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List of Patterns 
Assertion Message (370): We include a descriptive string argument in each call to an Assertion Method.

Assertion Method (362): We call a utility method to evaluate whether an expected outcome has been achieved.

Automated Teardown (503): We keep track of all resources that are created in a test and automatically destroy/free them 
during teardown.

Back Door Manipulation (327): We set up the test fi xture or verify the outcome by going through a back door (such as direct 
database access).

Behavior Verifi cation (468): We capture the indirect outputs of the system under test (SUT) as they occur and compare them 
to the expected behavior.

Chained Tests (454): We let the other tests in a test suite set up the test fi xture.

Confi gurable Test Double (558): We confi gure a reusable Test Double with the values to be returned or verifi ed during the 
fi xture setup phase of a test.

Creation Method (415): We set up the test fi xture by calling methods that hide the mechanics of building ready-to-use 
objects behind Intent-Revealing Names.

Custom Assertion (474): We create a purpose-built Assertion Method that compares only those attributes of the object that 
defi ne test-specifi c equality.

Data-Driven Test (288): We store all the information needed for each test in a data fi le and write an interpreter that reads the 
fi le and executes the tests.

Database Sandbox (650): We provide a separate test database for each developer or tester.

Delegated Setup (411): Each test creates its own Fresh Fixture by calling Creation Methods from within the Test Methods.

Delta Assertion (485): We specify assertions based on differences between the pre- and post-exercise state of the SUT.

Dependency Injection (678): The client provides the depended-on object to the SUT.

Dependency Lookup (686): The SUT asks another object to return the depended-on object before it uses it.

Derived Value (718): We use expressions to calculate values that can be derived from other values.

Dummy Object (728): We pass an object that has no implementation as an argument of a method called on the SUT.

Fake Object (551): We replace a component that the SUT depends on with a much lighter-weight implementation.

Four-Phase Test (358): We structure each test with four distinct parts executed in sequence.

Fresh Fixture (311): Each test constructs its own brand-new test fi xture for its own private use.

Garbage-Collected Teardown (500): We let the garbage collection mechanism provided by the programming language clean 
up after our test.

Generated Value (723): We generate a suitable value each time the test is run.

Guard Assertion (490): We replace an if statement in a test with an assertion that fails the test if not satisfi ed.

Hard-Coded Test Double (568): We build the Test Double by hard-coding the return values and/or expected calls.

Humble Object (695): We extract the logic into a separate, easy-to-test component that is decoupled from its environment.

Implicit Setup (424): We build the test fi xture common to several tests in the setUp method.

Implicit Teardown (516): The Test Automation Framework calls our clean up logic in the tearDown method after every Test 
Method.

In-line Setup (408): Each Test Method creates its own Fresh Fixture by calling the appropriate constructor methods to build 
exactly the test fi xture it requires.

In-line Teardown (509): We include teardown logic at the end of the Test Method immediately after the result verifi cation.

Layer Test (337): We can write separate tests for each layer of the layered architecture.

Lazy Setup (435): We use Lazy Initialization of the fi xture to create it in the fi rst test that needs it.

Literal Value (714): We use literal constants for object attributes and assertions.

Minimal Fixture (302): We use the smallest and simplest fi xture possible for each test.

Mock Object (544): We replace an object the SUT depends on with a test-specifi c object that verifi es it is being used correctly 
by the SUT.
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Named Test Suite (592): We defi ne a test suite, suitably named, that contains a set of tests that we wish to be able to run as a 
group.

Parameterized Test (607): We pass the information needed to do fi xture setup and result verifi cation to a utility method that 
implements the entire test life cycle.

Prebuilt Fixture (429): We build the Shared Fixture separately from running the tests.

Recorded Test (278): We automate tests by recording interactions with the application and playing them back using a test 
tool.

Scripted Test (285): We automate the tests by writing test programs by hand.

Setup Decorator (447): We wrap the test suite with a Decorator that sets up the shared test fi xture before running the tests 
and tears it down after all the tests are done.

Shared Fixture (317): We reuse the same instance of the test fi xture across many tests.

Standard Fixture (305): We reuse the same design of the test fi xture across many tests.

State Verifi cation (462): We inspect the state of the SUT after it has been exercised and compare it to the expected state.

Stored Procedure Test (654): We write Fully Automated Tests for each stored procedure.

Suite Fixture Setup (441): We build/destroy the shared fi xture in special methods called by the Test Automation Framework 
before/after the fi rst/last Test Method is called.

Table Truncation Teardown (661): We truncate the tables modifi ed during the test to tear down the fi xture.

Test Automation Framework (298): We use a framework that provides all the mechanisms needed to run the test logic so the 
test writer needs to provide only the test-specifi c logic.

Test Discovery (393): The Test Automation Framework discovers all the tests that belong to the test suite automatically. 

Test Double (522): We replace a component on which the SUT depends with a “test-specifi c equivalent.”

Test Enumeration (399): The test automater manually writes the code that enumerates all tests that belong to the test suite. 

Test Helper (643): We defi ne a helper class to hold any Test Utility Methods we want to reuse in several tests.

Test Hook (709): We modify the SUT to behave differently during the test.

Test Method (348): We encode each test as a single Test Method on some class.

Test Runner (377): We defi ne an application that instantiates a Test Suite Object and executes all the Testcase Objects it 
contains.

Test Selection (403): The Test Automation Framework selects the Test Methods to be run at runtime based on attributes of 
the tests. 

Test Spy (538): We use a Test Double to capture the indirect output calls made to another component by the SUT for later 
verifi cation by the test.

Test Stub (529): We replace a real object with a test-specifi c object that feeds the desired indirect inputs into the SUT.

Test Suite Object (387): We defi ne a collection class that implements the standard test interface and use it to run a set of 
related Testcase Objects. 

Test Utility Method (599): We encapsulate the test logic we want to reuse behind a suitably named utility method.

Test-Specifi c Subclass (579): We add methods that expose the state or behavior needed by the test to a subclass of the SUT.

Testcase Class (373): We group a set of related Test Methods on a single Testcase Class.

Testcase Class per Class (617): We put all the Test Methods for one SUT class onto a single Testcase Class.

Testcase Class per Feature (624): We group the Test Methods onto Testcase Classes based on which testable feature of the 
SUT they exercise.

Testcase Class per Fixture (631): We organize Test Methods into Testcase Classes based on commonality of the test fi xture.

Testcase Object (382): We create a Command object for each test and call the run method when we wish to execute it.

Testcase Superclass (638): We inherit reusable test-specifi c logic from an abstract Testcase Superclass.

Transaction Rollback Teardown (668): We roll back the uncommitted test transaction as part of the teardown.

Unfi nished Test Assertion (494): We ensure that incomplete tests fail by executing an assertion that is guaranteed to fail.
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Foreword

If you go to junit.org, you’ll see a quote from me: “Never in the fi eld of software 
development have so many owed so much to so few lines of code.” JUnit has 
been criticized as a minor thing, something any reasonable programmer could 
produce in a weekend. This is true, but utterly misses the point. The reason JUnit 
is important, and deserves the Churchillian knock-off, is that the presence of this 
tiny tool has been essential to a fundamental shift for many programmers: Testing 
has moved to a front and central part of programming. People have advocated it 
before, but JUnit made it happen more than anything else.

It’s more than just JUnit, of course. Ports of JUnit have been written for lots 
of programming languages. This loose family of tools, often referred to as xUnit 
tools, has spread far beyond its java roots. (And of course the roots weren’t really 
in Java—Kent Beck wrote this code for Smalltalk years before.)

 xUnit tools, and more importantly their philosophy, offer up huge opportu-
nities to programming teams—the opportunity to write powerful regression test 
suites that enable teams to make drastic changes to a code-base with far less risk; 
the opportunity to re-think the design process with Test Driven Development.

But with these opportunities come new problems and new techniques. Like 
any tool, the xUnit family can be used well or badly. Thoughtful people have 
fi gured out various ways to use xUnit, to organize the tests and data effectively. 
Like the early days of objects, much of the knowledge to really use the tools 
is hidden in the heads of its skilled users. Without this hidden knowledge you 
really can’t reap the full benefi ts.

It was nearly twenty years ago when people in the object-oriented commu-
nity realized this problem for objects and began to formulate an answer. The 
answer was to describe their hidden knowledge in the form of patterns. Gerard 
Meszaros was one of the pioneers in doing this. When I fi rst started exploring 
patterns, Gerard was one of the leaders that I learned from. Like many in the 
patterns world, Gerard also was an early adopter of eXtreme Programming, 
and thus worked with xUnit tools from the earliest days. So it’s entirely logical 
that he should have taken on the task of capturing that expert knowledge in the 
form of patterns.

I’ve been excited by this project since I fi rst heard about it. (I had to launch 
a commando raid to steal this book from Bob Martin because I wanted it to 
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xx

grace my series instead.) Like any good patterns book it provides knowledge 
to new people in the fi eld, and just as important, provides the vocabulary and 
foundations for experienced practitioners to pass their knowledge on to their 
colleagues. For many people, the famous Gang of Four book Design Patterns 
unlocked the hidden gems of object-oriented design. This book does the same 
for xUnit.

Martin Fowler 
Series Editor 
Chief Scientist, ThoughtWorks

Foreword
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Preface

The Value of Self-Testing Code 

In Chapter 4 of Refactoring [Ref], Martin Fowler writes: 

If you look at how most programmers spend their time, you’ll fi nd that 
writing code is actually a small fraction. Some time is spent fi guring out 
what ought to be going on, some time is spent designing, but most time 
is spent debugging. I’m sure every reader can remember long hours of 
debugging, often long into the night. Every programmer can tell a story 
of a bug that took a whole day (or more) to fi nd. Fixing the bug is usually 
pretty quick, but fi nding it is a nightmare. And then when you do fi x a bug, 
there’s always a chance that anther one will appear and that you might not 
even notice it until much later. Then you spend ages fi nding that bug.

Some software is very diffi cult to test manually. In these cases, we are often 
forced into writing test programs. 

I recall a project I was working on in 1996. My task was to build an event 
framework that would let client software register for an event and be notifi ed 
when some other software raised that event (the Observer [GOF] pattern). I 
could not think of a way to test this framework without writing some sample 
client software. I had about 20 different scenarios I needed to test, so I coded up 
each scenario with the requisite number of observers, events, and event raisers. 
At fi rst, I logged what was occurring in the console and scanned it manually. 
This scanning became very tedious very quickly. 

Being quite lazy, I naturally looked for an easier way to perform this test-
ing. For each test I populated a Dictionary indexed by the expected event and 
the expected receiver of it with the name of the receiver as the value. When a 
particular receiver was notifi ed of the event, it looked in the Dictionary for the 
entry indexed by itself and the event it had just received. If this entry existed, 
the receiver removed the entry. If it didn’t, the receiver added the entry with an 
error message saying it was an unexpected event notifi cation. 

After running all the tests, the test program merely looked in the Dictionary
and printed out its contents if it was not empty. As a result, running all of my 
tests had a nearly zero cost. The tests either passed quietly or spewed a list of test 
failures. I had unwittingly discovered the concept of a Mock Object (page 544) 
and a Test Automation Framework (page 298) out of necessity! 

xxi
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My First XP Project 

In late 1999, I attended the OOPSLA conference, where I picked up a copy of 
Kent Beck’s new book, eXtreme Programming Explained [XPE]. I was used to 
doing iterative and incremental development and already believed in the value 
of automated unit testing, although I had not tried to apply it universally. I had 
a lot of respect for Kent, whom I had known since the fi rst PLoP1 conference in 
1994. For all these reasons, I decided that it was worth trying to apply eXtreme 
Programming on a ClearStream Consulting project. Shortly after OOPSLA, 
I was fortunate to come across a suitable project for trying out this develop-
ment approach—namely, an add-on application that interacted with an existing 
database but had no user interface. The client was open to developing software 
in a different way. 

We started doing eXtreme Programming “by the book” using pretty much all 
of the practices it recommended, including pair programming, collective owner-
ship, and test-driven development. Of course, we encountered a few challenges 
in fi guring out how to test some aspects of the behavior of the application, but 
we still managed to write tests for most of the code. Then, as the project pro-
gressed, I started to notice a disturbing trend: It was taking longer and longer to 
implement seemingly similar tasks. 

I explained the problem to the developers and asked them to record on each 
task card how much time had been spent writing new tests, modifying existing 
tests, and writing the production code. Very quickly, a trend emerged. While 
the time spent writing new tests and writing the production code seemed to be 
staying more or less constant, the amount of time spent modifying existing tests 
was increasing and the developers’ estimates were going up as a result. When 
a developer asked me to pair on a task and we spent 90% of the time modify-
ing existing tests to accommodate a relatively minor change, I knew we had to 
change something, and soon! 

When we analyzed the kinds of compile errors and test failures we were 
experiencing as we introduced the new functionality, we discovered that many 
of the tests were affected by changes to methods of the system under test (SUT). 
This came as no surprise, of course. What was surprising was that most of the 
impact was felt during the fi xture setup part of the test and that the changes 
were not affecting the core logic of the tests. 

This revelation was an important discovery because it showed us that we 
had the knowledge about how to create the objects of the SUT scattered across 
most of the tests. In other words, the tests knew too much about nonessential 

1 The Pattern Languages of Programs conference.
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parts of the behavior of the SUT. I say “nonessential” because most of the af-
fected tests did not care about how the objects in the fi xture were created; they 
were interested in ensuring that those objects were in the correct state. Upon 
further examination, we found that many of the tests were creating identical or 
nearly identical objects in their test fi xtures. 

The obvious solution to this problem was to factor out this logic into a small 
set of Test Utility Methods (page 599). There were several variations: 

• When we had a bunch of tests that needed identical objects, we simply 
created a method that returned that kind of object ready to use. We 
now call these Creation Methods (page 415). 

• Some tests needed to specify different values for some attribute of the 
object. In these cases, we passed that attribute as a parameter to the 
Parameterized Creation Method (see Creation Method).

• Some tests wanted to create a malformed object to ensure that the SUT 
would reject it. Writing a separate Parameterized Creation Method for 
each attribute cluttered the signature of our Test Helper (page 643), so 
we created a valid object and then replaced the value of the One Bad 
Attribute (see Derived Value on page 718).

We had discovered what would become2 our fi rst test automation patterns. 
Later, when tests started failing because the database did not like the fact 

that we were trying to insert another object with the same key that had a unique 
constraint, we added code to generate the unique key programmatically. We 
called this variant an Anonymous Creation Method (see Creation Method) to 
indicate the presence of this added behavior. 

Identifying the problem that we now call a Fragile Test (page 239) was an im-
portant event on this project, and the subsequent defi nition of its solution pat-
terns saved this project from possible failure. Without this discovery we would, 
at best, have abandoned the automated unit tests that we had already built. At 
worst, the tests would have reduced our productivity so much that we would 
have been unable to deliver on our commitments to the client. As it turned out, 
we were able to deliver what we had promised and with very good quality. Yes, 
the testers3 still found bugs in our code because we were defi nitely missing some 
tests. Introducing the changes needed to fi x those bugs, once we had fi gured 

2 Technically, they are not truly patterns until they have been discovered by three inde-
pendent project teams.
3 The testing function is sometimes referred to as “Quality Assurance.” This usage is, 
strictly speaking, incorrect.
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out what the missing tests needed to look like, was a relatively straightforward 
process, however. 

We were hooked. Automated unit testing and test-driven development really 
did work, and we have been using them consistently ever since. 

As we applied the practices and patterns on subsequent projects, we have 
run into new problems and challenges. In each case, we have “peeled the on-
ion” to fi nd the root cause and come up with ways to address it. As these tech-
niques have matured, we have added them to our repertoire of techniques for 
automated unit testing. 

We fi rst described some of these patterns in a paper presented at XP2001. 
In discussions with other participants at that and subsequent conferences, we 
discovered that many of our peers were using the same or similar techniques. 
That elevated our methods from “practice” to “pattern” (a recurring solution 
to a recurring problem in a context). The fi rst paper on test smells [RTC] was 
presented at the same conference, building on the concept of code smells fi rst 
described in [Ref].

My Motivation 

I am a great believer in the value of automated unit testing. I practiced software 
development without it for the better part of two decades, and I know that my 
professional life is much better with it than without it. I believe that the xUnit 
framework and the automated tests it enables are among the truly great ad-
vances in software development. I fi nd it very frustrating when I see companies 
trying to adopt automated unit testing but being unsuccessful because of a lack 
of key information and skills. 

As a software development consultant with ClearStream Consulting, I see a 
lot of projects. Sometimes I am called in early on a project to help clients make 
sure they “do things right.” More often than not, however, I am called in when 
things are already off the rails. As a result, I see a lot of “worst practices” that 
result in test smells. If I am lucky and I am called early enough, I can help the 
client recover from the mistakes. If not, the client will likely muddle through 
less than satisfi ed with how TDD and automated unit testing worked—and the 
word goes out that automated unit testing is a waste of time. 

In hindsight, most of these mistakes and best practices are easily avoid-
able given the right knowledge at the right time. But how do you obtain that 
knowledge without making the mistakes for yourself? At the risk of sounding 
self-serving, hiring someone who has the knowledge is the most time-effi cient 
way of learning any new practice or technology. According to Gerry Weinberg’s 
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“Law of Raspberry Jam” [SoC],4 taking a course or reading a book is a much 
less effective (though less expensive) alternative. I hope that by writing down a 
lot of these mistakes and suggesting ways to avoid them, I can save you a lot of 
grief on your project, whether it is fully agile or just more agile than it has been 
in the past—the “Law of Raspberry Jam” not withstanding. 

Who This Book Is For 

I have written this book primarily for software developers (programmers, 
designers, and architects) who want to write better tests and for the managers 
and coaches who need to understand what the developers are doing and why 
the developers need to be cut enough slack so they can learn to do it even bet-
ter! The focus here is on developer tests and customer tests that are automated 
using xUnit. In addition, some of the higher-level patterns apply to tests that are 
automated using technologies other than xUnit. Rick Mugridge and Ward Cun-
ningham have written an excellent book on Fit [FitB], and they advocate many of 
the same practices. 

Developers will likely want to read the book from cover to cover, but they 
should focus on skimming the reference chapters rather than trying to read them 
word for word. The emphasis should be on getting an overall idea of which pat-
terns exist and how they work. Developers can then return to a particular pat-
tern when the need for it arises. The fi rst few elements (up to and include the 
“When to Use It” section) of each pattern should provide this overview. 

Managers and coaches might prefer to focus on reading Part I, The Nar-
ratives, and perhaps Part II, The Test Smells. They might also need to read 
Chapter 18, Test Strategy Patterns, as these are decisions they need to under-
stand and provide support to the developers as they work their way through 
these patterns. At a minimum, managers should read Chapter 3, Goals of Test 
Automation.

About the Cover Photo 

Every book in the Martin Fowler Signature Series features a picture of a bridge 
on the cover. One of the thoughts I had when Martin Fowler asked if he could 
“steal me for his series” was “Which bridge should I put on the cover?” I 
thought about the ability of testing to avoid catastrophic failures of software 

4 The Law of Raspberry Jam: “The wider you spread it, the thinner it gets.” 
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and how that related to bridges. Several famous bridge failures immediately 
came to mind, including “Galloping Gertie” (the Tacoma Narrows bridge) and 
the Iron Workers Memorial Bridge in Vancouver (named for the iron workers 
who died when a part of it collapsed during construction). 

After further refl ection, it just did not seem right to claim that testing might 
have prevented these failures, so I chose a bridge with a more personal con-
nection. The picture on the cover shows the New River Gorge bridge in West 
Virginia. I fi rst passed over and subsequently paddled under this bridge on a 
whitewater kayaking trip in the late 1980s. The style of the bridge is also rel-
evant to this book’s content: The complex arch structure underneath the bridge 
is largely hidden from those who use it to get to the other side of the gorge. The 
road deck is completely level and four lanes wide, resulting in a very smooth 
passage. In fact, at night it is quite possible to remain completely oblivious to 
the fact that one is thousands of feet above the valley fl oor. A good test automa-
tion infrastructure has the same effect: Writing tests is easy because most of the 
complexity lies hidden beneath the road bed. 

Colophon

This book’s manuscript was written using XML, which I published to HTML 
for previewing on my Web site. I edited the XML using Eclipse and the XML 
Buddy plug-in. The HTML was generated using a Ruby program that I fi rst 
obtained from Martin Fowler and which I then evolved quite extensively as I 
evolved my custom markup language. Code samples were written, compiled, 
and executed in (mostly) Eclipse and were inserted into the HTML automati-
cally by XML tag handlers (one of the main reasons for using Ruby instead of 
XSLT). This gave me the ability to “publish early, publish often” to the Web 
site. I could also generate a single Word or PDF document for reviewers from 
the source, although this required some manual steps. 
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Introduction

It has been said before but it bears repeating: Writing defect-free software is 
exceedingly diffi cult. Proof of correctness of real systems is still well beyond our 
abilities, and specifi cation of behavior is equally challenging. Predicting future 
needs is a hit or miss affair—we’d all be getting rich on the stock market instead 
of building software systems if we were any good at it!

Automated verifi cation of software behavior is one of the biggest advances in 
development methods in the last few decades. This very developer-friendly prac-
tice has huge benefi ts in terms of increasing productivity, improving quality, and 
keeping software from becoming brittle. The very fact that so many developers 
are now doing it of their own free will speaks for its effectiveness. 

This chapter introduces the concept of test automation using a variety of 
tools (including xUnit), describes why you would do it, and explains what 
makes it diffi cult to do test automation well. 

Feedback

Feedback is a very important element in many activities. Feedback tells us 
whether our actions are having the right effect. The sooner we get feedback, 
the more quickly we can react. A good example of this kind of feedback is the 
rumble strips now being ground into many highways between the main driving 
surface and the shoulders. Yes, driving off the shoulder gives us feedback that 
we have left the road. But getting feedback earlier (when our wheels fi rst enter 
the shoulder) gives us more time to correct our course and reduces the likeli-
hood that we will drive off the road at all. 

Testing is all about getting feedback on software. For this reason, feedback is 
one of the essential elements of “agile” or “lean” software development. Hav-
ing feedback loops in the development process is what gives us confi dence in 
the software that we write. It lets us work more quickly and with less paranoia. 
It lets us focus on the new functionality we are adding by having the tests tell us 
whenever we break old functionality. 
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Testing 

The traditional defi nition of “testing” comes from the world of quality assurance. 
We test software because we are sure it has bugs in it! So we test and we test 
and we test some more, until we cannot prove there are still bugs in the software. 
Traditionally, this testing occurs after the software is complete. As a result, it is a 
way of measuring quality—not a way of building quality into the product. In many 
organizations, testing is done by someone other than the software developers. 
The feedback provided by this kind of testing is very valuable, but it comes so 
late in the development cycle that its value is greatly diminished. It also has the 
nasty effect of extending the schedule as the problems found are sent back to 
development for rework, to be followed by another round of testing. So what kind 
of testing should software developers do to get feedback earlier? 

Developer Testing 

Rare is the software developer who believes he or she can write code that works 
“fi rst time, every time.” In fact, most of us are pleasantly surprised when some-
thing does work the fi rst time. (I hope I am not shattering any illusions for the 
nondeveloper readers out there!) 

So developers do testing, too. We want to prove to ourselves that the soft-
ware works as we intended it to. Some developers might do their testing the 
same way as testers do it: by testing the whole system as a single entity. Most 
developers, however, prefer to test their software unit by unit. The “units” may 
be larger-grained components or they may be individual classes, methods, or 
functions. The key thing that distinguishes these tests from the ones that the 
testers write is that the units being tested are a consequence of the design of the 
software, rather than being a direct translation of the requirements.1

Automated Testing 

Automated testing has been around for several decades. When I worked on 
telephone switching systems at Nortel’s R&D subsidiary Bell-Northern 
Research in the early 1980s, we did automated regression and load testing of 

1 A small percentage of the unit tests may correspond directly to the business logic
described in the requirements and the customer tests, but a large majority tests the code 
that surrounds the business logic.
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the software/hardware that we were building. This testing was done primarily 
in the context of the “System Test” organization using specialized hardware 
and software that were programmed with test scripts. The test machines con-
nected to the switch being tested as though it were a bunch of telephones and 
other telephone switches; it made telephone calls and exercised the myriad of 
telephone features. Of course, this automated testing infrastructure was not 
suitable for unit testing, nor was it generally available to the developers because 
of the huge amounts of hardware involved. 

In the last decade, more general-purpose test automation tools have become 
available for testing applications through their user interfaces. Some of these 
tools use scripting languages to defi ne the tests; the sexier tools rely on the 
“robot user” or “record and playback” metaphor for test automation. Unfor-
tunately, many of the early experiences with these latter tools left the testers 
and test managers less than satisfi ed. The cause was high test maintenance costs 
caused by the “fragile test” problem. 

The “Fragile Test” Problem 

Test automation using commercial “record and playback” or “robot user” tools 
has gained a bad reputation among early users of these tools. Tests automated 
using this approach often fail for seemingly trivial reasons. It is important to 
understand the limitations of this style of test automation to avoid falling vic-
tim to the pitfalls commonly associated with it—namely, behavior sensitivity, 
interface sensitivity, data sensitivity, and context sensitivity. 

Behavior Sensitivity 

If the behavior of the system is changed (e.g., if the requirements are changed 
and the system is modifi ed to meet the new requirements), any tests that exer-
cise the modifi ed functionality will most likely fail when replayed.2 This is a 
basic reality of testing regardless of the test automation approach used. The real 
problem is that we often need to use that functionality to maneuver the system 
into the right state to start a test. As a consequence, behavioral changes have a 
much larger impact on the testing process than one might expect. 

2 A change in behavior could occur because the system is doing something different or 
because it is doing the same thing with different timing or sequencing.
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Interface Sensitivity 

Testing the business logic inside the system under test (SUT) via the user inter-
face is a bad idea. Even minor changes to the interface can cause tests to fail, 
even though a human user might say the test should still pass. Such unintended 
interface sensitivity is partly what gave test automation tools such a bad name 
in the past decade. Although the problem occurs regardless of which user inter-
face technology is being used, it seems to be worse with some types of interfaces 
than with others. Graphical user interfaces (GUIs) are a particularly challeng-
ing way to interact with the business logic inside the system. The recent shift to 
Web-based (HTML) user interfaces has made some aspects of test automation 
easier but has introduced yet another problem because of the executable code 
needed within the HTML to provide a rich user experience. 

Data Sensitivity 

All tests assume some starting point, called the test fi xture; this test context
is sometimes called the “pre-conditions” or “before picture” of the test. Most 
commonly, this test fi xture is defi ned in terms of data that is already in the sys-
tem. If the data changes, the tests may fail unless great effort has been expended 
to make them insensitive to the data being used. 

Context Sensitivity 

The behavior of the system may be affected by the state of things outside the 
system. These external factors could include the states of devices (e.g., printers, 
servers), other applications, or even the system clock (e.g., the time and/or date 
of execution of the test). Any tests that are affected by this context will be dif-
fi cult to repeat deterministically without getting control over the context. 

Overcoming the Four Sensitivities 

The four sensitivities exist regardless of which technology we use to automate 
the tests. Of course, some technologies give us ways to work around these sen-
sitivities, while others force us down a particular path. The xUnit family of test 
automation frameworks gives us a large degree of control; we just have to learn 
how to use it effectively. 
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Uses of Automated Tests 

Thus far, most of the discussion here has centered on regression testing of 
applications. This is a very valuable form of feedback when modifying existing 
applications because it helps us catch defects that we have introduced inadver-
tently. 

Tests as Specifi cation 

A completely different use of automated testing is seen in test-driven devel-
opment (TDD), which is one of the core practices of agile methods such as 
eXtreme Programming. This use of automated testing is more about specifi cation 
of the behavior of the software yet to be written than it is about regression 
testing. The effectiveness of TDD comes from the way it lets us separate our 
thinking about software into two separate phases: what it should do, and how it 
should do it. 

Hold on a minute! Don’t the proponents of agile software development 
eschew waterfall-style development? Yes, indeed. Agilists prefer to design and 
build a system feature by feature, with working software being available at 
every step to prove that each feature works before they move on to develop the 
next feature. That does not mean we do not do design; it simply means we do 
“continuous design”! Taking this to the extreme results in “emergent design,” 
where very little design is done upfront. But development does not have to be 
done that way. We can combine high-level design (or architecture) upfront with 
detailed design on a feature-by-feature basis. Either way, it can be useful to delay 
thinking about how to achieve the behavior of a specifi c class or method for a 
few minutes while we capture what that behavior should be in the form of an 
executable specifi cation. After all, most of us have trouble concentrating on one 
thing at a time, let alone several things simultaneously. 

Once we have fi nished writing the tests and verifying that they fail as expected, 
we can switch our perspective and focus on making them pass. The tests are now 
acting as a progress measurement. If we implement the functionality incremen-
tally, we can see each test pass one by one as we write more code. As we work, 
we keep running all of the previously written tests as regression tests to make 
sure our changes have not had any unexpected side effects. This is where the true 
value of automated unit testing lies: in its ability to “pin down” the functionality 
of the SUT so that the functionality is not changed accidentally. That is what al-
lows us to sleep well at night! 

 Introduction xxxiii

www.it-ebooks.info

http://www.it-ebooks.info/


Test-Driven Development 

Many books have been written recently on the topic of test-driven develop-
ment, so this one will not devote a lot of space to that topic. This book focuses 
on what the code in the tests looks like, rather than when we wrote the tests. 
The closest we will get to talking about how the tests come into being is when 
we investigate refactoring of tests and learn how to refactor tests written using 
one pattern into tests that use a pattern with different characteristics. 

I am trying to stay “development process agnostic” in this book because au-
tomated testing can help any team regardless of whether its members are doing 
TDD, test-fi rst development, or test-last development. Also, once people learn 
how to automate tests in a “test last” environment, they are likely to be more 
inclined to experiment with a “test fi rst” approach. Nevertheless, we do ex-
plore some parts of the development process because they affect how easily we 
can do test automation. There are two key aspects of this investigation: (1) the 
interplay between Fully Automated Tests (see page 26) and our development in-
tegration process and tools, and (2) the way in which the development process 
affects the testability of our designs. 

Patterns

In preparing to write this book, I read a lot of conference papers and books 
on xUnit-based test automation. Not surprisingly, each author seems to have a 
particular area of interest and favorite techniques. While I do not always agree 
with their practices, I am always trying to understand why these authors do 
things a particular way and when it would be more appropriate to use their 
techniques than the ones I already use. 

This level of understanding is one of the major differences between examples 
and prose that merely explain the “how to” of a technique and a pattern. A pat-
tern helps readers understand the why behind the practice, allowing them to 
make intelligent choices between the alternative patterns and thereby avoid any 
unexpected nasty consequences in the future. 

Software patterns have been around for a decade, so most readers should at 
least be aware of the concept. A pattern is a “solution to a recurring problem.” 
Some problems are bigger than others and, therefore, too big to solve with a 
single pattern. That is where the pattern language comes into play; this collec-
tion (or grammar) of patterns leads the reader from an overall problem step by 
step to a detailed solution. In a pattern language, some of the patterns will nec-
essarily be of higher levels of abstraction, while others will focus on lower-level 
details. To be useful, there must be linkages between the patterns so that we 
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can work our way down from the higher-level “strategy” patterns to the more 
detailed “design patterns” and the most detailed “coding idioms.” 

Patterns versus Principles versus Smells 

This book includes three kinds of patterns. The most traditional kind of pat-
tern is the “recurring solution to a common problem”; most of the patterns in 
this book fall into this general category. I do distinguish between three different 
levels:

• “Strategy”-level patterns have far-reaching consequences. The decision 
to use a Shared Fixture (page 317) rather than a Fresh Fixture (page 311) 
takes us down a very different path and leads to a different set of test 
design patterns. Each of the strategy patterns has its own write-up in 
the “Strategy Patterns” chapter in the reference section of the book. 

• Test “design”-level patterns are used when developing tests for specifi c 
functionality. They focus on how we organize our test logic. An exam-
ple that should be familiar to most readers is the Mock Object pattern 
(page 544). Each test design pattern has its own write-up and the pat-
terns are grouped into chapters in the reference section of the book based 
on topics such as Test Double patterns. 

• Test “coding idioms” describe different ways to code a specifi c test. 
Many of these are language specifi c; examples include using block
closures for Expected Exception Tests (see Test Method on page 348)
in Smalltalk and anonymous inner classes for Mock Objects in Java. 
Some, such as Simple Success Test (see Test Method), are fairly generic 
in that they have analogs in each language. These idioms are typically 
listed as implementation variations or examples within the write-up of 
a “test design pattern.” 

Often, several alternative patterns could be used at each level. Of course, I 
almost always have a preference for which patterns to use, but one person’s “anti-
pattern” may be another person’s “best practice pattern.” As a result, this book 
includes patterns that I do not necessarily advocate. It describes the advantages 
and disadvantages of each of those patterns, allowing readers to make informed 
decisions about their use. I have tried to provide linkages to those alternatives in 
each of the pattern descriptions as well as in the introductory narratives. 

The nice thing about patterns is that they provide enough information to 
make an intelligent decision between several alternatives. The pattern we choose 
may be affected by the goals we have for test automation. The goals describe 
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desired outcomes of the test automation efforts. These goals are supported by a 
number of principles that codify a belief system about what makes automated 
tests “good.” In this book, the goals of test automation are described in Chapter 3, 
Goals of Test Automation, and the principles are described in Chapter 5, Prin-
ciples of Test Automation.

The fi nal kind of pattern is more of an anti-pattern [AP]. These test smells
describe recurring problems that our patterns help us address in terms of the 
symptoms we might observe and the root causes of those symptoms. Code 
smells were fi rst popularized in Martin Fowler’s book [Ref] and applied to 
xUnit-based testing as test smells in a paper presented at XP2001 [RTC].
The test smells are cross-referenced with the patterns that can be used to 
banish them as well as the patterns3 that are more likely to lead to them.4 In 
addition, the test smells are covered in depth in their own section: Part II, 
The Test Smells.

Pattern Form 

This book includes my descriptions of patterns. The patterns themselves existed 
before I started cataloging them, by virtue of having been invented indepen-
dently by at least three different test automaters. I took it upon myself to write 
them down as a way of making the knowledge more easily distributable. But to 
do so, I had to choose a pattern description form. 

Pattern descriptions come in many shapes and sizes. Some have a very rigid 
structure defi ned by many headings that help the reader fi nd the various sec-
tions. Others read more like literature but may be more diffi cult to use as a ref-
erence. Nevertheless, all patterns have a common core of information, however 
it is presented. 

My Pattern Form 

I have really enjoyed reading the works of Martin Fowler, and I attribute much 
of that enjoyment to the pattern form that he uses. As the saying goes, “Imita-
tion is the sincerest form of fl attery”: I have copied his format shamelessly with 
only a few minor modifi cations. 

The template begins with the problem statement, the summary statement, and 
a sketch. The italicized problem statement summarizes the core of the problem 

3 Some might want to call these patterns “anti-patterns.” Just because a pattern often has 
negative consequences, it does not imply that the pattern is always bad. For this reason, 
I prefer not to call these anti-patterns; I just do not use them very often.
4 In a few cases, there are even a pattern and a smell with similar names.
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that the pattern addresses. It is often stated as a question: “How do we . . . ?” 
The boldface summary statement captures the essence of the pattern in one or 
two sentences, while the sketch provides a visual representation of the pattern. 
The untitled section of text immediately after the sketch summarizes why we 
might want to use the pattern in just a few sentences. It elaborates on the problem 
statement and includes both the “Problem” and “Context” sections from the tra-
ditional pattern template. A reader should be able to get a sense of whether he or 
she wants to read any further by skimming this section. 

The next three sections provide the meat of the pattern. The “How It Works” 
section describes the essence of how the pattern is structured and what it is 
about. It also includes information about the “resulting context” when there 
are several ways to implement some important aspect of the pattern. This sec-
tion corresponds to the “Solution” or “Therefore” sections of more traditional 
pattern forms. The “When to Use It” section describes the circumstances in 
which you should consider using the pattern. This section corresponds to the 
“Problem,” “Forces,” “Context,” and “Related Patterns” sections of traditional 
pattern templates. It also includes information about the “Resulting Context,” 
when this information might affect whether you would want to use this pattern. 
I also include any “test smells” that might suggest that you should use this pat-
tern. The “Implementation Notes” section describes the nuts and bolts of how 
to implement the pattern. Subheadings within this section indicate key compo-
nents of the pattern or variations in how the pattern can be implemented. 

Most of the concrete patterns include three additional sections. The “Moti-
vating Example” section provides examples of what the test code might have 
looked like before this pattern was applied. The section titled “Example: {Pat-
tern Name}” shows what the test would look like after the pattern was applied. 
The “Refactoring Notes” section provides more detailed instructions on how to 
get from the “Motivating Example” to the “Example: {Pattern Name}.” 

If the pattern is written up elsewhere, the description may include a section 
titled “Further Reading.” A “Known Uses” section appears when there is some-
thing particularly interesting about those applications. Most of these patterns 
have been seen in many systems, of course, so picking three uses to substantiate 
them would be arbitrary and meaningless. 

Where a number of related techniques exist, they are often presented here 
as a single pattern with several variations. If the variations are different ways 
to implement the same fundamental pattern (namely, solving the same prob-
lem the same general way), the variations and the differences between them are 
listed in the “Implementation Notes” section. If the variations are primarily a 
different reason for using the pattern, the variations are listed in the “When to 
Use It” section. 
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Historical Patterns and Smells 

I struggled mightily when trying to come up with a concise enough list of pat-
terns and smells while still keeping historical names whenever possible. I often 
list the historical name as an alias for the pattern or smell. In some cases, it 
made more sense to consider the historical version of the pattern as a specifi c 
variation of a larger pattern. In such a case, I usually include the historical pat-
tern as a named variation in the “Implementation Notes” section. 

Many of the historical smells did not pass the “sniff test”—that is, the smell 
described a root cause rather than a symptom.5 Where an historical test smell 
describes a cause and not a symptom, I have chosen to move it into the cor-
responding symptom-based smell as a special kind of variation titled “Cause.” 
Mystery Guest (see Obscure Test on page 186) is a good example. 

Referring to Patterns and Smells 

I also struggled to come up with a good way to refer to patterns and smells, espe-
cially the historical ones. I wanted to be able to use both the historical names when 
appropriate and the new aggregate names, whichever was more appropriate. I also 
wanted the reader to be able to see which was which. In the online version of this 
book, hyperlinks were used for this purpose. For the printed version, however, I 
needed a way to represent this linkage as a page number annotation of the refer-
ence without cluttering up the entire text with references. The solution I landed 
on after several tries includes the page number where the pattern or smell can be 
found the fi rst time it is referenced in a chapter, pattern, or smell. If the reference 
is to a pattern variation or the cause of a smell, I include the aggregate pattern or 
smell name the fi rst time. Note how this second reference to the Mystery Guest
cause of Obscure Test shows up without the smell name, whereas references to 
other causes of Obscure Test such as Irrelevant Information (see Obscure Test)
include the aggregate smell name but not the page number. 

Refactoring

Refactoring is a relatively new concept in software development. While 
people have always had a need to modify existing code, refactoring is a highly 

5 The “sniff test” is based on the diaper story in [Ref] wherein Kent Beck asks Grandma 
Beck, “How do I know that it is time to change the diaper?” “If it stinks, change it!” was 
her response. Smells are named based on the “stink,” not the cause of the stink.
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disciplined approach to changing the design without changing the behavior of 
the code. It goes hand-in-hand with automated testing because it is very diffi cult 
to do refactoring without having the safety net of automated tests to prove that 
you have not broken anything during your redesign. 

Many of the modern integrated development environments (IDEs) have built-in 
support for refactoring. Most of them automate the refactoring steps of at least a 
few of the refactorings described in Martin Fowler’s book [Ref]. Unfortunately, 
the tools do not tell us when or why we should use refactoring. We will have to 
get a copy of Martin’s book for that! Another piece of mandatory reading on this 
topic is Joshua Kerievsky’s book [RtP]. 

Refactoring tests differs a bit from refactoring production code because we 
do not have automated tests for our automated tests! If a test fails after a refac-
toring of the test, did the failure occur because we made a mistake during the 
refactoring? Just because a test passes after a test refactoring, can we be sure it 
will still fail when appropriate? To address this issue, many test refactorings are 
very conservative, “safe refactorings” that minimize the chance of introducing a 
change of behavior into the test. We also try to avoid having to do major refac-
torings of tests by adopting an appropriate test strategy, as described in Chapter 
6, Test Automation Strategy.

This book focuses more on the target of the refactoring than on the mechanics 
of this endeavor. A short summary of the refactorings does appear in Appendix A, 
but the process of refactoring is not the primary focus of this book. The patterns 
themselves are new enough that we have not yet had time to agree on their names, 
content, or applicability, let alone reach consensus on the best way to refactor to 
them. A further complication is that there are potentially many starting points for 
each refactoring target (pattern), and attempting to provide detailed refactoring 
instructions would make this already large book much larger. 

Assumptions

In writing this book, I assumed that the reader is somewhat familiar with object 
technology (also known as “object-oriented programming”); object technology 
seemed to be a prerequisite for automated unit testing to become popular. That 
does not mean we cannot perform testing in procedural or functional languages, 
but use of these languages may make it more challenging (or at least different). 

Different people have different learning styles. Some need to start with the 
“big picture” abstractions and work down to “just enough” detail. Others can 
understand only the details and have no need for the “big picture.” Some learn 
best by hearing or reading words; others need pictures to help them visualize 
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a concept. Still others learn programming concepts best by reading code. I’ve 
tried to accommodate all of these learning styles by providing a summary, a 
detailed description, code samples, and a picture wherever possible. These items 
should be Skippable Sections [PLOPD3] for those readers who won’t benefi t 
from that style of learning. 

Terminology 

This book brings together terminology from two different domains: software 
development and software testing. As a consequence, some terminology will 
inevitably be unfamiliar to some readers. Readers should refer to the glossary 
when they encounter any terms that they do not understand. I will, however, 
point out one or two terms here, because becoming familiar with these terms is 
essential to understanding most of the material in this book. 

Testing Terminology 

Software developers will probably fi nd the term “system under test” (abbrevi-
ated throughout this book as SUT) unfamiliar. It is short for “whatever thing 
we are testing.” When we are writing unit tests, the SUT is whatever class or 
method(s) we are testing; when we are writing customer tests, the SUT is prob-
ably the entire application (or at least a major subsystem of it). 

Any part of the application or system we are building that is not included in 
the SUT may still be required to run our test because it is called by the SUT or 
because it sets up prerequisite data that the SUT will use as we exercise it. The 
former type of element is called a depended-on component (DOC), and both 
types are part of the test fi xture. This is illustrated in  Figure I.1.

Language-Specifi c xUnit Terminology 

Although this book includes examples in a variety of languages and xUnit fam-
ily members, JUnit fi gures prominently in this coverage. JUnit is the language 
and xUnit framework that most people are at least somewhat familiar with. 
Many of the translations of JUnit to other languages are relatively faithful 
ports, with only minor changes in class and method names needed to accom-
modate the differences in the underlying language. Where this isn’t the case, 
Appendix B, xUnit Terminology Cross-Reference, often includes the appropri-
ate mapping. 
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Figure I.1.  A range of tests each with its own SUT. An application, component, 
or unit is only the SUT with respect to a specifi c set of tests. The “Unit1 SUT” 
plays the role of DOC (part of the fi xture) to “Unit2 Test” and is part of the 
“Comp1 SUT” and the “App1 SUT.” 

