http://www.scmpatterns.com/book/pattern-summary.html

[SoC]
Secrets of Consulting: A Guide to Giving and Getting Advice Successfully

Published by: Dorset House (1985)
ISBN: 0-932633-01-3
By: Gerald M. Weinberg

Full of Gerry’s laws and rules, such as “The Law of Raspberry Jam: The
farther you spread it, the thinner it gets.”

[TAM]
Test Automation Manifesto

http://TestAutomationManifesto.gerardmeszaros.com
By: Shaun Smith and Gerard Meszaros

This paper was presented at the August 2003 XP/Agile Universe meeting in
New Orleans, Louisiana. It describes a number of principles that should be
followed to make automated testing using xUnit cost-effective.

 References 829

www.it-ebooks.info

http://www.scmpatterns.com
http://www.scmpatterns.com/book/pattern-summary.html
http://TestAutomationManifesto.gerardmeszaros.com
http://www.it-ebooks.info/

[TDD-APG]
Test-Driven Development: A Practical Guide

Published by: Prentice Hall (2004)
ISBN: 0-13-101649-0
By: David Astels

This book provides a good introduction to the process of driving software
development with unit tests. Part III of the book is an end-to-end example of
using tests to drive a small Java project.

[TDD-BE]
Test-Driven Development: By Example

Published by: Addison-Wesley (2003)
ISBN: 0-321-14653-0
By: Kent Beck

This book provides a good introduction to the process of driving software
development with unit tests. In the second part of the book, Kent illustrates
TDD by building a Test Automation Framework (page 298) in Python. In an
approach he likens to “doing brain surgery on yourself,” he uses the emerg-
ing framework to run the tests he writes for each new capability. It is a very
good example of both TDD and bootstrapping.

[TDD.Net]
Test-Driven Development in Microsoft .NET

Published by: Microsoft Press (2004)
ISBN: 0-735-61948-4
By: James W. Newkirk and Alexei A. Vorontsov

This book is a good introduction to the test-driven development process
and the tools used to do it in Microsoft’s. Net development environment.

[TI]
Test Infected

http://junit.sourceforge.net/doc/testinfected/testing.htm
By: Eric Gamma and Kent Beck

This article was fi rst published in the Java Report issue called “Test Infected—
Programmers Love Writing Tests.” It has been credited by some as being what
led to the meteoric rise in JUnit’s popularity. This article is an excellent intro-
duction to the how’s and why’s of test automation using xUnit.

References830

www.it-ebooks.info

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://www.it-ebooks.info/

[TPS]
Toyota Production System: Beyond Large-Scale Production

Published by: Productivity Press (1995)
ISBN: 0-915-2991-4-3
By: Taiichi Ohno

This book, which was written by the father of just-in-time manufacturing,
describes how Toyota came up with the system driven by its need to pro-
duce a small number of cars while realizing economies of scale. Among the
techniques described here are “kanban” and the “fi ve why’s.”

[UTF]
Unit Test Frameworks: Tools for High-Quality Software Development

Published by: O’Reilly (2004)
ISBN: 0-596-00689-6
By: Paul Hamill

This book is a brief introduction to the most popular implementations of
xUnit.

[UTwHCM]
Unit Testing with Hand-Crafted Mocks

http://refactoring.be/articles/mocks/mocks.html
By: Sven Gorts

This paper summarizes and names a number of idioms related to Hand-Built
Test Doubles (see Confi gurable Test Double on page 522)—specifi cally, Test
Stubs (page 529) and Mock Objects (page 544). Sven Gorts writes:

Many of the unit tests I wrote over the last couple of years use
mock objects in order to test the behavior of a component in
isolation of the rest of the system. So far, despite the availability
of various mocking frameworks, each of the mock classes I’ve
used has been handwritten. In this article I do some retrospection
and try to wrap up the mocking idioms I’ve found most useful.

 References 831

www.it-ebooks.info

http://refactoring.be/articles/mocks/mocks.html
http://www.it-ebooks.info/

832

[UTwJ]
Unit Testing in Java: How Tests Drive the Code

Published by: Morgan Kaufmann
ISBN: 1-55860-868-0
By: Johannes Link, with contributions by Peter Fröhlich

This book does a very nice job of introducing many of the concepts and
techniques of unit testing. It uses intertwined narratives and examples to
introduce a wide range of techniques. Unfortunately, due to the format, it
can be diffi cult to fi nd something at a later time.

[VCTP]
The Virtual Clock Test Pattern

http://www.nusco.org/docs/virtual_clock.pdf
By: Paolo Perrotta

This paper describes a common example of a Responder called Virtual Clock
[VCTP]. The author uses the Virtual Clock Test Pattern as a Decorator [GOF]
for the real system clock, which allows the time to be “frozen” or resumed.
One could use a Hard-Coded Test Stub or a Confi gurable Test Stub just as
easily for most tests. Paolo Perrotta summarizes the thrust of his article:

We can have a hard time unit-testing code that depends on
the system clock. This paper describes both the problem and a
common, reusable solution.

[WEwLC]
Working Effectively with Legacy Code

Published by: Prentice Hall (2005)
ISBN: 0-13-117705-2
By: Michael Feathers

This book describes how to get your legacy software system back under
control by retrofi tting automated unit tests. A key contribution is a set
of “dependency-breaking techniques”—mostly refactorings—that can help
you isolate the software for the purpose of automated testing.

References

www.it-ebooks.info

http://www.nusco.org/docs/virtual_clock.pdf
http://www.it-ebooks.info/

833 Database Refactoring

[Wp]
Wikipedia

From Wikipedia [Wp]: “Wikipedia is a multilingual, Web-based free con-
tent encyclopedia project. The name Wikipedia is a blend of the words
‘wiki’ and ‘encyclopedia.’ Wikipedia is written collaboratively by volun-
teers, allowing most articles to be changed by almost anyone with access
to the Web site.”

[WWW]
World Wide Web

A reference annotation of [WWW] indicates that the information was
found on the World Wide Web. You can use your favorite search engine to
fi nd a copy by searching for it by the title.

[XP123]
XP123

http://xp123.com
Web site hosted by: William Wake

A Web site hosting various resources for teams doing eXtreme Program-
ming.

[XPC]
XProgramming.com

http://xprogramming.com
Web site hosted by: Ron Jeffries

A Web site hosting various resources for teams doing eXtreme Program-
ming. One of the better places to look for links to software downloads for
unit test automation tools including members of the xUnit family.

www.it-ebooks.info

http://xp123.com
http://xprogramming.com
http://www.it-ebooks.info/

834 References

[XPE]
eXtreme Programming Explained, Second Edition: Embrace Change

Published by: Addison-Wesley (2005)
ISBN: 0-321-27865-8
By: Kent Beck

This book kick-started the eXtreme Programming movement. The fi rst edi-
tion (0-201-61641-6) described a recipe consisting of 12 practices backed
by principles and values. The second edition focuses more on the values
and principles. It breaks the practices into a primary set and a corollary set;
the latter set should be attempted only after the primary practices are mas-
tered. Among the practices both editions describe are pair programming
and test-driven development.

www.it-ebooks.info

http://www.it-ebooks.info/

835

A

ABAP Object Unit, 747
ABAP Unit, 747
Abstract Setup Decorator

defi ned, 449
example, 453

acceptance tests. See also
customer tests

defi ned, 785
why test?, 19

accessor methods, 785
ACID, 785
acknowledgements, xxvii–xxviii
action components, 280
agile method

defi ned, 785–786
property tests, 52

AllTests Suite
example, 594–595
introduction, 13
when to use, 593

annotation
defi ned, 786
Test Methods, 351

Anonymous Creation Method
defi ned, 417
example, 420

Hard-Coded Test Data
solution, 196

preface, xxi
anonymous inner class

defi ned, 786
Test Stub examples, 535–536

Ant, 753
AntHill, 753
anti-pattern (AP)

defi ned, 786
test smells, xxxv

AOP (aspect-oriented programming)
defi ned, 786
Dependency Injection, 681
retrofi tting testability, 148

API (application programming inter-
face)

Creation Methods, 416
database as SUT, 336
defi ned, 786
Test Utility Method, 600

architecture, design for testability.
See design-for-testability

arguments
messages describing, 371–372
as parameters (Dummy

Arguments), 729
role-describing, 725

Index

www.it-ebooks.info

http://www.it-ebooks.info/

836 Index

Arguments, Dummy, 729
Ariane 5 rocket, 218
aspect-oriented programming (AOP)

defi ned, 786
Dependency Injection, 681
retrofi tting testability, 148

Assertion Message
of Assertion Method, 364
pattern description, 370–372

Assertion Method
Assertion Messages, 364
calling built-in, 363–364
choosing right, 364–365
Equality Assertions, 365
examples, 368–369
Expected Exception

Assertions, 366
Fuzzy Equality Assertions,

365–366
implementation, 363
as macros, 364
motivating example, 367–368
overview, 362–363
refactoring, 368
Single-Outcome Assertions,

366–367
Stated Outcome Assertions, 366

Assertion Roulette
Eager Tests, 224–226
impact, 224
introduction, 14
Missing Assertion Message,

226–227
symptoms, 224

assertions
Built-in, 110–111
custom. See Custom Assertion
defi ned, 786
diagramming notation, xlii
Domain Assertions, 476,

481–482

improperly coded in Neverfail
Tests, 274

introduction, 77
Missing Assertion Messages,

226–227
reducing Test Code Duplication,

114–119
refactoring, xlvi–xlix
Self-Checking Tests, 107–108
unit testing, 6
Verify One Condition per Test,

46–47
assumptions, xxxix–xl
Astels, Dave, 110
asynchronous tests

defi ned, 787
Hard-To-Test Code, 210–211
Humble Object, 696–697
Slow Tests, 255–256
testability, 70–71

Attachment Method
defi ned, 418
example, 421

attributes
defi ned, 787
dummy, 729
hiding unnecessary, 303–304
One Bad Attribute. See One

Bad Attribute
parameters as, 608
Suite Fixture Setup, 442–443
Test Discovery using, 397
Test Selection, 403–405

Automated Exercise Teardown
defi ned, 505
example, 508

Automated Fixture Teardown,
504–505

Automated Teardown
ensuring Repeatable Tests, 27
examples, 507–508

www.it-ebooks.info

http://www.it-ebooks.info/

837 Index

implementation, 504–505
Interacting Test Suites, 232
Interacting Tests solution, 231
motivating example, 505–506
overview, 503–504
of persistent fi xtures, 99–100
refactoring, 506–507
resource leakage solution, 233
when to use, 504

automated unit testing
author’s motivation, xxiv–xxv
fragile test problem, xxxi–xxxii
introduction, xxx–xxxii

B

back door, defi ned, 787
Back Door Manipulation

control/observation points, 66–67
database as SUT API, 336
Expected State Specifi cation, 464
fi xture setup, 333–335
implementation, 330–332
motivating example, 332
overview, 327–328
refactoring, 333
setup, 329
teardown, 330
verifi cation, 329–330
verifi cation using Test Spy, 333
when to use, 328

Back Door Setup
controlling indirect inputs, 128
fi xture design, 59
Prebuilt Fixtures, 430–431
transient fi xtures, 86

Back Door Verifi cation, 130–133
BDUF (big design upfront)

defi ned, 787
design for testability, 65
test automation strategy, 49

Beck, Kent, xxii
sniff test, xxxviii
Test Automation Frameworks,

301
test smells, 9
Testcase Class per Class, 618
xUnit, 57

Behavior Sensitivity
cause of Fragile Tests, 242–243
caused by Overspecifi ed

Software, 246
defi ned, xxxi
smells, 14

behavior smells, 223–247
Assertion Roulette. See

Assertion Roulette
defi ned, 10–11, 788
Erratic Tests. See Erratic Test
Fragile Tests. See Fragile Test
Frequent Debugging. See

Frequent Debugging
Manual Intervention. See

Manual Intervention
overview, 13–15
Slow Tests. See Slow Tests

Behavior Verifi cation
approach to Self-Checking

Tests, 108
examples, 472–473
implementation, 469–471
indirect outputs, 179–180
motivating example, 471–472
overview, 468–469
refactoring, 472
vs. state, 36
test results, 112–114
using Mock Objects. See

Mock Object
using Test Spies. See Test Spy
using Use the Front Door

First, 40

www.it-ebooks.info

http://www.it-ebooks.info/

838 Index

verifying indirect outputs,
130–133

when to use, 469
behavior-driven development

defi ned, 787–788
Testcase Class per Fixture

usage, 632
Behavior-Exposing Subclass

Test-Specifi c Subclass
example, 587

when to use, 580
Behavior-Modifying Subclass

Defi ning Test-Specifi c Equality,
588–589

Substituted Singleton,
586–587

Test Stub, 584–585
when to use, 580

Bespoke Assertion. See Custom
Assertion

bimodal tests, 687
binding, static

defi ned, 809
Dependency Injection, 678–679

black box
defi ned, 788
Remoted Stored Procedure

Tests, 656
block closures

defi ned, 788
Expected Exception Tests,

354–355
blocks

cleaning up fi xture teardown
logic, l–liv

defi ned, 788
try/fi nally. See try/fi nally block

boundary values
defi ned, 788
erratic tests, 238
Minimal Fixtures, 303
result verifi cation patterns, 478

BPT (Business Process Testing)
defi ned, 753
Recorded Tests, 280
Test Automation

Frameworks, 301
Bug Repellent, 22
Buggy Test

introduction, 12–13
reducing risk, 181
symptoms, 260–262

Built-in Assertion
calling, 363–364
introduction, 110–111

built-in self-tests
defi ned, 788
test fi le organization, 164

built-in test recording
defi ned, 281
example, 281–282

business logic
defi ned, 789
developer testing, xxx
development process, 4–5
Layer Tests example, 344–345
testing without databases,

169–171
Business Process Testing (BPT).

See BPT (Business Process Testing)

C

Calculated Value. See also Derived
Value

Loop-Driven Tests, 615
Production Logic in Test

solution, 205
Canoo WebTest

defi ned, 753
Scripted Tests, 286
Test Automation

Frameworks, 301
test automation tools, 53

www.it-ebooks.info

http://www.it-ebooks.info/

839 Index

capacity tests, 52
Capture/Playback Test.