Using Java as the main sample language also means that in some discussions 
we will refer to the JUnit name of a method and will not list the corresponding 
method names in each of the xUnit frameworks. For example, a discussion may 
refer to JUnit’s assertTrue method without mentioning that the NUnit equiva-
lent is Assert.IsTrue, the SUnit equivalent is should:, and the VbUnit equivalent 
is verify. Readers  are expected to do the mental swap of method names to the 
SUnit, VbUnit, Test::Unit, and other equivalents with which they may be most 
familiar. The Intent-Revealing Names [SBPP] of the JUnit methods should be 
clear enough for the purposes of our discussion. 

Code Samples 

Sample code is always a problem. Samples of code from real projects are typi-
cally much too large to include and are usually covered by nondisclosure agree-
ments that preclude their publication. “Toy programs” do not get much respect 
because “they aren’t real.” A book such as this one has little choice except to 
use “toy programs,” but I have tried to make them as representative as possible 
of real projects. 
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Almost all of the code samples presented here came from “real” compilable 
and executable code, so they should not (knock on wood) contain any compile 
errors unless they were introduced during the editing process. Most of the Ruby 
examples come from the XML-based publishing system I used to prepare this 
book, while many of the Java and C# samples came from courseware that we 
use at ClearStream to teach these concepts to ClearStream’s clients. 

I have tried to use a variety of languages to illustrate the nearly universal 
application of the patterns across the members of the xUnit family. In some cases, 
the specifi c pattern dictated the use of language because of specifi c features of 
either the language or the xUnit family member. In other cases, the language 
was dictated by the availability of third-party extensions for a specifi c member 
of the xUnit family. Otherwise, the default language for examples is Java with 
some C# because most people have at least reading-level familiarity with them. 

Formatting code for a book is a particular challenge due to the recommended 
line length of just 65 characters. I have taken some liberties in shortening vari-
able and class names simply to reduce the number of lines that wrap. I’ve also 
invented some line-wrapping conventions to minimize the vertical size of these 
samples. You can take solace in the fact that your test code should look a lot 
“shorter” than mine because you have to wrap many fewer lines! 

Diagramming Notation 

“A picture is worth a thousand words.” Wherever possible, I have tried to include 
a sketch of each pattern or smell. I’ve based the sketches loosely on the Unifi ed 
Modeling Language (UML) but took a few liberties to make them more expres-
sive. For example, I use the aggregation symbol (diamond) and the inheritance 
symbol (a triangle) of UML class diagrams, but I mix classes and objects on the 
same diagram along with associations and object interactions. Most of the nota-
tion is introduced in the patterns in Chapter 19, xUnit Basics Patterns, so you may 
fi nd it worthwhile to skim this chapter just to look at the pictures. 

Although I have tried to make this notation “discoverable” simply through 
comparing sketches, a few conventions are worth pointing out. Objects have 
shadows; classes and methods do not. Classes have square corners, in keep-
ing with UML; methods have round corners. Large exclamation marks are as-
sertions (potential test failures), and a starburst is an error or exception being 
raised. The fi xture is a cloud, refl ecting its nebulous nature, and any compo-
nents the SUT depends on are superimposed on the cloud. Whatever the sketch 
is trying to illustrate is highlighted with heavier lines and darker shading. As 
a result, you should be able to compare two sketches of related concepts and 
quickly determine what is emphasized in each. 
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Limitations

As you use these patterns, please keep in mind that I could not have seen every 
test automation problem and every solution to every problem; there may well 
be other, possibly better, ways to solve some of these problems. These solutions 
are just the ones that have worked for me and for the people I have been com-
municating with. Accept everyone’s advice with a grain of salt! 

My hope is that these patterns will give you a starting point for writing good, 
robust automated tests. With luck, you will avoid many of the mistakes we 
made on our fi rst attempts and will go on to invent even better ways of auto-
mating tests. I’d love to hear about them! 
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Refactoring a Test 

 y

Why Refactor Tests? 

Tests can quickly become a bottleneck in an agile development process. This may 
not be immediately obvious to those who have never experienced the difference 
between simple, easily understood tests and complex, obtuse, hard-to-maintain 
tests. The productivity difference can be staggering! 

This section of the book acts as a “motivating example” for the entire book 
by showing you how much of a difference refactoring tests can make. It walks 
you through an example starting with a complex test and, step by step, refac-
tors it to a simple, easily understood test. Along the way, I will point out some 
key smells and the patterns that we can use to remove them. Ideally, this exer-
cise will whet your appetite for more. 

A Complex Test 

Here is a test that is not atypical of some of the tests I have seen on various 
projects:

   public void testAddItemQuantity_severalQuantity_v1(){
      Address billingAddress = null;
      Address shippingAddress = null;
      Customer customer = null;
      Product product = null;
      Invoice invoice = null;
      try {
         //   Set up fixture
         billingAddress = new Address("1222 1st St SW",
               "Calgary", "Alberta", "T2N 2V2","Canada");
         shippingAddress = new Address("1333 1st St SW",
               "Calgary", "Alberta", "T2N 2V2", "Canada");
         customer = new Customer(99, "John", "Doe",
                                 new BigDecimal("30"),
                                 billingAddress,
                                 shippingAddress);
         product = new Product(88, "SomeWidget",
                               new BigDecimal("19.99"));
         invoice = new Invoice(customer);
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         // Exercise SUT
         invoice.addItemQuantity(product, 5);
         // Verify outcome
         List lineItems = invoice.getLineItems();
         if (lineItems.size() == 1) {
            LineItem actItem = (LineItem) lineItems.get(0);
            assertEquals("inv", invoice, actItem.getInv());
            assertEquals("prod", product, actItem.getProd());
            assertEquals("quant", 5, actItem.getQuantity());
            assertEquals("discount", new BigDecimal("30"),
                           actItem.getPercentDiscount());
            assertEquals("unit price",new BigDecimal("19.99"),
                              actItem.getUnitPrice());
            assertEquals("extended", new BigDecimal("69.96"),
                           actItem.getExtendedPrice());
         } else {
            assertTrue("Invoice should have 1 item", false);
         }
      } finally {
         // Teardown
         deleteObject(invoice);
         deleteObject(product);
         deleteObject(customer);
         deleteObject(billingAddress);
         deleteObject(shippingAddress);
      }
   }

This test is quite long1 and is much more complicated than it needs to be. This 
Obscure Test (page 186) is diffi cult to understand because the sheer number of 
lines in the test makes it hard to see the big picture. It also suffers from a num-
ber of other problems that we will address individually. 

Cleaning Up the Test 

Let’s look at each of the various parts of the test. 

Cleaning Up the Verifi cation Logic 

First, let’s focus on the part that verifi es the expected outcome. Maybe we can 
infer from the assertions which test conditions this test is trying to verify. 

1 While the need to wrap lines to keep them at 65 characters makes this code look even 
longer than it really is, it is still unnecessarily long. It contains 25 executable statements 
including initialized declarations, 6 lines of control statements, 4 in-line comments, and 
2 lines to declare the test method—giving a total of 37 lines of unwrapped source code.
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         List lineItems = invoice.getLineItems();
         if (lineItems.size() == 1) {
            LineItem actItem = (LineItem) lineItems.get(0);
            assertEquals("inv", invoice, actItem.getInv());
            assertEquals("prod", product, actItem.getProd());
            assertEquals("quant", 5, actItem.getQuantity());
            assertEquals("discount", new BigDecimal("30"),
                           actItem.getPercentDiscount());
            assertEquals("unit price",new BigDecimal("19.99"),
                              actItem.getUnitPrice());
            assertEquals("extended", new BigDecimal("69.96"),
                           actItem.getExtendedPrice());
         } else {
            assertTrue("Invoice should have 1 item", false);
         }

A simple problem to fi x is the obtuse assertion on the very last line. Calling 
assertTrue with an argument of false should always result in a test failure, so 
why don’t we say so directly? Let’s change this to a call to fail:

         List lineItems = invoice.getLineItems();
         if (lineItems.size() == 1) {
            LineItem actItem = (LineItem) lineItems.get(0);
            assertEquals("inv", invoice, actItem.getInv());
            assertEquals("prod", product, actItem.getProd());
            assertEquals("quant", 5, actItem.getQuantity());
            assertEquals("discount", new BigDecimal("30"),
                           actItem.getPercentDiscount());
            assertEquals("unit price",new BigDecimal("19.99"),
                              actItem.getUnitPrice());
            assertEquals("extended", new BigDecimal("69.96"),
                           actItem.getExtendedPrice());
         } else {
            fail("Invoice should have exactly one line item");
         }

We can think of this move as an Extract Method [Fowler] refactoring, because we 
are replacing the Stated Outcome Assertion (see Assertion Method on page 362) 
with a hard-coded parameter with a more intent-revealing call to a Single Out-
come Assertion (see Assertion Method) method that encapsulates the call. 

Of course, this set of assertions suffers from several more problems. For exam-
ple, why do we need so many of them? It turns out that many of these assertions 
are testing fi elds set by the constructor for the LineItem, which is itself covered by 
another unit test. So why repeat these assertions here? It will just create more test 
code to maintain when the logic changes. 

One solution is to use a single assertion on an Expected Object (see State Veri-
fi cation on page 462) instead of one assertion per object fi eld. First, we defi ne an 
object that looks exactly how we expect the result to look. In this case, we create 
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an expected LineItem with the fi elds fi lled in with the expected values, including 
the unitPrice and extendedPrice initialized from the product.

         List lineItems = invoice.getLineItems();
         if (lineItems.size() == 1) {
            LineItem expected =
               new LineItem(invoice, product, 5,
                            new BigDecimal("30"),
                            new BigDecimal("69.96"));
            LineItem actItem = (LineItem) lineItems.get(0);
            assertEquals("invoice", expected.getInv(),
                                    actItem.getInv());
            assertEquals("product", expected.getProd(),
                                    actItem.getProd());
            assertEquals("quantity",expected.getQuantity(),
                                    actItem.getQuantity());
            assertEquals("discount",
                         expected.getPercentDiscount(),
                         actItem.getPercentDiscount());
            assertEquals("unit pr", new BigDecimal("19.99"),
                                    actItem.getUnitPrice());
            assertEquals("extend pr",new BigDecimal("69.96"),
                                     actItem.getExtendedPrice());
         } else {
            fail("Invoice should have exactly one line item");
         }

Once we have created our Expected Object, we can then assert on it using 
assertEquals:

         List lineItems = invoice.getLineItems();
         if (lineItems.size() == 1) {
            LineItem expected =
               new LineItem(invoice, product,5,
                            new BigDecimal("30"),
                            new BigDecimal("69.96"));
            LineItem actItem = (LineItem) lineItems.get(0);
            assertEquals("invoice", expected, actItem);
         } else {
            fail("Invoice should have exactly one line item");
         }

Clearly, the Preserve Whole Object [Fowler] refactoring makes the code a lot 
simpler and more obvious. But wait! Why do we have an if statement in a test? 
If there are several paths through a test, how do we know which one is actually 
being executed? It would be a lot better if we could eliminate this Conditional
Test Logic (page 200). Luckily for us, the pattern Guard Assertion (page 490) is 
designed to handle exactly this case. We simply use a Replace Conditional with 
Guard Clause [Fowler] refactoring to replace the if ... else fail() ... sequence 
with an assertion on the same condition. This Guard Assertion halts execution 
if the condition is not met without introducing Conditional Test Logic.
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         List lineItems = invoice.getLineItems();
         assertEquals("number of items", 1,lineItems.size());
         LineItem expected =
            new LineItem(invoice, product, 5,
                         new BigDecimal("30"),
                         new BigDecimal("69.96"));
         LineItem actItem = (LineItem) lineItems.get(0);
         assertEquals("invoice", expected, actItem);

So far, we have reduced 11 lines of verifi cation code to just 4, and those 4 lines 
are a lot simpler code to boot.2 Some people might suggest that this refactor-
ing is good enough. But can’t we make this assertion even more obvious? What 
are we really trying to verify? We are trying to say that there should be only 
one line item and it should look exactly like our expectedLineItem. We can say 
this explicitly by using an Extract Method refactoring to defi ne a Custom Asser-
tion (page 474). 

         LineItem expected =
            new LineItem(invoice, product, 5,
                         new BigDecimal("30"),
                         new BigDecimal("69.96"));
         assertContainsExactlyOneLineItem(invoice, expected);

That is better! Now we have the verifi cation part of the test down to just two 
lines. Let’s review what the whole test looks like: 

   public void testAddItemQuantity_severalQuantity_v6(){
      Address billingAddress = null;
      Address shippingAddress = null;
      Customer customer = null;
      Product product = null;
      Invoice invoice = null;
      try {
         //   Set up fixture
         billingAddress = new Address("1222 1st St SW",
                "Calgary", "Alberta", "T2N 2V2", "Canada");
         shippingAddress = new Address("1333 1st St SW",
                "Calgary", "Alberta", "T2N 2V2", "Canada");
         customer = new Customer(99, "John", "Doe",
                                 new BigDecimal("30"),
                                 billingAddress,
                                 shippingAddress);
         product = new Product(88, "SomeWidget",
                               new BigDecimal("19.99"));
         invoice = new Invoice(customer);
         // Exercise SUT
         invoice.addItemQuantity(product, 5);

2 It’s a good thing we are not being rewarded for the number of lines of code we write! 
This is yet another example of why KLOC is such a poor measure of productivity.

 Cleaning Up the Test xlix

www.it-ebooks.info

http://www.it-ebooks.info/


         // Verify outcome
         LineItem expected =
            new LineItem(invoice, product, 5,
                         new BigDecimal("30"),
                         new BigDecimal("69.96"));
         assertContainsExactlyOneLineItem(invoice, expected);
      } finally {
         // Teardown
         deleteObject(invoice);
         deleteObject(product);
         deleteObject(customer);
         deleteObject(billingAddress);
         deleteObject(shippingAddress);
      }
   }

Cleaning Up the Fixture Teardown Logic 

Now that we have cleaned up the result verifi cation logic, let’s turn our atten-
tion to the fi nally block at the end of the test. What is this code doing? 

      } finally {
         // Teardown
         deleteObject(invoice);
         deleteObject(product);
         deleteObject(customer);
         deleteObject(billingAddress);
         deleteObject(shippingAddress);
      }

Most modern languages have an equivalent construct to the try/fi nally block
that can be used to ensure that code gets run even when an error or exception 
occurs. In a Test Method (page 348), the fi nally block ensures that any cleanup 
code gets run regardless of whether the test passed or failed. A failed assertion 
throws an exception, which would transfer control back to the Test Automation 
Framework’s (page 298) exception-handling code, so we use the fi nally block to 
clean up fi rst. This approach means that we avoid having to catch the exception 
and then rethrow it. 

In this test, the fi nally block calls the deleteObject method on each of the objects 
created by the test. Unfortunately, this code suffers from a fatal fl aw. Have you 
noticed it yet? 

Things could go wrong during the teardown itself. What happens if the fi rst 
call to deleteObject throws an exception? As coded here, none of the other calls 
to deleteObject would be executed. The solution is to use a nested try/fi nally block 
around this fi rst call, thereby ensuring that the second call to deleteObject always 
executes. But what if the second call fails? In this case, we would need a total 
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of six nested try/fi nally blocks to make this maneuver work. That would almost 
double the length of the test, and we cannot afford to write and maintain so 
much code in each test. 

      } finally {
         //      Teardown
         try {
            deleteObject(invoice);
         } finally {
            try {
               deleteObject(product);
            } finally {
               try {
                  deleteObject(customer);
               } finally {
                  try {
                     deleteObject(billingAddress);
                  } finally {
                     deleteObject(shippingAddress);
                  }
               }
            }
         }

The problem is that we now have a Complex Teardown (see Obscure Test).
What are the chances of getting this code right? And how do we test the test 
code? Clearly, our current approach is not going to be very effective. 

Of course, we could move this code into the tearDown method. That would 
have the advantage of removing it from the Test Method. Also, because the 
tearDown method acts as a fi nally block, we would get rid of the outermost try/
fi nally. Unfortunately, this strategy doesn’t address the root of the problem: the 
need to write detailed teardown code in each test. 

We could try to avoid creating the objects in the fi rst place by using a Shared
Fixture (page 317) that is not torn down between tests. Unfortunately, this 
approach is likely to lead to a number of test smells, including Unrepeatable Test 
(see Erratic Test on page 228) and Interacting Tests (see Erratic Test), caused by 
interactions via the shared fi xture. Another issue is that the references to objects 
used from the shared fi xture are often Mystery Guests (see Obscure Test).3

The best solution is to use a Fresh Fixture (page 311) but to avoid writ-
ing teardown code for every test. To do so, we can use an in-memory fi xture 
that is automatically garbage collected. This approach won’t work, however, 
if the objects we create are persistent (e.g., if they are saved in a database). 
While it is best to construct the system architecture so that most of our tests can 

3 The test reader cannot see the objects being used by the test.
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be executed without the database, we almost always have some tests that need 
it. In these cases, we can extend the Test Automation Framework to do most of 
the work for us. We can add a means to register each object we create with the 
framework so that it can do the deleting for us. 

First, we need to register each object as we create it: 

      //   Set up fixture
      billingAddress = new Address("1222 1st St SW", "Calgary",
                        "Alberta", "T2N 2V2", "Canada");
      registerTestObject(billingAddress);
      shippingAddress = new Address("1333 1st St SW", "Calgary",
                         "Alberta","T2N 2V2", "Canada");
      registerTestObject(shippingAddress);
      customer = new Customer(99, "John", "Doe",
                              new BigDecimal("30"),
                              billingAddress,
                              shippingAddress);
      registerTestObject(shippingAddress);
      product = new Product(88, "SomeWidget",
                            new BigDecimal("19.99"));
      registerTestObject(shippingAddress);
      invoice = new Invoice(customer);
      registerTestObject(shippingAddress);

Registration consists of adding the object to a collection of test objects: 

   List testObjects;

   protected void setUp() throws Exception {
      super.setUp();
      testObjects = new ArrayList();
   }

   protected void registerTestObject(Object testObject) {
      testObjects.add(testObject);
   }

In the tearDown method, we iterate through the list of test objects and delete each 
one:

   public void tearDown() {
      Iterator i = testObjects.iterator();
      while (i.hasNext()) {
         try {
            deleteObject(i.next());
         } catch (RuntimeException e) {
            // Nothing to do; we just want to make sure
            // we continue on to the next object in the list
         }
      }
   }
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Now our test looks like this: 

   public void testAddItemQuantity_severalQuantity_v8(){
      Address billingAddress = null;
      Address shippingAddress = null;
      Customer customer = null;
      Product product = null;
      Invoice invoice = null;
      //   Set up fixture
      billingAddress = new Address("1222 1st St SW", "Calgary",
                        "Alberta", "T2N 2V2", "Canada");
      registerTestObject(billingAddress);
      shippingAddress = new Address("1333 1st St SW", "Calgary",
                         "Alberta","T2N 2V2", "Canada");
      registerTestObject(shippingAddress);
      customer = new Customer(99, "John", "Doe",
                              new BigDecimal("30"),
                              billingAddress,
                              shippingAddress);
      registerTestObject(shippingAddress);
      product = new Product(88, "SomeWidget",
                            new BigDecimal("19.99"));
      registerTestObject(shippingAddress);
      invoice = new Invoice(customer);
      registerTestObject(shippingAddress);
      // Exercise SUT
      invoice.addItemQuantity(product, 5);
      // Verify outcome
      LineItem expected =
         new LineItem(invoice, product, 5,
                      new BigDecimal("30"),
                      new BigDecimal("69.96"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }

We have been able to remove the try/fi nally block and, except for the additional 
calls to registerTestObject, our code is much simpler. But we can still clean this 
code up a bit more. Why, for example, do we need to declare the variables and 
initialize them to null, only to reinitialize them later? This action was needed 
with the original test because they had to be accessible in the fi nally block; now 
that we have removed this block, we can combine the declaration with the 
initialization:

   public void testAddItemQuantity_severalQuantity_v9(){
      //   Set up fixture
      Address billingAddress = new Address("1222 1st St SW",
                  "Calgary", "Alberta", "T2N 2V2", "Canada");
      registerTestObject(billingAddress);
      Address shippingAddress = new Address("1333 1st St SW",
                  "Calgary", "Alberta", "T2N 2V2", "Canada");
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      registerTestObject(shippingAddress);
      Customer customer = new Customer(99, "John", "Doe",
                                       new BigDecimal("30"),
                                       billingAddress,
                                       shippingAddress);
      registerTestObject(shippingAddress);
      Product product = new Product(88, "SomeWidget",
                                    new BigDecimal("19.99"));
      registerTestObject(shippingAddress);
      Invoice invoice = new Invoice(customer);
      registerTestObject(shippingAddress);
      // Exercise SUT
      invoice.addItemQuantity(product, 5);
      // Verify outcome
      LineItem expected =
         new LineItem(invoice, product, 5,
                      new BigDecimal("30"),
                      new BigDecimal("69.95"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }

Cleaning Up the Fixture Setup 

Now that we have cleaned up the assertions and the fi xture teardown, let’s turn 
our attention to the fi xture setup. One obvious “quick fi x” would be to take each 
of the calls to a constructor, take the subsequent call to registerTestObject, and 
use an Extract Method refactoring to defi ne a Creation Method (page 415). This 
will make the test a bit simpler to read and write. The use of Creation Methods
has another advantage: They encapsulate the API of the SUT and reduce the test 
maintenance effort when the various object constructors change by allowing us 
to modify only a single place rather than having to change each test. 

   public void testAddItemQuantity_severalQuantity_v10(){
      //   Set up fixture
      Address billingAddress =
         createAddress( "1222 1st St SW", "Calgary", "Alberta",
                        "T2N 2V2", "Canada");
      Address shippingAddress =
         createAddress( "1333 1st St SW", "Calgary", "Alberta",
                        "T2N 2V2", "Canada");
      Customer customer =
         createCustomer( 99, "John", "Doe", new BigDecimal("30"),
                         billingAddress, shippingAddress);
      Product product =
         createProduct( 88,"SomeWidget",new BigDecimal("19.99"));
      Invoice invoice = createInvoice(customer);
      // Exercise SUT
      invoice.addItemQuantity(product, 5);
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      // Verify outcome
      LineItem expected =
         new LineItem(invoice, product,5, new BigDecimal("30"),
                      new BigDecimal("69.96"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }

This fi xture setup logic still suffers from several problems. The fi rst problem 
is that it is diffi cult to tell how the fi xture is related to the expected outcome of 
the test. Do the customer’s particulars affect the outcome in some way? Does the 
customer’s address affect the outcome? What is this test really verifying? 

The other problem is that this test exhibits Hard-Coded Test Data (see Obscure 
Test). Given that our SUT persists all objects we create in a database, the use of 
Hard-Coded Test Data may result in an Unrepeatable Test, an Interacting Test,
or a Test Run War (see Erratic Test) if any of the fi elds of the customer, product, or 
invoice must be unique. 

We can solve this problem by generating a unique value for each test and then 
using that value to seed the attributes of the objects we create for the test. This 
approach will ensure that the test creates different objects each time the test is 
run. Because we have already moved the object creation logic into Creation Meth-
ods, this step is relatively easy; we just put this logic into the Creation Method and 
remove the corresponding parameters. This is another application of the Extract 
Method refactoring, in which we create a new, parameterless version of the Cre-
ation Method.

   public void testAddItemQuantity_severalQuantity_v11(){
      final int QUANTITY = 5;
      //   Set up fixture
      Address billingAddress = createAnAddress();
      Address shippingAddress = createAnAddress();
      Customer customer = createACustomer(new BigDecimal("30"),
               billingAddress, shippingAddress);
      Product product = createAProduct(new BigDecimal("19.99"));
      Invoice invoice = createInvoice(customer);
      // Exercise SUT
      invoice.addItemQuantity(product, QUANTITY);
      // Verify outcome
      LineItem expected =
         new LineItem(invoice, product, 5, new BigDecimal("30"),
                      new BigDecimal("69.96"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }
   private Product createAProduct(BigDecimal unitPrice) {
      BigDecimal uniqueId = getUniqueNumber();
      String uniqueString = uniqueId.toString();
      return new Product(uniqueId.toBigInteger().intValue(),
                         uniqueString, unitPrice);
   }
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We call this pattern an Anonymous Creation Method (see Creation Method)
because we are declaring that we don’t care about the particulars of the object. 
If the expected behavior of the SUT depends on a particular value, we can either 
pass the value as a parameter or imply it in the name of the creation method. 

This test looks a lot better now, but we are not done yet. Does the expected 
outcome depend in any way on the addresses of the customer? If not, we can 
hide their construction completely by using an Extract Method refactoring 
(again!) to create a version of the createACustomer method that fabricates them 
for us. 

   public void testAddItemQuantity_severalQuantity_v12(){
      //  Set up fixture
      Customer cust = createACustomer(new BigDecimal("30"));
      Product prod = createAProduct(new BigDecimal("19.99"));
      Invoice invoice = createInvoice(cust);
      // Exercise SUT
      invoice.addItemQuantity(prod, 5);
      // Verify outcome
      LineItem expected = new LineItem(invoice, prod, 5,
            new BigDecimal("30"), new BigDecimal("69.96"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }

By moving the calls that create the addresses into the method that creates the 
customer, we have made it clear that the addresses do not affect the logic that 
we are verifying in this test. The outcome does depend on the customer’s dis-
count, however, so we pass the discount percentage to the customer creation 
method.

We still have one or two things to clean up. For example, the Hard-Coded
Test Data for the unit price, quantity, and customer’s discount is repeated twice 
in the test. We can clarify the meaning of these numbers by using a Replace 
Magic Number with Symbolic Constant [Fowler] refactoring to give them role-
describing names. Also, the constructor we are using to create the LineItem is 
not used anywhere in the SUT itself because the LineItem normally calculates the 
extendedCost when it is constructed. We should turn this test-specifi c code into a 
Foreign Method [Fowler] implemented within the test harness. We have already 
seen examples of how to do so with the Customer and Product: We use a Param-
eterized Creation Method (see Creation Method) to return the expected LineItem
based on only those values of interest. 

   public void testAddItemQuantity_severalQuantity_v13(){
      final int QUANTITY = 5;
      final BigDecimal UNIT_PRICE = new BigDecimal("19.99");
      final BigDecimal CUST_DISCOUNT_PC = new BigDecimal("30");
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      //   Set up fixture
      Customer customer = createACustomer(CUST_DISCOUNT_PC);
      Product product = createAProduct( UNIT_PRICE);
      Invoice invoice = createInvoice(customer);
      // Exercise SUT
      invoice.addItemQuantity(product, QUANTITY);
      // Verify outcome
      final BigDecimal EXTENDED_PRICE = new BigDecimal("69.96");
      LineItem expected =
         new LineItem(invoice, product, QUANTITY,
                      CUST_DISCOUNT_PC, EXTENDED_PRICE);
      assertContainsExactlyOneLineItem(invoice, expected);
   }

One fi nal point: Where did the value “69.96” come from? If this value comes 
from the output of some reference system, we should say so. Because it was just 
manually calculated and typed into the test, we can show the calculation in the 
test for the test reader’s benefi t. 

The Cleaned-Up Test 

Here is the fi nal cleaned-up version of the test: 

   public void testAddItemQuantity_severalQuantity_v14(){
      final int QUANTITY = 5;
      final BigDecimal UNIT_PRICE = new BigDecimal("19.99");
      final BigDecimal CUST_DISCOUNT_PC =  new BigDecimal("30");
      // Set up fixture
      Customer customer = createACustomer(CUST_DISCOUNT_PC);
      Product product = createAProduct( UNIT_PRICE);
      Invoice invoice = createInvoice(customer);
      // Exercise SUT
      invoice.addItemQuantity(product, QUANTITY);
      // Verify outcome
      final BigDecimal BASE_PRICE =
         UNIT_PRICE.multiply(new BigDecimal(QUANTITY));
      final BigDecimal EXTENDED_PRICE =
         BASE_PRICE.subtract(BASE_PRICE.multiply(
               CUST_DISCOUNT_PC.movePointLeft(2)));
      LineItem expected =
         createLineItem(QUANTITY, CUST_DISCOUNT_PC,
                        EXTENDED_PRICE, product, invoice);
      assertContainsExactlyOneLineItem(invoice, expected);
   }

We have used an Introduce Explaining Variable [Fowler] refactoring to better 
document the calculation of the BASE_PRICE (price*quantity) and EXTENDED_PRICE
(the price with discount). The revised test is now much smaller and clearer than 
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the bulky code we started with. It fulfi lls the role of Tests as Documentation 
(see page 23) very well. So what did we discover that this test verifi es? It con-
fi rms that the line items added to an invoice are, indeed, added to the invoice 
and that the extended cost is based on the product price, the customer’s dis-
count, and the quantity ordered. 

Writing More Tests 

It seemed like we went to a lot of effort to refactor this test to make it clearer. 
Will we have to spend so much effort on every test? 

I should hope not! Much of the effort here related to the discovery of which 
Test Utility Methods (page 599) were required for writing the test. We defi ned a 
Higher-Level Language (see page 41) for testing our application. Once we have 
those methods in place, writing other tests becomes much simpler. For example, if 
we want to write a test that verifi es that the extended cost is recalculated when we 
change the quantity of a LineItem, we can reuse most of the Test Utility Methods.

   public void testAddLineItem_quantityOne(){
      final BigDecimal BASE_PRICE = UNIT_PRICE;
      final BigDecimal EXTENDED_PRICE = BASE_PRICE;
      //   Set up fixture
      Customer customer = createACustomer(NO_CUST_DISCOUNT);
      Invoice invoice = createInvoice(customer);
      //   Exercise SUT
      invoice.addItemQuantity(PRODUCT, QUAN_ONE);
      // Verify outcome
      LineItem expected =
         createLineItem( QUAN_ONE, NO_CUST_DISCOUNT,
                         EXTENDED_PRICE, PRODUCT, invoice);
      assertContainsExactlyOneLineItem( invoice, expected );
   }

   public void testChangeQuantity_severalQuantity(){
      final int ORIGINAL_QUANTITY = 3;
      final int NEW_QUANTITY = 5;
      final BigDecimal BASE_PRICE =
         UNIT_PRICE.multiply(   new BigDecimal(NEW_QUANTITY));
      final BigDecimal EXTENDED_PRICE =
         BASE_PRICE.subtract(BASE_PRICE.multiply(
                     CUST_DISCOUNT_PC.movePointLeft(2)));
      //   Set up fixture
      Customer customer = createACustomer(CUST_DISCOUNT_PC);
      Invoice invoice = createInvoice(customer);
      Product product = createAProduct( UNIT_PRICE);
      invoice.addItemQuantity(product, ORIGINAL_QUANTITY);
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      // Exercise SUT
      invoice.changeQuantityForProduct(product, NEW_QUANTITY);
      // Verify outcome
      LineItem expected = createLineItem( NEW_QUANTITY,
          CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
      assertContainsExactlyOneLineItem( invoice, expected );
   }

This test was written in about two minutes and did not require adding any new 
Test Utility Methods. Contrast that with how long it would have taken to write 
a completely new test in the original style. And the effort saved in writing the 
tests is just part of the equation—we also need to consider the effort we saved 
understanding existing tests each time we need to revisit them. Over the course 
of a development project and the subsequent maintenance activity, this cost sav-
ings will really add up. 

Further Compaction 

Writing these additional tests revealed a few more sources of Test Code Duplication
(page 213). For example, it seems that we always create both a Customer and an 
Invoice. Why not combine these two lines? Similarly, we continually defi ne and 
initialize the QUANTITY and CUSTOMER_DISCOUNT_PC constants inside our test methods. 
Why can’t we do these tasks just once? The Product does not seem to play any 
roles in these tests; we always create it exactly the same way. Can we factor this 
responsibility out, too? Certainly! We just apply an Extract Method refactoring 
to each set of duplicated code to create more powerful Creation Methods.

   public void testAddItemQuantity_severalQuantity_v15(){
      // Set up fixture
      Invoice invoice = createCustomerInvoice(CUST_DISCOUNT_PC);
      // Exercise SUT
      invoice.addItemQuantity(PRODUCT, SEVERAL);
      // Verify outcome
      final BigDecimal BASE_PRICE =
         UNIT_PRICE.multiply(new BigDecimal(SEVERAL));
      final BigDecimal EXTENDED_PRICE =
         BASE_PRICE.subtract(BASE_PRICE.multiply(
               CUST_DISCOUNT_PC.movePointLeft(2)));
      LineItem expected = createLineItem( SEVERAL,
          CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
      assertContainsExactlyOneLineItem(invoice, expected);
   }

   public void testAddLineItem_quantityOne_v2(){
      final BigDecimal BASE_PRICE = UNIT_PRICE;
      final BigDecimal EXTENDED_PRICE = BASE_PRICE;
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      //   Set up fixture
      Invoice invoice = createCustomerInvoice(NO_CUST_DISCOUNT);
      //   Exercise SUT
      invoice.addItemQuantity(PRODUCT, QUAN_ONE);
      // Verify outcome
      LineItem expected = createLineItem( SEVERAL,
           CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
      assertContainsExactlyOneLineItem( invoice, expected );
   }

   public void testChangeQuantity_severalQuantity_V2(){
      final int NEW_QUANTITY = SEVERAL + 2;
      final BigDecimal BASE_PRICE =
         UNIT_PRICE.multiply(   new BigDecimal(NEW_QUANTITY));
      final BigDecimal EXTENDED_PRICE =
         BASE_PRICE.subtract(BASE_PRICE.multiply(
                     CUST_DISCOUNT_PC.movePointLeft(2)));
      //   Set up fixture
      Invoice invoice = createCustomerInvoice(CUST_DISCOUNT_PC);
      invoice.addItemQuantity(PRODUCT, SEVERAL);
      // Exercise SUT
      invoice.changeQuantityForProduct(PRODUCT, NEW_QUANTITY);
      // Verify outcome
      LineItem expected = createLineItem( NEW_QUANTITY,
          CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
      assertContainsExactlyOneLineItem( invoice, expected );
   }

We have now reduced the number of lines of code we need to understand from 35 
statements in the original test to just 6 statements.4 We are left with just a bit more 
than one sixth of the original code to maintain! We could go further by factoring 
out the fi xture setup into a setUp method, but that effort would be worthwhile only 
if a lot of tests needed the same Customer/Discount/Invoice confi guration. If we 
wanted to reuse these Test Utility Methods from other Testcase Classes (page 373), 
we could use an Extract Superclass [Fowler] refactoring to create a Testcase Super-
class (page 638), and then use a Pull Up Method [Fowler] refactoring to move the 
Test Utility Methods to it so they can be reused. 

4 Ignoring wrapped lines, we have 6 executable statements surrounded by the two lines 
of method declarations/end.
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Chapter 1 

A Brief Tour 

About This Chapter 

There are a lot of principles, patterns, and smells in this book—and even more pat-
terns that couldn’t fi t into the book. Do you need to learn them all? Do you need 
to use them all? Probably not! This chapter provides an abbreviated introduction 
to the bulk of the material in the entire book. You can use it as a quick tour of the 
material before diving into particular patterns or smells of interest. You can also 
use it as a warm-up before exploring the more detailed narrative chapters. 

The Simplest Test Automation Strategy That Could 
Possibly Work 

There is a simple test automation strategy that will work for many, many 
projects. This section describes this minimal test strategy. The principles, pat-
terns, and smells referenced here are the core patterns that will serve us well in 
the long run. If we learn to apply them effectively, we will probably be success-
ful in our test automation endeavors. If we fi nd that we really cannot make the 
minimal test strategy work on our project by using these patterns, we can fall 
back to the alternative patterns listed in the full descriptions of these patterns 
and in the other narratives. 

I have laid out this simple strategy in fi ve parts: 

• Development Process: How the process we use to develop the code 
affects our tests. 

• Customer Tests: The fi rst tests we should write as the ultimate defi ni-
tion of “what done looks like.” 
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4 Chapter 1  A Brief Tour

• Unit Tests: The tests that help our design emerge incrementally and 
ensure that all our code is tested. 

• Design for Testability: The patterns that make our design easier to test, 
thereby reducing the cost of test automation. 

• Test Organization: How we can organize our Test Methods (page 348) 
and Testcase Classes (page 373). 

Development Process 

First things fi rst: When do we write our tests? Writing tests before we write our 
software has several benefi ts. In particular, it gives us an agreed-upon defi nition 
of what success looks like.1

When doing new software development, we strive to do storytest-driven
development by fi rst automating a suite of customer tests that verify the func-
tionality provided by the application. To ensure that all of our software is tested, 
we augment these tests with a suite of unit tests that verify all code paths or, at a 
minimum, all the code paths that are not covered by the customer tests. We can 
use code coverage tools to discover which code is not being exercised and then 
retrofi t unit tests to accommodate the untested code.2

By organizing the unit tests and customer tests into separate test suites, we 
ensure that we can run just the unit tests or just the customer tests if neces-
sary. The unit tests should always pass before we check them in; this is what 
we mean by the phrase “keep the bar green.” To ensure that the unit tests are 
run frequently, we can include them in the Smoke Tests [SCM] that are run as 
part of the Integration Build [SCM]. Although many of the customer tests will 
fail until the corresponding functionality is built, it is nevertheless useful to 
run all the passing customer tests as part of the integration build phase—but 
only if this step does not slow the build down too much. In that case, we can 
leave them out of the check-in build and simply run them every night. 

We can ensure that our software is testable by doing test-driven development 
(TDD). That is, we write the unit tests before we write the code, and we use 
the tests to help us defi ne the software’s design. This strategy helps concentrate 
all the business logic that needs verifi cation in well-defi ned objects that can be 
tested independently of the database. Although we should also have unit tests 

1 If our customer cannot defi ne the tests before we have built the software, we have every 
reason to be worried!
2 We will likely fi nd fewer Missing Unit Tests (see Production Bugs on page 268) when 
we practice test-driven development than if we adopt a “test last” policy. Even so, there 
is still value in running the code coverage tools with TDD.
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for the data access layer and the database, we try to keep the dependency on the 
database to a minimum in the unit tests for the business logic. 

Customer Tests 

The customer tests should capture the essence of what the customer wants 
the system to do. Enumerating the tests before we begin their development is 
an important step whether or not we actually automate the tests, because it 
helps the development team understand what the customer really wants; these 
tests defi ne what success looks like. We can automate the tests using Scripted
Tests (page 285) or Data-Driven Tests (page 288) depending on who is pre-
paring the tests; customers can take part in test automation if we use Data-
Driven Tests. On rare occasions, we might even use Recorded Tests (page 278) 
for regression testing an existing application while we refactor the application 
to improve its testability. Of course, we usually discard these tests once we have 
developed other tests that cover the functionality, because Recorded Tests tend 
to be Fragile Tests (page 239). 

During their development, we strive to make our customer tests represen-
tative of how the system is really used. Unfortunately, this goal often confl icts 
with attempts to keep the tests from becoming too long, because long tests 
are often Obscure Tests (page 186) and tend not to provide very good Defect 
Localization (see page 22) when they fail partway through the test. We can also 
use well-written Tests as Documentation (see page 23) to identify how the system 
is supposed to work. To keep the tests simple and easy to understand, we can 
bypass the user interface by performing Subcutaneous Testing (see Layer Test on 
page 337) against one or more Service Facades [CJ2EEP]. Service Facades encap-
sulate all of the business logic behind a simple interface that is also used by the 
presentation layer. 

Every test needs a starting point. As part of our testing plan, we take care 
that each test sets up this starting point, known as the test fi xture, each time 
the test is run. This Fresh Fixture (page 311) helps us avoid Interacting Tests 
(see Erratic Test on page 228) by ensuring that tests do not depend on anything 
they did not set up themselves. We avoid using a Shared Fixture (page 317), 
unless it is an Immutable Shared Fixture, to avoid starting down the slippery 
slope to Erratic Tests.

If our application normally interacts with other applications, we may need 
to isolate it from any applications that we do not have in our development en-
vironment by using some form of Test Double (page 522) for the objects that 
act as interfaces to the other applications. If the tests run too slowly because of 
database access or other slow components, we can replace them with functionally 

 The Simplest Test Automation Strategy That Could Possibly Work
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equivalent Fake Objects (page 551) to speed up our tests, thereby encouraging 
developers to run them more regularly. If at all possible, we avoid using Chained 
Tests (page 454)—they are just the test smell Interacting Tests in disguise. 

Unit Tests 

For our unit tests to be effective, each one should be a Fully Automated Test 
(page 26) that does a round-trip test against a class through its public interface. 
We can strive for Defect Localization by ensuring that each test is a Single-
Condition Test (see page 45) that exercises a single method or object in a single 
scenario. We should also write our tests so that each part of the Four-Phase 
Test (page 358) is easily recognizable, which enables us to use the Tests as Docu-
mentation.

We use a Fresh Fixture strategy so that we do not have to worry about In-
teracting Tests or fi xture teardown. We begin by creating a Testcase Class for 
each class we are testing (see Testcase Class per Class on page 617), with each 
test being a separate Test Method on that class. Each Test Method can use Del-
egated Setup (page 411) to build a Minimal Fixture (page 302) that makes the 
tests easily understood by calling well-named Creation Methods (page 415) to 
build the objects required for each test fi xture. 

To make the tests self-checking (Self-Checking Test; see page 26), we 
express the expected outcome of each test as one or more Expected Objects 
(see State Verifi cation on page 462) and compare them with the actual objects 
returned by the system under test (SUT) using the built-in Equality Assertions 
(see Assertion Method on page 362) or Custom Assertions (page 474) that 
implement our own test-specifi c equality. If several tests are expected to result 
in the same outcome, we can factor out the verifi cation logic into an outcome-
describing Verifi cation Method (see Custom Assertion) that the test reader can 
more easily recognize. 

If we have Untested Code (see Production Bugs on page 268) because we 
cannot fi nd a way to execute the path through the code, we can use a Test 
Stub (page 529) to gain control of the indirect inputs of the SUT. If there 
are Untested Requirements (see Production Bugs) because not all of the 
system’s behavior is observable via its public interface, we can use a Mock
Object (page 544) to intercept and verify the indirect outputs of the SUT. 

Chapter 1  A Brief Tour
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Design for Testability 

Automated testing is much simpler if we adopt a Layered Architecture [DDD, 
PEAA, WWW]. At a minimum, we should separate our business logic from the 
database and the user interface, thereby enabling us to test it easily using either 
Subcutaneous Tests or Service Layer Tests (see Layer Test). We can minimize any 
dependence on a Database Sandbox (page 650) by doing most—if not all—of 
our testing using in-memory objects only. This scheme lets the runtime environ-
ment implement Garbage-Collected Teardown (page 500) for us automatically, 
meaning that we can avoid writing potentially complex, error-prone teardown 
logic (a sure source of Resource Leakage; see Erratic Test). It also helps us avoid 
Slow Tests (page 253) by reducing disk I/O, which is much slower than memory 
manipulation.

If we are building a GUI, we should try to keep the complex GUI logic out 
of the visual classes. Using a Humble Dialog (see Humble Object on page 695)
that delegates all decision making to nonvisual classes allows us to write unit 
tests for the GUI logic (e.g., enabling/disabling buttons) without having to 
instantiate the graphical objects or the framework on which they depend. 

If the application is complex enough or if we are expected to build compo-
nents that will be reused by other projects, we can augment the unit tests with 
component tests that verify the behavior of each component in isolation. We 
will probably need to use Test Doubles to replace any components on which 
our component depends. To install the Test Doubles at runtime, we can use 
either Dependency Injection (page 678), Dependency Lookup (page 686), or a 
Subclassed Singleton (see Test-Specifi c Subclass on page 579).

Test Organization 

If we end up with too many Test Methods on our Testcase Class, we can con-
sider splitting the class based on either the methods (or features) verifi ed by the 
tests or their fi xture needs. These patterns are called Testcase Class per Fea-
ture (page 624) and Testcase Class per Fixture (page 631), respectively. Testcase 
Class per Fixture allows us to move all of the fi xture setup code into the setUp
method, an approach called Implicit Setup (page 424). We can then aggregate 
the Test Suite Objects (page 387) for the resulting Testcase Classes into a single 
Test Suite Object, resulting in a Suite of Suites (see Test Suite Object) containing 
all the tests from the original Testcase Class. This Test Suite Object can, in turn, 
be added to the Test Suite Object for the containing package or namespace. We 
can then run all of the tests or just a subset that is relevant to the area of the 
software in which we are working. 

 The Simplest Test Automation Strategy That Could Possibly Work
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What’s Next? 

This whirlwind tour of the most important goals, principles, patterns, and 
smells is just a brief introduction to test automation. Chapters 2 through 14 
give a more detailed overview of each area touched upon here. If you have 
already spotted some patterns or smells you want to learn more about, you can 
certainly proceed directly to the detailed descriptions in Parts II and III. Other-
wise, your next step is to delve into the subsequent narratives, which provide a 
somewhat more in-depth examination of these patterns and the alternatives to 
them. First up is Chapter 2, Test Smells, which describes some common “test 
smells” that motivate much of the refactoring we do on our tests. 

8
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Chapter 2 

Test Smells 

About This Chapter 

Chapter 1, A Brief Tour, provided a very quick introduction to the core patterns 
and smells covered in this book. This chapter provides a more detailed examina-
tion of the “test smells” we are likely to encounter on our projects. We explore 
the basic concept of test smells fi rst, and then move on to investigate the smells 
in three broad categories: test code smells, automated test behavior smells, and 
project smells related to automated testing. 

An Introduction to Test Smells 

In his book Refactoring: Improving the Design of Existing Code, Martin Fowler 
documented a number of ways that the design of code can be changed without 
actually changing what the code does. The motivation for this refactoring was 
the identifi cation of “bad smells” that frequently occur in object-oriented code. 
These code smells were described in a chapter coauthored by Kent Beck that 
started with the famous quote from Grandma Beck: “If it stinks, change it.” The 
context of this quote was the question, “How do you know you need to change 
a baby’s diaper?” And so a new term was added to the programmer’s lexicon. 

The code smells described in Refactoring focused on problems commonly 
found in production code. Many of us had long suspected that there were 
smells unique to automated test scripts. At XP2001, the paper “Refactoring 
Test Code” [RTC] confi rmed these suspicions by identifying a number of “bad 
smells” that occur specifi cally in test code. The authors also recommended a set 
of refactorings that can be applied to the tests to remove the noxious smells. 

This chapter provides an overview of these test smells. More detailed ex-
amples of each test smell can be found in the reference section. 
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What’s a Test Smell?

A smell is a symptom of a problem. A smell doesn’t necessarily tell us what is 
wrong, because a particular smell may originate from any of several sources. 
Most of the smells in this book have several different named causes; some causes 
even appear under several smells. That’s because a root cause may reveal itself 
through several different symptoms (i.e., smells). 

Not all problems are considered smells, and some problems may even be the 
root cause of several smells. The “Occam’s razor” test for deciding whether 
something really is a smell (versus just a problem) is the “sniffability test.” That 
is, the smell must grab us by the nose and say, “Something is wrong here.” As 
discussed in the next section, I have classifi ed the smells based on the kinds of 
symptoms they exhibit (how they “grab us by the nose”). 

Based on the “sniffability” criteria, I have demoted some of the test smells 
listed in prior papers and articles to “cause” status. I have mostly left their 
names unchanged so that we can still refer to them when talking about a par-
ticular side effect of applying a pattern. In this case, it is more appropriate to 
refer directly to the cause rather than to the more general but sniffable smell. 

Kinds of Test Smells 

Over the years we have discovered that there are at least two different kinds of 
smells: code smells, which must be recognized when looking at code, and behav-
ior smells, which affect the outcome of tests as they execute. 

Code smells are coding-level anti-patterns that a developer, tester, or coach 
may notice while reading or writing test code. That is, the code just doesn’t look 
quite right or doesn’t communicate its intent very clearly. Code smells must fi rst 
be recognized before we can take any action, and the need for action may not be 
equally obvious to everyone. Code smells apply to all kinds of tests, including both 
Scripted Tests (page 285) and Recorded Tests (page 278). They become particu-
larly relevant for Recorded Tests when we must maintain the recorded code. Un-
fortunately, most Recorded Tests suffer from Obscure Tests (page 186), because 
they are recorded by a tool that doesn’t know what is relevant to the human reader. 

Behavior smells, by contrast, are much more diffi cult to ignore because they 
cause tests to fail (or not compile at all) at the most inopportune times, such as 
when we are trying to integrate our code into a crucial build; we are forced to 
unearth the problems before we can “make the bar green.” Like code smells, 
behavior smells are relevant to both Scripted Tests and Recorded Tests.

Chapter 2  Test Smells
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Developers typically notice code and behavior smells when they automate, 
maintain, and run tests. More recently, we have identifi ed a third kind of 
smell—a smell that is usually noticed by the project manager or the customer, 
who does not look at the test code or run the tests. These project smells are in-
dicators of the overall health of a project. 

What to Do about Smells? 

Some smells are inevitable simply because they take too much effort to elimi-
nate. The important thing is that we are aware of the smells and know what 
causes them. We can then make a conscious decision about which ones we must 
address to keep the project running effi ciently. 

The decision of which smells must be eliminated comes down to the 
balance between cost and benefi t. Some smells are harder to stamp out than 
others; some smells cause more grief than others. We need to eradicate those 
smells that cause us the most grief because they will keep us from being suc-
cessful. That being said, many smells can be avoided by selecting a sound test 
automation strategy and by following good test automation coding standards. 

While we carefully delineated the various types of smells, it is important to 
note that very often we will observe symptoms of each kind of smell at the 
same time. Project smells, for example, are the project-level symptoms of some 
underlying cause. That cause may show up as a behavior smell but ultimately 
there is probably an underlying code smell that is the root cause of the problem. 
The good news: We have three different ways to identify a problem. The bad 
news: It is easy to focus on the symptom at one level and to try to solve that 
problem directly without understanding the root cause. 

A very effective technique for identifying the root cause is the “Five Why’s” 
[TPS]. First, we ask why something is occurring. Once we have identifi ed the 
factors that led to it, we next ask why each of those factors occurred. We repeat 
this process until no new information is forthcoming. In practice, asking why
fi ve times is usually enough—hence the name “Five Why’s.”1

In the rest of this chapter, we will look at the test-related smells that we 
are most likely to encounter on our projects. We will begin with the project 
smells, and then work our way down to the behavior smells and code smells 
that cause them. 

1 This practice is also called “root cause analysis” or “peeling the onion” in some circles.

 An Introduction To Test Smells
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12 Chapter 2  Test Smells

A Catalog of Smells 

Now that we have a better understanding of test smells and their role in projects 
that use automated testing, let’s look at some smells. Based on the “sniffability” 
criteria outlined earlier, this section focuses on introducing the smells. Discus-
sions of their causes and the individual smell descriptions appear in Part II of 
this book. 

The Project Smells 

Project smells are symptoms that something has gone wrong on the project. Their 
root cause is likely to be one or more of the code or behavior smells. Because proj-
ect managers rarely run or write tests, however, project smells are likely to be the 
fi rst hint they get that something may be less than perfect in test automation land. 

Project managers focus most on functionality, quality, resources, and cost. 
For this reason, the project-level smells tend to cluster around these issues. The 
most obvious metric a project manager is likely to encounter as a smell is the 
quality of the software as measured in defects found in formal testing or by 
users/customers. If the number of Production Bugs (page 268) is higher than 
expected, the project manager must ask, “Why are all of these bugs getting 
through our safety net of automated tests?” 

The project manager may be monitoring the number of times the daily in-
tegration build fails as a way of getting an early indication of software quality 
and adherence to the team’s development process. The manager may become 
worried if the build fails too frequently, and especially if it takes more than a 
few minutes to fi x the build. Root cause analysis of the failures may indicate 
that many of the test failures are not the result of buggy software but rather 
derive from Buggy Tests (page 260). This is an example in which the tests cry 
“Wolf!” and consume a lot of resources as part of their correction, but do not 
actually increase the quality of the production code.

Buggy Tests are just one contributor to the more general problem of High
Test Maintenance Cost (page 265), which can severely affect the productivity 
of the team if not addressed quickly. If the tests need to be modifi ed too often 
(e.g., every time the SUT is modifi ed) or if the cost of modifying tests is too high 
due to Obscure Tests, the project manager may decide that the effort and ex-
pense being directed toward writing the automated tests would be better spent 
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on writing more production code or doing manual testing. At this point, the 
manager is likely to tell the developers to stop writing tests.2

Alternatively, the project manager may decide that the Production Bugs are 
caused by Developers Not Writing Tests (page 263). This pronouncement is 
likely to come during a process retrospective or as part of a root cause analysis 
session. Developers Not Writing Tests may be caused by an overly aggressive 
development schedule, supervisors who tell developers not to “waste time writ-
ing tests,” or developers who do not have the skills to write tests. Other poten-
tial causes might include an imposed design that is not conducive to testing or 
a test environment that leads to Fragile Tests (page 239). Finally, this problem 
could result from Lost Tests (see Production Bugs)—tests that exist but are not 
included in the AllTests Suite (see Named Test Suite on page 592) used by devel-
opers during check-in or by the automated build tool. 

The Behavior Smells 

Behavior smells are encountered when we compile or run tests. We don’t have 
to be particularly observant to notice them, as these smells will take the form of 
compile errors or test failures. 

The most common behavior smell is Fragile Tests. It arises when tests that 
once passed begin failing for some reason. The Fragile Test problem has given 
test automation a bad name in many circles, especially when commercial 
“record and playback” test tools fail to deliver on their promise of easy test 
automation. Once recorded, these tests are very susceptible to breakage. Often 
the only remedy is to rerecord them because the test recordings are diffi cult to 
understand or modify by hand. 

The root causes of Fragile Tests can be classifi ed into four broad categories: 

• Interface Sensitivity (see Fragile Test) occurs when tests are broken by 
changes to the test programming API or the user interface used to au-
tomate the tests. Commercial Record and Playback Test (see Recorded 
Test) tools typically interact with the system via the user interface. Even 
minor changes to the interface can cause tests to fail, even in circum-
stances in which a human user would say that the test should still pass. 

2 It can be hard enough to get project managers to buy into letting developers write 
automated tests. It is crucial that we don’t squander this opportunity by being sloppy 
or ineffi cient. The need for this balancing act is, in a nutshell, why I started writing this 
book: to help developers succeed and avoid giving the pessimistic project manager an 
excuse for calling a halt to automated unit testing.

 A Catalog of Smells
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• Behavior Sensitivity (see Fragile Test) occurs when tests are broken by 
changes to the behavior of the SUT. This may seem like a “no-brainer” 
(of course, the tests should break if we change the SUT!) but the issue 
is that only a few tests should be broken by any one change. If many or 
most of the tests break, we have a problem. 

• Data Sensitivity (see Fragile Test) occurs when tests are broken by 
changes to the data already in the SUT. This issue is particularly a 
problem for applications that use databases. Data Sensitivity is a spe-
cial case of Context Sensitivity (see Fragile Test) where the context in 
question is the database. 

• Context Sensitivity occurs when tests are broken by differences in the 
environment surrounding the SUT. The most common example is when 
tests depend on the time or date, but this problem can also arise when 
tests rely on the state of devices such as servers, printers, or monitors. 

Data Sensitivity and Context Sensitivity are examples of a special kind of Frag-
ile Test, known as a Fragile Fixture, in which changes to a commonly used test 
fi xture cause multiple existing tests to fail. This scenario increases the cost of 
extending the Standard Fixture (page 305) to support new tests and, in turn, 
discourages good test coverage. Although Fragile Fixture’s root cause is poor 
test design, the problem actually appears when the fi xture is changed rather 
than when the SUT is changed.

Most agile projects use some form of daily or continuous integration that 
includes two steps: compiling the latest version of the code and running all 
of the automated tests against the newly compiled build. Assertion Rou-
lette (page 224) can make it diffi cult to determine how and why tests failed 
during the integration build because the failure log does not include suffi -
cient information to clearly identify which assertion failed. Troubleshooting 
of the build failures may proceed slowly, because the failure must be repro-
duced in the development environment before we can speculate on the cause 
of the failure. 

A common cause of grief is tests that fail for no apparent reason. That is, 
neither the tests nor the production code has been modifi ed, yet the tests sud-
denly begin failing. When we try to reproduce these results in the development 
environment, the tests may or may not fail. These Erratic Tests (page 228) are 
both very annoying and time-consuming to fi x, because they have numerous 
possible causes. A few are listed here: 
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• Interacting Tests arise when several tests use a Shared Fixture (page 317).
They make it hard to run tests individually or to run several test suites as 
part of a larger Suite of Suites (see Test Suite Object on page 387). They 
can also cause cascading failures (where a single test failure leaves the 
Shared Fixture in a state that causes many other tests to fail). 

• Test Run Wars occur when several Test Runners (page 377) run tests 
against a Shared Fixture at the same time. They invariably happen at 
the worst possible time, such as when you are trying to fi x the last few 
bugs before a release. 

• Unrepeatable Tests provide a different result between the fi rst and 
subsequent test runs. They may force the test automater to perform a 
Manual Intervention (page 250) between test runs. 

Another productivity-sapping smell is Frequent Debugging (page 248). Auto-
mated unit tests should obviate the need to use a debugger in all but rare cases, 
because the set of tests that are failing should make it obvious why the failure is 
occurring. Frequent Debugging is a sign that the unit tests are lacking in cover-
age or are trying to test too much functionality at once. 

The real value of having Fully Automated Tests (page 26) is being able to run 
them frequently. Agile developers who are doing test-driven development often 
run (at least a subset of) the tests every few minutes. This behavior should be 
encouraged because it shortens the feedback loop, thereby reducing the cost of 
any defects introduced into the code. When tests require Manual Intervention
each time they are run, developers tend to run the tests less frequently. This 
practice increases the cost of fi nding all defects introduced since the tests were 
last run, because more changes will have been made to the software since it was 
last tested. 

Another smell that has the same net impact on productivity is Slow
Tests (page 253). When tests take more than approximately 30 seconds to run, 
developers stop running them after every individual code change, instead wait-
ing for a “logical time” to run them—for example, before a coffee break, lunch, 
or a meeting. This delayed feedback results in a loss of “fl ow” and increases 
the time between when a defect is introduced and when it is identifi ed by a test. 
The most frequently used solution to Slow Tests is also the most problematic; 
a Shared Fixture can result in many behavior smells and should be the solution 
of last resort. 

 A Catalog of Smells
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The Code Smells 

Code smells are the “classic” bad smells that were fi rst described by Martin 
Fowler in Refactoring [Ref]. Indeed, most of the smells identifi ed by Fowler are 
code smells. These smells must be recognized by test automaters as they main-
tain test code. Although code smells typically affect maintenance cost of tests, 
they may also be early warning signs of behavior smells to follow. 

When reading tests, a fairly obvious—albeit often overlooked—smell is 
Obscure Test. It can take many forms, but all versions have the same impact: It 
becomes diffi cult to tell what the test is trying to do, because the test does not 
Communicate Intent (page 41). This ambiguity increases the cost of test main-
tenance and can lead to Buggy Tests when a test maintainer makes the wrong 
change to the test. 

A related smell is Conditional Test Logic (page 200). Tests should be simple, 
linear sequences of statements. When tests have multiple execution paths, we 
cannot be sure exactly how the test will execute in a specifi c case. 

Hard-Coded Test Data (see Obscure Test) can be insidious for several rea-
sons. First, it makes tests more problematic to understand: We need to look at 
each value and guess whether it is related to any of the other values to under-
stand how the SUT is supposed to behave. Second, it creates challenges when 
we are testing a SUT that includes a database. Hard-Coded Test Data can lead 
to Erratic Tests (if tests happen to use the same database key) or Fragile Fix-
tures (if the values refer to records in the database that have been changed). 

Hard-to-Test Code (page 209) may be a contributing factor to a number of 
other code and behavior smells. This problem is most obvious to the person 
who is writing a test and cannot fi nd a way to set up the fi xture, exercise the 
SUT, or verify the expected outcome. The test automater may then be forced 
to test more software (a larger SUT consisting of many classes) than he or she 
would like. When reading a test, Hard-to-Test Code tends to show up as an 
Obscure Test because of the hoops the test automater had to jump through to 
interact with the SUT. 

Test Code Duplication (page 213) is a poor practice because it increases the 
cost of maintaining tests. We have more test code to maintain and that code 
is more challenging to maintain because it often coincides with an Obscure
Test. Duplication often arises when the automated tester clones tests and does 
not put enough thought into how to reuse test logic intelligently.3 As testing 
needs emerge, it is important that the test automater factor out commonly used 
sequences of statements into Test Utility Methods (page 599) that can be reused 

3 Note that I said “reuse test logic” and not “reuse Test Methods.”
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by various Test Methods (page 348).4 This practice reduces the maintenance 
cost of tests in several ways. 

Test Logic in Production (page 217) is undesirable because there is no way 
to ensure that it will not run accidentally.5 It also makes the production code 
larger and more complicated. Finally, this error may cause other software com-
ponents or libraries to be included in the executable. 

What’s Next? 

In this chapter, we saw a plethora of things that can go wrong when automating 
tests. Chapter 3, Goals of Test Automation, describes the goals we need to keep 
in mind while automating tests so that we can have an effective test automation 
experience. That understanding will prepare us to look at the principles that will 
help us steer clear of many of the problems described in this chapter. 

4 It is equally important that we do not reuse Test Methods, as that practice results in 
Flexible Tests (see Conditional Test Logic).
5 See the sidebar on Ariane (page 218) for a cautionary tale.
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Chapter 3 

Goals of Test Automation

About This Chapter 

Chapter 2, Test Smells, introduced the various “test smells” that can act as 
symptoms of problems with automated testing. This chapter describes the goals 
we should be striving to reach to ensure successful automated unit tests and 
customer tests. It begins with a general discussion of why we automate tests, 
then turns to a description of the overall goals of test automation, including re-
ducing costs, improving quality, and improving the understanding of code. Each 
of these areas has more detailed named goals that are discussed briefl y here as 
well. This chapter doesn’t describe how to achieve these goals; that explanation 
will come in subsequent chapters where these goals are used as the rationale for 
many of the principles and patterns. 

Why Test? 

Much has been written about the need for automated unit and acceptance tests 
as part of agile software development. Writing good test code is hard, and main-
taining obtuse test code is even harder. Because test code is optional (i.e., it is 
not what the customer is paying for), there is a strong temptation to abandon 
testing when the tests become diffi cult or expensive to maintain. Once we have 
given up on the principle of “keep the bar green to keep the code clean,” much 
of the value of the automated tests is lost. 

Over a series of projects, the teams I have worked with have faced a number 
of challenges to automated testing. The cost of writing and maintaining test suites 
has been a particular challenge, especially on projects with thousands of tests. 
Fortunately, as the cliché says, “Necessity is the mother of invention.” My teams, 
and others, have developed a number of solutions to address these challenges. 
I have since spent a lot of time refl ecting on these solutions to ask why they are good 
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solutions. Along the way, I have divided the components of successful solutions 
into goals (things to achieve) and principles (ways to achieve them). Adherence 
to these goals and principles will result in automated tests that are easier to write, 
read, and maintain. 

Economics of Test Automation 

Of course, there is always a cost incurred in building and maintaining an auto-
mated test suite. Ardent test automation advocates will argue that it is worth 
spending more to have the ability to change the software later. Unfortunately, 
this “pay me now so you don’t have to pay me later” argument doesn’t go very 
far in a tough economic climate.1

Our goal should be to make the decision to do test automation a “no-brainer” 
by ensuring that it does not increase the cost of software development. Thus the 
additional cost of building and maintaining automated tests must be offset by 
savings through reduced manual unit testing and debugging/troubleshooting as 
well as the remediation cost of the defects that would have gone undetected until 
the formal test phase of the project or early production usage of the application. 
Figure 3.1 shows how the cost of automation is offset by the savings received 
from automation.

Figure 3.1  An automated unit test project with a good return on investment. 
The cost-benefi t trade-off when the total cost is reduced by good test practices.

Initially, the cost of learning the new technology and practices takes additional 
effort. Once we get over this “hump,” however, we should settle down to a 
steady state where the added cost (the part above the line) is fully offset by the 

1 The argument that the quality improvement is worth the extra cost also doesn’t go very 
far in these days of “just good enough” software quality.
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savings (the part below the line). If tests are diffi cult to write, are diffi cult to 
understand, and require frequent, expensive maintenance, the total cost of soft-
ware development (the heights of the vertical arrows) goes up as illustrated in 
Figure 3.2.

Figure 3.2  An automated unit test project with a poor return on investment. 
The cost-benefi t trade-off when the total cost is increased by poor test practices.

Note how the added work above the line in Figure 3.2 is more than that seen 
in Figure 3.1 and continues to increase over time. Also, the saved effort below 
the line is reduced. This refl ects the increase in overall effort, which exceeds the 
original effort without test automation. 

Goals of Test Automation                

We all come to test automation with some notion of why having automated 
tests would be a “good thing.” Here are some high-level objectives that might 
apply:

• Tests should help us improve quality. 

• Tests should help us understand the SUT. 

• Tests should reduce (and not introduce) risk. 

• Tests should be easy to run. 

• Tests should be easy to write and maintain. 

• Tests should require minimal maintenance as the system evolves 
around them. 
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The fi rst three objectives demonstrate the value provided by the tests, whereas 
the last three objectives focus on the characteristics of the tests themselves. Most 
of these objectives can be decomposed into more concrete (and measurable) 
goals. I have given these short catchy names so that I can refer to them as moti-
vators of specifi c principles or patterns. 

Tests Should Help Us Improve Quality 

The traditional reason given for doing testing is for quality assurance (QA). 
What, precisely, do we mean by this? What is quality? Traditional defi nitions 
distinguish two main categories of quality based on the following questions: 
(1) Is the software built correctly? and (2) Have we built the right software? 

Goal: Tests as Specifi cation 

If we are doing test-driven development or test-fi rst development, the tests give 
us a way to capture what the SUT should be doing before we start building it. 
They enable us to specify the behavior in various scenarios captured in a form 
that we can then execute (essentially an “executable specifi cation”). To ensure 
that we are “building the right software,” we must ensure that our tests refl ect 
how the SUT will actually be used. This effort can be facilitated by developing 
user interface mockups that capture just enough detail about how the applica-
tion appears and behaves so that we can write our tests. 

The very act of thinking through various scenarios in enough detail to turn 
them into tests helps us identify those areas where the requirements are ambigu-
ous or self-contradictory. Such analysis improves the quality of the specifi ca-
tion, which improves the quality of the software so specifi ed. 

Goal: Bug Repellent 

Yes, tests fi nd bugs—but that really isn’t what automated testing is about. Auto-
mated testing tries to prevent bugs from being introduced. Think of automated 
tests as “bug repellent” that keeps nasty little bugs from crawling back into our 
software after we have made sure it doesn’t contain any bugs. Wherever we 
have regression tests, we won’t have bugs because the tests will point the bugs 
out before we even check in our code. (We are running all the tests before every 
check-in, aren’t we?) 

Goal: Defect Localization

Mistakes happen! Of course, some mistakes are much more expensive to pre-
vent than to fi x. Suppose a bug does slip through somehow and shows up in 

Also known as: 
Executable 

Specifi cation
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the Integration Build [SCM]. If our unit tests are fairly small (i.e., we test only 
a single behavior in each one), we should be able to pinpoint the bug quickly 
based on which test fails. This specifi city is one of the major advantages that unit 
tests enjoy over customer tests. The customer tests tell us that some behavior 
expected by the customer isn’t working; the unit tests tell us why. We call this 
phenomenon Defect Localization. If a customer test fails but no unit tests fail, it 
indicates a Missing Unit Test (see Production Bugs on page 268).

All of these benefi ts are wonderful—but we cannot achieve them if we don’t 
write tests for all possible scenarios that each unit of software needs to cover. 
Nor will we realize these benefi ts if the tests themselves contain bugs. Clearly, 
it is crucial that we keep the tests as simple as possible so that they can be 
easily seen to be correct. While writing unit tests for our unit tests is not a 
practical solution, we can—and should—write unit tests for any Test Utility 
Method (page 599) to which we delegate complex algorithms needed by the test 
methods.

Tests Should Help Us Understand the SUT 

Repelling bugs isn’t the only thing the tests can do for us. They can also show 
the test reader how the code is supposed to work. Black box component tests 
are—in effect—describing the requirements of that of software component. 

Goal: Tests as Documentation 

Without automated tests, we would need to pore over the SUT code trying to 
answer the question, “What should be the result if . . . ?” With automated tests, 
we simply use the corresponding Tests as Documentation; they tell us what the 
result should be (recall that a Self-Checking Test states the expected outcome in 
one or more assertions). If we want to know how the system does something, we 
can turn on the debugger, run the test, and single-step through the code to see 
how it works. In this sense, the automated tests act as a form of documentation 
for the SUT. 

Tests Should Reduce (and Not Introduce) Risk 

As mentioned earlier, tests should improve the quality of our software by help-
ing us better document the requirements and prevent bugs from creeping in dur-
ing incremental development. This is certainly one form of risk reduction. Other 
forms of risk reduction involve verifying the software’s behavior in the “impos-
sible” circumstances that cannot be induced when doing traditional customer 
testing of the entire application as a black box. It is a very useful exercise to 
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review all of the project’s risks and brainstorm about which kinds of risks could 
be at least partially mitigated through the use of Fully Automated Tests.

Goal: Tests as Safety Net 

When working on legacy code, I always feel nervous. By defi nition, legacy code 
doesn’t have a suite of automated regression tests. Changing this kind of code is 
risky because we never know what we might break, and we have no way of know-
ing whether we have broken something! As a consequence, we must work very 
slowly and carefully, doing a lot of manual analysis before making any changes. 

When working with code that has a regression test suite, by contrast, we can 
work much more quickly. We can adopt a more experimental style of changing 
the software: “I wonder what would happen if I changed this? Which tests fail? 
Interesting! So that’s what this parameter is for.” In this way, the automated 
tests act as a safety net that allows us to take chances.2

The effectiveness of the safety net is determined by how completely our tests 
verify the behavior of the system. Missing tests are like holes in the safety net. 
Incomplete assertions are like broken strands. Each gap in the safety net can let 
bugs of various sizes through. 

The effectiveness of the safety net is amplifi ed by the version-control capabil-
ities of modern software development environments. A source code repository 
[SCM] such as CVS, Subversion, or SourceSafe lets us roll back our changes to 
a known point if our tests suggest that the current set of changes is affecting the 
code too extensively. The built-in “undo” or “local history” features of the IDE
let us turn the clock back 5 seconds, 5 minutes, or even 5 hours. 

Goal: Do No Harm 

Naturally, there is a fl ip side to this discussion: How might automated tests in-
troduce risk? We must be careful not to introduce new kinds of problems into 
the SUT as a result of doing automated testing. The Keep Test Logic Out of 
Production Code principle directs us to avoid putting test-specifi c hooks into 
the SUT. It is certainly desirable to design the system for testability, but any test-
specifi c code should be plugged in by the test and only in the test environment; 
it should not exist in the SUT when it is in production. 

Another form of risk is believing that some code is reliable because it has 
been thoroughly tested when, in fact, it has not. A common mistake made by 
developers new to the use of Test Doubles (page 522) is replacing too much of 

2 Imagine trying to learn to be a trapeze artist in the circus without having that big net 
that allows you to make mistakes. You would never progress beyond swinging back and 
forth!
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the SUT with a Test Double. This leads to another important principle: Don’t 
Modify the SUT. That is, we must be clear about which SUT we are testing and 
avoid replacing the parts we are testing with test-specifi c logic (Figure 3.3). 

Figure 3.3  A range of tests, each with its own SUT. An application, component, 
or unit is only the SUT with respect to a specifi c set of tests. The “Unit1 SUT” 
plays the role of DOC (part of the fi xture) to the “Unit2 Test” and is part of the 
“Comp1 SUT.”

Tests Should Be Easy to Run 

Most software developers just want to write code; testing is simply a necessary 
evil in our line of work. Automated tests provide a nice safety net so that we can 
write code more quickly,3 but we will run the automated tests frequently only if 
they are really easy to run. 

What makes tests easy to run? Four specifi c goals answer this question: 

• They must be Fully Automated Tests so they can be run without any 
effort.

3 “With less paranoia” is probably more accurate!
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• They must be Self-Checking Tests so they can detect and report any 
errors without manual inspection. 

• They must be Repeatable Tests so they can be run multiple times with 
the same result. 

• Ideally, each test should be an Independent Test that can be run by itself. 

With these four goals satisfi ed, one click of a button (or keyboard shortcut) is all 
it should take to get the valuable feedback the tests provide. Let’s look at these 
goals in a bit more detail. 

Goal: Fully Automated Test 

A test that can be run without any Manual Intervention (page 250) is a Fully 
Automated Test. Satisfying this criterion is a prerequisite to meeting many of the 
other goals. Yes, it is possible to write Fully Automated Tests that don’t check the 
results and that can be run only once. The main() program that runs the code and 
directs print statements to the console is a good example of such a test. I consider 
these two aspects of test automation to be so important in making tests easy to run 
that I have made them separate goals: Self-Checking Test and Repeatable Test.

Goal: Self-Checking Test 

A Self-Checking Test has encoded within it everything that the test needs to 
verify that the expected outcome is correct. Self-Checking Tests apply the Holly-
wood principle (“Don’t call us; we’ll call you”) to running tests. That is, the Test 
Runner (page 377) “calls us” only when a test did not pass; as a consequence, 
a clean test run requires zero manual effort. Many members of the xUnit fam-
ily provide a Graphical Test Runner (see Test Runner) that uses a green bar to 
signal that everything is “A-okay”; a red bar indicates that a test has failed and 
warrants further investigation. 

Goal: Repeatable Test 

A Repeatable Test can be run many times in a row and will produce exactly the 
same results without any human intervention between runs. Unrepeatable Tests 
(see Erratic Test on page 228) increase the overhead of running tests signifi cantly. 
This outcome is very undesirable because we want all developers to be able to run 
the tests very frequently—as often as after every “save.” Unrepeatable Tests can be 
run only once before whoever is running the tests must perform a Manual Interven-
tion. Just as bad are Nondeterministic Tests (see Erratic Test) that produce different 
results at different times; they force us to spend lots of time chasing down failing 
tests. The power of the red bar diminishes signifi cantly when we see it regularly 
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without good reason. All too soon, we begin ignoring the red bar, assuming that it 
will go away if we wait long enough. Once this happens, we have lost a lot of the 
value of our automated tests, because the feedback indicating that we have intro-
duced a bug and should fi x it right away disappears. The longer we wait, the more 
effort it takes to fi nd the source of the failing test. 

Tests that run only in memory and that use only local variables or fi elds are 
usually repeatable without us expending any additional effort. Unrepeatable
Tests usually come about because we are using a Shared Fixture (page 317) of 
some sort (this defi nition includes any persistence of data implemented within 
the SUT). In such a case, we must ensure that our tests are “self-cleaning” as 
well. When cleaning is necessary, the most consistent and foolproof strategy 
is to use a generic Automated Teardown (page 503) mechanism. Although it 
is possible to write teardown code for each test, this approach can result in 
Erratic Tests when it is not implemented correctly in every test. 

Tests Should Be Easy to Write and Maintain 

Coding is a fundamentally diffi cult activity because we must keep a lot of in-
formation in our heads as we work. When we are writing tests, we should stay 
focused on testing rather than coding of the tests. This means that tests must 
be simple—simple to read and simple to write. They need to be simple to read 
and understand because testing the automated tests themselves is a complicated 
endeavor. They can be tested properly only by introducing the very bugs that 
they are intended to detect into the SUT; this is hard to do in an automated way 
so it is usually done only once (if at all), when the test is fi rst written. For these 
reasons, we need to rely on our eyes to catch any problems that creep into the 
tests, and that means we must keep the tests simple enough to read quickly. 

Of course, if we are changing the behavior of part of the system, we should expect 
a small number of tests to be affected by our modifi cations. We want to Minimize 
Test Overlap so that only a few tests are affected by any one change. Contrary to 
popular opinion, having more tests pass through the same code doesn’t improve 
the quality of the code if most of the tests do exactly the same thing. 

Tests become complicated for two reasons: 

• We try to verify too much functionality in a single test. 

• Too large an “expressiveness gap” separates the test scripting language 
(e.g., Java) and the before/after relationships between domain concepts 
that we are trying to express in the test. 

 Goals of Test Automation
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Goal: Simple Tests 

To avoid “biting off more than they can chew,” our tests should be small and test 
one thing at a time. Keeping tests simple is particularly important during test-
driven development because code is written to pass one test at a time and we want 
each test to introduce only one new bit of behavior into the SUT. We should strive 
to Verify One Condition per Test by creating a separate Test Method (page 348)
for each unique combination of pre-test state and input. Each Test Method should 
drive the SUT through a single code path.4

The major exception to the mandate to keep Test Methods short occurs with 
customer tests that express real usage scenarios of the application. Such extend-
ed tests offer a useful way to document how a potential user of the software 
would go about using it; if these interactions involve long sequences of steps, 
the Test Methods should refl ect this reality. 

Goal: Expressive Tests 

The “expressiveness gap” can be addressed by building up a library of Test 
Utility Methods that constitute a domain-specifi c testing language. Such a col-
lection of methods allows test automaters to express the concepts that they 
wish to test without having to translate their thoughts into much more detailed 
code. Creation Methods (page 415) and Custom Assertion (page 474) are good 
examples of the building blocks that make up such a Higher-Level Language.

The key to solving this dilemma is avoiding duplication within tests. The DRY 
principle—“Don’t repeat yourself”—of the Pragmatic Programmers (http://www.
pragmaticprogrammer.com) should be applied to test code in the same way it is 
applied to production code. There is, however, a counterforce at play. Because 
the tests should Communicate Intent, it is best to keep the core test logic in each 
Test Method so it can be seen in one place. Nevertheless, this idea doesn’t pre-
clude moving a lot of supporting code into Test Utility Methods, where it needs 
to be modifi ed in only one place if it is affected by a change in the SUT. 

Goal: Separation of Concerns 

Separation of Concerns applies in two dimensions: (1) We want to keep test code 
separate from our production code (Keep Test Logic Out of Production Code)
and (2) we want each test to focus on a single concern (Test Concerns Separately)
to avoid Obscure Tests (page 186). A good example of what not to do is testing 
the business logic in the same tests as the user interface, because it involves testing 

4 There should be at least one Test Method for each unique path through the code; often 
there will be several, one for each boundary value of the equivalence class.
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two concerns at the same time. If either concern is modifi ed (e.g., the user inter-
face changes), all the tests would need to be modifi ed as well. Testing one concern 
at a time may require separating the logic into different components. This is a 
key aspect of design for testability, a consideration that is explored further in 
Chapter 11, Using Test Doubles.

Tests Should Require Minimal Maintenance as the System 
Evolves Around Them 

Change is a fact of life. Indeed, we write automated tests mostly to make change 
easier, so we should strive to ensure that our tests don’t inadvertently make 
change more diffi cult. 

Suppose we want to change the signature of some method on a class. When we 
add a new parameter, suddenly 50 tests no longer compile. Does that result en-
courage us to make the change? Probably not. To counter this problem, we intro-
duce a new method with the parameter and arrange to have the old method call 
the new method, defaulting the missing parameter to some value. Now all of the 
tests compile but 30 of them still fail! Are the tests helping us make the change? 

Goal: Robust Test 

Inevitably, we will want to make many kinds of changes to the code as a project 
unfolds and its requirements evolve. For this reason, we want to write our tests 
in such a way that the number of tests affected by any one change is quite small. 
That means we need to minimize overlap between tests. We also need to ensure 
that changes to the test environment don’t affect our tests; we do this by isolat-
ing the SUT from the environment as much as possible. This results in much 
more Robust Tests.

We should strive to Verify One Condition per Test. Ideally, only one kind of 
change should cause a test to require maintenance. System changes that affect 
fi xture setup or teardown code can be encapsulated behind Test Utility Methods
to further reduce the number of tests directly affected by the change. 

What’s Next? 

This chapter discussed why we have automated tests and specifi c goals we 
should try to achieve when writing Fully Automated Tests. Before moving on to 
Chapter 5, Principles of Test Automation, we need to take a short side-trip to 
Chapter 4, Philosophy of Test Automation, to understand the different mindsets 
of various kinds of test automaters. 

What’s Next?
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Chapter 4 

Philosophy of Test 
Automation

About This Chapter 

Chapter 3, Goals of Test Automation, described many of the goals and benefi ts 
of having an effective test automation program in place. This chapter introduces 
some differences in the way people think about design, construction, and testing 
that change the way they might naturally apply these patterns. The “big picture” 
questions include whether we write tests fi rst or last, whether we think of them 
as tests or examples, whether we build the software from the inside-out or from 
the outside-in, whether we verify state or behavior, and whether we design the 
fi xture upfront or test by test. 

Why Is Philosophy Important? 

What’s philosophy got to do with test automation? A lot! Our outlook on life 
(and testing) strongly affects how we go about automating tests. When I was 
discussing an early draft of this book with Martin Fowler (the series editor), we 
came to the conclusion that there were philosophical differences between how 
different people approached xUnit-based test automation. These differences lie 
at the heart of why, for example, some people use Mock Objects (page 544) 
sparingly and others use them everywhere. 

Since that eye-opening discussion, I have been on the lookout for other phil-
osophical differences among test automaters. These alternative viewpoints tend 
to come up as a result of someone saying, “I never (fi nd a need to) use that pat-
tern” or “I never run into that smell.” By questioning these statements, I can 
learn a lot about the testing philosophy of the speaker. Out of these discussions 
have come the following philosophical differences: 
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• “Test after” versus “test fi rst” 

• Test-by-test versus test all-at-once 

• “Outside-in” versus “inside-out” (applies independently to design and 
coding)

• Behavior verifi cation versus state verifi cation 

• “Fixture designed test-by-test” versus “big fi xture design upfront” 

Some Philosophical Differences 

Test First or Last? 

Traditional software development prepares and executes tests after all software 
is designed and coded. This order of steps holds true for both customer tests and 
unit tests. In contrast, the agile community has made writing the tests fi rst the 
standard way of doing things. Why is the order in which testing and develop-
ment take place important? Anyone who has tried to retrofi t Fully Automated 
Tests (page 22) onto a legacy system will tell you how much more diffi cult it is 
to write automated tests after the fact. Just having the discipline to write auto-
mated unit tests after the software is “already fi nished” is challenging, whether 
or not the tests themselves are easy to construct. Even if we design for testability,
the likelihood that we can write the tests easily and naturally without modifying 
the production code is low. When tests are written fi rst, however, the design of 
the system is inherently testable. 

Writing the tests fi rst has some other advantages. When tests are written fi rst 
and we write only enough code to make the tests pass, the production code tends 
to be more minimalist. Functionality that is optional tends not to be written; 
no extra effort goes into fancy error-handling code that doesn’t work. The tests 
tend to be more robust because only the necessary methods are provided on each 
object based on the tests’ needs. 

Access to the state of the object for the purposes of fi xture setup and result 
verifi cation comes much more naturally if the software is written “test fi rst.” 
For example, we may avoid the test smell Sensitive Equality (see Fragile Test on 
page 239) entirely because the correct attributes of objects are used in assertions 
rather than comparing the string representations of those objects. We may even 
fi nd that we don’t need to implement a String representation at all because we 

www.it-ebooks.info

http://www.it-ebooks.info/


33

have no real need for it. The ability to substitute dependencies with Test Doubles
(page 522) for the purpose of verifying the outcome is also greatly enhanced be-
cause substitutable dependency is designed into the software from the start. 

Tests or Examples? 

Whenever I mention the concept of writing automated tests for software before the 
software has been written, some listeners get strange looks on their faces. They ask, 
“How can you possibly write tests for software that doesn’t exist?” In these cases, 
I follow Brian Marrick’s lead by reframing the discussion to talk about “examples” 
and example-driven development (EDD). It seems that examples are much easier 
for some people to envision writing before code than are “tests.” The fact that the 
examples are executable and reveal whether the requirements have been satisfi ed 
can be left for a later discussion or a discussion with people who have a bit more 
imagination. 

By the time this book is in your hands, a family of EDD frameworks is likely 
to have emerged. The Ruby-based RSpec kicked off the reframing of TDD to 
EDD, and the Java-based JBehave followed shortly thereafter. The basic design 
of these “unit test frameworks” is the same as xUnit but the terminology has 
changed to refl ect the Executable Specifi cation (see Goals of Test Automation on 
page 21) mindset. 

Another popular alternative for specifying components that contain business
logic is to use Fit tests. These will invariably be more readable by nontechnical 
people than something written in a programming language regardless of how 
“business friendly” we make the programming language syntax! 

Test-by-Test or Test All-at-Once? 

The test-driven development process encourages us to “write a test” and then 
“write some code” to pass that test. This process isn’t a case of all tests being 
written before any code, but rather the writing of tests and code being inter-
leaved in a very fi ne-grained way. “Test a bit, code a bit, test a bit more”—this 
is incremental development at its fi nest. Is this approach the only way to do 
things? Not at all! Some developers prefer to identify all tests needed by the 
current feature before starting any coding. This strategy enables them to “think 
like a client” or “think like a tester” and lets developers avoid being sucked into 
“solution mode” too early. 

Test-driven purists argue that we can design more incrementally if we build 
the software one test at a time. “It’s easier to stay focused if only a single test is 
failing,” they say. Many test drivers report not using the debugger very much 

Some Philosophical Differences 
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because the fi ne-grained testing and incremental development leave little doubt 
about why tests are failing; the tests provide Defect Localization (see Goals of 
Test Automation on page 22) while the last change we made (which caused the 
problem) is still fresh in our minds. 

This consideration is especially relevant when we are talking about unit tests 
because we can choose when to enumerate the detailed requirements (tests) of 
each object or method. A reasonable compromise is to identify all unit tests at 
the beginning of a task—possibly roughing in empty Test Method (page 348) 
skeletons, but coding only a single Test Method body at a time. We could also 
code all Test Method bodies and then disable all but one of the tests so that we 
can focus on building the production code one test at a time. 

With customer tests, we probably don’t want to feed the tests to the devel-
oper one by one within a user story. Therefore, it makes sense to prepare all the 
tests for a single story before we begin development of that story. Some teams 
prefer to have the customer tests for the story identifi ed—although not neces-
sarily fl eshed out—before they are asked to estimate the effort needed to build 
the story, because the tests help frame the story. 

Outside-In or Inside-Out? 

Designing the software from the outside inward implies that we think fi rst about 
black-box customer tests (also known as storytests) for the entire system and 
then think about unit tests for each piece of software we design. Along the way, 
we may also implement component tests for the large-grained components we 
decide to build. 