See Recorded Test
Chained Test

customer testing, 6
examples, 459–460
implementation, 456–457
motivating example, 457–458
overview, 454–455
refactoring, 458
Shared Fixture strategies, 64–65
Shared Fixtures, 104–105, 322
when to use, 455–456
xUnit introduction, 57

class attributes
defi ned, 789
Test Discovery using, 397
Testcase Class Selection using,

404–405
class methods

defi ned, 789
with Test Helper, 645, 646

class variables
defi ned, 789
Suite Fixture Setup, 442

classes
diagramming notation, xlii
as fi xtures, 59
Test Double, 569–570, 572–573
Testcase. See Testcase Class

class-instance duality, 374
Cleanup Method, 602
closure, block

defi ned, 788
Expected Exception Tests,

354–355
Cockburn, Alistair

pattern naming, 578
service layer tests, 339

code
inside-out development, 34–36
organization. See test

organization

samples, xli–xlii
writing tests, 27–29

code smells
Conditional Test Logic. See

Conditional Test Logic
defi ned, 10–11, 789
Hard-To-Test Code. See

Hard-To-Test Code
obscure tests. See Obscure Test
Test Code Duplication. See Test

Code Duplication
Test Logic in Production. See

Test Logic in Production
types of, 16–17

coding idioms
defi ned, xxxv
design patterns, 792

collisions
Interacting Tests, 229–231
Shared Fixtures, 318

Command object
introduction, 82
Testcase Object as, 382

Command-Line Test Runner
Assertion Message, 371
defi ned, 379–380
introduction, 79
Missing Assertion Message,

226–227
commercial recorded tests

refactored, 283–284
tools, 282–283

common location, Test Discovery,
397–398

Communicate Intent
defi ned, 41
refactoring Recorded Tests to,

283–284
compiler macro, Test Method

Discovery, 395–396
Complex Teardown, 206–207
Complex Test. See Dependency

Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

840 Index

Component Broker. See Dependency
Lookup

Component Registry, 688
component tests

defi ned, 790
layer-crossing tests, 69
per-functionality, 52
test automation philosophies,

34–36
test strategy patterns, 340

components
defi ned, 790
depended-on component. See

DOC (depended-on
component)

Composite object, defi ned, 82
Concerns, Separation of, 28–29
concrete classes, 581
Condition Verifi cation Logic, 203–204
Conditional Test Logic

vs. Assertion Method, 363
avoidance, 119–121
avoiding via Custom

Assertion, 475
avoiding via Guard Assertion,

490–493
causes, 201–202
Complex Teardown, 206–207
Condition Verifi cation Logic,

203–204
Flexible Tests, 202–203
impact, 201
introduction, 16
Multiple Test Conditions,

207–208
Production Logic in Test,

204–205
symptoms, 200
Test Methods, 155

Confi gurable Mock Object, 546–547.
See also Confi gurable Test Double

Confi gurable Registry, 691–692

Confi gurable Test Double
examples, 564–567
implementation, 559–562
installing, 141–142
as kind of Test Double, 528
motivating example, 562–563
overview, 558
refactoring, 563
when to use, 559

Confi gurable Test Stub. See also
Confi gurable Test Double

implementation, 532
indirect input control, 179

Confi guration Interface
examples, 564–566
implementation, 560

Confi guration Mode
example, 566–567
implementation, 560

Constant Value. See Literal Value
constants in Derived Value,

718–722
constructing Mock Object, 546
Constructor Injection

example, 683–684
implementation, 680–681
installing Test Doubles, 144

Constructor Test
defi ned, 351
example, 355–357
introduction, 77

constructors
defi ned, 790
problems with, 419

containers, Humble Container
Adapter, 698

Context Sensitivity
avoiding via Isolate the SUT,

43–44
defi ned, 245–246
introduction, xxxii, 14

continuous design, xxxiii

www.it-ebooks.info

http://www.it-ebooks.info/

841 Index

continuous integration
avoiding Lost Tests, 270
defi ned, 791
impact of Data-Driven Tests, 290
steps, 14

control points
defi ned, 791
testability, 66–67

Coplien, Jim, 576
CORBA standards, 744
cost effectiveness, Self-Checking

Tests, 107–108
costs, test automation, 20–21
Covey, Stephen, 121
CppUnit

defi ned, 748
Test Automation Frameworks,

300
Test Method enumeration, 401

Creation Method
Delegated Setup, 89–91,

411–414
eliminating unnecessary

objects/attributes, 303–304
examples, 420–423
as Hard-Coded Test Data

solution, 196
hybrid setup, 93
implementation, 418–419
motivating example, 419
overview, 415–416
persistent fi xtures

teardown, 100
preface, xxiii
refactoring, 420
as Test Utility Method, 600
when to use, 416–418
writing simple tests, 28

cross-functional tests, 52–53
cross-thread failure assertion, 274
Cruise Control, 754
CsUnit, 748

CSV fi les, xUnit Data-Driven
Test, 296

CUnit, 748
Cunningham, Ward, xxv, 290
Custom Assertion

as Conditional Verifi cation
Logic solution, 204

examples, 480–484
implementation, 477–478
Indirect Testing solution,

198–199
Irrelevant Information

solution, 193
motivating example, 478–480
overview, 474–475
reducing Test Code Duplication,

116–117
refactoring, 480
Test Utility Methods, 602
when to use, 475–477
writing simple tests, 28

Custom Assertion test
example, 483–484
implementation, 477–478

Custom Equality Assertion, 476
customer tests

defi ned, 791
Eager Tests cause, 225
Missing Unit Test, 271
overview, 5–6
per-functionality, 51
as Scripted Test, 285–287

Cut and Paste code reuse,
214–215

D

data access layer
database testing, 172–173
defi ned, 791
Slow Tests with Shared

Fixtures, 319

www.it-ebooks.info

http://www.it-ebooks.info/

842 Index

data leaks
avoiding with Delta Assertions,

486–487
Complex Teardown, 206

Data Loader, Back Door
Manipulation, 330–331

data minimization, 738–739
data population script, 434
Data Retriever, 331
Data Sensitivity

defi ned, 243–245
introduction, xxxii, 14

Data Transfer Object (DTO)
defi ned, 793
result verifi cation, 116

Database Extraction Script, 331
Database Partitioning Scheme

Data Sensitivity solution,
244–245

developer independence, 173
example, 653
Global Fixtures, 430
implementation, 652

database patterns, 649–675
Database Sandbox,

650–653
Stored Procedure Test,

654–660
Table Truncation Teardown,

661–667
Transaction Rollback

Teardown, 668–675
Database Population Script, 330
Database Sandbox

database testing, 168
design for testability, 7
pattern description, 650–653
as Test Run Wars solution,

236–237
Unrepeatable Tests cause, 235
when to use, 650

database testing, 167–174
overview, 167–169
persistent fi xtures, 313
testing without databases,

169–171
types of, 171–174

Database Transaction Rollback Tear-
down, 674–675

databases
fake. See Fake Database
as SUT API, 336
teardown, 100

Data-Driven Test
customer testing, 5
Fit framework example,

296–297
frameworks, 300
implementation, 290
implemented as Recorded

Test, 281
introduction, 83
motivating example, 293–294
overview, 288–289
principles, 48
reducing Test Code Duplication,

118–119
refactoring notes, 294
Test Suite Object Simulator, 293
using Fit framework,

290–292
via Naive xUnit Test Interpreter,

292–293
via Test Suite Object

Generator, 293
when to use, 289–290
xUnit with CSV input fi le, 296
xUnit with XML data fi le,

294–295
DB Schema per Test Runner

developer independence, 173
implementation, 651–652

www.it-ebooks.info

http://www.it-ebooks.info/

843 Index

DbUnit
Back Door Manipulation, 335
defi ned, 748
Expected State Specifi cation, 464

DDSteps, 754
Decorated Lazy Setup, 449–450
Decorator

Abstract Setup Decorator,
449, 453

Parameterized Setup Decorator,
452–453

Pushdown Decorator, 450
Setup. See Setup Decorator
Test Hook as, 710

Dedicated Database Sandbox, 651
Defect Localization

customer testing, 5
defi ned, 22–23
Frequent Debugging, 248
Keep Tests Independent Tests, 43
right-sizing Test Methods, 154
test automation philosophies, 34
unit testing, 6
Verify One Condition per Test, 45

defi ning tests
introduction, 76–78
suites of, 78–79

delays. See Slow Tests
Delegated Setup

example, 413–414
introduction, 77
matching with teardown code,

98–99
overview, 411–414
of transient fi xtures, 89–91
when to use, 412

Delegated Teardown
example, 514–515
overview, 511
of persistent fi xtures, 98–99
Table Truncation Teardown, 665

Delta Assertion
avoiding fi xture collisions, 101
as Data Sensitivity solution, 245
detecting data leakage with, 487
examples, 488–489
introduction, 111
pattern description, 485–486

depended-on component (DOC). See
DOC (depended-on component)

dependencies
Interacting Tests, 230–231
replacement with Test

Doubles, 739
replacing using Test Hooks,

709–712
retrofi tting testability, 148
test automation philosophies, 34
Test Dependency in Production,

220–221
test fi le organization, 165

Dependency Initialization Test, 352
Dependency Injection

design for testability, 7
examples, 683–685
implementation, 679–681
installing Test Doubles via,

143–144
Isolate the SUT, 44
motivating example, 682
overview, 678
Persistent Fresh Fixtures

avoidance, 62–63
refactoring, 682
testability improvement, 70
when database testing, 171
when to use, 678–679

Dependency Lookup
design for testability, 7
examples, 691–693
implementation, 688–689
installing Test Doubles, 144–145

www.it-ebooks.info

http://www.it-ebooks.info/

844 Index

Isolate the SUT, 44
motivating example, 690
names, 693–694
overview, 686
Persistent Fresh Fixtures,

62–63
refactoring, 690–691
when database testing, 171
when to use, 687–688

Derived Expectation
example, 720
when to use, 719

Derived Input, 719
Derived Value

examples, 719–722
overview, 718
when to use, 718–719

design patterns, xxxv, 792
design-for-testability

control points and observation
points, 66–67

defi ned, 792
divide and test, 71–72
ensuring testability, 65
interaction styles and testability

patterns, 67–71
overview, 7
Separation of Concerns, 28–29
test automation philosophies.

See test automation
philosophies

test automation principles, 40
test-driven testability, 66

design-for-testability patterns,
677–712

Dependency Injection. See
Dependency Injection

Dependency Lookup. See
Dependency Lookup

Humble Object. See Humble
Object

Test Hooks, 709–712

deterministic values, 238
developer independence, 173
developer testing

defi ned, 792
introduction, xxx

Developers Not Writing Tests, 13
development

agile, 239
behavior driven, 632, 787–788
document-driven, 793
EDD. See EDD (example-driven

development)
incremental, 33–34, 799–800
inside-out, 463
inside-out vs. outside in, 34–36
need-driven. See need-driven

development
outside-in, 469
process, 4–5
TDD. See TDD (test-driven

development)
test-fi rst. See test-fi rst

development
test-last. See test-last development

Diagnostic Assertion, 476–477
diagramming notation, xlii
Dialog, Humble. See Humble Dialog
direct output

defi ned, 792–793
verifi cation, 178

Direct Test Method Invocation, 401
disambiguation, test fi xtures, 814
Discovery, Test. See Test Discovery
Distinct Generated Values

Anonymous Creation
Methods, 417

Delegated Setup, 90
example, 725–726
Hard-Coded Test Data

solution, 196
implementation, 724
Unrepeatable Tests solution, 235

www.it-ebooks.info

http://www.it-ebooks.info/

845 Index

Distinct Values, 717
Do No Harm, 24–25
DOC (depended-on component)

Behavior Verifi cation, 469
control points and observation

points, 66–67
defi ned, 791–792
outside-in development, 35
replacing with Test Double.

See Test Double
retrieving. See Dependency

Lookup
terminology, xl–xli
Test Hook in, 712

Documentation, Tests as.
See Tests as Documentation

document-driven development,
793

Domain Assertion
defi ned, 476
example, 481–482

domain layer
defi ned, 793
test strategy patterns, 337

domain model, 793
Don’t Modify the SUT, 41–42
drivers, test

defi ned, 813
lack of Assertion Messages,

370
DRY (don’t repeat yourself), 28
DTO (Data Transfer Object)

defi ned, 793
result verifi cation, 116

Dummy Argument, 729
Dummy Attribute, 729
Dummy Object

confi guring, 141–142
defi ned, 133
as Test Double, 134–135, 526
as value pattern, 728–732
xUnit terminology, 741–744

dynamic binding
defi ned, 793
use in Dependency Injection, 679

Dynamically Generated Mock
Object, 550

Dynamically Generated Test Double
implementation, 561–562
providing, 140–141

Dynamically Generated Test Stub,
534–535

E

Eager Test
Assertion Roulette, 224–226
Fragile Tests, 240
Obscure Tests, 187–188
right-sizing Test Methods, 154

EasyMock
defi ned, 754
Test Doubles, 140

eCATT
defi ned, 754
Test Automation Frameworks,

301
Eclipse

Debugger, 110
defi ned, 754

economics of test automation, 20–21
EDD (example-driven development)

defi ned, 794
tests as examples, 33

effi ciency, 11
emergent design

vs. BDUF, 65
defi ned, xxxiii, 794

encapsulation
Creation Method. See Creation

Method
Dependency Lookup

implementation, 688–689
indirect outputs and, 126

www.it-ebooks.info

http://www.it-ebooks.info/

846 Index

Indirect Testing solution, 198
SUT API. See SUT API

Encapsulation
using Test Utility Methods.

See Test Utility Method
endoscopic testing (ET)

defi ned, 794
Mock Objects, 545
Test Doubles, 149

Ensure Commensurate Effort and
Responsibility, 47–48

Entity Chain Snipping
example, 536–537
testing with doubles, 149
when to use, 531

entity object, 794
enumeration

customer testing, 5
Suite of Suites built using, 389–391
test conditions in Loop-Driven

Tests, 614–615
Test Enumeration, 399–402
Test Suite Object built using, 388
xUnit organization

mechanisms, 153
Equality, Sensitivity

Fragile Tests, 246
test-fi rst development, 32

Equality Assertion
Assertion Methods, 365
Custom, 476
example, 368
Guard Assertion as, 491
introduction, 110
reducing Test Code

Duplication, 115
unit testing, 6

Equality Pollution, 221–222
equals method

Equality Pollution, 221–222
Expected State Specifi cation, 464
reducing Test Code Duplication,

115–116

equivalence class
Behavior Smells, 238
defi ned, 794
Untested Code, 272

Erratic Test
Automated Teardown and, 27
customer testing, 5
database testing, 168–169
impact, 228
Interacting Test Suites, 231–232
Interacting Tests, 229–231
introduction, 14–16
Lonely Tests, 232
Nondeterministic Tests,

237–238
Resource Leakage, 233
Resource Optimism, 233–234
symptoms, 228
Test Run Wars, 235–237
troubleshooting, 228–229
Unrepeatable Tests, 234–235

essential but irrelevant fi xture
setup, 425

ET (endoscopic testing)
defi ned, 794
Mock Object use for, 149, 545

example-driven development (EDD)
defi ned, 794
tests as examples, 33

examples, tests as, 33
exclamation marks, xlii
Executable, Humble. See Humble

Executable
Executable Specifi cation, 51
execution optimization, 180–181
exercise SUT

defi ned, 794
test phases, 359

expectations
defi ned, 795
Derived Expectations, 719, 720
messages describing, 371–372
naming conventions, 159

www.it-ebooks.info

http://www.it-ebooks.info/

847 Index

Expected Behavior Specifi cation
defi ned, 470–471
example, 473

Expected Behavior Verifi cation
defi ned, 112
indirect outputs, 131–132

Expected Exception Assertion
defi ned as Assertion Method,

365–366
example, 369

Expected Exception Test
Conditional Verifi cation Logic

solution, 204
introduction, 77
as Test Method, 350–351
using block closure, 354–355
using method attributes, 354
using try/catch, 353–354

Expected Object
reducing Test Code Duplication,

115–116
refactoring tests, xlv–xlviii
State Verifi cations, 109, 466–467
unit testing, 6

expected outcome, 795
Expected State Specifi cation,

464–465
expected values, 546–547
exploratory testing

cross-functionality, 53
defi ned, 795
Scripted Tests, 287

Expression Builders, 564–566
expressiveness gaps, 27–28
external resource setup, 740
external result verifi cation, 111–112
external test recording, 280
Extract Method

Creation Methods, 418
Custom Assertions, 117
Delegated Setup, 89
as Eager Tests solution, 225
example, xlvii

in persistent fi xture teardown, 98
refactoring Recorded Tests, 283

Extract Testable Component, 197,
735–736

eXtreme Programming
defi ned, 795
projects affected by Slow Tests,

319–321
eXtreme Programming Explained

(Beck), xxii

F

factories
defi ned, 795
Factory Method, 592–593
Object Factories, 145, 688

failed tests
due to Unfi nished Test

Assertions, 494–497
implementation, 80

“Fail-Pass-Pass”, 234–235
failure messages

Assertion Messages, 370–372
Built-in Assertions, 110–111
removing “if” statements, 120
Single-Outcome Assertions,

366–367
Fake Database

avoiding persistence, 101
database testing, 170
example, 556–557
Slow Component Usage

solution, 254
Slow Tests with Shared

Fixtures, 319
when to use, 553

Fake Object
confi guring, 141–142
customer testing, 6
defi ned, 134
examples, 556–557
implementation, 553–554

www.it-ebooks.info

http://www.it-ebooks.info/

848 Index

motivating example, 554–555
optimizing test execution, 180
overview, 551–552
refactoring, 555–556
as Test Double, 139, 525
when to use, 552–553
xUnit terminology, 741–744

Fake Service Layer, 553
Fake Web Services, 553
false negative, 795
false positive, 795–796
fault insertion tests

defi ned, 796
per-functionality, 52

Feathers, Michael, 40
Highly Coupled Code

solution, 210
Humble Object, 708
pattern naming, 576
retrofi tting testability, 148
Self Shunt, 578
test automation roadmap, 176
Unit Test Rulz, 307

features
defi ned, 796
right-sizing Test Methods,

156–157
Testcase Class per. See Testcase

Class per Feature
visibility/granularity in

Test-Specifi c Subclass,
581–582

feedback in test automation, xxix
fi le contention. See Test Run War
File System Test Runner, 380
Finder Method

accessing Shared Fixtures,
103–104

Mystery Guests solution, 190
when to use, 600–601

fi ne-grained testing, 33–34

Fit
Data-Driven Test example,

296–297
Data-Driven Test

implementation, 290–292
defi ned, 754–755, 796
Expected State Specifi cation, 464
fi xture defi nition, 59, 86
fi xture vs. Testcase Class, 376
Scripted Tests

implementation, 286
Test Automation

Framework, 301
test automation tools, 54
tests as examples, 33
vs. xUnit, 57

Fitnesse
Data-Driven Test

implementation, 290
defi ned, 755
Scripted Test

implementation, 286
“Five Whys”, 11
fi xture design

upfront or test-by-test, 36
Verify One Condition per

Test, 46
xUnit sweet spot, 58

fi xture holding class variables, 797
fi xture holding instance

variables, 797
fi xture setup

Back Door Manipulation, 329,
333–335

cleaning up, liv–lvii
defi ned, 797
Delegated Setup, 89–91
external resources, 740
Four-Phase Test, 358–361
Fresh Fixtures, 313–314
hybrid setup, 93

www.it-ebooks.info

http://www.it-ebooks.info/

849 Index

Implicit Setup, 91–93
In-Line Setup, 88–89
introduction, 77
matching with teardown code,

98–99
Shared Fixtures, 104–105
speeding up with doubles,

149–150
strategies, 60

fi xture setup patterns, 407–459
Chained Test. See Chained Test
Creation Method. See Creation

Method
Delegated Setup, 411–414
Implicit Setup, 424–428. See also

Implicit Setup
In-line Setup, 408–410. See also

In-line Setup
Lazy Setup. See Lazy Setup
Prebuilt Fixture. See Prebuilt

Fixture
Setup Decorator. See Setup

Decorator
Suite Fixture Setup. See Suite

Fixture Setup
Fixture Setup Testcase, 456
fi xture strategies

overview, 58–61
persistent fresh fi xtures, 62–63
shared fi xture strategies, 63–65

fi xture teardown
avoiding in persistent fi xtures,

100–101
Back Door Manipulation, 330
cleaning up, l–liv
Complex Teardown, 206–207
data access layer testing, 173
defi ned, 797
fi xture strategies, 60
Four-Phase Test, 358–361
Implicit Setup, 426

introduction, 77
Lazy Setup problems, 439
persistent fi xtures, 97–100
Persistent Fresh Fixtures, 314
refactoring, l–liv
Shared Fixtures, 105
transient fi xtures, 93–94
Verify One Condition per

Test, 46
fi xture teardown patterns, 499–519

Automated Teardown,
503–508

Garbage-Collected Teardown,
500–502

Implicit Teardown, 516–519.
See also Implicit Teardown

In-line Teardown, 509–515.
See also In-line Teardown

Table Truncation Teardown,
661–667

Transaction Rollback
Teardown. See Transaction
Rollback Teardown

fi xtures
collisions, 100–101
database testing, 168–169
defi ned, 796, 814
Four-Phase Test, 358–361
fresh. See Fresh Fixture
introduction, 78
Minimal. See Minimal Fixture
right-sizing Test Methods,

156–157
Shared. See Shared Fixture
speeding up setup with doubles,

149–150
Standard. See Standard Fixture
Testcase Class as, 376
Testcase Class per Fixture.

See Testcase Class per Fixture
transient. See transient fi xtures

www.it-ebooks.info

http://www.it-ebooks.info/

850 Index

Flexible Test, 202–203
fl uent interface, 797
For Tests Only, 219–220
foreign-key constraints, 663
forms, pattern, xxxiv–xxxv
Four-Phase Test

Custom Assertions, 478
fi xture design, 59
introduction, 76–78
Mock Object patterns, 546
pattern description, 358–361
unit testing, 6
Verify One Condition per Test, 46

Fowler, Martin, xxvi
code smells, 16
Creation Methods, 418
Custom Assertions, 117
Cut and Paste code reuse, 215
Delegated Setup, 89, 413
Eager Tests solution, 225
Multiple Test Conditions

solution, 208
pattern forms, xxxvi
refactoring, xxxix
refactoring Recorded Tests, 283
reusable test logic, 123
self-testing code, xxi
Standard Fixtures, 306
state vs. behavior

verifi cation, 36
test smells, 9
Testcase Object exception, 385

Fragile Fixture
defi ned, 246–247
introduction, 14, 16
setUp method misuse, 93

Fragile Test
Behavior Sensitivity, 242–243
Buggy Tests, 260
causes, 240–241
Context Sensitivity, 245–246

Data Sensitivity, 243–245
Fragile Fixture, 246–247
High Test Maintenance

Cost, 266
impact, 239
Interface Sensitivity, 241–242
introduction, xxiii, xxxi–xxxii,

13–14
Overspecifi ed Software, 246
Sensitivity Equality, 246
symptoms, 239
troubleshooting, 239–240

frameworks
Fit. See Fit
Test Automation Framework, 75,

298–301
Frequent Debugging

avoidance with Custom
Assertion, 475

causes, 248–249
impact, 249
introduction, 15
solution patterns, 249
symptoms, 248

Fresh Fixture
Creation Method. See Creation

Method
Data Sensitivity solution,

244–245
Delegated Setup, 411–414
example, 316
fi xture strategies, 60–61
implementation, 312
Implicit Setup, 424–428
Interacting Tests solution, 231
motivating example, 315
Mystery Guests solution, 190
overview, 311
persistent, 62–63, 313–314.

See also persistent fi xtures
refactoring, 315

www.it-ebooks.info

http://www.it-ebooks.info/

851 Index

setup, 313–314
test automation philosophies, 36
Test Run Wars solution, 236–237
transient, 61–62. See also

transient fi xtures
Transient Fresh Fixture, 314
when to use, 312

front door, 797
Front Door First

defi ned, 40–41
Overspecifi ed Software

avoidance, 246
Fully Automated Test

behavior smells and, 15
Communicate Intent and, 41
Manual Fixture Setup

solution, 251
minimizing untested code, 44–45
running, 25–26
unit testing, 6

functional tests
defi ned, 798
per-functionality, 50–52

Fuzzy Equality Assertion
defi ned, 365–366
example, 368–369
external result verifi cation,

111–112
introduction, 110

G

Gamma, Erich, 57
garbage collection, 798
Garbage-Collected Teardown

design-for-testability, 7
pattern description, 500–502
persistent fi xtures, 97
transient fi xtures, 87–88

General Fixture
database testing, 169
defi ned, 187

misuse of setUp method,
92–93

Obscure Tests, 190–192
Slow Tests, 255

Generated Value, 723–727
Geras, Adam, 280
Global Fixture, 430
global variables

defi ned, 798
instance variables as, 92

goals, test automation.
See test automation goals

Gorts, Sven, 537
granularity

test automation tools and,
53–54

Test-Specifi c Subclass,
581–582

Graphical Test Runner
clicking through to test code,

226–227
defi ned, 378–379
green bar, 26
introduction, 79, 300

graphical user interface (GUI).
See GUI (graphical user interface)

green bar, defi ned, 798
Guaranteed In-Line Teardown,

233
Guard Assertion

Conditional Verifi cation Logic
solution, 203–204

introduction, 80
pattern description, 490–493
removing “if” statements in

Test Method, 120
GUI (graphical user interface)

defi ned, 799
design for testability, 7
Interface Sensitivity, xxxii
testing with Humble

Dialogs, 696

www.it-ebooks.info

http://www.it-ebooks.info/

852 Index

H

Hand-Built Test Double. See also
Hard-Coded Test Double

Confi gurable Test Double,
560–561

providing, 140–141
Hand-Coded Mock Object, 548–550
hand-coded teardown, 97–98
Hand-Coded Test Stub, 533–534
Hand-Scripted Test. See also

Scripted Test
introduction, 75
tools for automating, 53–54

Hand-Written Test. See Scripted Test
happy path

defi ned, 799
Responder use, 530
Simple Success Tests, 349–350
test automation roadmap,

177–178
Hard-Coded Mock Object. See Hard-

Coded Test Double
Hard-Coded Setup Decorator

defi ned, 449
example, 451–452

Hard-Coded Test Data
causing Obscure Tests, 194–196
defi ned, 187
introduction, lv–lvii, 16

Hard-Coded Test Double
confi guring, 141–142
implementation, 527, 569–571
motivating example, 571
naming patterns, 576–578
overview, 568
refactoring, 572
Self Shunt/Loopback, 573
Subclassed Inner Test Double,

573–575, 578
Test Double Class, 572–573

testing with, 140–142
when to use, 569

Hard-Coded Test Spy. See
Hard-Coded Test Double

Hard-Coded Test Stub. See also
Hard-Coded Test Double

implementation, 531–532
indirect input control, 179

Hard-Coded Value, 103
Hard-To-Test Code

Asynchronous Code, 210–211
Buggy Tests, 261
code smells, 16
Developers Not Writing

Tests, 264
divide and test, 71–72
High Test Maintenance Cost,

266–267
Highly Coupled Code, 210
impact, 209
solution patterns, 209
symptoms, 209
Untestable Test Code, 211–212

hierarchy of test automation needs,
176–177

High Test Maintenance Cost
Conditional Test Logic, 200
In-Line Setup, 89
introduction, 12–13
smell description, 265–267

Higher Level Language
Custom Assertion, 117
Interface Sensitivity solution, 241
xUnit sweet spot, 58

Highly Coupled Code, 210
historical patterns and smells, xxxviii
Hollywood principle

defi ned, 56, 799
test results, 79

Hook, Test. See Test Hook
HTML user interface sensitivity, xxxii

www.it-ebooks.info

http://www.it-ebooks.info/

853 Index

HttpUnit, 755
Humble Container Adapter, 698
Humble Dialog

design-for-testability, 7
example, 706–708
Hard-To-Test Code, 72
minimizing untested code, 45
when to use, 696–697

Humble Executable
asynchronous tests, 70–71
minimizing untested code, 44
motivating example, 700–702
Neverfail Test solution, 274
when to use, 697

Humble Object
Asynchronous Code solution, 211
Humble Dialog, 706–708
Humble Transaction

Controller, 708
implementation, 698–700
motivating example, 700–702
overview, 695–696
Poor Manís Humble