Each of these sets of tests inspires us to “think like the client” well before we 
start thinking like a software developer. We focus fi rst on the interface provided 
to the user of the software, whether that user is a person or another piece of 
software. The tests capture these usage patterns and help us enumerate the vari-
ous scenarios we need to support. Only when we have identifi ed all the tests are 
we “fi nished” with the specifi cation. Some people prefer to design outside-in 
but then code inside-out to avoid dealing with the “dependency problem.” This 
tactic requires anticipating the needs of the outer software when writing the 
tests for the inner software. It also means that we don’t actually test the outer 
software in isolation from the inner software. Figure 4.1 illustrates this concept. 
The top-to-bottom progression in the diagram implies the order in which we 
write the software. Tests for the middle and lower classes can take advantage of 
the already-built classes above them—a strategy that avoids the need for Test 
Stubs (page 529) or Mock Objects in many of the tests. We may still need to use 
Test Stubs in those tests where the inner components could potentially return 
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specifi c values or throw exceptions, but cannot be made to do so on cue. In 
such a case, a Saboteur (see Test Stub) comes in very handy.

Figure 4.1  “Inside-out” development of functionality. Development starts with 
the innermost components and proceeds toward the user interface, building on 
the previously constructed components.

Other test drivers prefer to design and code from the outside-in. Writing the 
code outside-in forces us to deal with the “dependency problem.” We can use 
Test Stubs to stand in for the software we haven’t yet written, so that the outer 
layer of software can be executed and tested. We can also use Test Stubs to inject 
“impossible” indirect inputs (return values, out parameters, or exceptions) into 
the SUT to verify that it handles these cases correctly. 

In Figure 4.2, we have reversed the order in which we build our classes. Be-
cause the subordinate classes don’t exist yet, we used Test Doubles to stand in 
for them.

Figure 4.2  “Outside-in” development of functionality supported by Test 
Doubles. Development starts at the outside using Test Doubles in place of the 
depended-on components (DOCs) and proceeds inward as requirements for 
each DOC are identifi ed. 
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Once the subordinate classes have been built, we could remove the Test Doubles
from many of the tests. Keeping them provides better Defect Localization at the 
cost of potentially higher test maintenance cost.

State or Behavior Verifi cation? 

From writing code outside-in, it is but a small step to verifying behavior rather 
than just state. The “statist” view suggests that it is suffi cient to put the SUT 
into a specifi c state, exercise it, and verify that the SUT is in the expected state 
at the end of the test. The “behaviorist” view says that we should specify not 
only the start and end states of the SUT, but also the calls the SUT makes to its 
dependencies. That is, we should specify the details of the calls to the “outgoing 
interfaces” of the SUT. These indirect outputs of the SUT are outputs just like 
the values returned by functions, except that we must use special measures to 
trap them because they do not come directly back to the client or test. 

The behaviorist school of thought is sometimes called behavior-driven 
development. It is evidenced by the copious use of Mock Objects or Test 
Spies (page 538) throughout the tests. Behavior verification does a better 
job of testing each unit of software in isolation, albeit at a possible cost of 
more difficult refactoring. Martin Fowler provides a detailed discussion of 
the statist and behaviorist approaches in [MAS]. 

Fixture Design Upfront or Test-by-Test? 

In the traditional test community, a popular approach is to defi ne a “test bed” 
consisting of the application and a database already populated with a variety of 
test data. The content of the database is carefully designed to allow many differ-
ent test scenarios to be exercised. 

When the fi xture for xUnit tests is approached in a similar manner, the test 
automater may defi ne a Standard Fixture (page 305) that is then used for all 
the Test Methods of one or more Testcase Classes (page 373). This fi xture may 
be set up as a Fresh Fixture (page 311) in each Test Method using Delegated
Setup (page 411) or in the setUp method using Implicit Setup (page 424). Alter-
natively, it can be set up as a Shared Fixture (page 317) that is reused by many 
tests. Either way, the test reader may fi nd it diffi cult to determine which parts of 
the fi xture are truly pre-conditions for a particular Test Method.

The more agile approach is to custom design a Minimal Fixture (page 302) 
for each Test Method. With this perspective, there is no “big fi xture design up-
front” activity. This approach is most consistent with using a Fresh Fixture.
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When Philosophies Differ 

We cannot always persuade the people we work with to adopt our philosophy, 
of course. Even so, understanding that others subscribe to a different philosophy 
helps us appreciate why they do things differently. It’s not that these individuals 
don’t share the same goals as ours;1 it’s just that they make the decisions about 
how to achieve those goals using a different philosophy. Understanding that dif-
ferent philosophies exist and recognizing which ones we subscribe to are good 
fi rst steps toward fi nding some common ground between us. 

My Philosophy 

In case you were wondering what my personal philosophy is, here it is: 

• Write the tests fi rst! 

• Tests are examples! 

• I usually write tests one at a time, but sometimes I list all the tests I can 
think of as skeletons upfront.

• Outside-in development helps clarify which tests are needed for the 
next layer inward. 

• I use primarily State Verifi cation (page 462) but will resort to Behavior
Verifi cation (page 468) when needed to get good code coverage. 

• I perform fi xture design on a test-by-test basis. 

There! Now you know where I’m coming from. 

What’s Next? 

This chapter introduced the philosophies that anchor software design, construc-
tion, testing, and test automation. Chapter 5, Principles of Test Automation,
describes key principles that will help us achieve the goals described in Chapter 
3, Goals of Test Automation. We will then be ready to start looking at the over-
all test automation strategy and the individual patterns. 

1 For example, high-quality software, fi t for purpose, on time, under budget.

What’s Next?
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Chapter 5

Principles of Test 
Automation

About This Chapter

Chapter 3, Goals of Test Automation, described the goals we should strive to 
achieve to help us be successful at automating our unit tests and customer tests. 
Chapter 4, Philosophy of Test Automation, discussed some of the differences in 
the way people approach software design, construction, and testing. This pro-
vides the background for the principles that experienced test automaters follow 
while automating their tests. I call them “principles” for two reasons: They are 
too high level to be patterns and they represent a value system that not everyone 
will share. A different value system may cause you to choose different patterns 
than the ones presented in this book. Making this value system explicit will, I 
hope, accelerate the process of understanding where we disagree and why. 

The Principles 

When Shaun Smith and I came up with the list in the original Test Automation 
Manifesto [TAM], we considered what was driving us to write tests the way we 
did. The Manifesto is a list of the qualities we would like to see in a test—not a 
set of patterns that can be directly applied. However, those principles have led us 
to identify a number of somewhat more concrete principles, some of which are 
described in this chapter. What makes these principles different from the goals is 
that there is more debate about them. 

Principles are more “prescriptive” than patterns and higher level in nature. Un-
like patterns, they don’t have alternatives, but rather are presented in a “do this 
because” fashion. To distinguish them from patterns, I have given them imperative 
names rather than the noun-phrase names I use for goals, patterns, and smells. 
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For the most part, these principles apply equally well to unit tests and story-
tests. A possible exception is the principle Verify One Condition per Test, which 
may not be practical for customer tests that exercise more involved chunks of 
functionality. It is, however, still worth striving to follow these principles and to 
deviate from them only when you are fully cognizant of the consequences. 

Principle: Write the Tests First 

Test-driven development is very much an acquired habit. Once one has “gotten 
the hang of it,” writing code in any other way can seem just as strange as TDD 
seems to those who have never done it. There are two major arguments in favor 
of doing TDD: 

1. The unit tests save us a lot of debugging effort—effort that often fully 
offsets the cost of automating the tests. 

2. Writing the tests before we write the code forces the code to be designed 
for testability. We don’t need to think about testability as a separate 
design condition; it just happens because we have written tests. 

Principle: Design for Testability 

Given the last principle, this principle may seem redundant. For developers 
who choose to ignore Write the Tests First, Design for Testability becomes an 
even more important principle because they won’t be able to write automated 
tests after the fact if the testability wasn’t designed in. Anyone who has tried 
to retrofi t automated unit tests onto legacy software can testify to the diffi culty 
this raises. Mike Feathers talks about special techniques for introducing tests in 
this case in [WEwLC]. 

Principle: Use the Front Door First 

Objects have several kinds of interfaces. There is the “public” interface that clients 
are expected to use. There may also be a “private” interface that only close friends 
should use. Many objects also have an “outgoing interface” consisting of the used 
part of the interfaces of any objects on which they depend. 

The types of interfaces we use infl uence the robustness of our tests. The use of 
Back Door Manipulation (page 327) to set up the fi xture or verify the expected 
outcome or a test can result in Overcoupled Software (see Fragile Test on page
239) that needs more frequent test maintenance. Overuse of Behavior Verifi ca-
tion (page 468) and Mock Objects (page 544) can result in Overspecifi ed Software 
(see Fragile Test) and tests that are more brittle and may discourage developers 
from doing desirable refactorings. 

Also known as:
Test-Driven 

Development, 
Test-First 

Development
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Also known as:
Front Door First
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When all choices are equally effective, we should use round-trip tests to test 
our SUT. To do so, we test an object through its public interface and use State 
Verifi cation (page 462) to determine whether it behaved correctly. If this is not suf-
fi cient to accurately describe the expected behavior, we can make our tests layer-
crossing tests and use Behavior Verifi cation to verify the calls the SUT makes to 
depended-on components (DOCs). If we must replace a slow or unavailable DOC 
with a faster Test Double (page 522), using a Fake Object (page 551) is preferable 
because it encodes fewer assumptions into the test (the only assumption is that the 
component that the Fake Object replaces is actually needed). 

Principle: Communicate Intent 

Fully Automated Tests, especially Scripted Tests (page 285), are programs. They 
need to be syntactically correct to compile and semantically correct to run success-
fully. They need to implement whatever detailed logic is required to put the SUT 
into the appropriate starting state and to verify that the expected outcome has 
occurred. While these characteristics are necessary, they are not suffi cient because 
they neglect the single most important interpreter of the tests: the test maintainer.

Tests that contain a lot of code1 or Conditional Test Logic (page 200) are 
usually Obscure Tests (page 186). They are much harder to understand because 
we need to infer the “big picture” from all the details. This reverse engineering 
of meaning takes extra time whenever we need to revisit the test either to main-
tain it or to use the Tests as Documentation. It also increases the cost of owner-
ship of the tests and reduces their return on investment. 

Tests can be made easier to understand and maintain if we Communi-
cate Intent. We can do so by calling Test Utility Methods (page 599) with 
Intent-Revealing Names [SBPP] to set up our test fi xture and to verify that the 
expected outcome has been realized. It should be readily apparent within the 
Test Method (page 348) how the test fi xture infl uences the expected outcome of 
each test—that is, which inputs result in which outputs. A rich library of Test 
Utility Methods also makes tests easier to write because we don’t have to code 
the details into every test. 

Principle: Don’t Modify the SUT

Effective testing often requires us to replace a part of the application with a Test 
Double or override part of its behavior using a Test-Specifi c Subclass (page 579). 
This may be because we need to gain control over its indirect inputs or because we 
need to perform Behavior Verifi cation by intercepting its indirect outputs. It may 

1 Anything more than about ten lines is getting to be too much.
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also be because parts of the application’s behavior have unacceptable side effects or 
dependencies that are impossible to satisfy in our development or test environment. 

Modifying the SUT is a dangerous thing whether we are putting in Test 
Hooks (page 709), overriding behavior in a Test-Specifi c Subclass, or replacing 
a DOC with a Test Double. In any of these circumstances, we may no longer 
actually be testing the code we plan to put into production. 

We need to ensure that we are testing the software in a confi guration that is 
truly representative of how it will be used in production. If we do need to replace 
something the SUT depends on to get better control of the context surrounding the 
SUT, we must make sure that we are doing so in a representative way. Otherwise, 
we may end up replacing part of the SUT that we think we are testing. Suppose, 
for example, that we are writing tests for objects X, Y, and Z, where object X 
depends on object Y, which in turn depends on object Z. When writing tests for 
X, it is reasonable to replace Y and Z with a Test Double. When testing Y, we can 
replace Z with a Test Double. When testing Z, however, we cannot replace it with 
a Test Double because Z is what we are testing! This consideration is particularly 
salient when we have to refactor the code to improve its testability. 

When we use a Test-Specifi c Subclass to override part of the behavior of an 
object to allow testing, we have to be careful that we override only those meth-
ods that the test specifi cally needs to null out or use to inject indirect inputs. If 
we choose to reuse a Test-Specifi c Subclass created for another test, we must 
ensure that it does not override any of the behavior that this test is verifying. 

Another way of looking at this principle is as follows: The term SUT is rela-
tive to the tests we are writing. In our “X uses Y uses Z” example, the SUT for 
some component tests might be the aggregate of X, Y, and Z; for unit testing 
purposes, it might be just X for some tests, just Y for other tests, and just Z for 
yet other tests. Just about the only time we consider the entire application to be 
the SUT is when we are doing user acceptance testing using the user interface 
and going all the way back to the database. Even here, we might be testing only 
one module of the entire application (e.g., the “Customer Management Mod-
ule”). Thus “SUT” rarely equals “application.” 

Principle: Keep Tests Independent 

When doing manual testing, it is common practice to have long test procedures that 
verify many aspects of the SUT’s behavior in a single test. This aggregation of tasks is 
necessary because the steps involved in setting up the starting state of the system for 
one test may simply repeat the steps used to verify other parts of its behavior. When 
tests are executed manually, this repetition is not cost-effective. In addition, human 
testers have the ability to recognize when a test failure should preclude continuing 
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execution of the test, when it should cause certain tests to be skipped, or when the 
failure is immaterial to subsequent tests (though it may still count as a failed test.) 

If tests are interdependent and (even worse) order dependent, we will deprive 
ourselves of the useful feedback that individual test failures provide. Interacting
Tests (see Erratic Test on page 228) tend to fail in a group. The failure of a test 
that moved the SUT into the state required by the dependent test will lead to 
the failure of the dependent test, too. With both tests failing, how can we tell 
whether the failure refl ects a problem in code that both tests rely on in some 
way or whether it signals a problem in code that only the fi rst test relies on? 
When both tests fail, we can’t tell. And we are talking about only two tests in 
this case—imagine how much worse matters would be with tens or even hun-
dreds of Interacting Tests.

An Independent Test can be run by itself. It sets up its own Fresh Fix-
ture (page 311) to put the SUT into a state that lets it verify the behavior it is 
testing. Tests that build a Fresh Fixture are much more likely to be independent 
than tests that use a Shared Fixture (page 317). The latter can lead to various 
kinds of Erratic Tests, including Lonely Tests, Interacting Tests, and Test Run 
Wars. With independent tests, unit test failures give us Defect Localization to 
help us pinpoint the source of the failure. 

Principle: Isolate the SUT 

Some pieces of software depend on nothing but the (presumably correct) run-
time system or operating system. Most pieces of software build on other pieces 
of software developed by us or by others. When our software depends on other 
software that may change over time, our tests may suddenly start failing because 
the behavior of the other software has changed. This problem, which is called 
Context Sensitivity (see Fragile Test), is a form of Fragile Test.

When our software depends on other software whose behavior we cannot 
control, we may fi nd it diffi cult to verify that our software behaves properly 
with all possible return values. This is likely to lead to Untested Code (see Pro-
duction Bugs on page 268) or Untested Requirements (see Production Bugs).
To avoid this problem, we need to be able to inject all possible reactions of the 
DOC into our software under the complete control of our tests. 

Whatever application, component, class, or method we are testing, we should 
strive to isolate it as much as possible from all other parts of the software that 
we choose not to test. This isolation of elements allows us to Test Concerns 
Separately and allows us to Keep Tests Independent of one another. It also helps 
us create a Robust Test by reducing the likelihood of Context Sensitivity caused 
by too much coupling between our SUT and the software that surrounds it. 

 The Principles
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We can satisfy this principle by designing our software such that each piece 
of depended-on software can be replaced with a Test Double using Dependency
Injection (page 678) or Dependency Lookup (page 686) or overridden with a 
Test-Specifi c Subclass that gives us control of the indirect inputs of the SUT. 
This design for testability makes our tests more repeatable and robust. 

Principle: Minimize Test Overlap 

Most applications have lots of functionality to verify. Proving that all of the 
functionality works correctly in all possible combinations and interaction sce-
narios is nearly impossible. Therefore, picking the tests to write is an exercise in 
risk management. 

We should structure our tests so that as few tests as possible depend on a 
particular piece of functionality. This may seem counter-intuitive at fi rst be-
cause one would think that we would want to improve test coverage by testing 
the software as often as possible. Unfortunately, tests that verify the same func-
tionality typically fail at the same time. They also tend to need the same mainte-
nance when the functionality of the SUT is modifi ed. Having several tests verify 
the same functionality is likely to increase test maintenance costs and probably 
won’t improve quality very much. 

We do want to ensure that all test conditions are covered by the tests that we 
do use. Each test condition should be covered by exactly one test—no more, no 
less. If it seems to provide value to test the code in several different ways, we 
may have identifi ed several different test conditions. 

Principle: Minimize Untestable Code 

Some kinds of code are diffi cult to test using Fully Automated Tests. GUI com-
ponents, multithreaded code, and Test Methods immediately spring to mind as 
“untestable” code. All of these kinds of code share the same problem: They are 
embedded in a context that makes it hard to instantiate or interact with them 
from automated tests. 

Untestable code simply won’t have any Fully Automated Tests to protect it 
from those nefarious little bugs that can creep into code when we aren’t look-
ing. That makes it more diffi cult to refactor this code safely and more danger-
ous to modify existing functionality or introduce new functionality. 

It is highly desirable to minimize the amount of untestable code that we have 
to maintain. We can refactor the untestable code to improve its testability by 
moving the logic we want to test out of the class that is causing the lack of test-
ability. For active objects and multithreaded code, we can refactor to Humble
Executable (see Humble Object on page 695). For user interface objects, we 
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can refactor to Humble Dialog (see Humble Object). Even Test Methods can 
have much of their untestable code extracted into Test Utility Methods, which 
can then be tested. 

When we Minimize Untestable Code, we improve the overall test coverage of 
our code. In so doing, we also improve our confi dence in the code and extend 
our ability to refactor at will. The fact that this technique improves the quality 
of the code is yet another benefi t. 

Principle: Keep Test Logic Out of Production Code 

When the production code hasn’t been designed for testability (whether as a 
result of test-driven development or otherwise), we may be tempted to put 
“hooks” into the production code to make it easier to test. These hooks typi-
cally take the form of if testing then ... and may either run alternative logic or 
prevent certain logic from running. 

Testing is about verifying the behavior of a system. If the system behaves dif-
ferently when under test, then how can we be certain that the production code 
actually works? Even worse, the test hooks could cause the software to fail in 
production!

The production code should not contain any conditional statements of the if 
testing then sort. Likewise, it should not contain any test logic. A well-designed 
system (from a testing perspective) is one that allows for the isolation of func-
tionality. Object-oriented systems are particularly amenable to testing because 
they are composed of discrete objects. Unfortunately, even object-oriented sys-
tems can be built in such a way as to be diffi cult to test, and we may still en-
counter code with embedded test logic. 

Principle: Verify One Condition per Test 

Many tests require a starting state other than the default state of the SUT, and 
many operations of the SUT leave it in a different state from its original state. 
There is a strong temptation to reuse the end state of one test condition as the 
starting state of the next test condition by combining the verifi cation of the two 
test conditions into a single Test Method because this makes testing more effi -
cient. This approach is not recommended, however, because when one assertion 
fails, the rest of the test will not be executed. As a consequence, it becomes more 
diffi cult to achieve Defect Localization.

Verifying multiple conditions in a single test makes sense when we execute 
tests manually because of the high overhead of test setup and because the live-
ware can adapt to test failures. It is too much work to set up the fi xture for a 
large number of manual tests, so human testers naturally tend to write long 
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multiple-condition tests.2 They also have the intelligence to work around any 
issues they encounter so that all is not lost if a single step fails. In contrast, with 
automated tests, a single failed assertion will cause the test to stop running and 
the rest of the test will provide no data on what works and what doesn’t. 

Each Scripted Test should verify a single test condition. This single-mindedness 
is possible because the test fi xture is set up programmatically rather than by a 
human. Programs can set up fi xtures very quickly and they don’t have trouble ex-
ecuting exactly the same sequence of steps hundreds of times! If several tests need 
the same test fi xture, either we can move the Test Methods into a single Testcase 
Class per Fixture (page 631) so we can use Implicit Setup (page 424) or we can 
call Test Utility Methods to set up the fi xture using Delegated Setup (page 411). 

We design each test to have four distinct phases (see Four-Phase Test on
page 358) that are executed in sequence: fi xture setup, exercise SUT, result
verifi cation, and fi xture teardown.

• In the fi rst phase, we set up the test fi xture (the “before” picture) that 
is required for the SUT to exhibit the expected behavior as well as any-
thing we need to put in place to observe the actual outcome (such as 
using a Test Double).

• In the second phase, we interact with the SUT to exercise whatever 
behavior we are trying to verify. This should be a single, distinct behav-
ior; if we try to exercise several parts of the SUT, we are not writing a 
Single-Condition Test.

• In the third phase, we do whatever is necessary to determine whether 
the expected outcome has been obtained and fail the test if it has not. 

• In the fourth phase, we tear down the test fi xture and put the world 
back into the state in which we found it. 

Note that there is a single exercise SUT phase and a single result verifi cation 
phase. We avoid having a series of such alternating calls (exercise, verify, exercise, 
verify) because that approach would be trying to verify several distinct condi-
tions—something that is better handled via distinct Test Methods.

One possibly contentious aspect of Verify One Condition per Test is what 
we mean by “one condition.” Some test drivers insist on one assertion per test. 
This insistence may be based on using a Testcase Class per Fixture organization 
of the Test Methods and naming each test based on what the one assertion is 

2 Clever testers often use automated test scripts to put the SUT into the correct starting 
state for their manual tests, thereby avoiding long manual test scripts.
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verifying.3 Having one assertion per test makes such naming very easy but also 
leads to many more test methods if we have to assert on many output fi elds. Of 
course, we can often comply with this interpretation by extracting a Custom
Assertion (page 474) or Verifi cation Method (see Custom Assertion) that allows 
us to reduce the multiple assertion method calls to a single call. Sometimes that 
approach makes the test more readable. When it doesn’t, I wouldn’t be too dog-
matic about insisting on a single assertion. 

Principle: Test Concerns Separately 

The behavior of a complex application consists of the aggregate of a large num-
ber of smaller behaviors. Sometimes several of these behaviors are provided by 
the same component. Each of these behaviors is a different concern and may 
have a signifi cant number of scenarios in which it needs to be verifi ed. 

The problem with testing several concerns in a single Test Method is that 
this method will be broken whenever any of the tested concerns is modifi ed. 
Even worse, it won’t be obvious which concern is the one at fault. Identify-
ing the real culprit typically requires Manual Debugging (see Frequent Debug-
ging on page 248) because of the lack of Defect Localization. The net effect is 
that more tests will fail and each test will take longer to troubleshoot and fi x. 
Refactoring is also made more diffi cult by testing several concerns in the same 
test; it will be harder to “tease apart” the eager class into several independent 
classes, each of which implements a single concern, because the tests will need 
extensive redesign. 

Testing our concerns separately allows a failure to tell us that we have a 
problem in a specifi c part of our system rather than simply saying that we 
have a problem somewhere. This approach to testing also makes it easier 
to understand the behavior now and to separate the concerns in subsequent 
refactorings. That is, we should just be able to move a subset of the tests to 
a different Testcase Class (page 373) that verifi es the newly created class; it 
shouldn’t be necessary to modify the test much more than changing the class 
name of the SUT. 

Principle: Ensure Commensurate Effort and Responsibility 

The amount of effort it takes to write or modify tests should not exceed the 
effort it takes to implement the corresponding functionality. Likewise, the tools 
required to write or maintain the test should require no more expertise than the 
tools used to implement the functionality. For example, if we can confi gure the 

3 For example, AwaitingApprovalFlight.validApproverRequestShouldBeApproved.
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behavior of a SUT using metadata and we want to write tests that verify that 
the metadata is set up correctly, we should not have to write code to do so. A
Data-Driven Test (page 288) would be much more appropriate in these circum-
stances.

What’s Next? 

Previous chapters covered the common pitfalls (in the form of test smells) and 
goals of test automation. This chapter made the value system we use while 
choosing patterns explicit. In Chapter 6, Test Automation Strategy, we will 
examine the “hard to change” decisions that we should try to get right early in 
the project. 
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Chapter 6

Test Automation Strategy 

About This Chapter

In previous chapters, we saw some of the problems we might encounter with 
test automation. In Chapter 5, Principles of Test Automation, we learned about 
some of the principles we can apply to help address those problems. This chapter 
gets a bit more concrete but still focuses at the 30,000-foot level. In the logical 
sequence of things, test strategy comes before fi xture setup but is a somewhat 
more advanced topic. If you are new to test automation using xUnit, you may 
want to skip this chapter and come back after reading more about the basics 
of xUnit in Chapter 7, xUnit Basics, and about fi xture setup and teardown in 
Chapter 8, Transient Fixture Management, and subsequent chapters. 

What’s Strategic?

As the story in the preface amply demonstrates, it is easy to get off on the wrong 
foot. This is especially true when you lack experience in test automation and 
when this testing strategy is adopted “bottom up.” If we catch the problems early 
enough, the cost of refactoring the tests to eliminate the problems can be manage-
able. If, however, the problems are left to fester for too long or the wrong approach 
is taken to address them, a very large amount of effort can be wasted. This is not 
to suggest that we should follow a “big design upfront” (BDUF) approach to test 
automation. BDUF is almost always the wrong answer. Rather, it is helpful to be 
aware of the strategic decisions necessary and to make them “just in time” rather 
than “much too late.” This chapter gives a “head’s up” about some of the strategic 
issues we want to keep in mind so that we don’t get blindsided by them later. 

What makes a decision “strategic”? A decision is strategic if it is “hard to 
change.” That is, a strategic decision affects a large number of tests, especially 
such that many or all the tests would need to be converted to a different approach 
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at the same time. Put another way, any decision that could cost a large amount of 
effort to change is strategic. 

Common strategic decisions include the following considerations: 

• Which kinds of tests to automate? 

• Which tools to use to automate them? 

• How to manage the test fi xture?

• How to ensure that the system is easily tested and how the tests interact 
with the SUT?

Each of these decisions can have far-reaching consequences, so they are best made 
consciously, at the right time, and based on the best available information. 

The strategies and more detailed patterns described in this book are equally 
applicable regardless of the kind of Test Automation Framework (page 298) 
we choose to use. Most of my experience is with xUnit, so it is the focus of this 
book. But “don’t throw out the baby with the bath water”: If you fi nd yourself 
using a different kind of Test Automation Framework, remember that most of 
what you learn in regard to xUnit may still be applicable. 

Which Kinds of Tests Should We Automate? 

Roughly speaking, we can divide tests into the following two categories: 

• Per-functionality tests (also known as functional tests) verify the behavior 
of the SUT in response to a particular stimulus. 

• Cross-functional tests verify various aspects of the system’s behavior 
that cut across specifi c functionality. 

Figure 6.1 shows these two basic kinds of tests as two columns, each of which is 
further subdivided into more specifi c kinds of tests. 

Per-Functionality Tests 

Per-functionality tests verify the directly observable behavior of a piece of soft-
ware. The functionality can be business related (e.g., the principal use cases of 
the system) or related to operational requirements (e.g., system maintenance 
and specifi c fault-tolerance scenarios). Most of these requirements can also be 
expressed as use cases, features, user stories, or test scenarios.

Per-functionality tests can be characterized by whether the functionality is 
business (or user) facing and by the size of the SUT on which they operate. 
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Figure 6.1  A summary of the kinds of tests we write and why. The left column 
contains the tests we write that describe the functionality of the product at 
various levels of granularity; we perform these tests to support development. 
The right column contains tests that span specifi c chunks of functionality; we 
execute these tests to critique the product. The bottom of each cell describes 
what we are trying to communicate or verify. 

Customer Tests 

Customer tests verify the behavior of the entire system or application. They typi-
cally correspond to scenarios of one or more use cases, features, or user stories. 
These tests often go by other names such as functional tests, acceptance tests, or 
end-user tests. Although they may be automated by developers, their key char-
acteristic is that an end user should be able to recognize the behavior specifi ed 
by the test even if the user cannot read the test representation. 

Unit Tests 

Unit tests verify the behavior of a single class or method that is a consequence 
of a design decision. This behavior is typically not directly related to the require-
ments except when a key chunk of business logic is encapsulated within the 
class or method in question. These tests are written by developers for their own 
use; they help developers describe what “done looks like” by summarizing the 
behavior of the unit in the form of tests. 
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Component Tests 

Component tests verify components consisting of groups of classes that collec-
tively provide some service. They fi t somewhere between unit tests and customer 
tests in terms of the size of the SUT being verifi ed. Although some people call 
these “integration tests” or “subsystem tests,” those terms can mean something 
entirely different from “tests of a specifi c larger-grained subcomponent of the 
overall system.” 

Fault Insertion Tests 

Fault insertion tests typically show up at all three levels of granularity within 
these functional tests, with different kinds of faults being inserted at each level. 
From a test automation strategy point of view, fault insertion is just another set 
of tests at the unit and component test levels. Things get more interesting at the 
whole-application level, however. Inserting faults here can be hard to automate 
because it is challenging to automate insertion of the faults without replacing 
parts of the application. 

Cross-Functional Tests 

Property Tests 

Performance tests verify various “nonfunctional” (also known as “extra-functional” 
or “cross-functional”) requirements of the system. These requirements are different 
in that they span the various kinds of functionality. They often correspond to the 
architectural “-ilities.” These kinds of tests include 

• Response time tests 

• Capacity tests 

• Stress tests 

From a test automation perspective, many of these tests must be automated (at 
least partially) because human testers would have a hard time creating enough 
load to verify the behavior under stress. While we can run the same test many 
times in a row in xUnit, the xUnit framework is not particularly well suited to 
automating performance tests. 

One advantage of agile methods is that we can start running these kinds of 
tests quite early in the project—as soon as the key components of the architecture 
have been roughed in and the skeleton of the functionality is executable. The 
same tests can then be run continuously throughout the project as new features 
are added to the system skeleton. 
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Usability Tests 

Usability tests verify “fi tness for purpose” by confi rming that real users can use 
the software application to achieve the stated goals. These tests are very diffi cult 
to automate because they require subjective assessment by people regarding how 
easy it is to use the SUT. For this reason, usability tests are rarely automated and 
will not be discussed further in this book. 

Exploratory Testing 

Exploratory testing is a way to determine whether the product is self-consistent. 
The testers use the product, observe how it behaves, form hypotheses, design 
tests to verify those hypotheses, and exercise the product with them. By its very 
nature, exploratory testing cannot be automated, although automated tests can 
be used to set up the SUT in preparation for doing exploratory testing. 

Which Tools Do We Use to Automate Which Tests? 

Choosing the right tool for the job is as important as having good skills with the 
tools selected for use. A wide array of tools are available in the marketplace, and 
it is easy to be seduced by the features of a particular tool. The choice of tool is 
a strategic decision: Once we have invested a lot of time and effort in learning a 
tool and automating many tests using that tool, it becomes much more diffi cult 
to change to a different tool. 

There are two fundamentally different approaches to automating tests 
(Figure 6.2). The Recorded Test (page 278) approach involves the use of tools 
that monitor our interactions with the SUT while we test it manually. This 
information is then saved to a fi le or database and becomes the script for re-
playing this test against another (or even the same) version of the SUT. The 
main problem with Recorded Tests is the level of granularity they record. Most 
commercial tools record actions at the user interface (UI) element level, which 
results in Fragile Tests (page 239). 

The second approach to automating tests, Hand-Scripted Tests (see Scripted 
Test on page 285), involves the hand-coding of test programs (“scripts”) that ex-
ercise the system. While xUnit is probably the most commonly used Test 
Automation Framework for preparing Hand-Scripted Tests, they may be pre-
pared in other ways, including “batch” fi les, macro languages, and commercial or 
open-source test tools. Some of the better-known open-source tools for preparing 
Scripted Tests are Watir (test scripts coded in Ruby and run inside Internet Ex-
plorer), Canoo WebTest (tests scripted in XML and run using the WebTest tool), 

 Which Tools Do We Use to Automate Which Tests?

www.it-ebooks.info

http://www.it-ebooks.info/


54 Chapter 6  Test Automation Strategy

and the ever-popular Fit (and its wiki-based sibling FitNesse). Some of these tools 
even provide a test capture capability, thereby blurring the lines between Scripted 
Tests and Recorded Tests.

Figure 6.2  A summary of the three dimensions of test automation choices. 
The left side shows the two ways of interacting with the SUT. The bottom 
edge enumerates how we create the test scripts. The front-to-back dimension 
categorizes the different sizes of SUT we may choose to test. 

Choosing which test automation tools to use is a large part of the test strategy 
decision. A full survey of the different kinds of tools available is beyond the 
scope of this book, but a somewhat more detailed treatment of the topic is avail-
able in [ARTRP]. The following sections summarize the information here to 
provide an overview of the strengths and weaknesses of each approach. 

Test Automation Ways and Means 

Figure 6.3 depicts the decision-making possibilities as a matrix. In theory, there 
are 2 × 2 × 3 possible combinations in this matrix, but it is possible to under-
stand the primary differences between the approaches by looking at the front 
face of the cube. Some of the four quadrants are applicable to all levels of granu-
larity; others are primarily used for automating customer tests. 
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Figure 6.3  The choices on the front face of the cube. A more detailed look 
at the front face of the cube in Figure 6.2 along with the advantages (+) and 
disadvantages of each (–). 

Upper-Right Quadrant: Modern xUnit 

The upper-right quadrant of the front face of the cube is dominated by the xUnit 
family of testing frameworks. These frameworks involve hand-scripting tests 
that exercise the system at all three levels of granularity (system, component, 
and unit) via internal interfaces. A good example is unit tests automated using 
JUnit or NUnit. 

Lower-Right Quadrant: Scripted UI Tests 

This quadrant represents a variation on the “modern xUnit” approach, with the 
most common examples being the use of HttpUnit, JFCUnit, Watir, or similar 
tools to hand-script tests using the UI. It is also possible to hand-script tests using 
commercial Recorded Test tools such as QTP. These approaches all reside within 
the lower-right quadrant at various levels of SUT granularity. For example, when 
used for customer tests, these tools would perform at the system test level of 
granularity. They could also be used to test just the UI component of the system 
(or possibly even some UI units such as custom widgets), although this effort 
would require stubbing out the actual system behind the UI. 

Lower-Left Quadrant: Robot User 

The “robot user” quadrant focuses on recording tests that interact with the 
system via the UI. Most commercial test automation tools follow this approach. 
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could be applied to the UI components or units if the rest of the system can be 
stubbed out. 

Upper-Left Quadrant: Internal Recording 

For completeness, the upper-left quadrant involves creating Recorded Tests via 
an API somewhere behind the UI by recording all inputs and responses as the 
SUT is exercised. It may even involve inserting observation points between the 
SUT (at whatever granularity we are testing) and any DOCs. During test play-
back, the test APIs inject the inputs recorded earlier and compare the results 
with what was recorded 

This quadrant is not well populated with commercial tools1 but is a feasible 
option when building a Recorded Test mechanism into the application itself. 

Introducing xUnit 

The xUnit family of Test Automation Frameworks is designed for use in auto-
mating programmer tests. Its design is intended to meet the following goals: 

• Make it easy for developers to write tests without needing to learn a 
new programming language. xUnit is available in most languages in 
use today. 

• Make it easy to test individual classes and objects without needing to 
have the rest of the application available. xUnit is designed to allow us 
to test the software from the inside; we just have to design for testability 
to take advantage of this capability. 

• Make it easy to run one test or many tests with a single action. xUnit 
includes the concept of a test suite and Suite of Suites (see Test Suite 
Object on page 387) to support this kind of test execution. 

• Minimize the cost of running the tests so programmers aren’t discour-
aged from running the existing tests. For this reason, each test should 
be a Self-Checking Test (page 26) that implements the Hollywood
principle.2

1 Most of the tools in this quadrant focus on recording regression tests by inserting obser-
vation points into a component-based application and recording the (remote) method calls 
and responses between the components. This approach is becoming more popular with 
the advent of service-oriented architecture (SOA).
2 The name is derived from what directors in Hollywood tell aspiring applicants at mass 
casting calls: “Don’t call us; we’ll call you (if we want you).”
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The xUnit family has been extraordinarily successful at meeting its goals. 
I cannot imagine that Erich Gamma and Kent Beck could have possibly antici-
pated just how big an impact that fi rst version of JUnit would have on software 
development!3 The same characteristics that make xUnit particularly well suited 
to automating programmer tests, however, may make it less suitable for writing 
some other kinds of tests. In particular, the “stop on fi rst failure” behavior of as-
sertions in xUnit has often been criticized (or overridden) by people who want to 
use xUnit for automating multistep customer tests so that they can see the whole 
score (what worked and what didn’t) rather than merely the fi rst deviation from 
the expected results. This disagreement points out several things: 

• “Stop on fi rst failure” is a tool philosophy, not a characteristic of 
unit tests. It so happens that most test automaters prefer to have their 
unit tests stop on fi rst failure, and most recognize that customer tests 
must necessarily be longer than unit tests. 

• It is possible to change the fundamental behavior of xUnit to satisfy 
specifi c needs; this fl exibility is just one advantage of open-source 
tools.

• Seeing a need to change the fundamental behavior of xUnit should 
probably be interpreted as a trigger for considering whether some other 
tool might possibly be a better fi t. 

For example, the Fit framework has been designed specifi cally for the purpose 
of running customer tests. It overcomes the limitations of xUnit that lead to the 
“stop on fi rst failure” behavior by communicating the pass/fail status of each 
step of a test using color coding. Another option for Java developers is TestNG, 
which provides capabilities for explicitly sequencing Chained Tests (page 454).

Having said this, choosing a different tool doesn’t eliminate the need to make 
many of the strategic decisions unless the tool constrains that decision making 
in some way. For example, we still need to set up the test fi xture for a Fit test. 
Some patterns—such as Chained Tests, where one test sets up the fi xture for a 
subsequent test—are diffi cult to automate and may therefore be less attractive in 
Fit than in xUnit. And isn’t it ironic that the very fl exibility of xUnit is what al-
lows test automaters to get themselves into so much trouble by creating Obscure
Tests (page 186) that result in High Test Maintenance Cost (page 265)? 

3 Technically, SUnit came fi rst but it took JUnit and the “Test Infected” article [TI] to 
really get things rolling.

 Which Tools Do We Use to Automate Which Tests?
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The xUnit Sweet Spot 

The xUnit family works best when we can organize our tests as a large set of 
small tests, each of which requires a small test fi xture that is relatively easy to set 
up. This allows us to create a separate test for each test scenario of each object. 
The test fi xture should be managed using a Fresh Fixture (page 311) strategy by 
setting up a new Minimal Fixture (page 302) for each test. 

xUnit works best when we write tests against software APIs and then test 
single classes or small groups of classes in isolation. This approach allows us to 
build small test fi xtures that can be instantiated quickly. 

When doing customer tests, xUnit works best if we defi ne a Higher-Level 
Language (page 41) with which to describe our tests. This choice moves the 
level of abstraction higher, away from the nitty-gritty of the technology and 
closer to the business concepts that customers understand. From here, it is a 
very small step to convert these tests to Data-Driven Tests (page 288) imple-
mented in xUnit or Fit. 

Note that many of the higher-level patterns and principles described in this 
book apply equally well to both Fit tests and xUnit tests. I have also found them 
to be useful when working with commercial GUI-based testing tools, which 
typically use a “record and playback” metaphor. The fi xture management 
patterns are particularly salient in this arena, as are reusable “test components” 
that may be strung together to form a variety of test scripts. This is entirely 
analogous to the xUnit practice of single-purpose Test Methods (page 348) 
calling reusable Test Utility Methods (page 599) to reduce their coupling to the 
SUT’s API. 

Which Test Fixture Strategy Do We Use? 

The test fi xture management strategy is strategic because it has a large impact on 
the execution time and robustness of the tests. The effects of picking the wrong 
strategy won’t be felt immediately because it takes at least a few hundred tests 
before the Slow Tests (page 253) smell becomes evident and probably several 
months of development before the High Test Maintenance Cost smell starts to 
emerge. Once these smells appear, however, the need to change the test automa-
tion strategy will become apparent—and its cost will be signifi cant because of 
the number of tests affected. 
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What Is a Fixture? 

Every test consists of four parts, as described in Four-Phase Test (page 358). In 
the fi rst phase, we create the SUT and everything it depends on and put them 
into the state required to exercise the SUT. In xUnit, we call everything we need 
in place to exercise the SUT the test fi xture, and we call the part of the test logic 
that we execute to set it up the fi xture setup phase of the test. 

At this point, a word of caution is in order. The term “fi xture” means many 
things to many people:

• Some variants of xUnit keep the concept of the fi xture separate from 
the Testcase Class (page 373) that creates it. JUnit and its direct ports 
fall into this category. 

• Other members of the xUnit family assume that an instance of the Test-
case Class “is a” fi xture. NUnit is a good example. 

• A third camp uses an entirely different name for the fi xture. For 
example, RSpec captures the pre-conditions of the test in a test con-
text class that holds the Test Methods (same idea as NUnit but with 
different terminology). 

• The term “fi xture” is used to mean entirely different things in other 
kinds of test automation. In Fit, for example, it means the custom-built 
parts of the Data-Driven Test Interpreter [GOF] that we use to defi ne 
our Higher-Level Language.

The “class ‘is a’ fi xture” approach assumes the Testcase Class per Fixture (page  631) 
approach to organizing the tests. When we choose a different way of organizing 
the tests, such as Testcase Class per Class (page 617) or Testcase Class per Fea-
ture (page 624), this merging of the concepts of test fi xture and Testcase Class can 
be confusing. Throughout this book, I use “test fi xture”—or just “fi xture”—to 
mean “the pre-conditions of the test” and Testcase Class to mean “the class that 
contains the Test Methods and any code needed to set up the test fi xture.” 

The most common way to set up the fi xture is to use front door fi xture setup 
by calling the appropriate methods on the SUT to construct the objects. When 
the state of the SUT is stored in other objects or components, we can do Back
Door Setup (see Back Door Manipulation on page 327) by inserting the neces-
sary records directly into the other component on which the behavior of the 
SUT depends. We use Back Door Setup most often with databases or when 
we need to use a Mock Object (page 544) or Test Double (page 522); these 
concepts are covered in more detail in Chapter 13, Testing with Databases, and 
Chapter 11, Using Test Doubles.

 Which Test Fixture Strategy Do We Use?
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Major Fixture Strategies 

There are probably many ways to classify just about anything. For the purposes 
of this discussion, we will classify our test fi xture strategies based on what kinds 
of test development work we need to do for each one. 

The fi rst and simplest fi xture management strategy requires us to worry only 
how we will organize the code to build the fi xture for each test. That is, do we 
put this code in our Test Methods, factor it into Test Utility Methods that we 
call from our Test Methods, or put it into a setUp method in our Testcase Class?
This strategy involves the use of Transient Fresh Fixtures (see Fresh Fixture).
These fi xtures live only in memory and very conveniently disappear as soon as 
we are done with them. 

A second strategy involves the use of Fresh Fixtures that, for one reason or 
another, persist beyond the single Test Method that uses it. To keep them from 
turning into Shared Fixtures (page 317), these Persistent Fresh Fixtures (see
Fresh Fixture) require explicit code to tear them down at the end of each test. 
This requirement brings into play the fi xture teardown patterns. 