Executable, 703
refactoring, 702
True Humble Executable,

703–706
when to use, 696–698

Humble Transaction Controller
data access layer testing, 173
example, 708
when to use, 697–698

Hurst, John, 670–671
hybrid setup, 93

I

IDE (integrated development
environment)

defi ned, 799
introduction, 78
refactoring, xxxix

Idea, 755
IeUnit

defi ned, 748
Graphical Test Runner, 378

“if” statements
Conditional Test Logic, 201
Guard Assertions, 490–491
removing, 120

IFixtureFrame, 442
ignoring tests, 270
Immutable Shared Fixture

defi ned, 323
example, 326
Interacting Tests solution, 231
introduction, 61, 65
vs. Irrelevant Information, 192
Test Run Wars solution, 237

impact
Assertion Roulette, 224
Asynchronous Code, 211
Buggy Tests, 260
Conditional Test Logic, 201
Developers Not Writing

Tests, 263
Equality Pollution, 221
Erratic Tests, 228
Flexible Tests, 203
Fragile Tests, 239
Frequent Debugging, 249
General Fixtures, 191–192
Hard-Coded Test Data, 195
Hard-To-Test Code, 209
High Test Maintenance

Cost, 265
Highly Coupled Code, 210
Indirect Testing, 197
Irrelevant Information, 193
Manual Intervention, 250
Mystery Guests, 189
Neverfail Tests, 274
Nondeterministic Tests, 237

www.it-ebooks.info

http://www.it-ebooks.info/

854 Index

Obscure Tests, 186
Production Bugs, 268
Slow Tests, 253
Test Code Duplication, 214
Test Dependency in

Production, 221
Test Hooks, 218–219
Test Logic in Production, 217
Test Run Wars, 236
For Tests Only, 220
Untestable Test Code, 211
Untested Requirements, 273

Implicit Setup
vs. Four-Phase Test, 360–361
introduction, 7, 77
matching with teardown code,

98–99
pattern description, 424–428
pattern naming, 577
reusing test code with, 162
transient fi xtures, 91–93

Implicit Teardown
Complex Teardown solution,

206–207
database, 100
vs. Four-Phase Test, 360–361
pattern description, 516–519
persistent fi xtures, 98–99
Self-Checking Tests with, 108

Imposter. See Test Double
incremental delivery

agile development, 239
defi ned, 799

incremental development
defi ned, 799–800
test automation philosophies,

33–34
Incremental Tabular Test

implementation, 609–610
Parameterized Test patterns,

613–614

incremental tests, 322
In-Database Stored Procedure Test

database testing, 172
example, 658–659
implementation, 655–656

Independent Tabular Test, 612–613
independent testing. See Keep Tests

Independent
indirect input

alternative path verifi cation, 179
controlling, 128–129
controlling in Layer Tests, 341
defi ned, 800
importance of, 126
Test Doubles, 125–126

indirect output
Behavior Verifi cation.

See Behavior Verifi cation
defi ned, 800
importance of, 126–127
registries, 541
Test Doubles, 125–126
verifi cation, 130–133, 178–180
verifying in Layer Tests, 341

Indirect Testing
defi ned, 187
Fragile Tests cause, 240
Obscure Tests cause, 196–199
testability, 70–71

Infrequently Run Test
Frequent Debugging cause,

248–249
Production Bugs cause, 268–269

inheritance
reusing test code, 164
reusing test fi xtures, 62

injected values, Test Stub.
See Test Stub

Injection, Parameter. See Parameter
Injection

in-line Four Phase Test, 360

www.it-ebooks.info

http://www.it-ebooks.info/

855 Index

in-line resources, 736–737
In-line Setup

introduction, 77
matching with teardown code,

98–99
Mystery Guest solution, 190
pattern description, 408–410
transient fi xtures, 88–89

In-line Teardown
examples, 512–515
implementation, 510–511
motivating example, 511
Naive In-Line Teardown, 512
overview, 509
of persistent fi xtures, 98–99
refactoring, 512
when to use, 510

In-Memory Database, 553
inner class

anonymous, 535–536, 786
defi ned, 800

Inner Test Double
example, 573–574
Hard-Coded Test Double

implementation, 570–571
Subclassed from Pseudo-Class,

574–575, 578
Test Spy implementation, 541

input
derived, 719
indirect. See indirect input
naming conventions, 158–159

inside-out development
vs. outside-in development, 34–36
State Verifi cation, 463

installing Test Doubles, 528
Dependency Injection, 143–144,

679–680
Dependency Lookup, 144–145
Fake Object, 554
introduction, 143

Mock Object, 547
retrofi tting testability,

146–148
instance methods

defi ned, 800–801
with Test Helper, 645, 647

instance variables
converting for Implicit Setup, 427
Data-Driven Tests using Fit

Framework, 297
defi ned, 801
Fresh Fixtures, 313
as global variables, 92
Reuse Tests for Fixture Setup,

418–419
with Test Specifi c Subclass, 558
Testcase Class per Fixture, 632

instances
reusing, 63
Testcase Object exception,

384–385
integrated development environment

(IDE). See IDE (integrated
development environment)

Integration Build, 4
Intent-Revealing Name

Custom Assertion, 474–475
Implicit Setup, 92
Parameterized Test, 608
Test Utility Method, 602–603

Interacting Test Suites,
231–232

Interacting Tests
avoiding with Database

Sandbox, 650–653
avoiding with Delta Assertion,

111, 486
caused by Shared Fixture, 63
Chained Tests, 455
customer testing, 5–6
database testing, 169

www.it-ebooks.info

http://www.it-ebooks.info/

856 Index

Erratic Test cause, 229–231
introduction, 15
Keep Tests Independent, 43

interaction point, 801
interaction styles, 67–71
Interaction Testing. See Behavior

Verifi cation
Interface Sensitivity

defi ned, 241–242
introduction, xxxii, 13

interfaces
Confi guration Interface, 560
defi ned, 801
GUI. See GUI (graphical user

interface)
outgoing interface, 804–805
standard test, 378
Test Runner. See Test Runner
Use the Front Door First, 40–41

internal recording tools, 56
interpreters in Data-Driven Tests.

See Data-Driven Test
Intervention, Manual. See Manual

Intervention
Introduce Explaining Variable

refactoring, lvii–lviii
IoC (inversion of control) framework

defi ned, 801
for Dependency Injection, 680

irrelevant information
defi ned, 187
Obscure Test, 192–194

Isolate the SUT, 43–44
iterative development, 802

J

Java
language-specifi c xUnit

terminology, xl
test code packaging, 165

JBehave
defi ned, 748
tests as examples, 33

JFCUnit, 755
JMock

Confi guration Interface, 560
defi ned, 755
Test Double implementation,

140
Johnson, Rod, 670
JUnit

defi ned, 748
Expected Exception Test

expression, 351
fi xture design, 59
language-specifi c terminology, xl
Suite Fixture Setup support,

442–443
Test Automation

Framework, 300
test automation tools, 55
Testcase Object exception,

384–385
testing stored procedures, 657

K

Keep Test Logic Out of Production
Code

minimizing risk, 24
principle, 45
test code organization, 164–165

Keep Tests Independent
running, 26
test automation principles,

42–43
using Fake Object. See Fake

Object
Kerievsky, Joshua, xxxix
keys, Literal Values as, 714
King, Joseph, 319–321

www.it-ebooks.info

http://www.it-ebooks.info/

857 Index

L

languages
terminology, xl–xli
variations in Built-in Assertions,

110–111
xUnit implementations, 76

language-specifi c xUnit terminology,
xl–xli

“Law of Raspberry Jam”, xxv
Layer Test

Business Layer Tests, 344–345
database testing, 169–171
implementation, 340–341
motivating example, 341–342
overview, 337–338
Presentation Layer Tests, 343
refactoring, 342
Subcutaneous Tests, 343–344
when to use, 338–340

layer-crossing tests
defi ned, 802
testability, 67–69

Layered Architecture
design-for-testability, 7
layer-crossing tests, 67–69

Lazy Initialization, 435
Lazy Setup

Decorated, 449–450
examples, 439–440
implementation, 436–437
Interacting Tests solution, 231
motivating example, 437–438
overview, 435
vs. Prebuilt Fixtures, 431–432
refactoring, 439
Shared Fixture, 64, 105
when to use, 436

Lazy Teardown
example, 665–666
implementation, 663–664

leakage, resource
Erratic Tests, 233
persistent fi xtures, 99

learning styles, xxxix–xl
legacy software

Buggy Tests, 261–262
defi ned, 802
tests as safety net, 24

lenient Mock Object
defi ned, 138
when to use, 545

lightweight implementation using
Fake Object. See Fake Object

Literal Value
Hard-Coded Test Data, 195
pattern description, 714–717

local variables
converting in Implicit

Setup, 427
defi ned, 802
Fresh Fixtures, 313

Lonely Test
caused by Chained Test. See

Chained Test
Erratic Tests, 232
Interacting Tests.

See Interacting Tests
Long Tests. See Obscure Test
Loopback. See Self Shunt
Loop-Driven Test

implementation, 610
Parameterized Test, 614–615

loops
as Conditional Test Logic, 201
eliminating, 121
Production Logic in Test cause,

204–205
Lost Tests

avoiding, 597
Production Bugs cause,

269–271

www.it-ebooks.info

http://www.it-ebooks.info/

858 Index

M

Mackinnon, Tim, 149
macros, Assertion Methods as, 364
maintenance

High Test Maintenance Cost. See
High Test Maintenance Cost

optimizing, 180–181
test automation goals, 27–29

Manual Event Injection, 251–252
Manual Fixture Setup, 250–251
Manual Intervention

impact, 250
introduction, 15
Manual Event Injection,

251–252
Manual Fixture Setup, 250–251
Manual Result Verifi cation, 251
symptoms, 250

Manual Result Verifi cation, 251
manual testing

defi ned, 802
right-sizing Test Methods, 154

Marrick, Brian
purpose of tests, 51
right-sizing Test Methods, 155
tests as examples, 33

Maslow, 176
MbUnit

defi ned, 749
Parameterized Test

implementation, 608–609
Tabular Test with framework

support, 614
Message, Assertion. See Assertion

Message
messages, failure. See failure

messages
meta objects

Data-Driven Tests, 290
defi ned, 803

metatests, 803
method attributes

defi ned, 803
Expected Exception Tests, 354
Test Discovery using, 397
Test Method Selection

using, 405
method names

language-specifi c xUnit
terminology, xl–xli

Test Method Discovery, 395–396
methods

diagramming notation, xlii
instance. See instance methods
setUp. See setUp method
static, 809
suite, 399
tearDown. See tearDown method
Template Method, 164
test commands, 82
verifi cation. See result

verifi cation
Miller, Jeremy, 687
Minimal Fixture

external result verifi cation, 112
General Fixtures solution, 192
minimizing data, 738–739
misuse of setUp method, 93
pattern description, 302–304
strategy, 62–63
test automation philosophies, 36

Minimize Test Overlap, 44
Minimize Untestable Code, 44–45
Missing Assertion Message, 226–227
Missing Unit Test

Defect Localization, 23
Production Bugs, 271

mixins
defi ned, 803
Test Helper Mixins, 639,

641–642

www.it-ebooks.info

http://www.it-ebooks.info/

859 Index

Mock Object
Confi gurable. See Confi gurable

Test Double
confi guring, 141–142
defi ned, 133
examples, 548–550
Expected Behavior Specifi cation,

470–471
implementation, 546–548
motivating example, 548
Overspecifi ed Software

cause, 246
overview, 544–545
refactoring, 548
Test Double patterns, 525
Test Doubles, 137–139
unit testing, 6
vs. Use the Front Door First, 40
verifying indirect output,

131–133
when to use, 545
xUnit terminology, 741–744

MockMaker, 560
modules, 803–804
Move Method, 413
MSTest, 749
Mugridge, Rick, xxiv
multimodal tests, 687
multiple-condition tests

Conditional Test Logic,
207–208

defi ned, 45–47
Multiresource In-line Teardown,

513–514
MySql, 651
Mystery Guest

defi ned, 187
Obscure Test cause, 188–190

N

Naive In-line Teardown
defi ned, 511
example, 512
of persistent fi xtures, 97

Naive xUnit Test Interpreter,
292–293

Named State Reaching Method,
417–418

Named Test Suite
examples, 594–598
implementation, 594
introduction, 160–161
overview, 592–593
refactoring, 594
Test Enumeration, 400
when to use, 593–594

names
Dependency Lookup, 693–694
intent-revealing. See

Intent-Revealing Name
referring to patterns and smells,

xxxviii
Scripted Test, 287
Suite Fixture Setup, 446

naming conventions
assertion-identifying

messages, 371
making resources unique,

737–738
patterns, 576–578
vs. test code organization,

158–159
Test Method Discovery,

395–396
Testcase Class per Class, 618
Testcase Class per Feature, 626
Testcase Class per Fixture, 632
For Tests Only solution, 220

www.it-ebooks.info

http://www.it-ebooks.info/

860 Index

need-driven development
Behavior Verifi cation, 469
defi ned, 804
testing with doubles, 149
using Mock Objects, 545

Neverfail Test, 274
New River Gorge bridge, xxvi
Newkirk, James, 384–385
NMock, 756
No Test Risk, 24–25
Nondeterministic Test

dangers of, 26–27
Erratic Test, 237–238
Generated Values cause, 723–724

notation, diagramming, xlii
Null Object vs. Dummy Object, 730
null values in Dummy Objects,

729–732
NUnit

defi ned, 749
Expected Exception Test

expression, 351
fi xture design, 59
Interacting Test Suites, 232
Suite Fixture Setup support,

442–443
Test Automation Frameworks,

300
test automation ways and

means, 55
test fi xtures, 814
Testcase Classes, 376
Testcase Object exception,

384–385

O

Object Attribute Equality Assertion,
476

Object Factory
Dependency Lookup, 688
installing Test Double, 145

Object Mother
in Delegated Setup, 90–91
when to use, 644–645

object technology, xxxix–xl
Object Transaction Rollback

Teardown, 673–674
object-oriented programming

language (OOPL), 76
object-relational mapping (ORM).

See ORM (object-relational
mapping)

objects
Creation Method. See Creation

Method
determining necessary,

303–304
diagramming notation, xlii
fake. See Fake Object
Test Suite Objects. See Test Suite

Object
Testcase. See Testcase Object

Obscure Test
avoiding with Custom Assertion,

475
avoiding with Separation of Con-

cerns, 28–29
Buggy Test, 261
causes, 186–187
vs. Communicate Intent, 41
customer testing, 5
database testing, 169
Eager Test, 187–188
General Fixture, 190–192
Hard-Coded Test Data,

194–196
High Test Maintenance Cost,

266
impact, 186
Indirect Testing, 196–199
introduction, xlvi, 12–13, 16
Irrelevant Information, 192–194
Mystery Guests, 188–190

www.it-ebooks.info

http://www.it-ebooks.info/

861 Index

optimizing test execution/
maintenance, 180

smells, 10
solution patterns, 199
symptoms, 186

observation points
defi ned, 804
test automation strategy, 66–67

O’Grady, Ted, 319–321
One Bad Attribute

example, 721–722
introduction, xxiii, 90
Minimal Fixtures, 304
when to use, 719

OOPL (object-oriented
programming language), 76

optimism, resource, 189, 233–234
order of tests, 456
organization, test. See test

organization; test organization
patterns

ORM (object-relational mapping)
defi ned, 804
Table Truncation Teardown, 663
Table Truncation Teardown

using, 667
Transaction Rollback

Teardown, 671
Outcome Assertions, Stated. See

Stated Outcome Assertion
outcome verifi cation patterns. See

result verifi cation patterns
outcome-describing Verifi cation

Method, 117
outgoing interface, 804–805
out-of-order calls, 138
output, indirect. See indirect output
outside-in development

Behavior Verifi cation, 469
vs. inside-out development,

34–36
Overcoupled Software, 40

overlapping tests
minimizing, 44
Too Many Tests, 256–257

Overspecifi ed Software
avoiding with Fake Objects,

552
Fragile Tests, 246
testing with doubles, 150
Use the Front Door First, 40

P

Parameter Injection
example, 683
implementation, 680
installing Test Doubles, 144

Parameterized Anonymous Creation
Method, 417

Parameterized Creation Method
defi ned, 417
Delegated Setup, 90
example, xxiii, 420–421
Irrelevant Information

solution, 193
Parameterized Setup Decorator

defi ned, 449
example, 452–453

Parameterized Test
example, 611–612
extracting. See Data-Driven Test
further reading, 615–616
implementation, 608–610
Incremental Tabular Test,

613–614
Independent Tabular Test,

612–613
Loop-Driven Tests, 614–615
motivating example, 610–611
overview, 607–608
reducing Test Code Duplication,

118–119
refactoring, 611

www.it-ebooks.info

http://www.it-ebooks.info/

862 Index

Tabular Test with framework
support, 614

Test Utility Method, 602
when to use, 608

parameters, arguments as, 729
“Pass-Fail-Fail”, 234–235
pattern language

defi ned, xxxv–xxxvi, 805
pattern naming, 577

Pattern Languages of Programming
(PLoP), 576

patterns
aliases and variations, 767–784
database. See database patterns
defi ned, 805
design-for-testability. See

design-for-testability patterns
fi xture setup. See fi xture setup

patterns
result verifi cation. See result

verifi cation patterns
test automation introduction,

xxxiv–xxxviii
Test Double. See Test Double
test organization. See test

organization patterns
test strategy. See test strategy

patterns
testability, 67–71
value. See value patterns
xUnit basics. See xUnit basics

patterns
peeling the onion, 11
per-functionality test, 50–52
Perrotta, Paolo, 537
Per-Run Fixtures, 323
persistence layer, 339–340
persistence resources, 504
persistent fi xtures, 95–106

database testing, 168–169
issues caused by, 96

managing, 103–105
overview, 95–96
Slow Tests cause, 102
Table Truncation Teardown. See

Table Truncation Teardown
teardown avoidance, 100–101
tearing down, 97–100
test strategy patterns, 313–314
what’s next, 106

Persistent Fresh Fixture
building, 88
defi ned, 60–61
strategies, 62–63

Personal Oracle, 651
philosophy, test automation. See test

automation philosophies
PHPUnit, 749
PLoP (Pattern Languages of

Programming), 576
Pluggable Behavior

in Named Test Suites, 597
Testcase Object

implementation, 383
pollution

Equality Pollution, 221–222
Shared Fixture, 326

polymorphism, 805
Poor Manís Humble

Executable, 703
Poor Man’s Humble Object

implementation, 699
Transaction Rollback

Teardown, 671
Poppendieck, Mary, 51
Pragmatic Unit Testing, 743
Prebuilt Fixture

examples, 432–434
implementation, 430–431
motivating example,

431–432
overview, 429–430

www.it-ebooks.info

http://www.it-ebooks.info/

863 Index

refactoring, 432
Shared Fixture strategies, 64
Shared Fixtures, 104–105
Unrepeatable Tests cause, 235

presentation layer
defi ned, 805
Layer Tests example, 343
testing, 338–339

presentation logic, 805
Preserve Whole Object refactoring,

xlviii–xlix
principles

list of, 757–759
patterns vs., xxxv–xxxvi
test automation. See test

automation principles
Private Fixture. See Fresh Fixture
private methods, 586
problem statements, xxxvi–xxxvii
Procedural Behavior Verifi cation

defi ned, 470
example, 472–473
indirect outputs, 131
introduction, 112–113
Test Spy usage, 137

Procedural State Verifi cation
defi ned, 463–464
example, 466
introduction, 109

Procedural Test Stub
defi ned, 526
introduction, 135–136
when to use, 531

Procedure Test, Stored. See Stored
Procedure Test

procedure variables, 805–806
production, 806
Production Bugs

Infrequently Run Tests, 268–269
introduction, 12–13
Lost Tests, 269–271

Missing Unit Tests, 271
Neverfail Tests, 274
overview, 268
reducing risk, 181
Untested Code, 271–272
Untested Requirements, 272–274

production code
defi ned, 806
keeping test logic out of, 45

Production Logic in Test, 204–205
profi ling tools, 254
Programmatic Test. See Scripted Test
programmer tests, 806
project smells, 259–274

Buggy Tests, 260–262
defi ned, 806
Developers Not Writing Tests,

263–264
High Test Maintenance Cost,

265–267
overview, 12–13
Production Bugs. See Production

Bugs
property tests, 52
Pseudo-Object

Hard-Coded Test Double
implementation, 570–571

Inner Test Double Subclassed
from Pseudo-Class, 574–575,
578

testing with doubles, 140–141
pull system, 806–807
Pull-Up Method refactoring

Delegated Setup, 413
moving reusable test logic, 123
Testcase Superclass, 640

Pushdown Decorator, 450
PyUnit

defi ned, 749
Test Automation Framework,

300

www.it-ebooks.info

http://www.it-ebooks.info/

864 Index

Q

QA (quality assurance), 22–23
QaRun, 244
QTP (QuickTest Professional)

Data-Driven Tests, 290
defi ned, 756
record and playback tools, 282
Test Automation

Framework, 301
quality assurance (QA), 22–23
QuickTest Professional (QTP).

See QTP (QuickTest Professional)

R

random values
Nondeterministic Tests, 238
Random Generated Values, 724

Record and Playback Test, 13
record and playback tools

introduction, xxxi
Recorded Tests, 282–283
xUnit sweet spot, 58

Recorded Test
built-in test recording,

281–282
commercial record and

playback tool, 282–283
customer testing, 5
Data-Driven Tests and, 289
implementation, 280–281
Interface Sensitivity, 241
overview, 278–279
refactored commercial recorded

tests, 283–284
vs. Scripted Tests, 286
smells, 10
tools, 56
tools for automating, 53–54
when to use, 279–280

Recording Test Stub. See Test Spy

red bar, 807
Refactored Recorded Tests

commercial, 283–284
overview, 280

refactoring. See also test refactorings
Assertion Message, 372
Assertion Method, 368
Automated Teardown,

506–507
Back Door Manipulation, 333
Chained Test, 458
Confi gurable Test Double, 463
Creation Method, 420
Custom Assertion, 480
Database Sandbox, 653
Data-Driven Test, 294
defi ned, 807
Delegated Setup, 413
Delta Assertion, 488
Dependency Injection, 682
Dependency Lookup, 690–691
Derived Value, 720
Dummy Object, 731
Fake Object, 555–556
Fresh Fixture, 315–316
Garbage-Collected

Teardown, 502
Generated Value, 725
Guard Assertion, 492
Hard-Coded Test Double, 572
Humble Object, 702
Implicit Setup, 427
Implicit Teardown, 518–519
In-line Setup, 410
In-line Teardown, 512
Layer Test, 342
Lazy Setup, 439
Literal Value, 716
Mock Object, 548
Named Test Suite, 594
Parameterized Test, 611

www.it-ebooks.info

http://www.it-ebooks.info/

865 Index

Prebuilt Fixture, 432
Setup Decorator, 451
Shared Fixture, 324
Standard Fixture, 309–310
State Verifi cation, 465–466
Stored Procedure Test, 658
Suite Fixture Setup, 444
Table Truncation Teardown,

664–665
Test Discovery, 395
Test Helper, 646
Test Spy, 541–542
Test Stub, 533
Test Utility Method, 605
Testcase Class per Feature,

627–628
Testcase Class per Fixture,

634–635
Testcase Superclass, 640
Test-Specifi c Subclass, 584
Transaction Rollback

Teardown, 672
Unfi nished Test Assertion, 496

Refactoring: Improving the
Design of Existing Code (Fowler),
9, 16

references, 819–832
refl ection

defi ned, 807
Test Discovery, 393
Testcase Object

implementation, 383
Registry

confi gurable, 691–692
in Dependency Lookup, 688–689
Interacting Tests, 230
Test Fixture, 644

regression tests
defi ned, 807
Recorded Tests. See Recorded

Test
Scripted Tests, 285–287

Related Generated Values
example, 726–727
implementation, 725

Remoted Stored Procedure Test
example, 659–660
implementation, 656–658
introduction, 172

Repeatable Test
defi ned, 26–27
indirect inputs control, 179

Replace Dependency with Test
Double refactoring

Behavior Verifi cation, 472
defi ned, 739

Repository
Data-Driven Test fi les, 290
persistent objects, 90
source code, 24, 79, 234,

561, 656
test code, 164, 561

Requirement, Untested.
See Untested Requirement

ReSharper, 756
Resource Leakage

Erratic Tests, 233
persistent fi xtures, 99

Resource Optimism, 189, 233–234
resources

external, 740
in-line, 736–737
unique, 737–738

Responder
defi ned, 524
examples, 533–535
indirect input control, 179
introduction, 135
when to use, 530

response time tests, 52
result verifi cation, 107–123

Behavior Verifi cation, 112–114
Conditional Test Logic

avoidance, 119–121

www.it-ebooks.info

http://www.it-ebooks.info/

866 Index

Data Sensitivity, 243–245
defi ned, 807
Four-Phase Test, 358–361
Mock Object, 547–548
other techniques, 121–122
reducing Test Code Duplication,

114–119
reusable test logic, 123
Self-Checking Tests, 107–108
State Verifi cation, 109–112

result verifi cation patterns, 461–497
Behavior Verifi cation. See

Behavior Verifi cation
Custom Assertion. See Custom

Assertion
Delta Assertion, 485–489
Guard Assertion, 490–493
State Verifi cation. See State Veri-

fi cation
Unfi nished Test Assertion,

494–497
results, test

defi ned, 815
introduction, 79–80

Retrieval Interface, 137, 540
retrospective, 807–808
reusable test logic

Creation Method, 418–419
fi xture setup patterns, 422–423
organization, 162–164
result verifi cation, 123
Test Code Duplication, 214–215
Test Utility Method. See Test

Utility Method
Reuse Tests for Fixture Setup, 90
Robot User Test. See Recorded Test
robot user tools

defi ned, 55–56
introduction, xxxi
Test Automation Framework,

299

Robust Tests
defi ned, 29
indirect inputs control, 179

role-describing arguments, 725
root cause analysis

defi ned, 808
smells, 11

round-trip tests
defi ned, 808
introduction, 67–69
Layer Tests, 340–341

row tests. See Tabular Test
RSpec

defi ned, 750
fi xture design, 59
tests as examples, 33

runit
defi ned, 750
Test Automation

Frameworks, 300
running tests

introduction, 79
structure, 81
test automation goals, 25–27

runtime refl ection, 393

S

Saboteur
defi ned, 135
example, 535–536
inside-out development, 35
Test Double patterns, 524
when to use, 530

Safety Net
Buggy Tests, 260
tests as, 24

sample code, xli–xlii
screen scraping, 241
Scripted Test

Communicate Intent, 41
customer testing, 5

www.it-ebooks.info

http://www.it-ebooks.info/

867 Index

Data-Driven Tests and, 289
introduction, 75
pattern description, 285–287
vs. Recorded Tests, 279
smells, 10
UI, 55
Verify One Condition per

Test, 46
Self Shunt

Behavior Verifi cations, 113
example, 573
Hard-Coded Test Double

implementation, 570
pattern naming, 576
Test Spy implementation,

540–541
Self-Call, 582
Self-Checking Test

Assertion Method usage, 362
Conditional Test Logic

solution, 201
defi ned, 80
happy path code, 178
introduction, 107–108
running, 26

Self-Describing Value
example, 717
Literal Value patterns, 715

self-testing code, xxi
self-tests, built-in

defi ned, 788
test fi le organization, 164

Sensitive Equality
Fragile Tests, 246
test-fi rst development, 32

sensitivities
automated unit testing,

xxxi–xxxii
behavior. See Behavior Sensitivity
Buggy Tests cause, 260
context. See Context Sensitivity

data. See Data Sensitivity
interface. See Interface

Sensitivity
Separation of Concerns, 28–29
Service Facade, 71–72
service layers

fake, 553
tests, 7, 339

Service Locator
in Dependency Lookup.