A third strategy involves persistent fi xtures that are deliberately reused across 
many tests. This Shared Fixture strategy is often used to improve the execu-
tion speed of tests that use a Persistent Fresh Fixture but comes with a fair 
amount of baggage. These tests require the use of one of the fi xture construc-
tion and teardown triggering patterns. They also involve tests that interact with 
one another, whether by design or by consequence, which often leads to Erratic
Tests (page 228) and High Test Maintenance Costs.

Table 6.1 summarizes the fi xture management overhead associated with each 
of the three styles of fi xtures. 

Table 6.1  A Summary of the Fixture Setup and Teardown Requirements of the 
Various Test Fixture Strategies

 Set Up Code Tear Down Code Setup/Teardown 
   Triggering

Transient Fresh Fixture Yes

Persistent Fresh Fixture Yes Yes

Shared Fixture Yes Yes Yes

Note: The Shared Fixture row assumes we are building a new Shared Fixture each test 
run rather than using a Prebuilt Fixture (page 429).
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Figure 6.4 illustrates the interaction between our goals, freshness of fi xtures or 
fi xture reuse, and fi xture persistence. It also illustrates a few variations of the 
Shared Fixture.

Figure 6.4  A summary of the main test fi xture strategies. Fresh Fixtures can be 
either transient or persistent; Shared Fixtures must be persistent. An Immutable 
Shared Fixture (see Shared Fixture) must not be modifi ed by any test. As a 
consequence, most tests augment the Shared Fixture with a Fresh Fixture that
they can modify.

The relationship between persistence and freshness is reasonably obvious for 
two of these combinations. The persistent Fresh Fixture is discussed in more 
detail later in this chapter. The transient Shared Fixture is inherently transient—
how we hold references to these fi xtures is what makes them persist. Other than 
this distinction, transient Shared Fixtures can be treated exactly like persistent 
Shared Fixtures.

Transient Fresh Fixtures 

In this approach, each test creates a temporary Fresh Fixture as it runs. Any 
objects or records it requires are created by the test itself (though not necessarily 
inside the Test Method). Because the test fi xture visibility is restricted to the one 
test alone, we ensure that each test is completely independent because it cannot 
depend, either accidentally or on purpose, on the output of any other tests that 
use the same fi xture. 
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We call this approach Fresh Fixture because each test starts with a clean slate 
and builds from there. It does not “inherit” or “reuse” any part of the fi xture 
from other tests or from a Prebuilt Fixture (page 429). Every object or record 
used by the SUT is “fresh,” “brand new,” and not “previously enjoyed.” 

The main disadvantage of using the Fresh Fixture approach is the additional 
CPU cycles it takes to create all the objects for each test. As a consequence, the 
tests may run more slowly than under a Shared Fixture approach, especially if 
we use a Persistent Fresh Fixture.

Persistent Fresh Fixtures 

A Persistent Fresh Fixture sounds a bit oxymoronic. We want the fi xture to be 
fresh, yet it persists beyond the lifetime of a single test! What kind of strategy is 
that? Some might say “stupid,” but sometimes one has to do this. 

We are “forced” into this strategy when we are testing components that are 
tightly coupled to a database or other persistence mechanism. The obvious so-
lution is that we should not let the coupling be so tight, but rather make the 
database a substitutable dependency of the component we are testing. This step 
may not be practical when testing legacy software, however—yet we may still 
want to partake of the benefi ts of a Fresh Fixture. Hence the existence of the 
Persistent Fresh Fixture strategy. The key difference between this strategy and the 
Transient Fresh Fixture is the need for code to tear down the fi xture after each test. 
Persistent Fresh Fixtures can result in Slow Tests if the persistence of the fi xture is 
caused by the use of a database, fi le system, or other high-latency dependency.

We can at least partially address the resulting Slow Tests by applying one or 
more of the following patterns: 

1. Construct a Minimal Fixture (the smallest fi xture possible). 

2. Speed up the construction by using a Test Double to replace the pro-
vider of any data that takes too long to set up. 

3. If the tests still are not fast enough, minimize the size of the part of 
the fi xture we need to destroy and reconstruct each time by using an 
Immutable Shared Fixture for any objects that are referenced but not 
modifi ed. 

The project teams with which I have worked have found that, on average, our 
tests run 50 times faster (yes, they take 2% as long) when we use Dependency
Injection (page 678) or Dependency Lookup (page 686) to replace the entire 
database with a Fake Database (see Fake Object on page 551) that uses a set of 
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hash tables instead of tables. Each test may require many, many database opera-
tions to set up and tear down the fi xture required by a single query in the SUT. 

There is a lot to be said for minimizing the size and complexity of the test 
fi xture. A Minimal Fixture (see Minimal Fixture) is much easier to understand 
and helps highlight the cause–effect relationship between the fi xture and the ex-
pected outcome. In this regard, it is a major enabler of Tests as Documentation 
(page 23). In some cases, we can make the test fi xture much smaller by using 
Entity Chain Snipping (see Test Stub on page 529) to eliminate the need to in-
stantiate those objects on which our test depends only indirectly. This tactic will 
certainly speed up the instantiation of our test fi xture. 

Shared Fixture Strategies 

Sometimes we cannot—or choose not to—use a Fresh Fixture strategy. In these 
cases, we can use a Shared Fixture. In this approach, many tests reuse the same 
instance of a test fi xture. 

The major advantage of Shared Fixtures is that we save a lot of execution 
time in setting up and tearing down the fi xture. The main disadvantage is con-
veyed by one of its aliases, Stale Fixture, and by the test smell that describes its 
most common side effects, Interacting Tests (see Erratic Test). Although Shared
Fixtures do have other benefi ts, most can be realized by applying other patterns 
to Fresh Fixtures; Standard Fixture (page 305) avoids the fi xture design and 
coding effort for every test without actually sharing the fi xture. 

Now, if Shared Fixtures are so bad, why even discuss them? Because every-
one seems to go down this road at least once in his or her career—so we might 
as well share the best available information about them should you venture 
down that path. Mind you, this discussion isn’t meant to encourage anyone to 
go down this path unnecessarily because it is paved with broken glass, infested 
with poisonous snakes, and . . . well, you get my drift. 

Given that we have decided to use a Shared Fixture (we did investigate every
possible alternative, didn’t we?), what are our options? We can make the fol-
lowing adjustments (Figure 6.5): 

• How far and wide we share a fi xture (e.g., a Testcase Class, all tests in 
a test suite, all test run by a particular user) 

• How often we recreate the fi xture

 Which Test Fixture Strategy Do We Use?
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Figure 6.5  The various ways we can manage a Shared Fixture. The strategies 
are ordered by the length of the fi xture’s lifetime, with the longestlasting fi xture 
appearing on the left. 

The more tests that share a fi xture, the more likely that one of them will make a 
mess of things and spoil everything for all the tests that follow it. The less often 
we reconstruct the fi xture, the longer the effects of a messed-up fi xture will per-
sist. For example, a Prebuilt Fixture can be set up outside the test run, thereby 
avoiding the entire cost of setting up the fi xture as part of the test run; unfor-
tunately, it can also result in Unrepeatable Tests (see Erratic Test) if tests don’t 
clean up after themselves properly. This strategy is most commonly used with a 
Database Sandbox (page 650) that is initialized using a database script; once the 
fi xture is corrupted, it must be reinitialized by rerunning the script. If the Shared
Fixture is accessible to more than one Test Runner (page 377), we may end up 
in a Test Run War (see Erratic Test), in which tests fail randomly as they try to 
use the same fi xture resource at the same time as some other test. 

We can avoid both Unrepeatable Tests and Test Run Wars by setting up the 
fi xture each time the test suite is run. xUnit provides several ways to do so, 
including Lazy Setup (page 435), Suite Fixture Setup (page 441), and Setup
Decorator (page 447). The concept of “lazy initialization” should be familiar to 
most object-oriented developers; here we just apply the concept to the construc-
tion of the test fi xture. The latter two choices provide a way to tear down the 
test fi xture when the test run is fi nished because they call a setUp method and a 
corresponding tearDown at the appropriate times; Lazy Setup does not give us a 
way to do this. 

Chained Tests represent another option for setting up a Shared Fixture, one that 
involves running the tests in a predefi ned order and letting each test use the previ 
ous test’s results as its test fi xture. Unfortunately, once one test fails, many of the 
tests that follow will provide erratic results because their pre-conditions have not 
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been satisfi ed. This problem can be made easier to diagnose by having each test 
use Guard Assertions (page 490) to verify that its pre-conditions have been met.4

As mentioned earlier, an Immutable Shared Fixture is a strategy for speeding 
up tests that use a Fresh Fixture. We can also use an Immutable Shared Fixture
to make tests based on a Shared Fixture less erratic by restricting changes to a 
smaller, mutable part of a Shared Fixture.

How Do We Ensure Testability? 

The last strategic concern touched on in this chapter is ensuring testability. The 
discussion here isn’t intended to be a complete treatment of the topic—it is too 
large to cover in a single chapter on test strategy. Nevertheless, we shouldn’t 
sweep this issue under the carpet either, because it defi nitely has a major impact 
on test automation. But fi rst, I must climb onto my soapbox for a short digres-
sion into the development process. 

Test Last—at Your Peril 

Anyone who has tried to retrofi t unit tests onto an existing application has prob-
ably experienced a lot of pain! This is the hardest kind of test automation we 
can do as well as the least productive. A lot of the benefi t of automated tests is 
derived during the “debugging phase” of software development, when such tests 
can reduce the amount of time spent working with debugging tools. Tackling a 
test retrofi t on legacy software as your fi rst attempt at automated unit testing 
is the last thing you want to try, as it is sure to discourage even the most deter-
mined developers and project managers. 

Design for Testability—Upfront 

BDUF5 design for testability is hard because it is diffi cult to know what the tests 
will need in the way of control points and observation points on the SUT. We 
can easily build software that is diffi cult to test. We can also spend a lot of time 
designing in testability mechanisms that are either insuffi cient or unnecessary. 
Either way, we will have spent a lot of effort with nothing to show for it. 

4 Unfortunately, this may result in slower tests when the fi xture is in a database. Never-
theless, it will still be many times faster than if each test had to insert all the records it 
needed.
5 “Big Design Upfront” (also known as “waterfall design”) is the opposite of emergent
design (“just-in-time design”).

 How Do We Ensure Testability? 
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Test-Driven Testability 

The nice thing about building our software driven by tests is that we don’t have 
to think very much about design for testability; we just write the tests and that 
forces us to build for testability. The act of writing the test defi nes the control 
points and observation points that the SUT needs to provide. Once we have 
passed the tests, we know we have a testable design. 

Now that I’ve done my bit promoting TDD as a “design for testability” pro-
cess, let’s get on with our discussion of the mechanics of actually making our 
software testable. 

Control Points and Observation Points 

A test interacts with the software6 through one or more interfaces or interaction
points. From the test’s point of view, these interfaces can act as either control
points or observation points (Figure 6.6).

Figure 6.6  Control points and observation points. The test interacts with 
the SUT through interaction points. Direct interaction points are synchronous 
method calls made by the test; indirect interaction points require some form of 
Back Door Manipulation. Control points have arrows pointing toward the SUT; 
observation points have arrows pointing away from the SUT. 

6 I am deliberately not saying “SUT” here because it interacts with more than just the 
SUT.
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A control point is how the test asks the software to do something for it. This 
could be for the purpose of putting the software into a specifi c state as part of 
setting up or tearing down the test fi xture, or it could be to exercise the SUT. 
Some control points are provided strictly for the tests; they should not be used 
by the production code because they bypass input validation or short-circuit the 
normal life cycle of the SUT or some object on which it depends. 

An observation point is how the test fi nds out about the SUT’s behavior dur-
ing the result verifi cation phase of the test. Observation points can be used to 
retrieve the post-test state of the SUT or a DOC. They can also be used to 
spy on the interactions between the SUT and any components with which it is 
expected to interact while it is being exercised. Verifying these indirect outputs 
is an example of Back Door Verifi cation (see Back Door Manipulation).

Both control points and observation points can be provided by the SUT as 
synchronous method calls; we call this “going in the front door.” Some inter-
action points may be via a “back door” to the SUT; we call this Back Door 
Manipulation. In the diagrams that follow, control points are represented by 
the arrowheads that point to the SUT, whether from the test or from a DOC. 
Observation points are represented by the arrows whose heads point back to 
the test itself. These arrows typically start at the SUT or DOC7 or start at the 
test and interact with either the SUT or DOC before returning to the test.8

Interaction Styles and Testability Patterns 

When testing a particular piece of software, our tests can take one of two basic 
forms. 

A round-trip test interacts with the SUT in question only through its public 
interface—that is, its “front door” (Figure 6.7). Both the control points and 
the observation points in a typical round-trip test are simple method calls. The 
nice thing about this approach is that it does not violate encapsulation. The test 
needs to know only the public interface of the software; it doesn’t need to know 
anything about how it is built. 

The main alternative is the layer-crossing test (Figure 6.8), in which we exer-
cise the SUT through the API and keep an eye on what comes out the back door 
using some form of Test Double such as a Test Spy (page 538) or Mock Object.
This can be a very powerful testing technique for verifying certain kinds of 
mostly architectural requirements. Unfortunately, this approach can also result 
in Overspecifi ed Software (see Fragile Test) if it is overused because changes in 
how the software implements its responsibilities can cause tests to fail. 

7 An asynchronous observation point.
8 A synchronous observation point.
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Figure 6.7  A round-trip test interacts with the SUT only via the front door. The 
test on the right replaces a DOC with a Fake Object to improve its repeatability 
or performance. 

Figure 6.8  A layer-crossing test can interact with the SUT via a “back door.” 
The test on the left controls the SUT’s indirect inputs using a Test Stub. The test 
on the right verifi es its indirect outputs using a Mock Object. 
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In Figure 6.8, the test on the right uses a Mock Object that stands in for the DOC 
as the observation point. The test on the left uses a Test Stub that stands in for 
the DOC as a control point. Testing in this style implies a Layered Architecture 
[DDD, PEAA, WWW], which in turn opens the door to using Layer Tests (page 337) 
to test each layer of the architecture independently (Figure 6.9). An even more 
general concept is the use of Component Tests (see Layer Test) to test each com-
ponent within a layer independently. 

Figure 6.9  A pair of Layer Tests each testing a different layer of the system. 
Each layer of a layered architecture can be tested independently using a distinct 
set of Layer Tests. This ensures good separation of concerns, and the tests 
reinforce the layered architecture. 

Whenever we want to write layer-crossing tests, we need to ensure that we have 
built in a substitutable dependency mechanism for any components on which 
the SUT depends but that we want to test independently. The leading contend-
ers include any of the variations of Dependency Injection (Figure 6.10) or some 
form of Dependency Lookup such as Object Factory or Service Locator. These 
dependency substitution mechanisms can be hand-coded or we can use an in-
version of control (IOC) framework if one is available in our programming 
environment. The fallback plan is to use a Test-Specifi c Subclass (page 579)
of the SUT or the DOC in question. This subclass can be used to override the 
dependency access or construction mechanism within the SUT or to replace the 
behavior of the DOC with test-specifi c behavior. 
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The “solution of last resort” is the Test Hook (page 709).9 These constructs 
do have utility as temporary measures that allow us to automate tests to act 
as a Safety Net (page 24) while refactoring to retrofi t testability. We defi nitely 
shouldn’t make a habit of using them, however, as continued use of Test Hooks
will result in Test Logic in Production (page 217). 

Figure 6.10  A Test Double being “injected” into a SUT by a test. A test can 
use Dependency Injection to replace a DOC with an appropriate Test Double. The 
DOC is passed to the SUT by the test as or after it has been created. 

A third kind of test worth mentioning is the asynchronous test, in which the test 
interacts with the SUT through real messaging. Because the responses to these 
requests also come asynchronously, these tests must include some kind of inter-
process synchronization such as calls to wait. Unfortunately, the need to wait for 
message responses that might never arrive can cause these tests to take much, 
much longer to execute. This style of testing should be avoided at all costs in 
unit and component tests. 

Fortunately, the Humble Executable pattern (see Humble Object on page 695) 
can remove the need to conduct unit tests this way (Figure 6.11). It involves 
putting the logic that handles the incoming message into a separate class or 
component, which can then be tested synchronously using either a round-trip 
or layer-crossing style. 

A related issue is the testing of business logic through a UI. In general, such 
Indirect Testing (see Obscure Test) is a bad idea because changes to the UI code 
will break tests that are trying to verify the business logic behind it. Because the 
UI tends to change frequently, especially on agile projects, this strategy will 
greatly increase test maintenance costs. Another reason this is a bad idea is that 

9 These typically take the form of if (testing) then ... else ... endif.
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UIs are inherently asynchronous. Tests that exercise the system through the UI 
have to be asynchronous tests along with all the issues that come with them. 

Figure 6.11  A Humble Executable making testing easier. The Humble 
Executable pattern can improve the repeatability and speed of verifying logic 
that would otherwise have to be verifi ed via asynchronous tests. 

Divide and Test 

We can turn almost any Hard-to-Test Code (page 209) into easily tested code 
through refactoring as long as we have enough tests in place to ensure that we 
do not introduce bugs during this refactoring. 

We can avoid using the UI for customer tests by writing those tests as Subcu-
taneous Tests (see Layer Test). These tests bypass the UI layer of the system and 
exercise the business logic via a Service Facade [CJ2EEP] that exposes the neces-
sary synchronous interaction points to the test. The UI relies on the same facade, 
enabling us to verify that the business logic works correctly even before we hook 
up the UI logic. The layered architecture also enables us to test the UI logic before 
the business logic is fi nished; we can replace the Service Facade with a Test Double
that provides completely deterministic behavior that our tests can depend on.10

10 This Test Double can be either hard-coded or fi le driven. Either way, it should be inde-
pendent of the real implementation so that the UI tests need to know only which data to 
use to evoke specifi c behaviors from the Service Facade, not the logic behind it.
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When conducting unit testing of nontrivial UIs,11 we can use a Humble Dialog 
(see Humble Object) to move the logic that makes decisions about the UI out 
of the visual layer, which is diffi cult to test synchronously, and into a layer of 
supporting objects, which can be verifi ed with standard unit-testing techniques 
(Figure 6.12). This approach allows the presentation logic behavior to be tested 
as thoroughly as the business logic behavior. 

Figure 6.12  A Humble Dialog reducing the dependency of the test on the UI 
framework. The logic that controls the state of UI components can be very diffi cult 
to test. Extracting it into a testable component leaves behind a Humble Dialog that 
requires very little testing. 

From a test automation strategy perspective, the key thing is to make the 
decision about which test–SUT interaction styles should be used and which 
ones should be avoided, and to ensure that the software is designed to support 
that decision.

11 Any UI that contains state information or supports conditional display or enabling of 
elements should be considered nontrivial.
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What’s Next? 

This concludes our introduction to the hard-to-change decisions we must make 
as we settle upon our test automation strategy. Given that you are still reading, 
I will assume that you have decided xUnit is an appropriate tool for doing your 
test automation. The following chapters introduce the detailed patterns for im-
plementing our chosen fi xture strategy, whether it involves a Fresh Fixture or a 
Shared Fixture. First, we will explore the simplest case, a Transient Fresh Fixture,
in Chapter 8, Transient Fixture Management. We will then investigate the use of 
persistent fi xtures in Chapter 9, Persistent Fixture Management. But fi rst, we must 
establish the basic xUnit terminology and notation that is used throughout this 
book in Chapter 7, xUnit Basics.

 What’s Next?
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Chapter 7 

xUnit Basics 

About This Chapter 

Chapter 6, Test Automation Strategy, introduced the “hard to change” decisions 
that we need to get right early in the project. The current chapter serves two 
purposes. First, it introduces the xUnit terminology and diagramming notation 
used throughout this book. Second, it explains how the xUnit framework oper-
ates beneath the covers and why it was built that way. This knowledge can help 
the builder of a new Test Automation Framework (page 298) understand how 
to port xUnit. It can also help test automaters understand how to use certain 
features of xUnit. 

An Introduction to xUnit 

The term xUnit is how we refer to any member of the family of Test Automa-
tion Frameworks used for automating Hand-Scripted Tests (see Scripted Test 
on page 285) that share the common set of features described here. Most pro-
gramming languages in widespread use today have at least one implementation 
of xUnit; Hand-Scripted Tests are usually automated using the same program-
ming language as is used for building the SUT. Although this is not necessarily 
the case, this strategy is usually much easier because our tests have easy access 
to the SUT API. By using a programming language with which the developers 
are familiar, less effort is required to learn how to automate Fully Automated 
Tests (page 26).1

1 See the sidebar “Testing Stored Procs with JUnit” (page 657) for an example of using a 
testing framework in one language to test an SUT in another language.
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Common Features 

Given that most members of the xUnit family are implemented using an object-
oriented programming language (OOPL), they are described here fi rst and then 
places where the non-OOPL members of the family differ are noted. 

All members of the xUnit family implement a basic set of features. They all 
provide a way to perform the following tasks: 

• Specify a test as a Test Method (page 348)

• Specify the expected results within the test method in the form of calls 
to Assertion Methods (page 362)

• Aggregate the tests into test suites that can be run as a single operation

• Run one or more tests to get a report on the results of the test run

Because many members of the xUnit family support Test Method Discovery (see
Test Discovery on page 393), we do not have to use Test Enumeration (page 399) 
in these members to manually add each Test Method we want to run to a test 
suite. Some members also support some form of Test Selection (page 403) to run 
subsets of test methods based on some criteria. 

The Bare Minimum 

Here is the bare minimum we need to understand about how xUnit operates 
(Figure 7.1): 

• How we defi ne tests using Test Methods on Testcase Classes (page 373)

• How we can build up arbitrary Suites of Suites (see Test Suite Object on
page 387)2

• How we run the tests 

• How we interpret the test results

Defi ning Tests 

Each test is represented by a Test Method that implements a single Four-Phase 
Test (page 358) by following these steps: 

2 Even those xUnit variants that don’t have an explicit Suite class or method still build 
Test Suite Objects behind the scene.
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• Setting up the test fi xture using either In-line Setup (page 408), Delegated 
Setup (page 411), or Implicit Setup (page 424)

• Exercising the SUT by interacting with methods in its public or private 
interface

• Verifying that the expected outcome has occurred using calls to Assertion 
Methods

• Tearing down the test fi xture using either Garbage-Collected Tear-
down (page 500), In-line Teardown (page 509), Implicit Teardown (page 516),
or Automated Teardown (page 503)

Figure 7.1  The static test structure as seen by a test automater. The test 
automater sees only the static structure as he or she reads or writes tests. The 
test automater writes one Test Method with four distinct phases for each test in 
the Testcase Class. The Test Suite Factory (see Test Enumeration) is used only 
for Test Enumeration. The runtime structure (shown grayed out) is left to the 
test automater’s imagination. 

The most common types of tests are the Simple Success Test (see Test Method),
which verifi es that the SUT has behaved correctly with valid inputs, and the 
Expected Exception Test (see Test Method), which verifi es that the SUT raises an 
exception when used incorrectly. A special type of test, the Constructor Test (see
Test Method), verifi es that the object constructor logic builds new objects cor-
rectly. Both “simple success” and “expected exception” forms of the Constructor
Test may be needed. The Test Methods that contain our test logic need to live 
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somewhere, so we defi ne them as methods of a Testcase Class.3 We then pass the 
name of this Testcase Class (or the module or assembly in which it resides) to 
the Test Runner (page 377) to run our tests. This may be done explicitly—such 
as when invoking the Test Runner on a command line—or implicitly by the 
integrated development environment (IDE) that we are using.

What’s a Fixture? 

The test fi xture is everything we need to have in place to exercise the SUT. Typi-
cally, it includes at least an instance of the class whose method we are testing. It 
may also include other objects on which the SUT depends. Note that some mem-
bers of the xUnit family call the Testcase Class the test fi xture—a preference that 
likely refl ects an assumption that all Test Methods on the Testcase Class should use 
the same fi xture. This unfortunate name collision makes discussing test fi xtures 
particularly problematic. In this book, I have used different names for the Testcase 
Class and the test fi xture it creates. I trust that the reader will translate this termi-
nology to the terminology of his or her particular member of the xUnit family. 

Defi ning Suites of Tests 

Most Test Runners “auto-magically” construct a test suite containing all of the 
Test Methods in the Testcase Class. Often, this is all we need. Sometimes we 
want to run all the tests for an entire application; at other times we want to run 
just those tests that focus on a specifi c subset of the functionality. Some mem-
bers of the xUnit family and some third-party tools implement Testcase Class 
Discovery (see Test Discovery) in which the Test Runner fi nds the test suites by 
searching either the fi le system or an executable for test suites. 

If we do not have this capability, we need to use Test Suite Enumeration (see
Test Enumeration), in which we defi ne the overall test suite for the entire system or 
application as an aggregate of several smaller test suites. To do so, we must defi ne 
a special Test Suite Factory class whose suite method returns a Test Suite Object
containing the collection of Test Methods and other Test Suite Objects to run. 

This collection of test suites into increasingly larger Suites of Suites is com-
monly used as a way to include the unit test suite for a class into the test suite 
for the package or module, which is in turn included in the test suite for the 
entire system. Such a hierarchical organization supports the running of test 
suites with varying degrees of completeness and provides a practical way for 
developers to run that subset of the tests that is most relevant to the software of 

3 This scheme is called a test fi xture in some variants of xUnit, probably because the 
creators assumed we would have a single Testcase Class per Fixture (page 631).

www.it-ebooks.info

http://www.it-ebooks.info/


79

interest. It also allows them to run all the tests that exist with a single command 
before they commit their changes into the source code repository [SCM]. 

Running Tests 

Tests are run by using a Test Runner. Several different kinds of Test Runners are 
available for most members of the xUnit family. 

A Graphical Test Runner (see Test Runner) provides a visual way for the user 
to specify, invoke, and observe the results of running a test suite. Some Graphi-
cal Test Runners allow the user to specify a test by typing in the name of a Test 
Suite Factory; others provide a graphical Test Tree Explorer (see Test Runner)
that can be used to select a specifi c Test Method to execute from within a tree 
of test suites, where the Test Methods serve as the tree’s leaves. Many Graphical
Test Runners are integrated into an IDE to make running tests as easy as select-
ing the Run As Test command from a context menu. 

A Command-Line Test Runner (see Test Runner) can be used to execute tests 
when running the test suite from the command line, as in Figure 7.2. The name 
of the Test Suite Factory that should be used to create the test suite is included 
as a command-line parameter. Command-Line Test Runners are most common-
ly used when invoking the Test Runner from Integration Build [SCM] scripts or 
sometimes from within an IDE. 

>ruby testrunner.rb c:/examples/tests/SmellHandlerTest.rb
Loaded suite SmellHandlerTest
Started
.....
Finished in 0.016 seconds.
5 tests, 6 assertions, 0 failures, 0 errors
>Exit code: 0

Figure 7.2  Using a Command-Line Test Runner to run  tests from the command 
line.

Test Results 

Naturally, the main reason for running automated tests is to determine the re-
sults. For the results to be meaningful, we need a standard way to describe them. 
In general, members of the xUnit family follow the Hollywood principle (“Don’t 
call us; we’ll call you”). In other words, “No news is good news”; the tests will 
“call you” when a problem occurs. Thus we can focus on the test failures rather 
than inspecting a bunch of passing tests as they roll by. 

Test results are classifi ed into one of three categories, each of which is trea-
ted slightly differently. When a test runs without any errors or failures, it is 

 The Bare Minimum 
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considered to be successful. In general, xUnit does not do anything special for 
successful tests—there should be no need to examine any output when a Self-
Checking Test (page 26) passes. 

A test is considered to have failed when an assertion fails. That is, the test 
asserts that something should be true by calling an Assertion Method, but 
that assertion turns out not to be the case. When it fails, an Assertion Method
throws an assertion failure exception (or whatever facsimile the programming 
language supports). The Test Automation Framework increments a counter for 
each failure and adds the failure details to a list of failures; this list can be ex-
amined more closely later, after the test run is complete. The failure of a single 
test, while signifi cant, does not prevent the remaining tests from being run; this 
is in keeping with the principle Keep Tests Independent (see page 42). 

A test is considered to have an error when either the SUT or the test itself 
fails in an unexpected way. Depending on the language being used, this problem 
could consist of an uncaught exception, a raised error, or something else. As 
with assertion failures, the Test Automation Framework increments a counter 
for each error and adds the error details to a list of errors, which can then be 
examined after the test run is complete. 

For each test error or test failure, xUnit records information that can be ex-
amined to help understand exactly what went wrong. As a minimum, the name 
of the Test Method and Testcase Class are recorded, along with the nature of 
the problem (whether it was a failed assertion or a software error). In most 
Graphical Test Runners that are integrated with an IDE, one merely has to 
(double-) click on the appropriate line in the traceback to see the source code 
that emitted the failure or caused the error.  

Because the name test error sounds more drastic than a test failure, some 
test automaters try to catch all errors raised by the SUT and turn them into test 
failures. This is simply unnecessary. Ironically, in most cases it is easier to deter-
mine the cause of a test error than the cause of a test failure: The stack trace for 
a test error will typically pinpoint the problem code within the SUT, whereas 
the stack track for a test failure merely shows the location in the test where 
the failed assertion was made. It is, however, worthwhile using Guard Asser-
tions (page 490) to avoid executing code within the Test Method that would 
result in a test error being raised from within the Test Method4 itself; this is just 
a normal part of verifying the expected outcome of exercising the SUT and does 
not remove useful diagnostic tracebacks. 

4 For example, before executing an assertion on the contents of a fi eld of an object 
returned by the SUT, it is worthwhile to assertNotNull on the object reference so as to avoid 
a “null reference” error.
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Under the xUnit Covers 

The description thus far has focused on Test Methods and Testcase Classes with 
the odd mention of test suites. This simplifi ed “compile time” view is enough 
for most people to get started writing automated unit tests in xUnit. It is pos-
sible to use xUnit without any further understanding of how the Test Automa-
tion Framework operates—but the lack of more extensive knowledge is likely 
to lead to confusion when building and reusing test fi xtures. Thus it is better 
to understand how xUnit actually runs the Test Methods. In most5 members
of the xUnit family, each Test Method is represented at runtime by a Testcase 
Object (page 382) because it is a lot easier to manipulate tests if they are “fi rst-
class” objects (Figure 7.3). The Testcase Objects are aggregated into Test Suite 
Objects, which can then be used to run many tests with a single user action. 

Figure 7.3  The runtime test structure as seen by the Test Automation 
Framework. At runtime, the Test Runner asks the Testcase Class or a Test 
Suite Factory to instantiate one Testcase Object for each Test Method, with the 
objects being wrapped up in a single Test Suite Object. The Test Runner tells this 
Composite [GOF] object to run its tests and collect the results. Each Testcase 
Object runs one Test Method.

5 NUnit is a known exception and others may exist. See the sidebar “There’s Always an 
Exception” (page 384) for more information.
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Test Commands 

The Test Runner cannot possibly know how to call each Test Method individu-
ally. To avoid the need for this, most members of the xUnit family convert each 
Test Method into a Command [GOF] object with a run method. To create these 
Testcase Objects, the Test Runner calls the suite method of the Testcase Class to 
get a Test Suite Object. It then calls the run method via the standard test inter-
face. The run method of a Testcase Object executes the specifi c Test Method for 
which it was instantiated and reports whether it passed or failed. The run method 
of a Test Suite Object iterates over all the members of the collection of tests, 
keeping track of how many tests were run and which ones failed. 

Test Suite Objects 

A Test Suite Object is a Composite object that implements the same standard 
test interface that all Testcase Objects implement. That interface (implicit in lan-
guages lacking a type or interface construct) requires provision of a run method. 
The expectation is that when run is invoked, all of the tests contained in the 
receiver will be run. In the case of a Testcase Object, it is itself a “test” and 
will run the corresponding Test Method. In the case of a Test Suite Object, that 
means invoking run on all of the Testcase Objects it contains. The value of using 
a Composite Command is that it turns the processes of running one test and 
running many tests into exactly the same process. 

To this point, we have assumed that we already have the Test Suite Object
instantiated. But where did it come from? By convention, each Testcase Class
acts as a Test Suite Factory. The Test Suite Factory provides a class method
called suite that returns a Test Suite Object containing one Testcase Object for 
each Test Method in the class. In languages that support some form of refl ec-
tion, xUnit may use Test Method Discovery to discover the test methods and 
automatically construct the Test Suite Object containing them. Other mem-
bers of the xUnit family require test automaters to implement the suite method 
themselves; this kind of Test Enumeration takes more effort and is more likely 
to lead to Lost Tests (see Production Bugs on page 268).

xUnit in the Procedural World 

Test Automation Frameworks and test-driven development became popular only 
after object-oriented programming became commonplace. Most members of 
the xUnit family are implemented in object-oriented programming languages 
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that support the concept of a Testcase Object. Although the lack of objects 
should not keep us from testing procedural code, it does make writing Self-
Checking Tests more labor-intensive and building generic, reusable Test Runners
more diffi cult. 

In the absence of objects or classes, we must treat Test Methods as global 
(public static) procedures. These methods are typically stored in fi les or mod-
ules (or whatever modularity mechanism the language supports). If the language 
supports the concept of procedure variables (also known as function pointers),
we can defi ne a generic Test Suite Procedure (see Test Suite Object) that takes 
an array of Test Methods (commonly called “test procedures”) as an argument. 
Typically, the Test Methods must be aggregated into the arrays using Test Enu-
meration because very few non-object-oriented programming languages sup-
port refl ection. 

If the language does not support any way of treating Test Methods as data, 
we must defi ne the test suites by writing Test Suite Procedures that make explicit 
calls to Test Methods and/or other Test Suite Procedures. Test runs may be initi-
ated by defi ning a main method on the module. 

A fi nal option is to encode the tests as data in a fi le and use a single Data-
Driven Test (page 288) interpreter to execute them. The main disadvantage of 
this approach is that it restricts the kinds of tests that can be run to those imple-
mented by the Data-Driven Test interpreter, which must itself be written anew 
for each SUT. This strategy does have the advantage of moving the coding of 
the actual tests out of the developer arena and into the end-user or tester arena, 
which makes it particularly appropriate for customer tests. 

What’s Next? 

In this chapter we established the basic terminology for talking about how xUnit 
tests are put together. Now we turn our attention to a new task—constructing 
our fi rst test fi xture in Chapter 8, Transient Fixture Management.

 What’s Next?
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Chapter 8 

Transient Fixture 
Management

About This Chapter 

Chapter 6, Test Automation Strategy, looked at the strategic decisions that we need 
to make. That included the defi nition of the term “fi xture” and the selection of a 
test fi xture strategy. Chapter 7, xUnit Basics, established our basic xUnit terminol-
ogy and diagramming notation. This chapter builds on both of these earlier chap-
ters by focusing on the mechanics of implementing the chosen fi xture strategy. 

There are several different ways to set up a Fresh Fixture (page 311), and our 
decision will affect how much effort it takes to write the tests, how much effort 

Transient

Persistent

Immutable
Shared
Fixture

Shared
Fixture

Fresh
Fixture

Figure 8.1   Transient Fresh Fixture. Fresh Fixtures come in two fl avors: 
Transient and Persistent. Both require fi xture setup; the latter also requires 
fi xture teardown.
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it takes to maintain our tests, and whether we achieve Tests as Documentation 
(see page 23). Persistent Fresh Fixtures (see Fresh Fixture) are set up the same way 
as Transient Fresh Fixtures (see Fresh Fixture), albeit with some additional factors
to consider related to fi xture teardown (Figure 8.1). Shared Fixtures (page 317) 
introduce another set of considerations. Persistent Fresh Fixtures and Shared
Fixtures are discussed in detail in Chapter 9.

Test Fixture Terminology 

Before we can talk about setting up a fi xture, we need to agree what a fi xture is. 

What Is a Fixture? 

Every test consists of four parts, as described in Four-Phase Test (page 358). The 
fi rst part is where we create the SUT and everything it depends on and where we 
put those elements into the state required to exercise the SUT. In xUnit, we call 
everything we need in place to exercise the SUT the test fi xture and the part of 
the test logic that we execute to set it up the fi xture setup.

The most common way to set up the fi xture is using front door fi xture set-
up—that is, to call the appropriate methods on the SUT to put it into the start-
ing state. This may require constructing other objects and passing them to the 
SUT as arguments of method calls. When the state of the SUT is stored in other 
objects or components, we can do Back Door Setup (see Back Door Manipulation 
on page 327)—that is, we can insert the necessary records directly into the other 
component on which the behavior of the SUT depends. We use Back Door Setup
most often with databases or when we need to use a Mock Object (page 544) or 
Test Double (page 522). These possibilities are covered in Chapter 13, Testing 
with Databases, and Chapter 11, Using Test Doubles, respectively. 

It is worth noting that the term “fi xture” is used to mean different things in 
different kinds of test automation. The xUnit variants for the Microsoft lan-
guages call the Testcase Class (page 373) the test fi xture. Most other variants 
of xUnit distinguish between the Testcase Class and the test fi xture (or test con-
text) it sets up. In Fit [FitB], the term “fi xture” is used to mean the custom-built 
parts of the Data-Driven Test (page 288) interpreter that we use to defi ne our 
Higher-Level Language (see page 41). Whenever this book says “test fi xture” 
without further qualifying this term, it refers to the stuff we set up before ex-
ercising the SUT. To refer to the class that hosts the Test Methods (page 348), 
whether it be in Java or C#, Ruby or VB, this book uses Testcase Class.
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What Is a Fresh Fixture? 

In a Fresh Fixture strategy, we set up a brand-new fi xture for every test we run 
(Figure 8.2). That is, each Testcase Object (page 382) builds its own fi xture be-
fore exercising the SUT and does so every time it is rerun. That is what makes 
the fi xture “fresh.” As a result, we completely avoid the problems associated 
with Interacting Tests (see Erratic Test on page 228).

Figure 8.2  A pair of Fresh Fixtures, each with its creator. A Fresh Fixture is
built specifi cally for a single test, used once, and then retired. 

What Is a Transient Fresh Fixture? 

When our fi xture is an in-memory fi xture referenced only by local variables 
or instance variables,1 the fi xture just “disappears” after every test courtesy of 
Garbage-Collected Teardown (page 500). When fi xtures are persistent, this is 
not the case. Thus we have some decisions to make about how we implement 
the Fresh Fixture strategy. In particular, we have two different ways to keep 
them “fresh.” The obvious option is tear down the fi xture after each test. The 
less obvious option is to leave the old fi xture around and then build a new 
fi xture in such a way that it does not collide with the old fi xture. 

1 See the sidebar “There’s Always an Exception” (page 384).
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Most Fresh Fixtures we build are transient, so we will cover that case fi rst. 
We will then come back to managing Persistent Fresh Fixtures in Chapter 9. 

Building Fresh Fixtures 

Whether we are building a Transient Fresh Fixture or a Persistent Fresh Fixture,
the choices we have for how to construct it are pretty much the same. The fi xture 
setup logic includes the code needed to instantiate the SUT,2 the code to put the SUT 
into the appropriate starting state, and the code to create and initialize the state of 
anything the SUT depends on or that will be passed to it as an argument. The most 
obvious way to set up a Fresh Fixture is through In-line Setup (page 408), in which 
all fi xture setup logic is contained within the Test Method. This type of fi xture can 
also be constructed by using Delegated Setup (page 411), which involves calling 
Test Utility Methods (page 599). Finally, we can use Implicit Setup (page 424), 
in which the Test Automation Framework (page 298) calls a special setUp method 
we provide on our Testcase Class. We can also use a combination of these three 
approaches. Let’s look at each possibility individually. 

In-line Fixture Setup 

In In-line Setup, the test handles all of the fixture setup within the body of 
the Test Method. We construct objects, call methods on them, construct the 
SUT, and call methods on it to put into a specific state. We perform all of 
these tasks from within our Test Method. Think of In-line Setup as the do-
it-yourself approach to fixture creation. 

   public void testStatus_initial() {
      // In-line setup
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");
      Flight flight = new Flight( flightNumber,
                                 departureAirport,
                                 destinationAirport);
      // Exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // tearDown:
        //    Garbage-collected
   }

2 This discussion assumes that the SUT is an object and not just static methods on a 
class.
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The main drawback of In-line Setup is that it tends to lead to Test Code Dupli-
cation (page 213) because each Test Method needs to construct the SUT. Many 
of the Test Methods also need to perform similar fi xture setup. This Test Code 
Duplication leads, in turn, to High Test Maintenance Cost (page 265) caused 
by Fragile Tests (page 239). If the work to create the fi xture is complex, it can 
also lead to Obscure Tests (page 186). A related problem is that In-line Setup
tends to encourage Hard-Coded Test Data (see Obscure Test) within each Test 
Method because creating a local variable with an Intent-Revealing Name [SBPP]
may seem like too much work for the benefi t yielded. 

We can prevent these test smells by moving the code that sets up the fi xture 
out of the Test Method. The location where we move it determines which of the 
alternative fi xture setup strategies we have used. 

Delegated Fixture Setup 

A quick and easy way to reduce Test Code Duplication and the resulting Obscure 
Tests is to refactor our Test Methods to use Delegated Setup. We can use an Extract 
Method [Fowler] refactoring to move a sequence of statements used in several Test 
Methods into a Test Utility Method that we then call from those Test Methods. This 
is a very simple and safe refactoring, especially when we let the IDE do all the heavy 
lifting for us. When the extracted method contains logic to create an object on which 
our test depends, we call it a Creation Method (page 415). Creation Methods3 with 
Intent-Revealing Names make the test’s pre-conditions readily apparent to the reader 
while avoiding unnecessary Test Code Duplication. They allow both the test reader 
and the test automater to focus on what is being created without being distracted 
by how it is created. The Creation Methods act as reusable building blocks for test 
fi xture construction. 

   public void testGetStatus_inital() {
       // Setup
      Flight flight = createAnonymousFlight();
      // Exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // Teardown
      //     Garbage-collected
   }

One goal of these Creation Methods is to eliminate the need for every test 
to know the details of how the objects it requires are created. This stream-
lining goes a long way toward preventing Fragile Tests caused by changes to 

3 When referenced via a Test Helper (page 643) class, they are often called the Object
Mother pattern (see Test Helper on page 643).

 Building Fresh Fixtures
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constructor method signatures or semantics. When a test does not care about 
the specifi c identity of the objects it is creating, we can use Anonymous Cre-
ation Methods (see Creation Method). These methods generate any unique keys 
required by the object being created. By using a Distinct Generated Value (see
Generated Value on page 723), we can guarantee that no other test instance 
that requires a similar object will accidentally use the same object as this test. 
This safeguard prevents many forms of the behavior smell Erratic Test, includ-
ing Unrepeatable Tests, Interacting Tests, and Test Run Wars, even if we hap-
pen to be using a persistent object repository that supports Shared Fixtures.

When a test does care about the attributes of the object being created, we 
use a Parameterized Anonymous Creation Method (see Creation Method). This 
method is passed any attributes that the test cares about (i.e., attributes that are 
important to the test outcome), leaving all other attributes to be defaulted by the 
implementation of the Creation Method. My motto is this: 

When it is not important for something to be seen in the test method, 
it is important that it not be seen in the test method!