See Dependency Lookup
installing Test Doubles, 145

service objects, 808
Setter Injection

Confi guration Interface
using, 564

example, 684–685
implementation, 681
installing Test Doubles, 143

setters, 808
setup, fi xtures. See fi xture setup
Setup Decorator

examples, 451–453
implementation, 448–450
Implicit Setup, 426
motivating example, 450–451
overview, 447–448
refactoring, 451
Shared Fixture strategies, 64,

104–105
when to use, 448

setUp method
Implicit Setup, 91–92, 424–428
misuse of, 92–93
pattern naming, 577
Setup Decorator. See Setup

Decorator
Suite Fixture Setup. See Suite

Fixture Setup
shadows, diagramming notation, xlii
Shank, Clint, 457–458, 613, 616

www.it-ebooks.info

http://www.it-ebooks.info/

868 Index

Shared Fixture. See also Standard
Fixture

Behavior Verifi cation, 108
Chained Test. See Chained Test
customer testing, 5
Data Sensitivity cause, 243
database testing, 169
defi ned, 60–61
Delta Assertions, 111
example, 324–325
Immutable. See Immutable

Shared Fixture
Immutable Shared Fixtures, 326
implementation, 322–323
incremental tests, 322
Interacting Tests cause, 229–231
introduction, 15, 63–65
Lazy Setup. See Lazy Setup
managing, 103–105
motivating example, 323–324
in Nondeterministic Tests, 27
overview, 317
Prebuilt Fixture. See Prebuilt

Fixture
refactoring, 324
Setup Decorator. See Setup

Decorator
Slow Tests cause, 318–321
Suite Fixture Setup. See Suite

Fixture Setup
Table Truncation Teardown.

See Table Truncation Teardown
Test Run Wars cause, 236
Unrepeatable Tests cause, 235
using Finder Methods, 600–601
when to use, 318

Shared Fixture Guard Assertion,
492–493

Shared Fixture State Assertion, 491
Simple Success Test

example, 352–353
happy path code, 177

introduction, 77
pattern description, 349–350

The simplest thing that could
possibly work (STTCPW), 810

Single Glance Readable.
See Communicate Intent

Single Layer Test. See Layer Test
Single Test Suite

example, 596–597
Lost Tests solution, 270
when to use, 593–594

single tests, 161–162
Single-Condition Test

Eager Tests solution, 225–226
Obscure Tests solution, 188
principles. See Verify One

Condition per Test
unit testing, 6

Single-Outcome Assertion
Assertion Method, 366–367
defi ned, 365
example, 369

Singleton
in Dependency Lookup,

688–689
Interacting Tests, 230
retrofi tting testability, 146–147

Singleton, Substituted
example, 586–587
when to use, 581

skeletons, 744
Slow Component Usage, 254
Slow Tests

Asynchronous Tests, 255–256
avoiding with Shared Fixture,

318–321
database testing, 168
design for testability, 7
due to Transaction Rollback

Teardown, 669
General Fixtures, 255
impact, 253

www.it-ebooks.info

http://www.it-ebooks.info/

869 Index

introduction, 15
optimizing execution, 180
persistent fi xtures, 102
preventing with Fake Object.

See Fake Object
preventing with Test

Double, 523
Slow Component Usage, 254
symptoms, 253
Too Many Tests, 256–257
troubleshooting, 253–254

smells, test. See test smells
Smith, Shaun, 39
Smoke Test

development process, 4
suites, 597–598
Test Discovery, 394

sniff test
defi ned, xxxviii
test smells, 10

solution patterns, behavior smells
Asynchronous Tests, 256
Behavior Sensitivity, 242–243
Context Sensitivity, 246
Data Sensitivity, 243–245
Eager Tests, 225–226
Frequent Debugging, 249
General Fixture, 255
Interacting Test Suites, 232
Interacting Tests, 231
Interface Sensitivity, 241–242
Manual Intervention,

250–252
Missing Assertion Messages,

226–227
Resource Leakage, 233
Resource Optimism, 234
Slow Component Usage, 254
Test Run War, 236–237
Too Many Tests, 257
Unrepeatable Tests, 235

solution patterns, code smells
Asynchronous Code, 211
Conditional Verifi cation Logic,

203–204
Cut and Paste code reuse, 215
Eager Test, 188
Equality Pollution, 222
Flexible Test, 203
General Fixture, 192
Hard-Coded Test Data, 196
Hard-To-Test Code, 209
Highly Coupled Code, 210
Indirect Testing, 197–199
Irrelevant Information, 193
Multiple Test Conditions,

207–208
Mystery Guests, 190
Obscure Tests, 199
Production Logic in Test, 205
Test Code Duplication, 115–216
Test Dependency in

Production, 221
Test Hook, 219
For Tests Only, 220
Untestable Test Code, 212

solution patterns, project smells
Buggy Test, 261–262
Infrequently Run Test, 269
Lost Test, 270–271
Missing Unit Test, 271
Neverfail Test, 274
Untested Code, 272
Untested Requirements, 274

Special-Purpose Suite, 595–596
specifi cation

Expected Behavior, 470–471
Expected Behavior

example, 473
Expected Object example, 466
Expected State, 464–465
tests as, xxxiii, 22

www.it-ebooks.info

http://www.it-ebooks.info/

870 Index

spikes, 809
Spy, Test. See Test Spy
SQL, Table Truncation Teardown

using, 666–667
Standard Fixture

implementation, 307–308
motivating example, 308
overview, 305–306
refactoring, 309–310
when to use, 306–307

standard test interface, 378
starbursts, diagramming

notation, xlii
state, initializing via

Back Door Manipulation.
See Back Door Manipulation

Named State Reaching Method,
417–418

State Verifi cation
vs. behavior, 36
examples, 466–467
implementation, 463–465
indirect outputs, 179–180
introduction, 109–112
motivating example, 465
overview, 462–463
refactoring, 465–466
Self-Checking Tests, 108
Use the Front Door First, 41
when to use, 463

Stated Outcome Assertion
Assertion Methods, 366
defi ned, 365
example, 369
Guard Assertions as, 491
introduction, 110–111

State-Exposing Subclass
Test-Specifi c Subclass, 289–590
when to use, 580

stateless, 809
statements, “if”. See “if” statements

static binding
defi ned, 809
Dependency Injection,

678–679
static methods, 809
static variables, 809
Statically Generated Test

Doubles, 561
STDD (storytest-driven

development), 4, 810
stop on fi rst failure

Naive xUnit Test Interpreter,
292–293

xUnit introduction, 57
Stored Procedure Test

database testing, 172
examples, 658–660
implementation, 655–658
motivating example, 658
overview, 654
refactoring, 658
when to use, 654–655

storytest, 810
storytest-driven development

(STDD), 4, 810
strategies, test automation. See test

automation strategies
stress tests, cross-functionality, 52
strict Mock Object

defi ned, 138
when to use, 545

STTCPW (The simplest thing that
could possibly work), 810

Stub, Test. See Test Stub
Subclass, Test-Specifi c. See

Test-Specifi c Subclass
Subclassed Humble Object, 700
Subclassed Inner Test Double,

573–574
Subclassed Singleton, 7
Subclassed Test Double, 146–147

www.it-ebooks.info

http://www.it-ebooks.info/

871 Index

Subcutaneous Test
customer testing, 5
database testing, 174
design for testability, 7
Layer Tests, 343–344

Subset Suite
example, 594–598
implementation, 594
introduction, 160–161
overview, 592
Too Many Tests solution, 257
when to use, 593

substitutable dependencies
defi ned, 810
Dependency Initialization

Test, 352
using Test Spy, 540

Substitutable Singleton
in Dependency Lookup, 689
example, 586–587, 692–693
retrofi tting testability, 146–147
when to use, 581

substitution mechanisms,
688–689

Suite Fixture Setup
example, 444–446
implementation, 442–443
implicit, 426
motivating example, 443–444
overview, 441–442
refactoring, 444
Shared Fixture strategies, 64
Shared Fixtures, 104–105
when to use, 442

suite method, 399
suites

Named Test Suite. See Named
Test Suite

test organization, 160–162
Test Suite Object. See Test Suite

Object

Suites of Suites
building with Test enumeration,

400
defi ned, 388
example, 389–391
Interacting Test Suites, 231–232
introduction, 7, 15, 78

SUnit
defi ned, 750
Test Automation

Frameworks, 300
Superclass, Testcase. See Testcase

Superclass
SUT (system under test)

control points and observation
points, 66–67

dangers of modifying, 41–42
defi ned, 810–811
Four-Phase Test, 358–361
interface sensitivity, xxxii
isolation principle, 43–44
minimizing risk, 24–25
preface, xxii–xxiii
replacing in Parameterized

Test, 609
result verifi cation. See result

verifi cation
state vs. behavior

verifi cation, 36
terminology, xl–xli
test automation tools, 53–54
Test Hook in, 711–712
understanding with test

automation, 23
SUT API Encapsulation

Chained Tests as, 455
Indirect Testing solution, 198
Interface Sensitivity

solution, 241
SUT Encapsulation Method,

601–602

www.it-ebooks.info

http://www.it-ebooks.info/

872 Index

Symbolic Constants
example, 716
Literal Value, 715

symptoms, behavior smells
Assertion Roulette, 224
Asynchronous Tests, 255
Behavior Sensitivity, 242
Context Sensitivity, 245
Data Sensitivity, 243
Eager Tests, 224–225
Erratic Tests, 228
Fragile Tests, 239
Frequent Debugging, 248
General Fixtures, 255
Interacting Test Suites, 231
Interacting Tests, 229
Interface Sensitivity, 241
Manual Intervention, 250–252
Missing Assertion Messages, 226
Nondeterministic Tests, 237
Resource Leakage, 233
Resource Optimism, 233
Slow Tests, 253
Test Run Wars, 236
Too Many Tests, 256
Unrepeatable Tests, 234–235

symptoms, code smells
Asynchronous Code, 210
Complex Teardown, 206
Conditional Test Logic, 200
Eager Tests, 187–188
Equality Pollution, 221
Flexible Tests, 202
General Fixtures, 190–191
Hard-Coded Test Data,

194–195
Hard-To-Test Code, 209
Highly Coupled Code, 210
Indirect Testing, 196–197
Irrelevant Information, 192–193
Multiple Test Conditions, 207

Mystery Guests, 188–189
Obscure Tests, 186
Production Logic in Test,

204–205
Test Code Duplication, 213–214
Test Dependency in

Production, 220
Test Logic in Production, 217
test smells, 10
For Tests Only, 219
Untestable Test Code, 211

symptoms, project smells
Buggy Tests, 260
Developers Not Writing Tests,

263
High Test Maintenance

Cost, 265
Infrequently Run Tests, 268–269
Lost Tests, 269
Missing Unit Tests, 271
Neverfail Tests, 274
Production Bugs, 268
Untested Code, 271–272
Untested Requirements, 272–273

symptoms, test smells, 10
synchronous tests

avoiding with Humble Object,
696–697

defi ned, 810
system under test (SUT). See SUT

(system under test)

T

Table Truncation Teardown
data access layer testing, 173
defi ned, 100
examples, 665–667
implementation, 662–664
motivating example, 664
overview, 661–662

www.it-ebooks.info

http://www.it-ebooks.info/

873 Index

refactoring, 664–665
when to use, 662

tabular data, 291
Tabular Test

Chained Tests, 457–458
with framework support, 614
implementation, 609–610
Incremental, 613–614
Independent, 612–613

tasks, 811
TDD (test-driven development)

defi ned, 813
implementing utility methods,

122
introduction, xxxiii–xxxiv
Missing Unit Tests, 271
need-driven development, 149
process, 4–5
Test Automation

Frameworks, 301
test automation principles, 40

teardown, fi xture. See fi xture
teardown

Teardown Guard Clause
example, 513
Implicit Teardown, 517–518
In-line Teardown, 511

tearDown method
Implicit Teardown, 516–519
persistent fi xtures, 98
Setup Decorator. See Setup

Decorator
Template Method, 164
Temporary Test Stub

when to use, 530–531
xUnit terminology, 741–744

terminology
test automation introduction,

xl–xli
transient fi xtures, 86–88
xUnit. See xUnit basics

test automater, 811
test automation, xxix–xliii

assumptions, xxxix–xl
automated unit testing, xxx–xxxii
brief tour, 3–8
code samples, xli–xlii
developer testing, xxx
diagramming notation, xlii
feedback, xxix
fragile test problem, xxxi–xxxii
limitations, xliii
overview, xxix
patterns, xxxiv–xxxviii
refactoring, xxxviii–xxxix
terminology, xl–xli
testing, xxx
uses of, xxxiii–xxxiv

Test Automation Framework
introduction, 75
pattern description, 298–301

test automation goals, 19–29
ease of running, 25–27
improving quality, 22–23
list of, 757–759
objectives, 21–22
reducing risk, 23–25
system evolution, 29
understanding SUT, 23
why test?, 19–21
writing and maintaining, 27–29

Test Automation Manifesto, 39
test automation philosophies, 31–37

author’s, 37
differences, 32–36
importance of, 31–32

test automation principles, 39–48
Communicate Intent, 41
Design for Testability, 40
Don’t Modify the SUT, 41–42
Ensure Commensurate Effort

and Responsibility, 47–48

www.it-ebooks.info

http://www.it-ebooks.info/

874 Index

Isolate the SUT, 43–44
Keep Test Logic Out of

Production Code, 45
Keep Tests Independent,

42–43
Minimize Test Overlap, 44
Minimize Untestable Code,

44–45
overview, 39–40
Test Concerns Separately, 47
Use the Front Door First,

40–41
Verify One Condition per Test,

45–47
Write the Tests First, 40

test automation roadmap, 175–181
alternative path verifi cation,

178–179
diffi culties, 175–176
direct output verifi cation, 178
execution and maintenance

optimization, 180–181
happy path code, 177–178
indirect outputs verifi cation,

178–180
maintainability, 176–177

test automation strategies, 49–73
brief tour, 3–8
control points and observation

points, 66–67
cross-functional tests, 52–53
divide and test, 71–72
ensuring testability, 65
fi xture strategies overview, 58–61
interaction styles and testability

patterns, 67–71
overview, 49–50
per-functionality tests, 50–52
persistent fresh fi xtures, 62–63
shared fi xture strategies, 63–65
test-driven testability, 66

tools for, 53–58
transient fresh fi xtures, 61–62
what’s next, 73
wrong, 264

Test Bed. See Prebuilt Fixture
test cases, 811
test code, 811
Test Code Duplication

causes, 214–215
Custom Assertions, 475
Delegated Setup, 412
High Test Maintenance

Cost, 266
impact, 214
In-Line Setup, 89
introduction, 16
possible solution, 216
reducing, 114–119
reducing with Confi gurable

Test Doubles. See Confi gurable
Test Double

reducing with Parameterized
Tests. See Parameterized Test

reducing with Test Utility
Methods. See Test Utility
Method

removing with Testcase Class per
Fixture. See Testcase Class per
Fixture

reusing test code, 162
symptoms, 213–214

Test Commands, 82
Test Concerns Separately, 47
test conditions, 154, 811–812
test database, 812
test debt, 812
Test Dependency in Production,

220–221
Test Discovery

introduction, 78
Lost Tests solution, 271

www.it-ebooks.info

http://www.it-ebooks.info/

875 Index

pattern description, 393–398
Test Suite Object Generator, 293
Test Suite Objects, 388

Test Double, 125–151, 521–590
Back Door Manipulation, 332
Behavior Verifi cation, 112
Confi gurable Test Double.

See Confi gurable Test Double
confi guring, 141–142
considerations, 150
customer testing, 5
database testing, 169–171
Dependency Injection.

See Dependency Injection
Dependency Lookup, 144–145
dependency replacement, 739
design for testability, 7
Don’t Modify the SUT, 41–42
Dummy Object, 134–135
example, 526–528
Fake Object. See Fake Object
Fragile Test, 240
Hard-Coded Test Double.

See Hard-Coded Test Double
Highly Coupled Code

solution, 210
indirect input and output,

125–126
indirect input control, 128–129
indirect input, importance

of, 126
indirect output, importance of,

126–127
indirect output verifi cation,

130–133
installing, 143
minimizing risk, 25
Mock Object. See Mock Object
other uses, 148–150
outside-in development, 35–36
overview, 522–523

providing, 140–141
retrofi tting testability,

146–148
reusing test code, 162
terminology, 741–744
vs. Test Hook, 709–712
Test Spy, 137, 538–543
Test Stub. See Test Stub
Test-Specifi c Subclass.

See Test-Specifi c Subclass
types of, 133–134
when to use, 523–526

Test Double Class
example, 572–573
implementation, 569–570

Test Double Subclass
implementation, 570
when to use, 580–581

test drivers
Assertion Messages, 370
defi ned, 813

test driving, 813
Test Enumeration

introduction, 153
pattern description, 399–402

test errors, 80, 813
test failure, 80, 813
test fi rst development

defi ned, 813–814
process, 4–5
test automation philosophy,

32–33
vs. test-last development, xxxiv

Test Fixture Registry
accessing Shared Fixtures, 104
Test Helper use, 644

test fi xtures. See fi xtures
Test Helper

Automated Teardown, 505
introduction, xxiii
pattern description, 643–647

www.it-ebooks.info

http://www.it-ebooks.info/

876 Index

Test Helper Mixin
example, 641–642
vs. Testcase Superclass, 639

Test Hook
pattern description, 709–712
in Procedural Test Stub,

135–136
retrofi tting testability, 148
Test Logic in Production,

217–219
testability, 70

Test Logic, Conditional.
See Conditional Test Logic

Test Logic in Production
Equality Pollution, 221–222
impact, 217
introduction, 17
symptoms, 217
Test Dependency in Production,

220–221
Test Hooks, 148, 217–219
For Tests Only, 219–220

test maintainer, 815
Test Method

calling Assertion. See Assertion
Method

Constructor Test example,
355–357

Constructor Tests, 351
Dependency Initialization

Tests, 352
enumeration, 401
Expected Exception Test,

350–351
Expected Exception Test using

block closure, 354–355
Expected Exception Test using

method attributes, 354
Expected Exception Test using

try/catch, 353–354
fi xture design, 59

implementation, 349
invocation, 402
Lost Tests, 269–270
minimizing untested code,

44–45
organization, 7, 155–158. See

also test organization patterns
overview, 348–349
persistent fi xtures. See persistent

fi xtures
right-sizing, 154–155
running, 81
selection, 404–405
Simple Success Test, 349–350
Simple Success Test example,

352–353
test automation philosophies, 34
Test Commands, 82
Test Concerns Separately, 47
Test Suite Objects, 82
Testcase Object implementation,

384–385
transient fi xture management.

See transient fi xtures
unit testing, 6
Verify One Condition per Test,

46–47
writing simple tests, 28

Test Method Discovery
defi ned, 394–395
examples, 395–397

Test Object Registry. See Automated
Teardown

test organization, 153–165
code reuse, 162–164
introduction, 153
naming conventions, 158–159
overview, 7
right-sizing Test Methods,

154–155
test fi les, 164–165

www.it-ebooks.info

http://www.it-ebooks.info/

877 Index

Test Methods and Testcase
Classes, 155–158

test suites, 160–162
test organization patterns, 591–647

Named Test Suite. See Named
Test Suite

Parameterized Test.
See Parameterized Test

Test Helper, 643–647
Test Utility Method. See Test

Utility Method
Testcase Class per Class.

See Testcase Class per Class
Testcase Class per Feature.

See Testcase Class per Feature
Testcase Class per Fixture.

See Testcase Class per Fixture
Testcase Superclass, 638–642

test packages
defi ned, 815
test fi le organization, 164–165

test readers, 815
test refactorings. See also refactoring

Extractable Test Component,
735–736

In-line Resource, 736–737
Make Resources Unique,

737–738
Minimize Data, 738–739
Replace Dependency with Test

Double, 739
Set Up External Resource, 740

test results
defi ned, 815
introduction, 79–80
verifi cation. See result verifi cation

Test Run War
database testing, 169
Erratic Tests cause, 235–237
introduction, 15
vs. Shared Fixture strategy, 64

Test Runner
Graphical. See Graphical Test

Runner
implementation, 378–381
introduction, 79
Missing Assertion Messages,

226–227
overview, 377–378
Test Automation Frameworks,

300
test runs, 815
Test Selection

pattern description, 403–405
Test Suite Object, 388

test smells, 9–17
aliases and causes, 761–765
behavior. See behavior smells
catalog of, 12–17
code smells. See code smells
database testing. See database

testing
defi ned, 808, 816
introduction, xxxvi
overview, 9–11
patterns and principles vs.,

xxxv–xxxvi
project smells. See project smells
reducing Test Code Duplication,

114–119
Test Spy

Back Door Verifi cation, 333
Behavior Verifi cation, 113
Confi gurable. See Confi gurable

Test Double
examples, 542–543
implementation, 540–541
indirect outputs verifi cation,

179–180
introduction, 131–133,

137, 525
motivating example, 541

www.it-ebooks.info

http://www.it-ebooks.info/

878 Index

overview, 538–539
Procedural Behavior

Verifi cation, 470
refactoring, 541–542
when to use, 539–540
xUnit terminology, 741–744

test strategy patterns, 277–345
Data-Driven Test. See Data-

Driven Test
Fresh Fixture. See Fresh Fixture
Layer Test. See Layer Test
Minimal Fixture, 302–304
Recorded Test. See Recorded

Test
Scripted Test, 285–287
Shared Fixture. See Shared

Fixture
Standard Fixture. See Standard

Fixture
Test Automation Framework,

298–301
test strippers, 816
Test Stub

Behavior-Modifying Subclass,
584–585

Confi gurable. See Confi gurable
Test Double

confi guring, 141–142
Context Sensitivity solution, 246
controlling indirect inputs, 129
creating in-line resources, 737
examples, 533–537
implementation, 531–532
indirect inputs control, 179
inside-out development, 34–35
introduction, 133, 135–136, 524
motivating example, 532–533
overview, 529–530
refactoring, 533
unit testing, 6

when to use, 530–531
xUnit terminology, 741–744

test success, 816
Test Suite Enumeration

defi ned, 400
example, 402

Test Suite Factory, 232
Test Suite Object

enumeration, 400
Interacting Test Suites, 231–232
introduction, 7, 82
pattern description, 387–392

Test Suite Object Generator, 293
Test Suite Object Simulator, 293
Test Suite Procedure

defi ned, 388–389
example, 391–392

test suites
defi ned, 816
Lost Tests, 269–270
Named Test Suites. See Named

Test Suite
Test Tree Explorer, 161–162,

380–381
Test Utility Method

Communicate Intent, 41
eliminating loops, 121
example, 605–606
implementation, 602–603
introduction, xxiii, 16–17, 23,

162–163
motivating example, 603–604
Obscure Tests solution, 199
overview, 599
reducing risk of bugs, 181
refactoring, 605
reusing, lviii–lix
reusing via Test Helper, 643–647
reusing via Testcase Superclass,

638–642

www.it-ebooks.info

http://www.it-ebooks.info/

879 Index

using TDD to write, 122
when to use, 600–602

Test Utility Test, 603
testability, design for. See design-

for-testability
Testcase Class

introduction, 78
organization, 7, 155–158
pattern description, 373–376
reusable test logic, 123
selection, 404–405

Testcase Class Discovery
defi ned, 394
example, 397–398

Testcase Class per Class
example, 618–623
implementation, 618
overview, 617
when to use, 618

Testcase Class per Feature
example, 628–630
implementation, 626
motivating example, 626–627
overview, 624
refactoring, 627–628
when to use, 625

Testcase Class per Fixture
example, 635–637
implementation, 632–633
motivating example,

633–634
overview, 631
refactoring, 634–635
Verify One Condition per Test,

46–47
when to use, 632

Testcase Class per Method, 625
Testcase Class per User Story, 625
Testcase Object

introduction, 81
pattern description, 382–386

Testcase Superclass
pattern description, 638–642
reusing test code, 163–164
Test Discovery using, 397–398

test-driven bug fi xing, 812
test-driven development (TDD).

See TDD (test-driven development)
Test-Driven Development: By

Example (Beck), 301
test-driven testability, 66
Testing by Layers. See Layer Test
testing terminology. See terminology
test-last development

defi ned, 815
strategy, 65
test automation philosophy,

32–33
vs. test-fi rst development, xxxiv

TestNG
defi ned, 750
Interacting Tests, 231
Testcase Object exception,

384–385
vs. xUnit, 57

Tests as Documentation
Communicate Intent, 41
customer testing, 5
defi ned, 23
reusing test code, 162
unit testing, 6

Tests as Safety Net, 24, 260
Tests as Specifi cation, xxxiii, 22
test-specifi c equality, 588–589, 816
Test-Specifi c Extension.

See Test-Specifi c Subclass
Test-Specifi c Subclass

Behavior-Exposing Subclass,
587

Behavior-Modifying Subclass
(Substituted Singleton),
586–587

www.it-ebooks.info

http://www.it-ebooks.info/

880 Index

Behavior-Modifying Subclass
(Test Stub), 584–585

defi ning Test-Specifi c Equality,
588–589

Don’t Modify the SUT, 42
implementation, 581–582
Isolate the SUT, 44
motivating example, 582–584
overview, 579–580
refactoring, 584
retrofi tting testability, 146–147
State-Exposing Subclass,

289–590
For Tests Only solution, 220
when to use, 580–581

Test::Unit, 750
Thread-Specifi c Storage, 688–689
Too Many Tests, 256–257
tools

automated unit testing,
xxx–xxxi

commercial record and playback,
282–283

QTP. See QTP (QuickTest
Professional)

robot user. See robot user tools
for test automation strategy,

53–58
types of, 753–756

Transaction Controller, Humble.
See Humble Transaction
Controller

Transaction Rollback Teardown
data access layer testing, 173
defi ned, 100
examples, 673–675
implementation, 671
motivating example, 672
overview, 668–669
refactoring, 672
when to use, 669–671

transient fi xtures, 85–94
Delegated Setup, 89–91
hybrid setup, 93
Implicit Setup, 91–93
In-Line Setup, 88–89
overview, 85–86
vs. persistent fi xtures, 96
tearing down, 93–94
terminology, 86–88
what’s next, 94

Transient Fresh Fixture
database testing, 170
defi ned, 60–61, 314
vs. Shared Fixture, 61–62

troubleshooting
Buggy Tests, 261
Developers Not Writing Tests,

264
Erratic Tests, 228–229
Fragile Tests, 239–240
High Test Maintenance Cost,

267
Slow Tests, 253–254

True Humble Executable, 703–706
True Humble Objects, 699–700
TRUNCATE command. See Table

Truncation Teardown
try/catch

Expected Exception Tests,
353–354

Single-Outcome Assertions, 367
try/fi nally block

cleaning up fi xture teardown
logic, l–liv

Implicit Teardown, 519
In-line Teardown, 512–513

type compatibility, 679
type visibility

Test Helper use, 644
Test Utility Methods, 603
Testcase Superclass use, 639

www.it-ebooks.info

http://www.it-ebooks.info/

881 Index

U

UAT (user acceptance tests)
defi ned, 817
principles, 42

UI (User Interface) tests
asynchronous tests, 70–71
Hard-To-Test Code, 71–72
tools, 55

UML (Unifi ed Modeling
Language), 816

Unconfi gurable Test Doubles, 527
unexpected exceptions, 352
Unfi nished Test Assertion, 494–497
Unfi nished Test Method from

Template, 496–497
Unifi ed Modeling Language

(UML), 816
unique resources, 737–738
Unit Testing with Java (Link), 743
unit tests

defi ned, 817
introduction, 6
per-functionality, 51
rules, 307
Scripted Tests, 285–287
xUnit vs. Fit, 290–292

unnecessary object elimination,
303–304

Unrepeatable Test
database testing, 169
Erratic Test cause, 234–235
introduction, 15, 64
persistent fresh fi xtures, 96
vs. Repeatable Test, 26–27

Untestable Test Code
avoiding Conditional Logic,

119–121
Hard-To-Test Code, 211–212

Untested Code
alternative path verifi cation,

178–179
indirect inputs and, 126
Isolate the SUT, 43
minimizing, 44–45
preventing with Test Doubles,

523
Production Bugs, 271–272
unit testing, 6

Untested Requirement
Frequent Debugging cause,

249
indirect output testing, 127
preventing with Test

Doubles, 523
Production Bugs cause,

272–274
reducing via Isolate the

SUT, 43
usability tests, 53
use cases, 817
Use the Front Door First

defi ned, 40–41
Overspecifi ed Software

avoidance, 246
user acceptance tests (UAT)

defi ned, 817
principles, 42

User Interface (UI) tests
asynchronous tests, 70–71
Hard-To-Test Code, 71–72
tools, 55

user story
defi ned, 817
Testcase Class per, 625

utility methods. See Test Utility
Method

utPLSQL, 750

www.it-ebooks.info

http://www.it-ebooks.info/

882 Index

V

value patterns, 713–732
Derived Values, 718–722
Dummy Objects, 728–732
Generated Values, 723–727
Literal Values, 714–717

variables
in Derived Values, 718–722
global, 92, 798
instance. See instance variables
local. See local variables
procedure variables, 805–806
static, 809