Delegated Setup is often used when we write input validation tests for 
SUT methods that are expected to validate the attributes of an object argu-
ment. In such a case, we need to write a separate test for each invalid at-
tribute that should be detected. Building all of these slightly invalid objects 
would be a lot of work using In-line Setup. We can reduce the effort and 
the amount of Test Code Duplication dramatically by using the pattern 
One Bad Attribute (see Derived Value on page 718). That is, we first call 
a Creation Method to create a valid object, and then we replace one attri-
bute with an invalid value that should be rejected by the SUT. Similarly, we 
might create an object in the correct state by using a Named State Reaching 
Method (see Creation Method). 

Some people prefer to Reuse Tests for Fixture Setup (see Creation Method) as an 
alternative to using Chained Tests (page 454). That is, they call other tests directly 
within the setup portion of their test. This approach is not an unreasonable one as 
long as the test reader can readily identify what the other test is setting up for the 
current test. Unfortunately, very few tests are named in such a way as to convey this 
intention. For this reason, if we value Tests as Documentation, we will want to con-
sider wrapping the called test with a Creation Method that has an Intent-Revealing 
Name so that test reader can get a sense of what the fi xture looks like. 

The Creation Methods can be kept as private methods on the Testcase 
Class, pulled up to a Testcase Superclass (page 638), or moved to a Test Help-
er (page 643). The “mother of all creation methods” is Object Mother (see Test 
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Helper). This strategy-level pattern describes a family of approaches that center 
on the use of Creation Methods on one or more Test Helpers and may include 
Automated Teardown (page 503) as well. 

Implicit Fixture Setup 

Most members of the xUnit family provide a convenient hook for calling code 
that needs to be run before every Test Method. Some members call a method 
with a specifi c name (e.g., setUp). Others call a method that has a specifi c annota-
tion (e.g., “@before” in JUnit) or method attribute (e.g., “[Setup]” in NUnit). To 
avoid repeating these alternative ways every time we need to refer to this mecha-
nism, this book simply calls it the setUp method regardless of how we indicate 
this fact to the Test Automation Framework. The setUp method is optional or an 
empty default implementation is provided by the framework, so we do not have
to provide one in each Testcase Class.

In Implicit Setup, we take advantage of this framework “hook” by putting all 
of the fi xture creation logic into the setUp method. Because every Test Method on 
the Testcase Class shares this fi xture setup logic, all Test Methods need to be able 
to use the fi xture it creates. This tactic certainly addresses the Test Code Duplica-
tion problem but it does have several consequences. What does the following test 
actually verify?

   Airport departureAirport;
   Airport destinationAirport;
   Flight flight;

   public void testGetStatus_inital() {
      // Implicit setup
      // Exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
   }

The fi rst consequence is that this approach can make the tests more diffi cult to 
understand because we cannot see how the pre-conditions of the test (the test 
fi xture) correlate with the expected outcome within the Test Method; we have to 
look in the setUp method to see this relationship. 

   public void setUp() throws Exception{
      super.setUp(); 
      departureAirport = new Airport("Calgary", "YYC");
      destinationAirport = new Airport("Toronto", "YYZ");
      BigDecimal flightNumber = new BigDecimal("999");
      flight = new Flight( flightNumber , departureAirport,
                           destinationAirport);
   }

 Building Fresh Fixtures
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We can mitigate this problem by naming our Testcase Class based on the test 
fi xture created in the setUp method. Of course, this makes sense only if all of the 
Test Methods really need the same fi xture—it is an example of Testcase Class per 
Fixture (page 631). As mentioned earlier, several members of the xUnit family 
(VbUnit and NUnit, to name two) use the term “test fi xture” to describe what 
this book calls the Testcase Class. This nomenclature is probably based on the 
assumption that we are using a Testcase Class per Fixture strategy. 

Another consequence of using Implicit Setup is that we cannot use local vari-
ables to hold references to the objects in our fi xture. Instead, we are forced to 
use instance variables to refer to any objects that are constructed in the setUp
method and that are needed either when exercising the SUT, when verifying 
the expected outcome, or when tearing down the fi xture. These instance vari-
ables act as global variables between the parts of the test. As long as we stick 
to instance variables rather than class variables, however, the test fi xture will 
be newly constructed for each test case in the Testcase Class. Most members 
of xUnit provide isolation between the fi xture created for each Test Method
but at least one (NUnit) does not; see the sidebar “There’s Always an Excep-
tion” (page 384) for more information. In any event, we should defi nitely give 
the variables Intent-Revealing Names so that we do not need to keep referring 
back to the setUp method to understand what they hold. 

Misuse of the SetUp Method 

When you have a new hammer, everything looks like a nail! 

Like any feature of any system, the setUp method can be abused. We should 
not feel obligated to use it just because it is provided. It is one of several code 
reuse mechanisms that are available for our application. When object-oriented 
languages were fi rst introduced, programmers were enamored with inheritance 
and tried to apply it in all possible reuse scenarios. Over time, we learned when 
inheritance was appropriate and when we should resort to other mechanisms 
such as delegation. The setUp method is xUnit’s inheritance. 

The setUp method is most prone to misuse when it is applied to build a Gen-
eral Fixture (see Obscure Test) with multiple distinct parts, each of which is 
dedicated to a different Test Method. This can lead to Slow Tests (page 253) 
if we are building a Persistent Fresh Fixture. More importantly, it can lead to 
Obscure Tests by hiding the cause–effect relationship between the fi xture and 
the expected outcome of exercising the SUT. 

If we do not adopt the practice of grouping the Test Methods into Testcase 
Classes based on identical fi xtures but we do use the setUp method, we should 
build only the lowest common denominator part of the fi xture in the setUp
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method. That is, only the setup logic that will not cause problems in any of 
the tests should be placed in the setUp method. Even the fi xture setup code 
that does not cause problems for any of the Test Methods can still cause other 
problems if we use the setUp method to build a General Fixture instead of a 
Minimal Fixture (page 302). A General Fixture is a common cause of Slow 
Tests because each test spends much more time than necessary building the 
test fi xture. It also tends to produce Obscure Tests because the test reader 
cannot easily see which part of the fi xture a particular Test Method depends 
on. A General Fixture often evolves into a Fragile Fixture (see Fragile Test)
as the relationship between its various elements and the tests that use them 
is forgotten over time. Changes made to the fi xture to support a newly added 
test may then cause existing tests to fail. 

Note that if we use a class variable to hold the object, we may have crossed 
the line into the world of Persistent Fresh Fixtures. Use of Lazy Setup (page 435) 
to populate the variable, by contrast, carries us into the world of Shared Fix-
tures because later tests within the test suite may reuse the object(s) created 
in earlier tests and thus may become dependent on the changes the other test 
(should have) made to it. 

Hybrid Fixture Setup 

This chapter has presented the three styles of fi xture construction as strict alter-
natives to one another. In practice, there is value in combining them. Test auto-
maters often call some Creation Methods from within the Test Method but then 
do some additional setup on an in-line basis. The readability of the setUp method 
can also be improved if it calls Creation Methods to construct the fi xture. An 
additional benefi t is that the Creation Methods can be unit-tested much more 
easily than either in-line fi xture construction logic or the setUp method. These 
methods can also be located on a class outside the Testcase Class hierarchy such 
as a Test Helper.

Tearing Down Transient Fresh Fixtures 

One really nice thing about Transient Fresh Fixtures is that fi xture teardown requires 
very little effort. Most members of the xUnit family are implemented in languages 
that support garbage collection. As long as our references to the fi xture are held in 
variables that go out of scope, we can count on Garbage-Collected Teardown to do 
all the work for us. See the sidebar “There’s Always an Exception” on page 384 for 
a description of why the same is not true in NUnit. 

 Tearing Down Transient Fresh Fixtures
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If we are using one of the few members of the xUnit family that does not sup-
port garbage collection, we may have to treat all Fresh Fixtures as persistent. 

What’s Next? 

This chapter introduced techniques for setting up and tearing down an in-memory 
Fresh Fixture. With some planning and a bit of luck, they are all you should need for 
the majority of your tests. Managing Fresh Fixtures is more complicated when the 
fi xture is persisted either by the SUT or by the test itself. Chapter 9, Persistent Fixture 
Management, introduces additional techniques needed for managing persistent fi x-
tures, including Persistent Fresh Fixtures and Shared Fixtures.
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Chapter 9 

Persistent Fixture 
Management

About This Chapter 

In Chapter 8, Transient Fixture Management, we saw how we can go about 
building in-memory Fresh Fixtures (page 311). We noted in that chapter that 
managing Fresh Fixtures is more complicated when the fi xture is persisted either 
by the SUT or by the test itself. This chapter introduces the additional patterns 
required to manage persistent fi xtures, including both Persistent Fresh Fixtures 
(see Fresh Fixture) and Shared Fixtures (page 317). 

Managing Persistent Fresh Fixtures 

The term Persistent Fresh Fixture might sound like an oxymoron but it is 
actually not as large a contradiction as it might fi rst seem. The Fresh Fixture strat-
egy means that each run of each Test Method (page 348) uses a newly created fi x-
ture. The name speaks to its intent: We do not reuse the fi xture! It does not need 
to imply that the fi xture is transient—only that it is not reused (Figure 9.1). Per-
sistent Fresh Fixtures present several challenges not encountered with Transient 
Fresh Fixtures. In this chapter, we focus on the challenge posed by Unrepeatable
Tests (see Erratic Test on page 228) caused by leftover Persistent Fresh Fixtures
and Slow Tests (page 253) caused by Shared Fixtures (page 317). 

What Makes Fixtures Persistent? 

A fi xture, fresh or otherwise, can become persistent for one of two reasons. The 
fi rst reason is that the SUT is a stateful object and “remembers” how it was used 
in the past. This scenario most often occurs when the SUT includes a database,

www.it-ebooks.info

http://www.it-ebooks.info/


96 Chapter 9  Persistent Fixture Management 

Figure 9.1  A Fresh Fixture can be either transient or persistent. We can apply a 
Fresh Fixture strategy even if the test fi xture is naturally persistent but we must 
have a way to tear it down after each test. 

but it can occur simply because the SUT uses class variables to hold some of its 
data. The second reason is that the Testcase Class (page 373) holds a reference 
to an otherwise Transient Fresh Fixture in a way that makes it survive across 
Test Method invocations. 

Some members of the xUnit family provide a mechanism to reload all classes 
at the beginning of each test run. This behavior may appear as an option—a 
check box labeled “Reload Classes”—or it may be automatic. Such a feature 
keeps the fi xture from becoming persistent when it is referenced from a class 
variable; it does not prevent the Fresh Fixture from becoming persistent if either 
the SUT or the test puts the fi xture into the fi le system or a database. 

Issues Caused by Persistent Fresh Fixtures 

When fi xtures are persistent, we may fi nd that subsequent runs of the same Test 
Method try to recreate a fi xture that already exists. This behavior may cause 
confl icts between the preexisting and newly created resources. Although violat-
ing unique key constraints in the database is the most common example of this 
problem, the confl ict could be as simple as trying to create a fi le with the same 
name as one that already exists. One way to avoid these Unrepeatable Tests is 
to tear down the fi xture at the end of each test; another is to use Distinct Gen-
erated Values (see Generated Value on page 723) for any identifi ers that might 
cause confl icts. 
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Tearing Down Persistent Fresh Fixtures 

Unlike fi xture setup code, which should help us understand the pre-conditions 
of the test, fi xture teardown code is purely a matter of good housekeeping. It 
does not help us understand the behavior of the SUT but it has the potential to 
obscure the intent of the test or at least make it more diffi cult to understand. 
Therefore, the best kind of teardown code is the nonexistent kind. We should 
avoid writing teardown code whenever we can, which is why Garbage-Collected
Teardown (page 500) is so preferable. Unfortunately, we cannot take advantage 
of Garbage-Collected Teardown if our Fresh Fixture is persistent. 

Hand-Coded Teardown 

One way to ensure that the fi xture is destroyed after we are done with it is to 
include test-specifi c teardown code within our Test Methods. This teardown 
mechanism might seem simple, but it is actually more complex than immediately 
meets the eye. Consider the following example: 

 public void testGetFlightsByOriginAirport_NoFlights()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      // Exercise System
      List flightsAtDestination1 =
            facade.getFlightsByOriginAirport(outboundAirport);
      // Verify Outcome
      assertEquals(0,flightsAtDestination1.size());
      facade.removeAirport(outboundAirport);
   }

This Naive In-line Teardown (see In-line Teardown on page 509) will tear down 
the fi xture when the test passes—but it won’t tear down the fi xture if the test 
fails or ends with an error. This is because the calls to the Assertion Meth-
ods (page 362) throw an exception; therefore, we may never make it to the 
teardown code. To ensure that the In-line Teardown code always executes, we 
must surround everything in the Test Method that might raise an exception with 
a try/catch control structure. Here’s the same test suitably modifi ed: 

   public void testGetFlightsByOriginAirport_NoFlights_td()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      try {
         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport(outboundAirport);

 Managing Persistent Fresh Fixtures 97
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         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         facade.removeAirport(outboundAirport);
      }
   }

Unfortunately, the mechanism to ensure that the teardown code always runs in-
troduces a fair bit of complication into the Test Method. Matters become even 
more complicated when we must tear down several resources: Even if our attempt 
to clean up one resource fails, we want to ensure that the other resources are still 
cleaned up. We can address part of this problem by using Extract Method [Fowler] 
refactoring to move the teardown code into a Test Utility Method (page 599) 
that we call from inside the error-handling construct. Although this Delegated
Teardown (see In-line Teardown) hides the complexity of dealing with teardown 
errors, we still need to ensure that the method gets called even when test errors 
or test failures occur. 

Most members of the xUnit family solve this problem by supporting Implicit
Teardown (page 516). The Test Automation Framework (page 298) calls a spe-
cial tearDown method after each Test Method regardless of whether the test passed 
or failed. This approach avoids placing the error-handling code within the Test 
Method but imposes two requirements on our tests. First, the fi xture must be 
accessible from the tearDown method, so we must use instance variables (pre-
ferred), class variables, or global variables to hold the fi xture. Second, we must 
ensure that the tearDown method works properly with each of the Test Methods
regardless of which fi xture it sets up.1

Matching Setup with Teardown Code Organization 

Given the three ways of organizing our setup code—In-line Setup (page 408), 
Delegated Setup (page 411), and Implicit Setup (page 424)—and the three ways 
of organizing our teardown code—In-line Teardown, Delegated Teardown, and 
Implicit Teardown—nine different combinations are available to us. Choosing 
the right one turns out to be an easy decision because it is not important for 
the teardown code to be visible to the test reader. We simply choose the most 
appropriate setup code organization and either the equivalent or more hidden 
version of teardown (Table 9.1). For example, it is appropriate to use Implicit
Teardown even with In-line Setup or Delegated Setup; it is almost never a good 

1 This is less of an issue with Testcase Class per Fixture (page 631) because the fi xture 
should always be the same. With other Testcase Class organizations, we may need to 
include Teardown Guard Clauses (see In-line Teardown) within the tearDown method to 
ensure that it doesn’t produce errors when it runs.
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idea to use In-line Teardown with anything other than In-line Setup, and even 
then it should probably be avoided! 

Table 9.1  The Compatibility of Various Fixture Setup and Teardown Strate-
gies for Persistent Test Fixtures

 Teardown Mechanism

Setup Mechanism In-line Teardown Delegated Teardown Implicit Teardown

In-line Setup Not recommended Acceptable Recommended

Delegated Setup Not recommended Acceptable Recommended

Implicit Setup Not recommended Not recommended Recommended

Automated Teardown 

Hand-coded teardown is associated with two problems: Extra work is required 
to write the tests, and the teardown code is hard to get right and even harder 
to test. When the teardown goes wrong, it may lead to Erratic Tests caused by 
Resource Leakage because the test that fails as a result is often different from the 
one that didn’t clean up properly. 

In languages that support garbage collection, tearing down a Transient Fresh 
Fixture should be pretty much automatic. As long as our fi xtures are referenced only 
by instance variables that go out of scope when our Testcase Object (page 382) is 
destroyed, garbage collection will clean them up. Garbage collection won’t work, 
however, if we use class variables or if our fi xtures include persistent objects such 
as fi les or database rows. In those cases, we need to perform our own cleanup. 

Not surprisingly, this situation may inspire the lazy but creative programmer 
to come up with a way to automate the teardown logic. The important thing to 
note is that teardown code doesn’t help us understand the test so it is better for 
it to remain hidden.2 We can eliminate the need to write hand-crafted teardown 
code for each Test Method or Testcase Class by building an Automated Tear-
down (page 503) mechanism. It consists of three parts: 

1. A well-tested mechanism to iterate over a list of objects that need to be 
deleted and catch/report any errors it encounters while ensuring that 
all the deletions are attempted. 

2. A dispatching mechanism that invokes the deletion code appropriate 
to the kind of object to be deleted. This mechanism is often imple-
mented as a Command [GOF] object that wraps each object to be 

2 Unlike setup code, which is often very important for understanding the test.

 Managing Persistent Fresh Fixtures

www.it-ebooks.info

http://www.it-ebooks.info/


100 Chapter 9  Persistent Fixture Management 

deleted, but could be as simple as calling a delete method on the object 
itself or using a switch statement based on the object’s class. 

3. A registration mechanism to add newly created objects (suitably 
wrapped if necessary) to the list of objects to be deleted. 

Once we have built our Automated Teardown mechanism, we can simply in-
voke the registration method from our Creation Methods (page 415) and the 
cleanup method from the tearDown method. The latter operation can be specifi ed 
in a Testcase Superclass (page 638) that all of our Testcase Classes inherit from. 
We can even extend this mechanism to delete objects created by the SUT as it 
is exercised. To do so, we use an observable Object Factory (see Dependency 
Lookup on page 686) inside the SUT and have our Testcase Superclass register 
itself as an Observer [GOF] of object creation. 

Database Teardown 

When our persistent Fresh Fixture has been built entirely in a relational database, 
we can take advantage of certain features of the database to implement its tear-
down. Table Truncation Teardown (page 661) is a brute-force way to blow away 
the entire contents of a table with a single database command. Of course, it is 
appropriate only when each Test Runner (page 377) has its own Database Sand-
box (page 650). A somewhat less drastic approach is to use Transaction Rollback 
Teardown (page 668) to undo all changes made within the context of the current 
test. This mechanism relies on the SUT having been designed using the Humble 
Transaction Controller pattern (see Humble Object on page 695) so that we can 
invoke the business logic from the test without having the SUT commit the trans-
action automatically. Both of these database-specifi c teardown patterns are most 
commonly implemented using Implicit Teardown to keep the teardown logic out 
of the Test Methods.

Avoiding the Need for Teardown 

So far, we have looked at ways to do fi xture teardown. Now, let us look at ways 
to avoid fi xture teardown. 

Avoiding Fixture Collisions 

We need to do fi xture teardown for three reasons: 

1. The accumulation of leftover fi xture objects can cause tests to run 
slowly. 
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2. The leftover fi xture objects can cause the SUT to behave differently or 
our assertions to report incorrect results.

3. The leftover fi xture objects can prevent us from creating the Fresh Fix-
ture required by our test. 

The issue that is easiest to address is the fi rst one: We can schedule a periodic 
cleansing of the persistence mechanism back to a known, minimalist state. Un-
fortunately, this tactic is useful only if we can get the tests to run correctly in the 
presence of accumulated test detritus. 

The second issue can be addressed by using Delta Assertions (page 485) 
rather than “absolute” assertions. Delta Assertions work by taking a snapshot 
of the fi xture before the test is run and verifying that the expected differences 
have appeared after we exercise the SUT. 

The third issue can be addressed by ensuring that each test generates a differ-
ent set of fi xture objects each time it is run. Thus any objects that the test needs 
to create must be given totally unique identifi ers—that is, unique fi lenames, 
unique keys, and so on. To do so, we can build a simple unique ID generator 
and create a new ID at the beginning of each test. We can then use that unique 
ID as part of the identity of each newly created fi xture object. If the fi xture is 
shared beyond a single Test Runner, we may need to include something about 
the user in the unique identifi ers we create; the currently logged-in user ID is 
usually suffi cient. Using Distinct Generated Values as keys offers another ben-
efi t: It allows us to implement a Database Partitioning Scheme (see Database 
Sandbox) in which we can use absolute assertions despite the presence of left-
over fi xture objects. 

Avoiding Fixture Persistence 

We seem to be going to a lot of trouble to undo the side effects caused by a 
persistent Fresh Fixture. Wouldn’t it be nice if we could avoid all of this work? 
The good news is that we can. The bad news is that we need to make our Fresh
Fixture nonpersistent to do so. When the SUT is to blame for the persistence of 
the fi xture, one possibility is to replace the persistence mechanism with a Test 
Double (page 522) that the test can wipe out at will. A good example of this ap-
proach is the use of a Fake Database (see Fake Object on page 551). When the 
test is to blame for fi xture persistence, the solution is even easier: Just use a less 
persistent fi xture reference mechanism. 

 Managing Persistent Fresh Fixtures
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Dealing with Slow Tests 

A major drawback of using a Persistent Fresh Fixture is speed or, more precisely, 
the lack thereof. File systems and databases are much slower than the processors 
used in modern computers. As a consequence, tests that interact with databases 
tend to run much more slowly than tests that run entirely in memory. Part of 
this difference arises because the SUT is accessing the fi xture from disk—but this 
issue turns out to be only a small part of the reason for the slowdown. Setting 
up the Fresh Fixture at the beginning of each test and tearing it down at the end 
of each test typically takes many more disk accesses than those used by the SUT 
to access the fi xture. As a result, tests that access the database often take 50 to 
100 times3 longer to run than tests that run entirely in memory, all other things 
being equal. 

The typical reaction to slow tests caused by Persistent Fresh Fixtures is to 
eliminate the fi xture setup and teardown overhead by reusing the fi xture across 
many tests. Assuming we have fi ve disk accesses to set up and tear down the 
fi xture for every disk access performed by the SUT, the absolute best4 we can 
do by switching to a Shared Fixture is somewhere around ten times as slow. 
Of course, this outcome is still too slow in most situations and it comes with a 
hefty price: The tests are no longer independent. That means we will likely have 
Interacting Tests (see Erratic Test), Lonely Tests (see Erratic Test), and Unre-
peatable Tests on top of our Slow Tests!

A much better solution is to eliminate the need to have a disk-based database 
under the application. With a small amount of effort, we should be able to re-
place the disk-based database with an In-Memory Database (see Fake Object)
or a Fake Database. This decision is best made early in the project while the 
effort is still low. Yes, there are some challenges, such as dealing with stored 
procedures, but they are all surmountable. 

This tactic isn’t the only way to deal with Slow Tests, of course. The side-
bar “Faster Tests Without Shared Fixtures” (page 319) explores some other 
strategies.

3 This is two orders of magnitude!
4 Your mileage may vary.
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Managing Shared Fixtures 

Managing Shared Fixtures has a lot in common with managing Persistent Fresh 
Fixtures, except that we deliberately choose not to tear the fi xture down after every 
test so that we can reuse it in subsequent tests (Figure 9.2). This implies two things. 
First, we must be able to access the fi xture in the other tests. Second, we must have 
a way of triggering both the construction and the teardown of the fi xture. 

Figure 9.2  A Shared Fixture with two Test Methods that share it. A Shared 
Fixture is set up once and used by two or more tests that may interact, either 
deliberately or accidentally, as a result. Note the lack of a fi xture setup phase for 
the second test. 

Accessing Shared Fixtures 

Regardless of how and when we choose to build the Shared Fixture, the tests 
need a way to fi nd the test fi xture they are to reuse. The choices available to 
us depend on the nature of the fi xture. When the fi xture is stored in a database 
(the most common usage of a Shared Fixture), tests may access it directly with-
out making direct references to the fi xture objects as long as they know about 
the database. There may be a temptation to use Hard-Coded Values (see Literal 
Value on page 714) in database lookups to access the fi xture objects. This is al-
most always a bad idea, however, because it leads to a close coupling between 
tests and the fi xture implementation and because it has poor documentation value 
(Obscure Test; page 186). To avoid these potential problems, we can use Finder 
Methods (see Test Utility Method) with Intent-Revealing Names [SBPP] to access 
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the fi xture. These Finder Methods may have names that are very similar to those 
of Creation Methods, but they return references to existing fi xture objects rather 
than building brand new ones. 

We have a range of possible solutions when the fi xture is stored in memory. If 
all tests that need to share the fi xture are in the same Testcase Class, we can use a 
fi xture holding class variable to hold the reference to the fi xture. As long as we give 
the variable an Intent-Revealing Name, the test reader should be able to understand 
the pre-conditions of the test. Another alternative is to use a Finder Method.

If we need to share the fi xture across many Testcase Classes, we must use a 
more sophisticated technique. We could, of course, let one class declare the fi xture 
holding class variable and have the other tests access the fi xture via that variable. 
Unfortunately, this approach may create unnecessary coupling between the tests. 
Another alternative is to move the declaration to a well-known object—namely, a 
Test Fixture Registry (see Test Helper on page 643). This Registry [PEAA] object 
could be something like a test database or it could merely be a class. It can expose 
various parts of a fi xture via discrete fi xture holding class variables or via Finder 
Methods. When the Test Fixture Registry has only Finder Methods that know how 
to access the objects but don’t hold references to them, we call it a Test Helper.

Triggering Shared Fixture Construction 

For a test fi xture to be shared, it must be built before any Test Method needs it. 
This construction could take place as late as right before the Test Method’s logic 
is run, just before the entire test suite is run, or at some earlier time (Figure 9.3). 
This leads us to the basic patterns of Shared Fixture creation. 

Figure 9.3  The plethora of ways to manage a Shared Fixture. A Shared Fixture 
can be set up at a variety of times; the decision is based on how many tests need 
to reuse the fi xture and how many times they need to do so. 
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If we are happy with the idea of creating the test fi xture the fi rst time any test 
needs it, we can use Lazy Setup (page 435) in the setUp method of the corre-
sponding Testcase Class to create it as part of running the fi rst test. Subsequent 
tests will then see that the fi xture already exists and reuse it. Because there is no 
obvious signal that the last test in a test suite (or Suite of Suites; see Test Suite 
Object on page 387) has been run, we won’t know when to tear down the fi x-
ture after each test run. This can lead to Unrepeatable Tests because the fi xture 
may survive across test runs (depending on how the various tests access it). 

If we need to share the fi xture more broadly, we could include a Fixture Set-
up Testcase at the beginning of the test suite. This is a special case of Chained
Tests and suffers from the same problem as Lazy Setup—specifi cally, we don’t 
know when it is time to tear down the fi xture. It also depends on the ordering 
of tests within a suite, so it works best with Test Enumeration (page 399). 

If we need to be able to tear down the test fi xture after running a test suite, 
we must use a fi xture management mechanism that tells us when the last test 
has been run. Several members of the xUnit family support the concept of a 
setUp method that runs just once for the test suite created from a single Testcase 
Class. This Suite Fixture Setup (page 441) method has a corresponding tearDown
method that is called when the last Test Method has fi nished running.5 We can 
then guarantee that a new fi xture is built for each test run. The fi xture is not left 
over to cause problems with subsequent test runs, which prevents Unrepeatable
Tests; it does not prevent Interacting Tests within the test run, however. This 
capability could be added as an extension to any member of the xUnit family. 
When it isn’t supported or when we need to share the fi xture beyond a single 
Testcase Class, we can resort to using a Setup Decorator (page 447) to bracket 
the running of a test suite with the execution of the fi xture setUp and tearDown
logic. The biggest drawback of Setup Decorator is that tests that depend on the 
decorator cannot be run by themselves; they are Lonely Tests.

The fi nal option is to build the fi xture well before the tests are run—that is, 
to employ a Prebuilt Fixture (page 429). This approach offers the most options 
regarding how the test fi xture is actually constructed because the fi xture setup 
need not be executable from within xUnit. For example, it could be set up manu-
ally, by using database scripts, by copying a “golden” database, or by running 
a data generation program. The major disadvantage with a Prebuilt Fixture
is that if any tests are Unrepeatable Tests, we will need to perform a Manual 
Intervention (page 250) before each test run. As a result, a Prebuilt Fixture is of-
ten used in combination with a Fresh Fixture to construct an Immutable Shared 
Fixture (see Shared Fixture). 

5 Think of it as a built-in decorator for a single Testcase Class.

 Managing Shared Fixtures
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What’s Next? 

Now that we’ve determined how we will set up and tear down our fi xtures, we are 
ready to turn our attention to exercising the SUT and verifying that the expected 
outcome has occurred using calls to Assertion Methods. This process is described 
in more detail in Chapter 10, Result Verifi cation.
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Chapter 10 

Result Verifi cation 

About This Chapter 

Chapter 8, Transient Fixture Management, and Chapter 9, Persistent Fixture 
Management, described how to set up the test fi xture and how to tear it down 
after exercising the SUT. This chapter introduces a variety of options for verify-
ing that the SUT has behaved correctly, including exercising the SUT and com-
paring the actual outcome with the expected outcome. 

Making Tests Self-Checking 

One of the key characteristics of tests automated using xUnit is that they can be 
(and should be) Self-Checking Tests (see Goals of Test Automation on page 21).
This characteristic makes them cost-effective enough to be run very frequently. 
Most members of the xUnit family come with a collection of built-in Assertion
Methods (page 362) and some documentation that tells us which one to use 
when. On the surface this sounds pretty simple—but there’s a lot more to writ-
ing good tests than just calling the built-in Assertion Methods. We also need to 
learn key techniques for making tests easy to understand and for avoiding and 
removing Test Code Duplication (page 213). 

A key challenge in coding the assertions is getting access to the information 
we want to compare with the expected results. This is where observation points 
come into play; they provide a window into the state or behavior of the SUT 
so that we can pass it to the Assertion Methods. Observation points for infor-
mation accessible via synchronous method calls are relatively straightforward; 
observation points for other kinds of information can be quite challenging, 
which is precisely what makes automated unit testing so interesting. 

Assertions are usually—but not always—called from within the Test Method
(page 348) body right after the SUT has been exercised. Some test automaters put 
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assertions after the fi xture setup phase of the test to ensure that the fi xture is set 
up correctly. This practice almost always contributes to Obscure Tests (page 186), 
so I would rather write unit tests for the Test Utility Methods (page 599).1 Some 
styles of testing do require us to set up our expectations before we exercise the SUT; 
this topic is discussed in more detail in Chapter 11, Using Test Doubles. We’ll see 
several examples of calling Assertion Methods from within Test Utility Methods
in this chapter. 

One possible—though rarely used—place to put calls to Assertion Methods is 
in the tearDown method used in Implicit Teardown (page 516). Because this method 
is run for every test, whether that test passed or failed (as long as the setUp method 
succeeded), one can put assertions here. This scheme involves the same trade-off as 
using Implicit Setup (page 424) for building our test fi xture; it’s less visible but done 
automatically. See the sidebar “Using Delta Assertions to Detect Data Leakage” 
(page 487) for an example of putting assertions in the tearDown method used by 
Implicit Teardown of a superclass to detect when tests leave leftover test objects 
in the database. 

Verify State or Behavior? 

Ultimately, test automation is about verifying the behavior of the SUT. Some 
aspects of the SUT’s behavior can be verifi ed directly; the value returned by a 
function is a good example. Other aspects of the behavior are more easily veri-
fi ed indirectly by looking at the state of some object. We can verify the actual 
behavior of the SUT in our tests in two ways: 

1. We can verify the states of various objects affected by the SUT by 
extracting each state using an observation point and using assertions 
to compare it to the expected state. 

2. We can verify the behavior of the SUT directly by using observation 
points inserted between the SUT and its depended-on component 
(DOC) to monitor its interactions (in the form of the method calls it 
makes) and comparing those method calls with what we expected. 

State Verifi cation (page 462) is done using assertions and is the simpler of the 
two approaches. Behavior Verifi cation (page 468) is more complicated and 
builds on the assertion techniques we use for verifying state. 

1 The one exception is when we must use a Shared Fixture (page 317); it may be worth-
while to use a Guard Assertion (page 490) to document what the test requires from it and 
to produce a test failure if the fi xture is corrupted. We could also do so from within the 
Finder Methods (see Test Utility Method) that we use to retrieve the objects in the Shared
Fixture (page 317) we will use in our tests.
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State Verifi cation

The “normal” way to verify the expected outcome has occurred is called State 
Verifi cation (Figure 10.1). First we exercise the SUT; then we examine the post-
exercise state of the SUT using assertions. We may also examine anything returned 
by the SUT as a result of the method call we made to exercise it. What is most 
notable is what we do not do: We do not instrument the SUT in any way to detect 
how it interacts with other components of the system. That is, we inspect only 
direct outputs and we use only direct method calls as our observation points.

Figure 10.1  State Verifi cation. In State Verifi cation, we assert that the SUT and 
any objects it returns are in the expected state after we have exercised the SUT. 
We “pay no attention to the man behind the curtain.” 

State Verifi cation can be done in two slightly different ways. Procedural State 
Verifi cation (see State Verifi cation) involves writing a sequence of assertions that 
pick apart the end state of the SUT and verify that it is as expected. Expected
Object (see State Verifi cation) is a way of describing the expected state in such a 
way that it can be compared with a single Assertion Method call; this approach 
minimizes Test Code Duplication and increases test clarity (more on this later 
in this chapter). With both strategies, we can use either “built-in” assertions or 
Custom Assertions (page 474). 
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Using Built-in Assertions 

We use the assertions provided by our testing framework to specify what should
be and depend on them to tell us when it isn’t so! But simply using the built-in 
assertions is only a small part of the story. 

The simplest form of result verifi cation is the assertion in which we specify 
what should be true. Most members of the xUnit family support a range of dif-
ferent Assertion Methods, including the following: 

• Stated Outcome Assertions (see Assertion Method) such as assertTrue
(aBooleanExpression)

• Simple Equality Assertions such as assertEquals(expected, actual)

• Fuzzy Equality Assertions such as assertEquals(expected, actual, tolerance),
which are used for comparing fl oats

Of course, the test programming language has some infl uence on the nature of 
the assertions. In JUnit, SUnit, CppUnit, NUnit, and CsUnit, most of the Equal-
ity Assertions take a pair of Objects as their parameters. Some languages support 
“overloading” of method parameter types so we can have different implemen-
tations of an assertion for different types of objects. Some languages—C, for 
example—don’t support objects, so we cannot compare objects, only values. 

There are several issues to consider when using Assertion Methods. Naturally, 
the fi rst priority is the verifi cation of all things that should be true. The better 
our assertions, the fi ner our Safety Net (see page 24) and the higher our confi -
dence in our code. The second priority is the documentation value of the asser-
tions. Each test should make it very clear that “When the system is in state S1 
and I do X, the result should be R and the system should be in state S2.” We 
put the system into state S1 in our fi xture setup logic. “I do X” corresponds to 
the exercise SUT phase of the test. “The result is R” and “the system is in state 
S2” are implemented using assertions. Thus we want to write our assertions in 
such a way that they succinctly describe “R” and “S2.” 

Another thing to consider is that when the test fails, we want the failure 
message to tell us enough to enable us to identify the problem.2 Therefore, we 
should almost always include an Assertion Message (page 370) as the optional 
message parameter (assuming our xUnit family member has one!). This tactic 
avoids the possibility of us playing Assertion Roulette (page 224), in which we 
cannot even tell which assertion is failing without running the test interactively; 

2 In his book [TDD-APG], Dave Astels claims he never/rarely used the Eclipse Debugger 
while writing the code samples because the assertions always told him enough about 
what was wrong. This is what we strive for!
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it makes Integration Build [SCM] failures much easier to reproduce and fi x. It 
also makes troubleshooting broken tests easier by telling us what should have
happened; the actual outcome tells us what did happen! 

When we use a Stated Outcome Assertion (such as JUnit’s assertTrue), the 
failure messages tend to be unhelpful (e.g., “Assertion failed”). We can make 
the assertion output much more specifi c by using an Argument-Describing Mes-
sage (see Assertion Message) constructed by incorporating useful bits of data 
into the message. A good start is to include each of the values in the expression 
passed as the Assertion Method’s arguments. 

Delta Assertions

When using a Shared Fixture (page 317), we may fi nd that we have Interacting
Tests (see Erratic Test on page 228) because each test adds more objects/rows 
into the database and we can never be certain exactly what should be there af-
ter the SUT has been exercised. One way to deal with this uncertainty is to use 
Delta Assertions (page 485) to verify only the newly added objects/rows. In this 
approach, we take some sort of “snapshot” of the relevant tables/classes at the 
beginning of the test; we then remove these tables/classes from the collection 
of actual objects/rows produced at the end of the test before comparing them 
to the Expected Objects. Although this tactic can introduce signifi cant extra 
complexity into the tests, the added complexity can be refactored into Custom
Assertions and/or Verifi cation Methods (see Custom Assertion). The “before” 
snapshot may be taken on an in-line basis within the Test Method or in the 
setUp method if all setup occurs before the Test Method is invoked [e.g., Implicit
Setup, a Shared Fixture, or a Prebuilt Fixture (page 429)].

External Result Verifi cation 

Thus far we have described only conventional “in-memory” verifi cation of the 
expected results. In fact, another approach is possible—one that involves storing 
the expected and actual results in fi les and using an external comparison pro-
gram to report on any differences. This is, in effect, a form of Custom Assertion
that uses a “deep compare” on two fi le references. The comparison program 
often needs to be told which parts of the fi les to ignore (or these parts need to be 
stripped out fi rst), effectively making this a Fuzzy Equality Assertion.

External result verifi cation is particularly appropriate for automating accep-
tance tests for regression-testing an application that hasn’t changed very much. 
The major disadvantage of this approach is that we almost always end up with a 
Mystery Guest (see Obscure Test) from the test reader’s perspective because the 

 State Verification
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expected results are not visible inside the test. One way to avoid this problem is 
to have the test write the contents of the expected fi le, thereby making the con-
tents visible to the test reader. This step is practical only if the amount of data is 
quite small—another argument in favor of a Minimal Fixture (page 302). 

Verifying Behavior 

Verifying behavior is more complicated than verifying state because behavior is 
dynamic. We have to catch the SUT “in the act” as it generates indirect outputs 
to the objects it depends on (Figure 10.2). Two basic styles of behavior verifi ca-
tion are worth discussing: Procedural Behavior Verifi cation and Expected
Behavior. Both require a mechanism to access the outgoing method calls of the 
SUT (its indirect outputs). This and other uses of Test Doubles (page 522) are 
described in more detail in Chapter 11, Using Test Doubles.

Figure 10.2  Behavior Verifi cation. In Behavior Verifi cation, we focus our 
assertions on the indirect outputs (outgoing interfaces) of the SUT. This typically 
involves replacing the DOC with something that facilitates observing and 
verifying the outgoing calls. 
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Procedural Behavior Verifi cation 

In Procedural Behavior Verifi cation, we capture the behavior of the SUT as it 
executes and save that data for later retrieval. The test then compares each out-
put of the SUT (one by one) with the corresponding expected output. Thus, in 
Procedural Behavior Verifi cation, the test executes a procedure (a set of steps) 
to verify the behavior. 

   public void testRemoveFlightLogging_recordingTestStub()
            throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnUnregFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      //    Test Double setup
      AuditLogSpy logSpy = new AuditLogSpy();
      facade.setAuditLog(logSpy);
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertEquals("number of calls", 1,
                   logSpy.getNumberOfCalls());
      assertEquals("action code",
                   Helper.REMOVE_FLIGHT_ACTION_CODE,
                   logSpy.getActionCode());
      assertEquals("date", helper.getTodaysDateWithoutTime(),
                   logSpy.getDate());
      assertEquals("user", Helper.TEST_USER_NAME,
                   logSpy.getUser());
      assertEquals("detail",
                   expectedFlightDto.getFlightNumber(),
                   logSpy.getDetail());
   }

The key challenge in Procedural Behavior Verifi cation is capturing the behavior 
as it occurs and saving it until the test is ready to use this information. This task 
is accomplished by confi guring the SUT to use a Test Spy (page 538) or a Self
Shunt (see Hard-Coded Test Double on page 568)3 instead of the depended-on 
class. After the SUT has been exercised, the test retrieves the recording of the 
behavior and verifi es it using assertions. 

Expected Behavior Specifi cation 

If we can build an Expected Object and compare it with the actual object 
returned by the SUT for verifying state, can we do something similar for verifying 

3 A Test Spy built into the Testcase Class (page 373).

 Verifying Behavior
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behavior? Yes, we can and do. Expected Behavior is often used in conjunction 
with layer-crossing tests to verify the indirect outputs of an object or compo-
nent. We confi gure a Mock Object (page 544) with the method calls we expect 
the SUT to make to it and install this object before exercising the SUT. 

   public void testRemoveFlight_JMock() throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnonRegFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      // mock configuration
      Mock mockLog = mock(AuditLog.class);
      mockLog.expects(once()).method("logMessage")
               .with(eq(helper.getTodaysDateWithoutTime()),
                     eq(Helper.TEST_USER_NAME),
                     eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
                     eq(expectedFlightDto.getFlightNumber()));
      // mock installation
      facade.setAuditLog((AuditLog) mockLog.proxy());
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      // verify() method called automatically by JMock
   }

Reducing Test Code Duplication 

One of the most common test smells is Test Code Duplication. With every test 
we write, there is a good chance we have introduced some duplication, but 
especially if we used “cut and paste” to create a new test from an existing test. 
Some will argue that duplication in test code is not nearly as bad as duplication 
in production code. Test Code Duplication is bad if it leads to some other smell 
such as Fragile Test (page 239), Fragile Fixture (see Fragile Test), or High Test 
Maintenance Cost (page 265) because too many tests are too closely coupled to 
the Standard Fixture (page 305) or the API of the SUT. In addition, Test Code 
Duplication may sometimes be a symptom of another problem—namely, the 
intent of the tests being obscured by too much code (i.e., an Obscure Test).

In result verifi cation logic, Test Code Duplication usually shows up as a set 
of repeated assertions. Several techniques are available to reduce the number of 
assertions in such cases: 
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• Expected Objects

• Custom Assertions

• Verifi cation Methods

Expected Objects 

Often, we will fi nd ourselves doing a series of assertions on different fi elds of 
the same object. If we begin repeating this group of assertions (whether multiple 
times in a single test or in multiple tests), we should look for a way to reduce the 
Test Code Duplication. The next listing shows one Test Method that compares 
several attributes of a single object. Many other Test Methods probably require 
the same sequence of assertions.

   public void testInvoice_addLineItem7() {
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem.getInv(), actual.getInv());
      assertEquals(expItem.getProd(), actual.getProd());
      assertEquals(expItem.getQuantity(), actual.getQuantity());
   }

The most obvious alternative is to use a single Equality Assertion to compare 
two whole objects to each other rather than using many Equality Assertion calls 
to compare them fi eld by fi eld. If the values are stored in individual variables, we 
may need to create a new object of the appropriate class and initialize its fi elds 
with those values. This technique works as long as we have an equals method 
that compares only those fi elds and we have the ability to create the Expected
Object at will. 

   public void testInvoice_addLineItem8() {
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals("Item", expItem, actual);
   }

But what if we don’t want to compare all the fi elds in an object or the equals
method looks for identity rather than equality? What if we want test-specifi c 

 Reducing Test Code Duplication
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equality? What if we cannot create an instance of the Expected Object because 
no constructor exists? In this scenario, we have two options: We can implement 
a Custom Assertion that defi nes equality the way we want it or we can imple-
ment our test-specifi c equality in the equals method of the class of the Expected
Object we pass to the Assertion Method. This class doesn’t need to be the same 
class as that of the actual object; it just needs to implement equals to compare 
itself with an instance of the actual object’s class. Therefore, it can be a simple 
Data Transfer Object [CJ2EEP] or it can be a Test-Specifi c Subclass (page 579) 
of the real (production) class with just the equals method overridden. 