VB Lite Unit, 751
VbUnit

defi ned, 751
Suite Fixture Setup support, 442
Testcase Class terminology, 376
xUnit terminology, 300

Verbose Tests. See Obscure Test
verifi cation

alternative path, 178–179
Back Door Manipulation,

329–330
Back Door using Test Spy, 333
cleaning up logic, xlvi–l
direct output, 178
indirect outputs, 130–133,

178–180
state vs. behavior, 36
test results. See result verifi cation
Verify One Condition per Test,

45–47
Verifi cation Method

defi ned, 477, 602
example, 482–483

Verify One Condition per Test
defi ned, 40, 45–47
right-sizing Test Methods,

154–155
verify outcome, 817
Virtual Clock, 246

visibility
of SUT features from Test-

Specifi c Subclass, 581–582
test fi le organization, 165
type. See type visibility

visual objects, Humble Dialog
use, 706

Visual Studio, 756

W

waterfall design, 65
Watir

defi ned, 756
Test Automation Frameworks,

301
test automation tools, 53

Weinberg, Gerry, xxiv–xxv, 61–62
widgets

Humble Dialog use, 706
recognizers, 299

Wikipedia, 729
Working Effectively with Legacy

Code (Feathers), 210
Write the Tests First, 40
writing tests

Developers Not Writing Tests
project smells, 263–264

development process, 4–5
goals, 27–29
philosophies. See test automation

philosophies
principles. See test automation

principles

X

XML data fi les, Data-Driven Tests,
294–295

xUnit
Data-Driven Tests with CSV

input fi le, 296
Data-Driven Tests with XML

data fi le, 294–295

www.it-ebooks.info

http://www.it-ebooks.info/

883 Index

defi ned, 751
family members, 747–751
vs. Fit, 291–292
fi xture defi nitions, 86
Interacting Test Suites, 232
introduction, 56–57
language-specifi c terminology,

xl–xli
modern, 55
Naive xUnit Test Interpreter,

292–293
profi ling tools, 254
Suite Fixture Setup support,

442–443
sweet spot, 58
terminology, 741–746
Test Automation Frameworks,

300
test fi xtures, 814
test organization mechanisms,

153
xUnit basics, 75–83

defi ning suites of tests, 78–79
defi ning tests, 76–78

fi xtures, 78
overview, 75–76
procedural world, 82–83
running Test Methods, 81
running tests, 79
Test Commands, 82
test results, 79–80
Test Suite Object, 82

xUnit basics patterns, 347–405
Assertion Message, 370–372
Assertion Method.

See Assertion Method
Four-Phase Test, 358–361
Test Discovery, 393–398
Test Enumeration, 399–402
Test Method.

See Test Method
Test Runner.

See Test Runner
Test Selection, 403–405
Test Suite Object, 82,

387–392
Testcase Class, 373–376
Testcase Object, 382–386

www.it-ebooks.info

http://www.it-ebooks.info/

List of Smells
Assertion Roulette (224): It is hard to tell which of several assertions within the same test method caused a test failure.
Includes Eager Test, Missing Assertion Message.

Buggy Tests (260): Bugs are regularly found in the automated tests. Includes Fragile Test, Hard-to-Test Code, Obscure Test.

Conditional Test Logic (200): A test contains code that may or may not be executed. Includes Complex Teardown, Condi-
tional Verifi cation Logic, Flexible Test, Multiple Test Conditions, Production Logic in Test.

Developers Not Writing Tests (263): Developers aren’t writing automated tests. Includes Hard-to-Test Code, Not Enough
Time, Wrong Test Automation Strategy.

Erratic Test (228): One or more tests are behaving erratically; sometimes they pass and sometimes they fail. Includes Inter-
acting Test Suites, Interacting Tests, Lonely Test, Nondeterministic Test, Resource Leakage, Resource Optimism, Test Run
War, Unrepeatable Test.

Fragile Test (239): A test fails to compile or run when the SUT is changed in ways that do not affect the part the test is exer-
cising. Includes Behavior Sensitivity, Context Sensitivity, Data Sensitivity, Fragile Fixture, Interface Sensitivity, Overspecifi ed
Software, Sensitive Equality.

Frequent Debugging (248): Manual debugging is required to determine the cause of most test failures.

Hard-to-Test Code (209): Code is diffi cult to test. Includes Asynchronous Code, Hard-Coded Dependency, Highly Coupled
Code, Untestable Test Code.

High Test Maintenance Cost (265): Too much effort is spent maintaining existing tests. Includes Fragile Test, Hard-to-Test
Code, Obscure Test.

Manual Intervention (250): A test requires a person to perform some manual action each time it is run. Includes Manual
Event Injection, Manual Fixture Setup, Manual Result Verifi cation.

Obscure Test (186): It is diffi cult to understand the test at a glance. Includes Eager Test, General Fixture, Hard-Coded Test
Data, Indirect Testing, Irrelevant Information, Mystery Guest.

Production Bugs (268): We fi nd too many bugs during formal test or in production. Includes Infrequently Run Tests, Lost
Test, Missing Unit Test, Neverfail Test, Untested Code, Untested Requirement.

Slow Tests (253): The tests take too long to run. Includes Asynchronous Test, General Fixture, Slow Component Usage, Too
Many Tests.

Test Code Duplication (213): The same test code is repeated many times. Includes Cut-and-Paste Code Reuse, Reinventing
the Wheel.

Test Logic in Production (217): The code that is put into production contains logic that should be exercised only during
tests. Includes Equality Pollution, For Tests Only, Test Dependency in Production, Test Hook.

www.it-ebooks.info

http://www.it-ebooks.info/

All Patterns Listed by the Problem They Solve
How do we prepare automated tests for our software?

Recorded Test (278); Scripted Test (285); Data-Driven Test (288)

How do we make it easy to write and run tests?
Test Automation Framework (298)

Where do we put our test code?
Test Method (348); Testcase Class (373); Test Helper (643); Testcase Superclass (638)

How do we organize our Test Methods onto Testcase Classes?
Testcase Class per Feature (624); Testcase Class per Fixture (631); Testcase Class per Class (617)

How do we make tests self-checking?
State Verifi cation (462); Behavior Verifi cation (468); Assertion Method (362); Custom Assertion (474); Delta

Assertion (485)

How do we structure our test logic?
Four-Phase Test (358); Assertion Message (370); Unfi nished Test Assertion (494)

How do we reduce Test Code Duplication?
Data-Driven Test (288); Custom Assertion (474); Test Utility Method (599); Parameterized Test (607)

How do we run the tests?
Test Runner (377); Testcase Object (382); Test Suite Object (387); Named Test Suite (592)

How does the Test Runner know which tests to run?
Test Discovery (393); Test Enumeration (399); Test Selection (403)

Which fi xture strategy should we use?
Minimal Fixture (302); Standard Fixture (305); Fresh Fixture (311); Shared Fixture (317)

How do we construct the fi xture?
In-line Setup (408); Delegated Setup (411); Creation Method (415); Implicit Setup (424)

How do we cause the Shared Fixture to be built before the fi rst test method that needs it?
Prebuilt Fixture (429); Lazy Setup (435); Suite Fixture Setup (441); Setup Decorator (447); Chained Tests (454)

How do we specify the values to be used in tests?
Dummy Object (728); Literal Value (714); Derived Value (718); Generated Value (723)

How do we tear down the Test Fixture?
Garbage-Collected Teardown (500); In-line Teardown (509); Implicit Teardown (516); Automated Teardown (503);

Table Truncation Teardown (661); Transaction Rollback Teardown (668)

How can we avoid Slow Tests?
Shared Fixture (317); Test Double (522); Fake Object (551)

How do we avoid Conditional Test Logic?
Custom Assertion (474); Guard Assertion (490)

How can we verify logic independently?
Back Door Manipulation (327); Layer Test (337); Test Double (522); Test Stub (529); Test Spy (538); Mock

Object (544); Fake Object (551); Stored Procedure Test (654)

How do we implement Behavior Verifi cation?
Test Spy (538); Mock Object (544)

How do we tell a Test Double what to return or expect?
Confi gurable Test Double (558); Hard-Coded Test Double (568)

How can we make code testable?
Humble Object (695); Test-Specifi c Subclass (579)

How do we design the SUT so that we can replace its dependencies at runtime?
Dependency Injection (678); Dependency Lookup (686); Test Hook (709)

www.it-ebooks.info

http://www.it-ebooks.info/

	XUnit test patterns : refactoring test code
	Contents
	Visual Summary of the Pattern Language
	Foreword
	Preface
	Acknowledgments
	Introduction
	Refactoring a Test
	PART I. The Narratives
	Chapter 1. A Brief Tour
	About This Chapter
	The Simplest Test Automation Strategy That Could Possibly Work
	What’s Next?

	Chapter 2. Test Smells
	About This Chapter
	An Introduction to Test Smells
	A Catalog of Smells
	What’s Next?

	Chapter 3. Goals of Test Automation
	About This Chapter
	Why Test?
	Goals of Test Automation
	What’s Next?

	Chapter 4. Philosophy of Test Automation
	About This Chapter
	Why Is Philosophy Important?
	Some Philosophical Differences
	When Philosophies Differ
	My Philosophy
	What’s Next?

	Chapter 5. Principles of Test Automation
	About This Chapter
	The Principles
	What’s Next?

	Chapter 6. Test Automation Strategy
	About This Chapter
	What’s Strategic?
	Which Kinds of Tests Should We Automate?
	Which Tools Do We Use to Automate Which Tests?
	Which Test Fixture Strategy Do We Use?
	How Do We Ensure Testability?
	What’s Next?

	Chapter 7. xUnit Basics
	About This Chapter
	An Introduction to xUnit
	Common Features
	The Bare Minimum
	Under the xUnit Covers
	xUnit in the Procedural World
	What’s Next?

	Chapter 8. Transient Fixture Management
	About This Chapter
	Test Fixture Terminology
	Building Fresh Fixtures
	Tearing Down Transient Fresh Fixtures
	What’s Next?

	Chapter 9. Persistent Fixture Management
	About This Chapter
	Managing Persistent Fresh Fixtures
	Managing Shared Fixtures
	What’s Next?

	Chapter 10. Result Verification
	About This Chapter
	Making Tests Self-Checking
	State Verification
	Verifying Behavior
	Reducing Test Code Duplication
	Avoiding Conditional Test Logic
	Other Techniques
	Where to Put Reusable Verification Logic?
	What’s Next?

	Chapter 11. Using Test Doubles
	About This Chapter
	What Are Indirect Inputs and Outputs?
	Testing with Doubles
	Other Uses of Test Doubles
	Other Considerations
	What’s Next?

	Chapter 12. Organizing Our Tests
	About This Chapter
	Basic xUnit Mechanisms
	Right-Sizing Test Methods
	Test Methods and Testcase Classes
	Test Naming Conventions
	Organizing Test Suites
	Test Code Reuse
	Test File Organization
	What’s Next?

	Chapter 13. Testing with Databases
	About This Chapter
	Testing with Databases
	Testing without Databases
	Testing the Database
	Testing with Databases (Again!)
	What’s Next?

	Chapter 14. A Roadmap to Effective Test Automation
	About This Chapter
	Test Automation Difficulty
	Roadmap to Highly Maintainable Automated Tests
	What’s Next?

	PART II. The Test Smells
	Chapter 15. Code Smells
	Obscure Test
	Conditional Test Logic
	Hard-to-Test Code
	Test Code Duplication
	Test Logic in Production

	Chapter 16. Behavior Smells
	Assertion Roulette
	Erratic Test
	Fragile Test
	Frequent Debugging
	Manual Intervention
	Slow Tests

	Chapter 17. Project Smells
	Buggy Tests
	Developers Not Writing Tests
	High Test Maintenance Cost
	Production Bugs

	PART III. The Patterns
	Chapter 18. Test Strategy Patterns
	Recorded Test
	Scripted Test
	Data-Driven Test
	Test Automation Framework
	Minimal Fixture
	Standard Fixture
	Fresh Fixture
	Shared Fixture
	Back Door Manipulation
	Layer Test

	Chapter 19. xUnit Basics Patterns
	Test Method
	Four-Phase Test
	Assertion Method
	Assertion Message
	Testcase Class
	Test Runner
	Testcase Object
	Test Suite Object
	Test Discovery
	Test Enumeration
	Test Selection

	Chapter 20. Fixture Setup Patterns
	In-line Setup
	Delegated Setup
	Creation Method
	Implicit Setup
	Prebuilt Fixture
	Lazy Setup
	Suite Fixture Setup
	Setup Decorator
	Chained Tests

	Chapter 21. Result Verification Patterns
	State Verification
	Behavior Verification
	Custom Assertion
	Delta Assertion
	Guard Assertion
	Unfinished Test Assertion

	Chapter 22. Fixture Teardown Patterns
	Garbage-Collected Teardown
	Automated Teardown
	In-line Teardown
	Implicit Teardown

	Chapter 23. Test Double Patterns
	Test Double
	Test Stub
	Test Spy
	Mock Object
	Fake Object
	Configurable Test Double
	Hard-Coded Test Double
	Test-Specific Subclass

	Chapter 24. Test Organization Patterns
	Named Test Suite
	Test Utility Method
	Parameterized Test
	Testcase Class per Class
	Testcase Class per Feature
	Testcase Class per Fixture
	Testcase Superclass
	Test Helper

	Chapter 25. Database Patterns
	Database Sandbox
	Stored Procedure Test
	Table Truncation Teardown
	Transaction Rollback Teardown

	Chapter 26. Design-for-Testability Patterns
	Dependency Injection
	Dependency Lookup
	Humble Object
	Test Hook

	Chapter 27. Value Patterns
	Literal Value
	Derived Value
	Generated Value
	Dummy Object

	PART IV. Appendixes
	Appendix A. Test Refactorings
	Appendix B. xUnit Terminology
	Appendix C. xUnit Family Members
	Appendix D. Tools
	Appendix E. Goals and Principles
	Appendix F. Smells, Aliases, and Causes
	Appendix G. Patterns, Aliases, and Variations

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