Some test automaters don’t think we should ever rely on the equals method 
of the SUT when making assertions because it could change, thereby causing 
tests that depend on this method to fail (or to miss important differences). I pre-
fer to be pragmatic about this decision. If it seems reasonable to use the equals
defi nition supplied by the SUT, then I do so. If I need something else, I defi ne 
a Custom Assertion or a test-specifi c Expected Object class. I also ask myself 
how hard it would be to change my strategy if the equals method should later 
change. For example, in statically typed languages that support parameter type 
overloading (such as Java), we can add a Custom Assertion that uses different 
parameter types to override the default implementation when specifi c types are 
used. This code can often be retrofi tted quite easily if a change to equals causes 
problems at a later date. 

Custom Assertions

A Custom Assertion is a domain-specifi c assertion we write ourselves. Custom
Assertions hide the procedure for verifying the results behind a declarative name, 
making our result verifi cation logic more intent-revealing. They also prevent 
Obscure Tests by eliminating of a lot of potentially distracting code. Another 
benefi t of moving the code into a Custom Assertion is that the assertion logic 
can now be unit-tested by writing Custom Assertion Tests (see Custom Asser-
tion). The assertions are no longer Untestable Test Code (see Hard-to-Test Code 
on page 209)!

   static void assertLineItemsEqual(
                     String  msg, LineItem exp, LineItem act) {
      assertEquals (msg+" Inv",  exp.getInv(), act.getInv());
      assertEquals (msg+" Prod", exp.getProd(), act.getProd());
      assertEquals (msg+" Quan", exp.getQuantity(), act.getQuantity());
   }

There are two ways to create Custom Assertions: (1) by refactoring existing 
complex test code to reduce Test Code Duplication and (2) by coding calls to 
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nonexistent Assertion Methods as we write tests and then fi lling in the method 
bodies with the appropriate logic once we land on the suite of Custom Assertions
needed by a set of Test Methods. The latter technique is a good way of reminding 
ourselves what we expect the outcome of exercising the SUT to be, even though 
we haven’t yet written the code to verify it. Either way, the defi nition of a set 
of Custom Assertions is the fi rst step toward creating a Higher-Level Language 
(see page 41) for specifying our tests. 

When refactoring to Custom Assertions, we simply use Extract Method 
[Fowler] on the repeated assertions and give the new method an Intent-Revealing 
Name [SBPP]. We pass in the objects used by the existing verifi cation logic as 
arguments and include an Assertion Message to differentiate between calls to 
the same assertion method. 

Outcome-Describing Verifi cation Method 

Another technique that is born from ruthless refactoring of test code is the “out-
come-describing” Verifi cation Method. Suppose we fi nd that a group of tests all 
have identical exercise SUT and verify outcome sections. Only the setup portion 
is different for each test. If we do an Extract Method refactoring on the common 
code and give it a meaningful name, we need less code, achieve more understand-
able tests, and produce testable verifi cation logic all at the same time! If this isn’t 
a worthwhile reason for refactoring code, then I don’t know what else could be. 

   void assertInvoiceContainsOnlyThisLineItem(
                                     Invoice inv,
                                     LineItem expItem) {
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("",expItem, actual);
   }

The major difference between a Verifi cation Method and a Custom Assertion
is that the latter only makes assertions, while the former also interacts with 
the SUT (typically for the purpose of exercising it). Another difference is that 
Custom Assertions typically have a standard Equality Assertion signature: 
assertSomething(message, expected, actual). In contrast, Verifi cation Methods may 
have completely arbitrary parameters because they require additional param-
eters to pass into the SUT. They are, in essence, halfway between a Custom
Assertion and a Parameterized Test (page 607). 

 Reducing Test Code Duplication
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Parameterized and Data-Driven Tests 

We can go even further in factoring out the commonality between tests. If the 
logic to set up the test fi xture is the same but uses different data, we can extract 
the common fi xture setup, exercise SUT, and verify outcome phases of the test 
into a new Parameterized Test method. This Parameterized Test is not called 
automatically by the Test Automation Framework (page 298) because it requires 
arguments; instead, we defi ne very simple Test Methods for each test, which 
then call the Parameterized Test and pass in the data required to make this test 
unique. This data may include that required for fi xture setup, exercising the 
SUT, and the corresponding expected result. In the following tests, the method 
generateAndVerifyHtml is the Parameterized Test.

   def test_extref
        sourceXml = "<extref id='abc' />"
        expectedHtml = "<a href='abc.html'>abc</a>"
        generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")
   end

   def test_testterm_normal
      sourceXml = "<testterm id='abc'/>"
      expectedHtml = "<a href='abc.html'>abc</a>"
      generateAndVerifyHtml(sourceXml,expectedHtml,"<testterm>")
   end

   def test_testterm_plural
      sourceXml = "<testterms id='abc'/>"
      expectedHtml = "<a href='abc.html'>abcs</a>"
      generateAndVerifyHtml(sourceXml,expectedHtml,"<plural>")
   end

In a Data-Driven Test (page 288), the test case is completely generic and directly 
executable by the framework; it reads the arguments from a test data fi le as it 
executes. Think of a Data-Driven Test as a Parameterized Test turned inside out: 
A Test Method passes test-specifi c data to a Parameterized Test; a Data-Driven
Test is the Test Method and reads the test-specifi c data from a fi le. The contents 
of the fi le are a Higher-Level Language for testing; the Data-Driven Test method 
is the Interpreter [GOF] of that language. This scheme is the xUnit equivalent of 
a Fit test. A simple example of a Data-Driven Test method is shown in this code 
sample written in Ruby:

   def test_crossref
      executeDataDrivenTest "CrossrefHandlerTest.txt"
   end

   def executeDataDrivenTest filename
      dataFile = File.open(filename)

www.it-ebooks.info

http://www.it-ebooks.info/


119

      dataFile.each_line do | line |
        desc, action, part2 = line.split(",")
         sourceXml, expectedHtml, leftOver = part2.split(",")
         if "crossref"==action.strip
            generateAndVerifyHtml sourceXml, expectedHtml, desc
         else # new "verbs" go before here as elsif's
            report_error( "unknown action" + action.strip )
         end
      end
    end

Here is the comma-delimited data fi le that the Data-Driven Test method reads: 

ID,    Action,     SourceXml,         ExpectedHtml
Extref,crossref,<extref id='abc'/>,<a href='abc.html'>abc</a>
TTerm,crossref,<testterm id='abc'/>,<a href='abc.html'>abc</a>
TTerms,crossref,<testterms id='abc'/>,<a href='abc.html'>abcs</a>

Avoiding Conditional Test Logic 

Another thing we want to avoid in our tests is conditional logic. Conditional
Test Logic (page 200) is bad because the same test may execute differently in 
different circumstances. Conditional Test Logic reduces our trust in the tests 
because the code in our Test Methods is Untestable Test Code. Why is this 
important? Because the only way we can verify our Test Method is to manually 
edit the SUT so that it produces the error we want to be detected. If the Test 
Method has many paths through it, we need to make sure each path is coded 
correctly. Isn’t it so much simpler just to have only one possible execution path 
through the test? Let us look at some reasons why we might include conditional 
logic in our tests: 

• We don’t want to execute certain assertions because their execution 
doesn’t make sense given what we have already discovered at this point 
in the test (typically a failure condition). 

• We have to allow for various situations in the actual results that we are 
comparing to the expected results. 

• We are trying to reuse a Test Method in several different circumstances 
(essentially merging several tests into a single Test Method).

The problem with using Conditional Test Logic in the fi rst two cases is that it 
makes the code hard to read and may mask cases of reusing test methods via 
Flexible Tests (see Conditional Test Logic). The last “reason” is just a bad idea, 

 Avoiding Conditional Test Logic
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plain and simple. There are much better ways of reusing test logic than trying 
to reuse the Test Method itself. We have already seen some of these reuse tech-
niques elsewhere in this chapter (in Reducing Test Code Duplication), and we 
will see other ways elsewhere in this book. Just say “no”! 

The good news is that it is relatively straightforward to remove all legitimate 
uses of Conditional Test Logic from our tests. 

Eliminating “if” Statements 

What should we do when we don’t want to execute an assertion because we 
know it will result in a test error and we would prefer to have a more meaning-
ful test failure message? The normal reaction is to place the assertion inside an 
“if” statement, as shown in the following listing. Unfortunately, this approach 
results in Conditional Test Logic, which we would dearly like to avoid because 
we want exactly the same code to run each time we run the test. 

         List lineItems = invoice.getLineItems();
         if (lineItems.size() == 1) {
            LineItem expected =
               new LineItem(invoice, product,5,
                            new BigDecimal("30"),
                            new BigDecimal("69.96"));
            LineItem actItem = (LineItem) lineItems.get(0);
            assertEquals("invoice", expected, actItem);
         } else {
            fail("Invoice should have exactly one line item");
         }

The preferred solution is to use a Guard Assertion (page 490) as shown in this 
revised version of the test code: 

         List lineItems = invoice.getLineItems();
         assertEquals("number of items", lineItems.size(), 1);
         LineItem expected =
            new LineItem(invoice, product, 5,
                         new BigDecimal("30"),
                         new BigDecimal("69.96"));
         LineItem actItem = (LineItem) lineItems.get(0);
         assertEquals("invoice", expected, actItem);

The nice thing about Guard Assertions is that they keep us from hitting the as-
sertion that would cause a test error but without introducing Conditional Test 
Logic. Once we get used to them, these assertions are fairly obvious and intuitive 
to read. We may even fi nd ourselves wanting to assert the pre-conditions of our 
methods in our production code! 
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Eliminating Loops 

Conditional Test Logic may also appear as loops that verify the content of a col-
lection returned by the SUT matches what we expected. Putting loops directly 
into the Test Method creates three problems: 

• It introduces Untestable Test Code because the looping code, which is part 
of the test, cannot be tested with Fully Automated Tests (see page 26). 

• It leads to Obscure Tests because all that looping code obscures the real 
intent: Does or doesn’t the collection match? 

• It can lead to the project-level smell Developers Not Writing 
Tests (page 263) because the complexity of writing the loops may dis-
courage the developer from writing the Self-Checking Test.

A better solution is to delegate this logic to a Test Utility Method with an Intent-
Revealing Name, which can be both tested and reused. 

Other Techniques 

This section outlines some other techniques for writing easy-to-understand tests. 

Working Backward, Outside-In 

A useful little trick for writing very intent-revealing code is to work backward. 
This is an application of Stephen Covey’s idea, “Start with the end in mind.” To 
do so, we write the last line of the function or test fi rst. For a function, its whole 
reason for existence is to return a value; for a procedure, it is to produce one or 
more side effects by modifying something. For a test, the raison d’ tre is to verify 
that the expected outcome has occurred (by making assertions). 

Working backward means we write these assertions fi rst. We assert on the values 
of suitably named local variables to ensure that the assertion is intent-revealing. 
The rest of writing the test simply consists of fi lling in whatever is needed to 
execute those assertions: We declare variables to hold the assertion arguments 
and initialize them with the appropriate content. Because at least one argument 
should have been retrieved from the SUT, we must, of course, invoke the SUT. 
To do so, we may need some variables to use as SUT arguments. Declaring and 
initializing a variable after it has been used forces us to understand the variable 
better when we introduce it. This scheme also results in better variable names 
and avoids meaningless names like invoice1 and invoice2.

 Other Techniques 
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Working “outside-in” (or “top-down” as it is sometimes called) means staying 
at a consistent level of abstraction. The Test Method should focus on what we 
need to have in place to induce the relevant behavior in the SUT. The mechanics 
of how we reach that place should be delegated to a “lower layer” of test soft-
ware. In practice, we code this behavior as calls to Test Utility Methods, which 
allows us to stay focused on the requirements of the SUT as we write each Test 
Method. We don’t need to worry about how we will create that object or verify 
that outcome; we merely need to describe what that object or outcome should
be. The utility method we just used but haven’t yet defi ned acts as a placeholder 
for the unfi nished test automation logic.4 We can move on to writing the other 
tests we need for this SUT while they are still fresh in our minds. Later, we can 
switch to our “toolsmith” hat and implement the Test Utility Methods.

Using Test-Driven Development to Write Test Utility 
Methods

Once we are fi nished writing the Test Method(s) that used the Test Utility Method,
we can start the process of writing the Test Utility Method itself. Along the way, 
we can take advantage of test-driven development by writing Test Utility Tests 
(see Test Utility Method). It doesn’t take very long to write these unit tests that 
verify the behavior of our Test Utility Methods and we will have much more 
confi dence in them. 

We start with the simple case (say, asserting the equality of two identical 
collections that hold the same item) and work up to the most complicated case 
that the Test Methods actually require (say, two collections that contain the 
same two items but in different order). TDD helps us fi nd the minimal implemen-
tation of the Test Utility Method, which may be much simpler than a complete 
generic solution. There is no point in writing generic logic that handles cases that 
aren’t actually needed but it may be worthwhile to include a Guard Assertion or 
two inside the Custom Assertion to fail tests in cases it doesn’t support. 

Where to Put Reusable Verifi cation Logic? 

Suppose we have decided to use Extract Method refactorings to create some reus-
able Custom Assertions or we have decided to write our tests in an intent-revealing 
way using Verifi cation Methods. Where should we put these bits of reusable test 

4 We should always give this method an Intent-Revealing Name and stub it out with a call 
to the fail assertion to remind ourselves that we still need to write the method’s body.
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logic? The most obvious place is in the Testcase Class (page 373) itself. We can 
allow this logic to be reused more broadly by using a Pull-Up Method [Fowler] 
refactoring to move them up to a Testcase Superclass (page 638) or a Move Method 
[Fowler] refactoring to move them into a Test Helper (page 643). This issue is dis-
cussed in more detail in Chapter 12, Organizing Our Tests.

What’s Next? 

This discussion of techniques for verifying the expected outcome concludes our 
introduction to the basic techniques of automating tests using xUnit. Chapter 11, 
Using Test Doubles, introduces some advanced techniques involving the use of 
Test Doubles.

 What’s Next?
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Chapter 11 

Using Test Doubles 

About This Chapter 

The last few chapters concluding with Chapter 10, Result Verifi cation, intro-
duced the basic mechanisms of running tests using the xUnit family of Test 
Automation Frameworks (page 298). For the most part we assumed that the SUT 
was designed such that it could be tested easily in isolation of other pieces of soft-
ware. When a class does not depend on any other classes, testing it is relatively 
straightforward and the techniques described in this chapter are unnecessary. 
When a class does depend on other classes, we have two choices: We can test it 
together with all the other classes it depends on or we can try to isolate it from the 
other classes so that we can test it by itself. This chapter introduces techniques for 
isolating the SUT from the other software components on which it depends. 

What Are Indirect Inputs and Outputs? 

The problem with testing classes in groups or clusters is that it becomes very hard 
to cover all the paths through the code. The depended-on component (DOC) may 
return values or throw exceptions that affect the behavior of the SUT, but it may 
prove diffi cult or impossible to cause certain cases to occur. The indirect inputs 
received from the DOC may be unpredictable (such as the system clock or cal-
endar). In other cases, the DOC may not be available in the test environment or 
may not even exist. How can we test dependent classes in these circumstances? 

In other cases, we need to verify that certain side effects of executing the 
SUT have, indeed, occurred. If it is too diffi cult to monitor these indirect
outputs of the SUT (or if it is too expensive to retrieve them), the effectiveness of 
our automated testing may be compromised. 

As you will no doubt have guessed from the title of this chapter, the solution 
to these problems is often the use of a Test Double (page 522). We will start by 
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looking at how we can use Test Doubles to test indirect inputs and outputs. We 
will then describe a few other uses of these helpful mechanisms. 

Why Do We Care about Indirect Inputs? 

Calls to DOCs often return objects or values, update their arguments or even throw 
exceptions. Many of the execution paths within the SUT are intended to deal with 
these return values and to handle the possible exceptions. Leaving these paths un-
tested leads to Untested Code (see Production Bugs on page 268). These paths can 
be the most challenging to test effectively but are also among the most likely to lead 
to catastrophic failures if exercised for the very fi rst time in production.

We certainly would rather not have the exception-handling code execute for the 
fi rst time in production. What if it was coded incorrectly? Clearly, it would be high-
ly desirable to have automated tests for such code. The testing challenge is to some-
how cause the DOC to throw an exception so that the error path can be tested. The 
exception we expect the DOC to throw is a good example of an indirect input test 
condition (Figure 11.1). Our means of injecting this input is a control point.

Figure 11.1  An indirect input being received by the SUT from a DOC. Not 
all inputs of the SUT come from the test. Some indirect inputs come from other 
components called by the SUT in the form of return values, updated parameters, 
or exceptions thrown. 

Why Do We Care about Indirect Outputs? 

The concept of encapsulation often directs us to not care about how some-
thing is implemented. After all, that is the whole purpose of encapsulation—to 
alleviate the need for clients of our interface to care about our implementation. 
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When testing, we try to verify the implementation precisely so our clients do not 
have to care about it.

Consider for a moment a component that has a method in its API that 
returns nothing—or at least nothing that can be used to determine whether it 
has performed its function correctly. In this situation, we have no choice but to 
test through the back door. A good example of this is a message logging system. 
Calls to the API of a logger rarely return anything that indicates it did its job 
correctly. The only way to determine whether the message logging system is 
working as expected is to interact with it through some other interface—one 
that allows us to retrieve the logged messages. 

A client of the logger may specify that the logger be called when certain con-
ditions are met. These calls will not be visible on the client’s interface but would 
typically be a requirement that the client needs to satisfy and, therefore, would 
be something we want to test. The circumstances that should result in a messag-
ing being logged are indirect output test conditions (Figure 11.2) for which we 
need to write tests so that we can avoid having Untested Requirements (see Pro-
duction Bugs). Our means of seeing this output is an observation point.

Figure 11.2  An indirect output being received by the SUT. Not all outputs of 
the SUT are directly visible to the test. Some indirect outputs are sent to other 
components in the form of method calls or messages. 

In other cases, the SUT does produce visible behavior that can be verifi ed 
through the front door but also has some expected side effects. Both outputs 
need to be verifi ed in our tests. Sometimes this testing is simply a matter of 
adding assertions for the indirect outputs to the existing tests to verify the 
Untested Requirement.
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How Do We Control Indirect Inputs? 

Testing with indirect inputs is a bit simpler than testing with indirect outputs 
because the techniques used to test outputs build on those used to test inputs. 
Let’s delve into indirect inputs fi rst. 

To test the SUT with indirect inputs, we must be able to control th e DOC 
well enough to cause it to return every possible kind of return value. That 
implies the availability of a suitable control point. 

Examples of the kinds of indirect inputs we want to be able to induce via this 
control point include 

• Return values of methods/functions 

• Values of updatable arguments 

• Exceptions that could be thrown 

Often, the test can interact with the DOC to set up how it will respond to 
requests. For example, if a component provides access to data in a database, then 
we can use Back Door Setup (see Back Door Manipulation on page 327) to insert 
specifi c values into a database that cause the component to respond in the desired 
ways (e.g., no items found, one item found, many items found). (See Figure 11.3.) 
In this specifi c case, we can use the database itself as a control point. 

Figure 11.3 Using Back Door Manipulation to indirectly control and observe 
the SUT. When the SUT stores its state in another component, we may be able 
to manipulate that state by having the test interact directly with the other com-
ponent via a “back door.” 

In most cases, however, this approach is neither practical nor even possible. We 
might not be able to use the real component for the following reasons: 
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• The real component cannot be manipulated to produce the desired 
indirect input. Only a true software error within the real component 
would result in the desired input to the SUT. 

• The real component could be manipulated to make the input occur but 
doing so would not be cost-effective. 

• The real component could be manipulated to make the input occur but 
doing so could have unacceptable side effects. 

• The real component is not yet available for use.

If we cannot use the real component as a control point, then we have to replace 
it with one that we can control. This replacement can be done in a number of 
different ways, which are the focus of the section Installing the Test Double
later in this chapter. The most common approach is to confi gure a Test 
Stub (page 529) with a set of values to return from its functions and then to 
install this Test Stub into the SUT. During execution of the SUT, the Test Stub
receives the calls and returns the previously confi gured responses (Figure 11.4). 
It has become our control point.

Figure 11.4  Using a Test Stub as a control point for indirect inputs. One way 
to use a control point to inject indirect inputs into the SUT is to install a Test 
Stub in place of the DOC. Before exercising the SUT, we tell the Test Stub what 
it should return to the SUT when it is called. This strategy allows us to force the 
SUT through all its code paths. 
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How Do We Verify Indirect Outputs? 

In normal usage, as the SUT is exercised, it interacts naturally with the component(s) 
upon which it depends. To test the indirect outputs, we must be able to observe the 
calls that the SUT makes to the API of the DOC (Figure 11.5). Furthermore, if we 
need the test to progress beyond that point, we need to be able to control the val-
ues returned (as was discussed in the discussion of indirect inputs).

Figure 11.5  Using Behavior Verifi cation to verify the indirect outputs of the SUT. 
When we care about exactly what calls our SUT makes to other components, we 
may have to do Behavior Verifi cation rather than simply verifying the post-test state 
of the SUT. 

In many cases, the test can use the DOC as an observation point to fi nd out how 
it has been used. For example: 

• We can ask the fi le system for the contents of a fi le that the SUT has writ-
ten to verify that it exists and was written with the expected contents. 

• We can ask the database for the contents of a table or specifi c record to 
verify that the SUT wrote the expected records to the database. 

• We can interact directly with the e-mail sending component to ask 
whether the SUT had asked it to send a particular e-mail.

These are all examples of Back Door Verifi cation (see Back Door Manipulation 
on page 327). Some DOCs allow us to confi gure their behavior in such a way 
that we can use them to keep the test informed of how they are being used: 

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect

  Outputs)

V
er

ify

Fixture

DOC

Exercise

Setup

Exercise

Verify

Teardown

SUT

A C

B

Behavior
(Indirect

  Outputs)

V
er

ify

www.it-ebooks.info

http://www.it-ebooks.info/


131

• We can ask the fi le system to notify the test whenever a fi le is created or 
modifi ed so we can verify its contents. 

• We can use a database trigger to notify the test when a record is written 
or deleted. 

• We can confi gure the e-mail sending component to deliver all outgoing 
e-mail to the test. 

Sometimes, as we have seen with indirect inputs, it is not practical to use the 
real component as an observation point. When all else fails, we may need to 
replace the real component with a test-specifi c alternative. For example, we 
might need to do this for the following reasons: 

• The calls to (or the internal state of) the DOC cannot be queried. 

• The real component can be queried but doing so is cost-prohibitive. 

• The real component can be queried but doing so has unacceptable side 
effects.

• The real component is not yet available for use.

The replacement of the real component can be done in a number of different 
ways, as will be discussed in Installing the Test Double.

Two basic styles of indirect output verifi cation are available. Procedural Behav-
ior Verifi cation (see Behavior Verifi cation) captures the calls to a DOC (or their re-
sults) during SUT execution and then compares them with the expected calls after 
the SUT has fi nished executing. This verifi cation involves replacing a substitutable 
dependency with a Test Spy (page 538). During execution of the SUT, the Test Spy
receives the calls and records them. After the Test Method (page 348) has fi nished 
exercising the SUT, it retrieves the actual calls from the Test Spy and uses Assertion 
Methods (page 362) to compare them with the expected calls (Figure 11.6).

Expected Behavior (see Behavior Verifi cation) involves building a “behavior 
specifi cation” during the fi xture setup phase of the test and then comparing the 
actual behavior with this Expected Behavior. It is typically done by loading a 
Mock Object (page 544) with a set of expected procedure call descriptions and 
installing this object into the SUT (Figure 11.7). During execution of the SUT, 
the Mock Object receives the calls and compares them to the previously defi ned 
expected calls (the “behavior specifi cation”). As the test proceeds, if the Mock
Object receives an unexpected call, it fails the test immediately. The test failure 
traceback will show the exact location in the SUT where the problem occurred 
because the Assertion Methods are called from the Mock Object, which is in 
turn called by the SUT. We can also see exactly where in the Test Method the 
SUT was being exercised. 

 What Are Indirect Inputs and Outputs? 
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Figure 11.6  Using a Test Spy as an observation point for indirect outputs of 
the SUT. One way to implement Behavior Verifi cation is to install a Test Spy in 
place of the target of the indirect outputs. After exercising the SUT, the test asks 
the Test Spy for information about how it was used and compares that 
information to the expected behavior using assertions. 

Figure 11.7  Using a Mock Object as an observation point for indirect outputs 
of the SUT. Another way to implement Behavior Verifi cation is to install a Mock 
Object in place of the target of the indirect outputs. As the SUT makes calls 
to the DOC, the Mock Object uses assertions to compare the actual calls and 
arguments with the expected calls and arguments. 
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When we use a Test Spy or a Mock Object, we may also have to employ it as a 
control point for any indirect inputs on which the SUT depends after the Test 
Spy or Mock Object has been called to allow test execution to continue. 

Testing with Doubles 

By now you are probably wondering about how to replace those infl exible and 
uncooperative real components with something that makes it easier to control 
the indirect inputs and to verify the indirect outputs. 

As we have seen, to test the indirect inputs, we must be able to control the 
DOC well enough to cause it to return every possible kind of return value 
(valid, invalid, and exception). To test indirect outputs, we must be able to track 
the calls the SUT makes to other components. A Test Double is a type of object 
that is much more cooperative and lets us write tests the way we want to. 

Types of Test Doubles 

A Test Double is any object or component that we install in place of the real 
component for the express purpose of running a test. Depending on the reason 
why we are using it, a Test Double can behave in one of four ways (summarized 
in Figure 11.8): 

• A Dummy Object (page 728) is a placeholder object that is passed to 
the SUT as an argument (or an attribute of an argument) but is never 
actually used. 

• A Test Stub is an object that replaces a real component on which the 
SUT depends so that the test can control the indirect inputs of the SUT. 
It allows the test to force the SUT down paths it might not otherwise 
exercise. A Test Spy, which is a more capable version of a Test Stub,
can be used to verify the indirect outputs of the SUT by giving the test a 
way to inspect them after exercising the SUT. 

• A Mock Object is an object that replaces a real component on which 
the SUT depends so that the test can verify its indirect outputs. 

 Testing with Doubles
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• A Fake Object (page 551) (or just “Fake” for short) is an object that 
replaces the functionality of the real DOC with an alternative imple-
mentation of the same functionality. 

Figure 11.8  Several kinds of Test Doubles exist. Dummy Objects are really an 
alternative to the value patterns. Test Stubs are used to verify indirect inputs; 
Test Spies and Mock Objects are used to verify indirect outputs. Fake objects 
emulate the behavior of the real depended-on component, but with test-friendly 
characteristics.

Dummy Objects

Dummy Objects are a degenerate form of Test Double. They exist solely so 
that they can be passed around from method to method; they are never used. 
That is, Dummy Objects are not expected to do anything except exist. Often, 
we can get away with using “null” (or “nil” or “nothing”); at other times, 
we may be forced to create a real object because the code expects something 
non-null. In dynamically typed languages, almost any real object will do; in 
statically typed languages, we must make sure that the Dummy Object is 
“type-compatible” with the parameter it is being passed as or the variable to 
which it is being assigned. 

In the following example, we pass an instance of DummyCustomer to the Invoice
constructor to satisfy a mandatory argument. We do not expect the DummyCustomer
to be used by the code we are testing here. 
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   public void testInvoice_addLineItem_DO() {
      final int QUANTITY = 1;
      Product product = new Product("Dummy Product Name",
                                    getUniqueNumber());
      Invoice inv = new Invoice( new DummyCustomer() );
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("", expItem, actual);
   }

Note that a Dummy Object is not the same as a Null Object [PLOPD3]. A 
Dummy Object is not used by the SUT, so its behavior is irrelevant. By contrast, 
a Null Object is used by the SUT but is designed to do nothing. That’s a small 
but very important distinction! 

Dummy Objects are in a different league than the other Test Doubles;
they are really an alternative to the attribute value patterns such as Literal
Value (page 714), Generated Value (page 723), and Derived Value (page 718). 
Therefore, we don’t need to “confi gure” them or “install” them. In fact, almost 
nothing we say about the other Test Doubles applies to Dummy Objects, so we 
won’t mention them again in this chapter. 

Test Stubs                             

A Test Stub is an object that acts as a control point to deliver indirect 
inputs to the SUT when the Test Stub’s methods are called. Its use allows us to 
exercise Untested Code paths in the SUT that might otherwise be impossible to 
traverse during testing. A Responder (see Test Stub) is a basic Test Stub that is 
used to inject valid and invalid indirect inputs into the SUT via normal returns 
from method calls. A Saboteur (see Test Stub) is a special Test Stub that raises 
exceptions or errors to inject abnormal indirect inputs into the SUT. Because 
procedural programming languages do not support objects, they force us to use 
Procedural Test Stubs (see Test Stub).

In the following example, the Saboteur—implemented as an anonymous 
inner class in Java—throws an exception when the SUT calls the getTime method 
to allow us to verify that the SUT behaves correctly in this case:

   public void testDisplayCurrentTime_exception()
         throws Exception {
      // Fixture setup

 Testing with Doubles 
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      //   Define and instantiate Test Stub
      TimeProvider testStub = new TimeProvider()
         { // Anonymous inner Test Stub
            public Calendar getTime() throws TimeProviderEx {
               throw new TimeProviderEx("Sample");
         }
      };
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      sut.setTimeProvider(testStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify direct output
      String expectedTimeString =
            "<span class=\"error\">Invalid Time</span>";
      assertEquals("Exception", expectedTimeString, result);
   }

In procedural programming languages, a Procedural Test Stub is either (1) a 
Test Stub implemented as a stand-in for an as-yet-unwritten procedure or (2) an 
alternative implementation of a procedure linked into the program instead of 
the real implementation of the procedure. Traditionally, Procedural Test Stubs
are introduced to allow debugging to proceed while we are waiting for other 
code to be ready. They are rarely “swapped in” at runtime—this is hard to do 
in most procedural languages. If we do not mind introducing Test Logic in Pro-
duction (page 217) code, we can implement a Procedural Test Stub using Test 
Hooks (page 709) such as if testing then ... else in the SUT. This is illustrated 
in the following listing: 

   public Calendar getTime() throws TimeProviderEx {
      Calendar theTime = new GregorianCalendar();
      if (TESTING) {
         theTime.set(Calendar.HOUR_OF_DAY, 0);
         theTime.set(Calendar.MINUTE, 0);}
      else {
         // just return the calendar
      }
      return theTime;
   };

The key exception occurs in languages that support procedure variables.1 These 
variables allow us to implement dynamic binding as long as the client code ac-
cesses the procedure to be replaced via a procedure variable.

1 Also called function pointers.
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Test Spies                 

A Test Spy is an object that can act as an observation point for the indirect 
outputs of the SUT. To the capabilities of a Test Stub, it adds the ability to 
quietly record all calls made to its methods by the SUT. The verifi cation part 
of the test performs Procedural Behavior Verifi cation on those calls by using 
a series of assertions to compare the actual calls received by the Test Spy with 
the expected calls. 

The following example uses the Retrieval Interface (see Test Spy) on the Test 
Spy to verify that the correct information was passed as arguments in the call to the 
logMessage method by the SUT (the removeFlight method of the facade).

   public void testRemoveFlightLogging_recordingTestStub()
            throws Exception {
      // Fixture setup
      FlightDto expectedFlightDto = createAnUnregFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      //    Test Double setup
      AuditLogSpy logSpy = new AuditLogSpy();
      facade.setAuditLog(logSpy);
      // Exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // Verify state
      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                            getFlightNumber()));
      // Verify indirect outputs using retrieval interface of spy
      assertEquals("number of calls", 1,
                   logSpy.getNumberOfCalls());
      assertEquals("action code",
                   Helper.REMOVE_FLIGHT_ACTION_CODE,
                   logSpy.getActionCode());
      assertEquals("date", helper.getTodaysDateWithoutTime(),
                   logSpy.getDate());
      assertEquals("user", Helper.TEST_USER_NAME,
                   logSpy.getUser());
      assertEquals("detail",
                   expectedFlightDto.getFlightNumber(),
                   logSpy.getDetail());
   }

Mock Objects                                         

A Mock Object is also an object that can act as an observation point for the 
indirect outputs of the SUT. Like a Test Stub, it may need to return information 
in response to method calls. Also like a Test Spy, a Mock Object pays attention 
to how it was called by the SUT. It differs from a Test Spy, however, in that the 
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Mock Object compares actual calls received with the previously defi ned expec-
tations using assertions and fails the test on behalf of the Test Method. As a 
consequence, we can reuse the logic employed to verify the indirect outputs of 
the SUT across all tests that use the same Mock Object. Mock Objects come in 
two basic fl avors: 

• A strict Mock Object fails the test if the correct calls are received in a 
different order than was specifi ed. 

• A lenient2 Mock Object tolerates out-of-order calls. Some lenient Mock
Objects tolerate or even ignore unexpected calls or missed calls. That 
is, the Mock Object may verify only those actual calls that correspond 
to expected ones. 

The following test confi gures a Mock Object with the arguments of the expected 
call to logMessage. When the SUT (the removeFlight method) calls logMessage, the 
Mock Object asserts that each of the actual arguments equals the expected argu-
ment. If it discovers that any wrong arguments were passed, the test fails. 

   public void testRemoveFlight_Mock() throws Exception {
      // Fixture setup
      FlightDto expectedFlightDto = createAnonRegFlight();
      // Mock configuration
      ConfigurableMockAuditLog mockLog =
         new ConfigurableMockAuditLog();
      mockLog.setExpectedLogMessage(
                           helper.getTodaysDateWithoutTime(),
                           Helper.TEST_USER_NAME,
                           Helper.REMOVE_FLIGHT_ACTION_CODE,
                           expectedFlightDto.getFlightNumber());
      mockLog.setExpectedNumberCalls(1);
      // Mock installation
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      facade.setAuditLog(mockLog);
      // Exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // Verify
      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
      mockLog.verify();
   }

2 Lenient Mock Objects are sometimes called “nice,” but “lenient” is a more precise 
adjective.
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Like Test Stubs, Mock Objects often support confi guration with any indirect inputs 
required to allow the SUT to advance to the point where it would generate the 
indirect outputs they are verifying. 

Fake Objects 

A Fake Object is quite different from a Test Stub or a Mock Object in that it is nei-
ther directly controlled nor observed by the test. The Fake Object is used to replace 
the functionality of the real DOC in a test for reasons other than verifi cation of indi-
rect inputs and outputs. Typically, a Fake Object implements the same functionality 
or a subset of the functionality of the real DOC, albeit in a much simpler way. The 
most common reasons for using a Fake Object are that the real DOC has not yet 
been built, is too slow, or is not available in the test environment. 

The sidebar “Faster Tests without Shared Fixtures” (page 319) describes 
how my team encapsulated all database access behind a persistence layer 
interface and then replaced the persistence layer component with one that used 
in-memory hash tables instead of a real database, thereby making our tests run 
50 times faster. To do so, we used a Fake Database (see Fake Object) that was 
something like this one: 

public class InMemoryDatabase implements FlightDao{
   private List airports = new Vector();
   public Airport createAirport(String airportCode,
                        String name, String nearbyCity)
            throws DataException, InvalidArgumentException {
      assertParamtersAreValid(  airportCode, name, nearbyCity);
      assertAirportDoesntExist( airportCode); 
      Airport result = new Airport(getNextAirportId(),
            airportCode, name, createCity(nearbyCity));
      airports.add(result);
      return result;
   }
   public Airport getAirportByPrimaryKey(BigDecimal airportId)
            throws DataException, InvalidArgumentException {
      assertAirportNotNull(airportId);

      Airport result = null;
      Iterator i = airports.iterator();
      while (i.hasNext()) {
         Airport airport = (Airport) i.next();
         if (airport.getId().equals(airportId)) {
            return airport;
         }
      }
      throw new DataException("Airport not found:"+airportId);
   }
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Providing the Test Double 

There are two approaches to providing a Test Double: a Hand-Built Test Dou-
ble (see Confi gurable Test Double on page 558), which is coded by the test 
automater, or a Dynamically Generated Test Double (see Confi gurable Test 
Double), which is generated at runtime using a framework or toolkit provided 
by some other developer.3 All generated Test Doubles must be, by their very 
nature, Confi gurable Test Doubles; these components are covered in more 
detail in the next section. Hand-Built Test Doubles, by contrast, tend to be 
Hard-Coded Test Doubles (page 568) but can also be made confi gurable with 
some additional effort. The following code sample illustrates a hand-coded 
Inner Test Double (see Hard-Coded Test Double) that uses Java’s anonymous
inner class construct: 

   public void testDisplayCurrentTime_AtMidnight_PS()
         throws Exception {
      // Fixture setup
      //    Define and instantiate Test Stub
      TimeProvider testStub = new PseudoTimeProvider()
      { // Anonymous inner stub
         public Calendar getTime(String timeZone) {
            Calendar myTime = new GregorianCalendar();
            myTime.set(Calendar.MINUTE, 0);
            myTime.set(Calendar.HOUR_OF_DAY, 0);
            return myTime;
         }
      };
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //   Inject Test Stub into SUT
      sut.setTimeProvider(testStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify direct output
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

We can greatly simplify the development of Hand-Built Test Doubles in 
statically typed languages such as Java and C# by providing a set of base classes 
called Pseudo-Objects (see Hard-Coded Test Double) from which to create sub-
classes. Pseudo-Objects can reduce the number of methods we need to implement 

3 JMock and its ports to other languages are good examples of such toolkits. Other toolkits, 
such as EasyMock, implement Statically Generated Test Doubles (see Confi gurable Test 
Double) by generating code that is then compiled just like a Hand-Built Test Double.
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in each Test Stub, Test Spy, or Mock Object to just the ones we expect to be 
called. They are especially helpful when we are using Inner Test Doubles or Self
Shunts (see Hard-Coded Test Double). The class defi nition for the Pseudo-Object
used in the previous example looks like this: 

 /**
 * Base class for hand-coded Test Stubs and Mock Objects
 */
public class PseudoTimeProvider implements ComplexTimeProvider {

   public Calendar getTime() throws TimeProviderEx {
      throw new PseudoClassException();
   }

   public Calendar getTimeDifference(Calendar baseTime,
                                     Calendar otherTime)
            throws TimeProviderEx {
      throw new PseudoClassException();
   }

   public Calendar getTime( String timeZone )
            throws TimeProviderEx {
      throw new PseudoClassException();
   }
}

Confi guring the Test Double 

Some Test Doubles (specifi cally, Test Stubs and Mock Objects) need to be told 
which values to return and/or which values to expect. A Hard-Coded Test 
Double receives these instructions at design time from the test automater; 
a Confi gurable Test Double is told this information at runtime by the test 
(Figure 11.9). A Test Stub or Test Spy needs to be confi gured only with the 
values that will be returned by the methods that the SUT is expected to 
invoke. A Mock Object also needs to be confi gured with the names and 
arguments of all methods we expect the SUT to invoke on it. In all cases, the 
test automater ultimately decides with which values to confi gure the Test 
Double. Not surprisingly, the primary considerations when making this deci-
sion are the understandability of the test and the potential reusability of the 
Test Double code. 

Fake Objects do not need to be “confi gured” at runtime because they are just 
used by the SUT; later outputs depend on the earlier calls by the SUT. Similarly, 
Dummy Objects do not need to be “confi gured” because they should never be 
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executed.4 Procedural Test Stubs are typically built as Hard-Coded Test Doubles.
That is, they are hard-coded to return a particular value when the function is 
called—thus they are the simplest form of Test Double.

Figure 11.9  A Test Double being confi gured by the test. We can avoid a 
proliferation of Hard-Coded Test Doubles classes by passing return values or 
expectation to the Confi gurable Test Double at runtime. 

A Confi gurable Test Double can provide either a Confi guration Interface (see 
Confi gurable Test Double) or a Confi guration Mode (see Confi gurable Test 
Double) that the test can use to confi gure the Test Double with the values to 
return or expect. As a consequence, Confi gurable Test Doubles are reusable 
across many tests. Use of these Confi gurable Test Doubles also makes tests 
more understandable because the values used by the Test Double are visible 
within the test, thus avoiding the smell of a Mystery Guest (see Obscure Test 
on page 186).

So where should this confi guration take place? The installation of the Test 
Double should be treated just like any other part of fi xture setup. Alternatives 
such as In-line Setup (page 408), Implicit Setup (page 424), and Delegated
Setup (page 411) are all available.

4 A Dummy Object can be used as an observation point to verify that it was never used by 
ensuring that the Dummy Object throws an exception if any of its methods are called.
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Installing the Test Double 

Before we exercise the SUT, we need to “install” any Test Doubles on which 
our test depends. The term “install” here serves as a generic way to describe the 
process of telling the SUT to use our Test Double, regardless of the exact details 
regarding how we do it. The normal sequence is to instantiate the Test Double,
confi gure it if it is a Confi gurable Test Double, and then tell the SUT to use the
Test Double either before or as we exercise the SUT. There are several distinct 
ways to “install” the Test Double, and the choice between them may be as much 
a matter of style as of necessity if we are designing the SUT for testability. Our 
choices may be much more constrained, however, when we try to retrofi t our 
tests to an existing design. 

The basic choices boil down to Dependency Injection (page 678), in which the 
client software tells the SUT which DOC to use; Dependency Lookup (page 686), 
in which the SUT delegates the construction or retrieval of the DOC to another 
object; and Test Hook, in which the DOC or the calls to it within the SUT 
are modifi ed. 

If an inversion of control framework is available in our language, our tests 
can substitute dependencies without much additional work on our part. This 
removes the need for building in the Dependency Injection or Dependency
Lookup mechanism. 

Dependency Injection

Dependency Injection is a class of design decoupling in which the client tells the 
SUT which DOC to use at runtime (Figure 11.10). The test-driven development 
(TDD) movement has greatly increased its popularity because Dependency Injec-
tion makes for more easily tested designs. This pattern also makes it possible to 
reuse the SUT more broadly because it removes knowledge of the dependency 
from the SUT; often the SUT will be aware of only a generic interface that the 
DOC must implement. Dependency Injection comes in several specifi c fl avors, 
with the choice between them being largely a matter of taste: 

• Setter Injection (see Dependency Injection): The SUT accesses the 
DOC through a public attribute (i.e., a variable or property). The test 
explicitly sets the attribute after instantiating the SUT to installing the 
Test Double. The SUT may have previously initialized the  attribute 
with the real DOC in its constructor (in which case the test is replac-
ing it) or the SUT may use Lazy Initialization [SBPP] to initialize the 
attribute (in which case the SUT will not bother to install the real 
DOC). 

 Testing with Doubles
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Figure 11.10  A Test Double being “injected” into the SUT by a test. Using Test 
Doubles requires a means to replace the DOC. Using Dependency Injection involves 
having the caller supply the dependency to the SUT before or as it is used. 

• Constructor Injection (see Dependency Injection): The SUT accesses 
the DOC through a private attribute. The test passes the Test Dou-
ble to the SUT via a constructor that takes the DOC to be used as 
an explicit argument and initializes the attribute from it. This may be 
the primary constructor used by production code clients or it may be 
an alternative constructor. In the latter case, the primary constructor 
should call this constructor, passing the default DOC to it as an 
argument.

• Parameter Injection (see Dependency Injection): The SUT receives 
the DOC as a method parameter. The test passes in a Test Double,
whereas the production code passes in the real object.5 This approach 
works well when the API of the SUT takes as a parameter the object 
we need to replace. Although Mock Object afi cionados might argue 
that designing APIs in this way improves the design of the SUT, it is 
not always possible or practical to pass everything required to each 
method. 

Dependency Lookup

When software is not designed for testability or when Dependency Injection is 
not appropriate, we may fi nd it convenient to use Dependency Lookup. This 
pattern also removes the knowledge of exactly which DOC should be used from 

5 This approach was advocated in the original paper on Mock Objects [ET]. In this paper, 
Mock Objects passed as parameters to methods are called “Smart Handlers.”
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the SUT, but it does so by having the SUT ask another piece of software to create 
or fi nd the DOC on its behalf (Figure 11.11). This opens the door to changing 
the DOC at runtime without modifying the SUT’s code. We do have to modify 
the behavior of the intermediary somehow, and this is where the specifi c variants 
of Dependency Lookup differ from one another: 

Figure 11.11  A Service Locator being “confi gured” by a test to return a Test 
Double to the SUT. Using Test Doubles requires a means to replace the DOC. 
Using Dependency Lookup involves having the SUT ask a well-known object to 
provide a reference to the DOC; the test can provide the Service Locator with a 
Test Double to return. 

• Object Factory (see Dependency Lookup): The SUT creates the DOC 
by calling a Factory Method [GOF] on a well-known object instead of 
using an object constructor to create the DOC directly. The test explic-
itly tells the Object Factory to create a Test Double instead of a normal 
DOC whenever this method is called . 

• Service Locator (see Dependency Lookup): The SUT retrieves a previ-
ously created service object by asking a well-known Registry [PEAA] 
object for it. The test confi gures the Service Locator to return the Test 
Double when the SUT requests the DOC. 

The line between these two patterns can become quite blurry when we use Lazy 
Initialization to create the object being returned by a Service Locator. Should it 
be called an Object Factory instead? Does it really matter which label we apply? 
Probably not—hence the generic name of Dependency Lookup.
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Retrofi tting Testability Using a Test-Specifi c Subclass 

Even when none of these mechanisms is built into the SUT, we may be able to 
retrofi t them relatively easily by using a Test-Specifi c Subclass.

The use of Singletons [GOF] specifi cally to act as an Object Factory or Service 
Locator is common. If the Singleton has hard-coded behavior, we may have to 
turn it into a Substitutable Singleton (see Test-Specifi c Subclass on page 579) to
enable overriding the normally returned DOC with our Test Double. The use of 
Singletons can be avoided through the use of an IOC tool or a manually coded 
Dependency Injection mechanism. Both of these choices are preferable because 
they make the test’s dependency on a Test Double more obvious. Singletons 
used for other purposes almost always cause headaches when we are writing 
tests and should be avoided if possible. 

Our test can instantiate a Test-Specifi c Subclass of the SUT to add a Depen-
dency Injection mechanism or to replace other methods of the SUT with test-spe-
cifi c behavior; see Figure 11.12. We can override any logic used to access a DOC, 
thereby making it possible to return a Test Double instead of the normal DOC 
without modifying the production code. We can also replace the implementations 
of any methods being called from the method we are testing with Test Stub-like 
behavior, thereby turning the SUT into its own Subclassed Test Double (see Test-
Specifi c Subclass). This is one way to inject indirect inputs into the SUT. 

Figure 11.12  Using a Test-Specifi c Subclass of the SUT. When all else fails, we 
can always try subclassing the SUT to change or expose functionality we need 
to enable testing
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The main prerequisite of using a Test-Specifi c Subclass of the SUT is that the 
SUT must use Self-Calls [WWW] to nonprivate methods that implement any 
functionality we need to override from the test. Small, single-purpose methods 
rule! The main drawback of this approach is that it is possible to accidentally 
override parts of the behavior we are intending to test. 

We can also subclass the DOC to insert test-specifi c behavior, effectively 
turning it into a Subclassed Test Double (Figure 11.13). This strategy is some-
what safer than subclassing the SUT because it avoids the possibility of acci-
dentally overriding those parts of the SUT that we are testing. The trick, 
however, is to get the SUT to use the Test-Specifi c Subclass instead of the DOC. 
In practice,  this implies that we must use one of the Dependency Injection or 
Dependency Lookup techniques, unless the DOC is a Singleton. When the SUT 
uses a Singleton by calling a static soleInstance method on a hard-coded class 
name, the test can cause the soleInstance method to return an instance of a Test 
Double by subclassing the Singleton class and initializing the real Singleton’s 
soleInstance class variable to hold an instance of the Test Double. The returned 
Test Double may need to be a Subclassed Test Double if the type of the vari-
able used to hold the Singleton’s sole instance is hard-coded as the Singleton’s 
class. Although we often use this technique to get a Service Locator to return a 
different service, but we can also use a Subclassed Test Double directly with-
out an intermediary Service Locator.

Figure 11.13  Using A Test Double subclassed from the DOC. One way to build 
a Test Double is to subclass the real class and override the implementation of any 
methods we need to control the indirect inputs or verify indirect outputs. 
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Other Ways of Retrofi tting Testability

All is not lost when none of the techniques described thus far can be used to 
introduce testability. We still have a few tricks left up our sleeves.

Test Hooks are the “elephant in the room” that no one wants to talk about 
because they may lead to Test Logic in Production. Test Hooks, however, are 
a perfectly legitimate way to get legacy code under test when it is too hard or 
dangerous to introduce one of the techniques described earlier. They are best 
used as a “transition” strategy to allow Scripted Tests (page 285) or Recorded
Tests (page 278) to be automated to provide a Safety Net (see page 24) while 
large-scale refactoring is undertaken to improve testability. Ideally, once the 
code has been made more testable, better tests can be prepared using the tech-
niques described earlier and the Test Hooks can be removed. 

Michael Feathers [WEwLC] has described several other techniques to 
replace dependencies with test-specifi c code under the general heading of fi nd-
ing “object seams.” For example, we can replace a depended-on library with 
a library designed specifi cally for testing. A seemingly hard-coded dependency 
can be broken this way. Most of these techniques are less applicable when we 
need to dynamically replace dependencies within individual tests than either 
Dependency Injection or Dependency Lookup because they require changes to 
the environment. Object seams are, however, an excellent way to place legacy 
code under test so that it can be refactored to introduce either of the previously 
mentioned dependency-breaking techniques.

We can use aspect-oriented programming (AOP) to install the Test 
Double behavior by defi ning a test point-cut that matches the place where 
the SUT calls the DOC and we would rather have it call the Test Double.
Although we need an AOP-enabled development environment to do this, we 
do not need to deploy the AOP-generated code into a production environ-
ment. As a consequence, this technique may be used even in AOP-hostile 
environments. 

Other Uses of Test Doubles 

So far, we have covered the testing of indirect inputs and indirect outputs. Now 
let’s look at some other uses of Test Doubles.
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Endoscopic Testing 

Tim Mackinnon et al. introduced the concept of endoscopic testing [ET] in their 
initial Mock Objects paper. Endoscopic testing focuses on testing the SUT from 
the inside by passing in a Mock Object as an argument to the method under test. 
This allows verifi cation of certain internal behaviors of the SUT that may not 
always be visible from the outside. 

The classic example that Mackinnon and colleagues cite is the use of a mock 
collection class preloaded with all of the expected members of the collection. 
When the SUT tries to add an unexpected member, the mock collection’s asser-
tion fails. The full stack trace of the internal call stack then becomes visible in 
the xUnit failure report. If our IDE supports breaking on specifi ed exceptions, 
we can also inspect the local variables at the point of failure. 

Need-Driven Development 

A refi nement of endoscopic testing is “need-driven development” [MRNO], in 
which the dependencies of the SUT are defi ned as the tests are written. This 
“outside-in” approach to writing and testing software combines the conceptual 
elegance of the traditional “top-down” approach to writing code with modern 
TDD techniques supported by Mock Objects. It allows us to build and test the 
software layer by layer, starting at the outermost layer before we have imple-
mented the lower layers. 

Need-driven development combines the benefi ts of test-driven development 
(specifying all software with tests before we build them) with a highly incre-
mental approach to design that removes the need for any speculation about 
how a depended-on class might be used. 

Speeding Up Fixture Setup 

Another application of Test Doubles is to reduce the runtime cost of Fresh Fix-
ture (page 311) setup. When the SUT needs to interact with other objects that 
are diffi cult to create because they have many dependencies, a single Test Dou-
ble can be created instead of the complex network of objects. When applied to 
networks of entity objects, this technique is called Entity Chain Snipping (see
Test Stub).

 Other Uses of Test Doubles
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Speeding Up Test Execution 

Test Doubles may also be used to speed up tests by replacing slow compo-
nents with faster ones. Replacing a relational database with an in-memory Fake
Object, for example, can reduce test execution times by an order of magnitude! 
The extra effort required to code the Fake Database is more than offset by the re-
duced waiting time and the quality improvement due to the more timely feedback 
that comes from running the tests more frequently. Refer to the sidebar “Faster 
Tests without Shared Fixtures” on page 319 for a more detailed discussion of 
this issue. 

Other Considerations 

Because many of our tests will involve replacing a real DOC with a Test 
Double, how do we know that the production code will work properly when 
it uses the real DOC? Of course, we would expect our customer tests to verify 
behavior with the real DOCs in place (except, possibly, when the real DOCs are 
interfaces to other systems that need to be stubbed out during single-system 
testing). We should write a special form of Constructor Test (see Test Method)—
a “substitutable initialization test”—to verify that the real DOC is installed 
properly. The trigger for writing this test is performing the fi rst test that 
replaces the DOC with a Test Double—that point is often when the Test 
Double installation mechanism is introduced. 

Finally, we want to be careful that we don’t fall into the “new hammer 
trap.”6 Overuse of Test Doubles (and especially Mock Objects or Test Stubs) can 
lead to Overspecifi ed Software (see Fragile Test on page 239) by encoding 
implementation-specifi c information about the design in our tests. The design 
may be then much more diffi cult to change if many tests are affected by the 
change simply because they use a Test Double that has been affected by the 
design change. 

6 “When you have a new hammer, everything looks like a nail.”
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What’s Next? 

In this chapter, we examined techniques for testing software with indirect inputs 
and indirect outputs. In particular, we explored the concept of Test Doubles
and various techniques for installing them. In Chapter 12, Organizing Our 
Tests, we will turn our attention to strategies for organizing the test code into 
Test Methods and Test Utility Methods (page 599) implemented on Testcase 
Classes (page 373) and Test Helpers (page 643).

What’s Next?
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Chapter 12

Organizing Our Tests 

About This Chapter 

In the chapters concluding with Chapter 11, Using Test Doubles, we looked at 
various techniques for interacting with the SUT for the purpose of verifying its 
behavior. In this chapter, we turn our attention to the question of how to orga-
nize the test code to make it easy to fi nd and understand. 

The basic unit of test code organization is the Test Method (page 348). 
Deciding what to put in the Test Method and where to put it is central to the topic 
of test organization. When we have only a few tests, how we organize them isn’t 
terribly important. By contrast, when we have hundreds of tests, test organization 
becomes a critical factor in keeping our tests easy to understand and fi nd. 

This chapter begins by discussing what we should and should not include in 
a Test Method. Next, it explores how we can decide on which Testcase Classes
(page 373) to put our Test Methods. Test naming depends heavily on how we 
have organized our tests, so we will talk about this issue next. We will then 
consider how to organize the Testcase Classes into test suites and where to put 
test code. The fi nal topic is test code reuse—specifi cally, where to put reusable 
test code. 

Basic xUnit Mechanisms 

The xUnit family of Test Automation Frameworks (page 298) provides a num-
ber of features to help us organize our tests. The basic question, “Where do I 
code my tests?”, is answered by putting our test code into a Test Method on a 
Testcase Class. We then use either Test Discovery (page 393) or Test Enumera-
tion (page 399) to create a Test Suite Object (page 387) containing all the tests 
from the Testcase Class. The Test Runner (page 377) invokes a method on the 
Test Suite Object to run all the Test Methods.

www.it-ebooks.info

http://www.it-ebooks.info/


154 Chapter 12  Organizing Our Tests

Right-Sizing Test Methods 

A test condition is something we need to prove the SUT really does; it can be 
described in terms of what the starting state of the SUT is, how we exercise the 
SUT, how we expect the SUT to respond, and what the ending state of the SUT 
is expected to be. A Test Method is a sequence of statements in our test scripting 
language that exercises one or more test conditions (Figure 12.1). What should 
we include in a single Test Method?

Figure 12.1  The four phases of a typical test. Each Test Method implements a 
Four-Phase Test (page 358) that ideally verifi es a single test condition. Not all 
phases of the Four-Phase Test need be in the Test Method. 

Many xUnit purists prefer to Verify One Condition per Test (see page 45) 
because it gives them good Defect Localization (see page 22). That is, when a 
test fails, they know exactly what is wrong in the SUT because each test verifi es 
exactly one test condition. This is very much in contrast with manual testing, 
where one tends to build long, involved multiple-condition tests because of the 
overhead involved in setting up each test’s pre-conditions. When creating xUnit-
based automated tests, we have many ways of dealing with this frequently re-
peated fi xture setup (as described in Chapter 8, Transient Fixture Management),
so we tend to Verify One Condition per Test. We call a test that verifi es too many 
test conditions an Eager Test (see Assertion Roulette on page 224) and consider 
it a code smell. 

A test that verifi es a single test condition executes a single code path through 
the SUT and it should execute exactly the same path each time it runs; that 
is what makes it a Repeatable Test (see page 26). Yes, that means we need as 
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many test methods as we have paths through the code—but how else can we 
expect to achieve full code coverage? What makes  this pattern manageable is 
that we Isolate the SUT (see page 43) when we write unit tests for each class so 
we only have to focus on paths through a single object. Also, because each test 
should verify only a single path through the code, each test method should con-
sist of strictly sequential statements that describe what should happen on that 
one path.1 Another reason we Verify One Condition per Test (see page 45) is to 
Minimize Test Overlap (see page 44) so that we have fewer tests to modify if we 
later modify the behavior of the SUT. 

Brian Marrick has developed an interesting compromise that I call “While 
We’re at It,”2 which leverages the test fi xture we already have set up to run 
some additional checks and assertions. Marrick clearly marks these elements 
with comments to indicate that if changes to the SUT obsolete that part of the 
test, they can be easily deleted. This strategy minimizes the effort needed to 
maintain the extra test code. 

Test Methods and Testcase Classes                            

A Test Method needs to live on a Testcase Class. Should we put all our Test 
Methods onto a single Testcase Class for the application? Or should we create a 
Testcase Class for each Test Method? Of course, the right answer lies somewhere 
between these two extremes, and it will change over the life of our project. 

Testcase Class per Class     

When we write our fi rst few Test Methods, we can put them all onto a single 
Testcase Class. As the number of Test Methods increases, we will likely want to 
split the Testcase Class so that one Testcase Class per Class (page 617) is tested, 
which reduces the number of Test Methods per class (Figure 12.2). As those 
Testcase Classes get too big, we usually split the classes further. In that case, we 
need to decide which Test Methods to include in each Testcase Class.

1 A Test Method that contains Conditional Test Logic (page 200) is a sign of a test trying 
to accommodate different circumstances because it does not have control of all indirect 
inputs of the SUT or because it is trying to verify complex expected states on an in-line 
basis within the Test Method.
2 He calls it “Just for Laughs” but I don’t fi nd that name very intent-revealing.

Test Methods and Testcase Classes
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Figure 12.2   A production class with a single Testcase Class. With the Testcase 
Class per Class pattern, a single Testcase Class holds all the Test Methods for 
all the behavior of our SUT class. Each Test Method may need to create a 
different fi xture either in-line or by delegating that task to a Creation Method 
(page 415).

Testcase Class per Feature

One school of thought is to put all Test Methods that verify a particular feature of 
the SUT—where a “feature” is defi ned as one or more methods and attributes that 
collectively implement some capability of the SUT—into a single Testcase Class 
(Figure 12.3). This makes it easy to see all test conditions for that feature. (Use of 
appropriate Test Naming Conventions helps achieve this clarity.) It can, however, 
result in similar fi xture setup code being required in each Testcase Class.

Testcase Class per Fixture 

The opposing view is that one should group all Test Methods that require the same 
test fi xture (same pre-conditions) into one Testcase Class per Fixture (page 631; see 
Figure 12.4). This facilitates putting the test fi xture setup code into the setUp method 
(Implicit Setup; see page 424) but can result in scattering of the test conditions for 
each feature across many Testcase Classes.
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Figure 12.3  A production class with one Testcase Class for each feature. With 
the Testcase Class per Feature pattern, we have one Testcase Class for each 
major capability or feature supported by our SUT class. The Test Methods on 
that test class exercise various aspects of that feature after building whatever test 
fi xture they require. 

Figure 12.4  A production class with one Testcase Class for each fi xture. With 
the Testcase Class per Fixture pattern, we have one Testcase Class for each 
possible test fi xture (test pre-condition) of our SUT class. The Test Methods on 
that test class exercise various features from the common starting point. 
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Choosing a Test Method Organization Strategy 

Clearly, there is no single “best practice” we can always follow; the best prac-
tice is the one that is most appropriate for the particular circumstance. Testcase 
Class per Fixture is commonly used when we are writing unit tests for stateful 
objects and each method needs to be tested in each state of the object. Testcase 
Class per Feature (page 624) is more appropriate when we are writing customer 
tests against a Service Facade [CJ2EEP]; it enables us to keep all the tests for 
a customer-recognizable feature together. This pattern is also more commonly 
used when we rely on a Prebuilt Fixture (page 429) because fi xture setup logic 
is not required in each test. When each test needs a slightly different fi xture, the 
right answer may be to select the Testcase Class per Feature pattern and use a 
Delegated Setup (page 411) to facilitate setting up the fi xtures. 

Test Naming Conventions 

The names we give to our Testcase Classes and Test Methods are crucial in mak-
ing our tests easy to fi nd and understand. We can make the test coverage more 
obvious by naming each Test Method systematically based on which test condi-
tion it verifi es. Regardless of which test method organization scheme we use, we 
would like the combination of the names of the test package, the Testcase Class,
and the Test Method to convey at least the following information: 

• The name of the SUT class

• The name of the method or feature being exercised

• The important characteristics of any input values related to the exercising 
of the SUT

• Anything relevant about the state of the SUT or its dependencies

These items are the “input” part of the test condition. Obviously, this is a lot 
to communicate in just two names but the reward is high if we can achieve it: 
We can tell exactly what test conditions we have tests for merely by looking at 
the names of the classes and methods in an outline view of our IDE. Figure 12.5 
provides an example. 
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Figure 12.5  A production class with one Testcase Class for each test fi xture. 
When we use the Testcase Class per Fixture pattern, the class name can describe 
the fi xture, leaving the method name available for describing the inputs and 
expected outputs. 

Figure 12.5 also shows how useful it is to include the “expectations” side of the 
test condition: 

• The outputs (responses) expected when exercising the SUT

• The expected post-exercise state of the SUT and its dependencies

This information can be included in the name of the Test Method prefi xed by 
“should.” If this nomenclature makes the names too long,3 we can always access 
the expected outcome by looking at the body of the Test Method.

3 Many xUnit variants “encourage” us to start all our Test Method names with “test” 
so that these methods can be automatically detected and added to the Test Suite Object.
This constrains our naming somewhat compared to variants that indicate test methods 
via method attributes or annotations.

Test Naming Conventions 
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Organizing Test Suites

The Testcase Class acts as a Test Suite Factory (see Test Enumeration) when it 
returns a Test Suite Object containing a collection of Testcase Objects (page 382), 
each representing a Test Method (Figure 12.6). This is the default organization 
mechanism provided by xUnit. Most Test Runners allow any class to act as a 
Test Suite Factory by implementing a Factory Method [GOF], which is typi-
cally called suite.

Figure 12.6  A Testcase Class acting as a Test Suite Factory. By default, the
Testcase Class acts as a Test Suite Factory to produce the Test Suite Object that 
the Test Runner requires to execute our tests. We can also enumerate a specifi c 
set of tests we want to run by providing a Test Suite Factory that returns a Test 
Suite Object containing only the desired tests. 

Running Groups of Tests 

We often want to run groups of tests (i.e., a test suite) but we don’t want this 
decision to constrain how we organize them. A popular convention is to create 
a special Test Suite Factory called AllTests for each package of tests. We don’t 
need to stop there, however: We can create Named Test Suites (page 592) for 
any collection of tests we want to run together. A good example is a Subset Suite 
(see Named Test Suite) that allows us to run just those tests that need software 
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deployed to the Web server (or not deployed to the Web server!). We usually 
have at least a Subset Suite for all the unit tests and another Subset Suite for 
just the customer tests (they often take a long time to execute). Some variants of 
xUnit support Test Selection (page 403), which we can use instead of defi ning 
Subset Suites.

Such runtime groupings of tests often refl ect the environment in which they 
need to run. For example, we might have one Subset Suite that includes all tests 
that can be run without the database and another Subset Suite that includes 
all tests that depend on the database. Likewise, we might have separate Subset
Suites for tests that do, and do not, rely on the Web server. If our test package 
includes these various kinds of test suites, we can defi ne AllTests as a Suite of 
Suites (see Test Suite Object) composed of these Subset Suites. Then any test 
that is added to one of the Subset Suites will also be run in AllTests without 
incurring extra test maintenance effort. 

Running a Single Test 

Suppose a Test Method fails in our Testcase Class. We decide to put a break-
point on a particular method—but that method is called in every test. Our 
fi rst reaction might be to just muddle through by clicking “Go” each time 
the breakpoint is hit until we are being called from the test of interest. One 
possibility is to disable (by commenting out) the other Test Methods so they 
are not run. Another option is to rename the other Test Methods so that the 
xUnit Test Discovery mechanism will not recognize them as tests. In variants 
of xUnit that use method attributes or annotations, we can add the “Ignore” 
attribute to a test method instead. Each of these approaches introduces the 
potential problem of a Lost Test (see Production Bugs on page 268), although 
the “Ignore” approach does remind us that some tests are being ignored. In 
members of the xUnit family that provide a Test Tree Explorer (see Test Run-
ner), we can simply select a single test to be run from the hierarchy view of the 
test suite, as shown in Figure 12.7. 

When none of these options is available, we can use a Test Suite Factory to 
run a single test. Wait a minute! Aren’t test suites all about running groups of 
tests that live in different Testcase Classes? Well, yes, but that doesn’t mean 
we can’t use them for other purposes. We can defi ne a Single Test Suite4 (see
Named Test Suite) that runs a particular test. To do so, we call the constructor 
of the Testcase Class with the specifi c Test Method’s name as an argument. 

4 I usually call it MyTest.

 Organizing Test Suites
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Figure 12.7  A Test Tree Explorer showing the structure of the tests in our suite. 
We can use the Test Tree Explorer to drill down into the runtime structure of the 
test suite and run individual tests or subsuites.

Test Code Reuse 

Test Code Duplication (page 213) can signifi cantly increase the cost of writing 
and maintaining tests. Luckily, a number of techniques for reusing test logic 
are available to us. The most important consideration is that any reuse not 
compromise the value of the Tests as Documentation (see page 23). I don’t 
recommend reuse of the actual Test Method in different circumstances (e.g., 
with different fi xtures), as this kind of reuse is typically a sign of a Flexible
Test (see Conditional Test Logic on page 200) that tests different things in dif-
ferent circumstances. Most test code reuse is achieved either through Implicit
Setup or Test Utility Methods (page 599). The major exception is the reuse 
of Test Doubles (page 522) by many tests; we can treat these Test Double
classes as a special kind of Test Helper (page 643) when thinking about where 
to put them. 
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Test Utility Method Locations 

Figure 12.8  The various places we can put Test Utility Methods. The primary 
decision-making criterion is the desired scope of reusability of the Test Methods. 

Many variants of xUnit provide a special Testcase Superclass (page 638)—typically 
called “TestCase”—from which all Testcase Classes should (and, in some cases, 
must) inherit either directly or indirectly (Figure 12.8). If we have useful utility 
methods on our Testcase Class that we want to reuse in other Testcase Classes,
we may fi nd it helpful to create one or more Testcase Superclasses from which to 
inherit instead of “TestCase.” If we take this step, we need to be careful if those 
methods need to see types or classes that reside in various packages within the 
SUT—our root Testcase Superclass should not depend on those types or classes 
directly, as that is likely to result in a cyclical dependency graph. We may be able 
to create a Testcase Superclass for each test package to keep our test class de-
pendencies noncyclic. The alternative is to create a Test Helper for each domain 
package and put the various Test Helpers in the appropriate test packages. This 
way, a Testcase Class is not forced to choose a single Testcase Superclass; it can 
merely “use” the appropriate Test Helpers.

TestCase Inheritance and Reuse 

The most commonly used reason for inheriting methods from a Testcase Super-
class is to access Test Utility Methods. Another use is when testing frameworks 
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and their plug-ins; it can be useful to create a conformance test that specifi es the 
general behavior of the plug-in via a Template Method [GOF] that calls meth-
ods provided by a subclass specifi c to the kind of plug-in being tested to check 
specifi c details of the plug-in. This scenario is rare enough that I won’t describe 
it further here; please refer to [FaT] for a more complete description. 

Test File Organization 

Now we face a new question: Where should we put our Testcase Classes?
Obviously, these classes should be stored in the source code repository [SCM] 
along with the production code. Beyond that criterion, we have quite a range 
of choices. The test packaging strategy we choose will very much depend on 
our environment—many IDEs include constraints that make certain strate-
gies unworkable. The key issue is to Keep Test Logic Out of Production Code
(see page 45) and yet to be able to fi nd the corresponding test for each piece of 
code or functionality. 

Built-in Self-Test 

With a built-in self-test, the tests are included with the production code and can 
be run at any time. No provision is made for keeping them separate. Many orga-
nizations want to Keep Test Logic Out of Production Code so built-in self-tests 
may not be a good option for them. This consideration is particularly important 
in memory-constrained environments where we don’t want test code taking up 
valuable space. 

Some development environments encourage us to keep the tests and the pro-
duction code together. For example, SAP’s ABAP Unit supports the keyword 
“For Testing,” which tells the system to disable the tests when the code is trans-
ported into the production environment. 

Test Packages 

If we decide to put the Testcase Classes into separate test packages, we can 
organize them in several ways. We can keep the tests separate by putting them 
into one or more test packages while keeping them in the same source tree, or 
we can put the tests into the same logical package but physically store them in 
a parallel source tree. The latter approach is frequently used in Java because it 
avoids the problem of tests not being able to see “package-protected” methods 
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on the SUT.5 Some IDEs may reject using this approach by insisting that a pack-
age be wholly contained within a single folder or project. When we use test 
packages under each production code package, we may need to use a build-time 
test stripper to exclude them from production builds. 

Test Dependencies 

However we decide to store and manage the source code, we need to ensure that 
we eliminate any Test Dependency in Production (see Test Logic in Production 
on page 217) because even a test stripper cannot remove the tests if production 
code needs them to be present to run. This requirement makes paying attention to 
our class dependencies important. We also don’t want to have any Test Logic in 
Production because it means we aren’t testing the same code that we will eventu-
ally run in production. This issue is discussed in more detail in Chapter 6, Test 
Automation Strategy.

What’s Next? 

Now that we’ve looked at how to organize our test code, we should become 
familiar with a few more testing patterns. These patterns are introduced in 
Chapter 13, Testing with Databases.

5 Java offers another way to get around the visibility issue: We can defi ne our own test 
Security Manager to allow tests to access all methods on the SUT, not just the “package-
protected” ones. This approach solves the problem in a general way but requires a 
good understanding of Java class loaders. Other languages may not have the equivalent 
functionality (or problem!).

What’s Next?
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Chapter 13

Testing with Databases

About This Chapter

In Chapter 12, Organizing Our Tests, we looked at techniques for organizing 
our test code. In this chapter, we explore the issues that arise when our appli-
cation includes a database. Applications with databases present some special 
challenges when writing automated tests. Databases are much slower than 
the processors used in modern computers. As a result, tests that interact with 
databases tend to run much, much more slowly than tests that can run entirely 
in memory.

Even ignoring the potential for Slow Tests (page 253), databases are a ripe 
source for many test smells in our automated test suites. Some of these smells are 
a direct consequence of the persistent nature of the database, while others result 
from our choice to share the fi xture instance between tests. These smells were 
introduced in Chapter 9, Persistent Fixture Management. This chapter expands 
on them and provides a more focused treatment of testing with databases. 

Testing with Databases

Here is my fi rst, and most critical, piece of advice on this subject:

When there is any way to test without a database, test without the 
database!

This seems like pretty strong advice but it is phrased this way for a reason. Data-
bases introduce all sorts of complications into our applications and especially into 
our tests. Tests that require a database run, on average, two orders of magnitude 
slower than the same tests that run without a database. 
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Why Test with Databases?

Many applications include a database to persist objects or data into longer-term 
storage. The database is a necessary part of the application, so verifying that the 
database is used properly is a necessary part of building the application. Therefore, 
the use of a Database Sandbox (page 650) to isolate developers and testers from 
production (and each other) is a fundamental practice on almost every project 
(Figure 13.1). 

Figure 13.1  A Database Sandbox for each developer. Sharing a Database 
Sandbox among developers is false economy. Would you make a plumber and 
an electrician work in the same wall at the same time?

Issues with Databases

A database introduces a number of issues that complicate test automation. Many 
of these issues relate to the fact that the fi xture is persistent. These issues were 
introduced in Chapter 9, Persistent Fixture Management, and are summarized 
briefl y here.

Persistent Fixtures

Applications with databases present some special challenges when we are 
writing automated tests. Databases are much slower than the processors used 
in modern computers. As a consequence, tests that interact with a database 
tend to run much more slowly than tests that can run entirely in memory. But 
even ignoring the Slow Tests issue, databases are a prime source of test smells 
in our automated test suites. Commonly encountered smells include Erratic 
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Tests (page 228) and Obscure Tests (page 186). Because the data in a database 
may potentially persist long after we run our test, we must pay special atten-
tion to this data to avoid creating tests that can be run only once or tests that 
interact with one another. These Unrepeatable Tests (see Erratic Test) and 
Interacting Tests (see Erratic Test) are a direct consequence of the persistence 
of the test fi xture and can result in more expensive maintenance of our tests as 
the application evolves.

Shared Fixtures

Persistence of the fi xture is one thing; choosing to share it is another. Deliberate 
sharing of the fi xture can result in Lonely Tests (see Erratic Test) if some tests 
depend on other tests to set up the fi xture for them—a situation called Chained
Tests (page 454). If we haven’t provided each developer with his or her own 
Database Sandbox, we might spark a Test Run War (see Erratic Test) between 
developers. This problem arises when the tests being run from two or more Test 
Runners (page 377) interact by virtue of their accessing the same fi xture objects 
in the shared database instance. Each of these behavior smells is a direct conse-
quence of the decision to share the test fi xture. The degree of persistence and the 
scope of fi xture sharing directly affect the presence or absence of these smells.

General Fixtures

Another problem with tests that rely on databases is that databases tend to evolve 
into a large General Fixture (see Obscure Test) that many tests use for different pur-
poses. This outcome is particularly likely when we use a Prebuilt Fixture (page 429) 
to avoid setting up the fi xture in each test. It can also result from the decision to use 
a Standard Fixture (page 305) when we employ a Fresh Fixture (page 311) strategy. 
This approach makes it diffi cult to determine exactly what each test is specifying. 
In effect, the database appears as a Mystery Guest (see Obscure Test) in all of the 
tests.

Testing without Databases

Modern layered software architecture [DDD, PEAA, WWW] opens up the pos-
sibility of testing the business logic without using the database at all. We can 
test the business logic layer in isolation from the other layers of the system by 
using Layer Tests (page 337) and replacing the data access layer with a Test 
Double (page 522); see Figure 13.2.

 Testing without Databases
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Figure 13.2  A pair of Layer Tests, each of which tests a different layer of the 
system. Layer Tests allow us to build each layer independently of the other 
layers. They are especially useful when the persistence layer can be replaced 
by a Test Double that reduces the Context Sensitivity (see Fragile Test on 
page 239) of the tests. 

If our architecture is not suffi ciently layered to allow for Layer Tests, we may still 
be able to test without a real database by using either a Fake Database (see Fake 
Object on page 551) or an In-Memory Database (see Fake Object). An In-Memory 
Database is a database but stores its tables in memory; this structure makes it run 
much faster than a disk-based database. A Fake Database isn’t really a database at 
all; it is a data access layer that merely pretends to be one. As a rule, it is easier to 
ensure independence of tests by using a Fake Database because we typically cre-
ate a new one as part of our fi xture setup logic, thereby implementing a Transient 
Fresh Fixture (see Fresh Fixture) strategy. Nevertheless, both of these strategies 
allow our tests to run at in-memory speeds, thereby avoiding Slow Tests. We don’t 
introduce too much knowledge of the SUT’s structure as long as we continue to 
write our tests as round-trip tests.

Replacing the database with a Test Double works well as long as we use the 
database only as a data repository. Things get more interesting if we use any 
vendor-specifi c functionality, such as sequence number generation or stored pro-
cedures. Replacing the database then becomes a bit more challenging because it 
requires more attention to creating a design for testability. The general strategy 
is to encapsulate all database interaction within the data access layer. Where the 
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data access layer provides data access functionality, we can simply delegate these 
duties to the “database object.” We must provide test-specifi c implementations 
for any parts of the data access layer interface that implement the vendor-specifi c 
functionality—a task for which a Test Stub (page 529) fi ts the bill nicely.

If we are taking advantage of vendor-specifi c database features such as sequence 
number generation, we will need to provide this functionality when executing the 
tests in memory. Typically, we will not need to substitute a Test Double for any 
functionality-related object because the functionality happens behind the scenes 
within the database. We can add this functionality into the in-memory version of 
the application using a Strategy [GOF] object, which by default is initialized to 
a null object [PLOPD3]. When run in production, the null object does nothing; 
when run in memory, the strategy object provides the missing functionality. As 
an added benefi t, we will fi nd it easier to change to a different database vendor 
once we have taken this step because the hooks to provide this functionality al-
ready exist.1

Replacing the database (or the data access layer) via an automated test implies 
that we have a way to instruct the SUT to use the replacement object. This is com-
monly done in one of two ways: through direct Dependency Injection (page 678) 
or by ensuring that the business logic layer uses Dependency Lookup (page 686) 
to fi nd the data access layer.

Testing the Database 

Assuming we have found ways to test most of our software without using a 
database, then what? Does the need to test the database disappear? Of course not! 
We should ensure that the database functions correctly, just like any other soft-
ware we write. We can, however, focus our testing of the database logic so as to 
reduce the number and kinds of tests we need to write. Because tests that involve 
the database will run much more slowly than our in-memory tests, we want to 
keep the number of these tests to the bare minimum.

What kinds of database tests will we require? The answer to this question 
depends on how our application uses the database. If we have stored proce-
dures, we should write unit tests to verify their logic. If a data access layer hides 
the database from the business logic, we should write tests for the data access 
functionality.

1 Just one more example of how design for testability improves the design of our 
applications.

 Testing the Database
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Testing Stored Procedures 

We can write tests for stored procedures in one of two ways. A Remote Stored 
Procedure Test (see Stored Procedure Test on page 654) is written in the same 
programming language and framework as we write all of our other unit tests. It 
accesses the stored procedure via the same invocation mechanism as used within 
the application logic (i.e., by some sort of Remote Proxy [GOF], Facade [GOF], 
or Command object [GOF]). Alternatively, we can write In-Database Stored 
Procedure Tests (see Stored Procedure Test) in the same language as the stored 
procedure itself; these tests will run inside the database (Figure 13.3). xUnit fam-
ily members are available for several of the most common stored procedure 
languages; utPLSQL is just one example.

Figure 13.3  Testing a stored procedure using Self-Checking Tests (see page 26). 
There is great value in having automated regression test for stored procedures, 
but we must take care to make them repeatable and robust.

Testing the Data Access Layer

We also want to write some unit tests for the data access layer. For the most part, 
these data access layer tests can be round-trip tests. Nevertheless, it is useful to 
have a few layer-crossing tests to ensure that we are putting information into 
the correct columns. This can be done using xUnit framework extensions for 
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database testing (e.g., DbUnit for Java) to insert data directly into the database 
(for “Read” tests) or to verify the post-test contents of the database (for “Cre-
ate/Update/Delete” tests).

A useful trick for keeping our fi xture from becoming persistent during data 
access layer testing is to use Transaction Rollback Teardown (page 668). To 
do so, we rely on the Humble Transaction Controller (see Humble Object on
page 695) DFT pattern when constructing our data access layer. That is, the 
code that reads or writes the database should never commit a transaction; this 
allows the code to be exercised by a test that rolls back the transaction to pre-
vent any of the changes made by the SUT from being applied.

Another way to tear down any changes made to the database during the 
fi xture setup and exercise SUT phases of the test is Table Truncation Tear-
down (page 661). This “brute force” technique for deleting data works only 
when each developer has his or her own Database Sandbox and we want to 
clear out all the data in one or more tables.

Ensuring Developer Independence

Testing the database means we need to have the real database available for 
running these tests. During this testing process, every developer needs to have 
his or her ownDatabase Sandbox. Trying to share a single sandbox among several 
or all developers is a false economy; the developers will simply end up tripping 
over one another and wasting a lot of time.2 I have heard many different excuses 
for not giving each developer his or her own sandbox, but frankly none of them 
holds water. The most legitimate concern relates to the cost of a database license 
for each developer—but even this obstacle can be surmounted by choosing 
one of the “virtual sandbox” variations. If the database technology supports it, 
we can use a DB Schema per TestRunner (see Database Sandbox); otherwise, 
we have to use a Database Partitioning Scheme (see Database Sandbox).

Testing with Databases (Again!)

Suppose we have done a good job layering our system and achieved our goal of 
running most of our tests without accessing the real database. Now what kinds 
of tests should we run against the real database? The answer is simple: “As few 
as possible, but no fewer!” In practice, we want to run at least a representative 
sample of our customer tests against the database to ensure that the SUT behaves 

2 Can you image asking a team of carpenters to share a single hammer?

 Testing with Databases (Again!)
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the same way with a database as without one. These tests need not access the busi-
ness logic via the user interface unless some particular user interface functionality 
depends on the database; Subcutaneous Tests (see Layer Test) should be adequate 
in most circumstances. 

What’s Next? 

In this chapter, we looked at special techniques for testing with databases. This 
discussion has merely scratched the surface of the interactions between agile 
software development and databases.3 Chapter 14, A Roadmap to Effective Test 
Automation, summarizes the material we have covered thus far and makes some 
suggestions about how a project team should come up to speed on developer test 
automation.

3 For a more complete treatment of the topic, refer to [RDb].

Chapter 13  Testing with Databases
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Chapter 14 

A Roadmap to Effective Test 
Automation

About This Chapter 

Chapter 13, Testing with Databases, introduced a set of patterns specifi c to testing 
applications that have a database. These patterns built on the techniques described 
in Chapter 6, Test Automation Strategy; Chapter 9, Persistent Fixture Manage-
ment; and Chapter 11, Using Test Doubles. This was a lot of material to become 
familiar with before we could test effectively with and without databases!

This raises an important point: We don’t become experts in test automa-
tion overnight—these skills take time to develop. It also takes time to learn the 
various tools and patterns at our disposal. This chapter provides something of 
a roadmap for how to learn the patterns and acquire the skills. It introduces 
the concept of “test automation maturity,” which is loosely based on the SEI’s 
Capability Maturity Model (CMM). 

Test Automation Diffi culty 

Some kinds of tests are harder to write than others. This diffi culty arises partly 
because the techniques are more involved and partly because they are less well 
known and the tools to do this kind of test automation are less readily avail-
able. The following common kinds of tests are listed in approximate order of 
diffi culty, from easiest to most diffi cult: 

1. Simple entity objects (Domain Model [PEAA])

• Simple business classes with no dependencies 

• Complex business classes with dependencies 
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2. Stateless service objects

• Individual components via component tests 

• The entire business logic layer via Layer Tests (page 337) 

3. Stateful service objects

• Customer tests via a Service Facade [CJ2EEP] using Subcutaneous
Tests (see Layer Test)

• Stateful components via component tests 

4. “Hard-to-test” code 

• User interface logic exposed via Humble Dialog (see Humble 
Object on page 695)

• Database logic 

• Multi-threaded software 

5. Object-oriented legacy software (software built without any tests) 

6. Non-object-oriented legacy software 

As we move down this list, the software becomes increasingly more challenging to 
test. The irony is that many teams “get their feet wet” by trying to retrofi t tests onto 
an existing application. This puts them in one of the last two categories in this list, 
which is precisely where the most experience is required. Unfortunately, many teams 
fail to test the legacy software successfully, which may then prejudice them against 
trying automated testing, with or without test-driven development. If you fi nd your-
self trying to learn test automation by retrofi tting tests onto legacy software, I have 
two pieces of advice for you: First, hire someone who has done it before to help you 
through this process. Second, read Michael Feathers’ excellent book [WEwLC]; he 
covers many techniques specifi cally applicable to retrofi tting tests. 

Roadmap to Highly Maintainable Automated Tests 

Given that some kinds of tests are much harder to write than others, it makes 
sense to focus on learning to write the easier tests fi rst before we move on to the 
more diffi cult kinds of tests. When teaching automated testing to developers, I 
introduce the techniques in the following sequence. This roadmap is based on 
Maslow’s hierarchy of needs [HoN], which says that we strive to meet the higher-
level needs only after we have satisfi ed the lower-level needs. 
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1. Exercise the happy path code 

• Set up a simple pre-test state of the SUT 

• Exercise the SUT by calling the method being tested

2. Verify direct outputs of the happy path 

• Call Assertion Methods (page 362) on the SUT’s responses 

• Call Assertion Methods on the post-test state 

3. Verify alternative paths 

• Vary the SUT method arguments 

• Vary the pre-test state of the SUT 

• Control indirect inputs of the SUT via a Test Stub (page 529) 

4. Verify indirect output behavior 

• Use Mock Objects (page 544) or Test Spies (page 538) to intercept 
and verify outgoing method calls 

5. Optimize test execution and maintainability 

• Make the tests run faster 

• Make the tests easy to understand and maintain 

• Design the SUT for testability 

• Reduce the risk of missed bugs 

This ordering of needs isn’t meant to imply that this is the order in which we 
might think about implementing any specifi c test.1 Rather, it is likely to be the 
order in which a project team might reasonably expect to learn about the tech-
niques of test automation. 

Let’s look at each of these points in more detail. 

Exercise the Happy Path Code 

To run the happy path through the SUT, we must automate one Simple Success 
Test (see Test Method on page 348) as a simple round-trip test through the SUT’s 
API. To get this test to pass, we might simply hard-code some of the logic in the 

1 Although it can also be used that way, I fi nd it better to write the assertions fi rst and 
then work back from there.

 Roadmap to Highly Maintainable Automated Tests

www.it-ebooks.info

http://www.it-ebooks.info/


178 Chapter 14  A Roadmap to Effective Test Automation

SUT, especially where it might call other components to retrieve information it 
needs to make decisions that would drive the test down the happy path. Before 
exercising the SUT, we need to set up the test fi xture by initializing the SUT to 
the pre-test state. As long as the SUT executes without raising any errors, we 
consider the test as having passed; at this level of maturity we don’t check the 
actual results against the expected results. 

Verify Direct Outputs of the Happy Path 

Once the happy path is executing successfully, we can add result verifi cation logic 
to turn our test into a Self-Checking Test (see page 26). This involves adding calls 
to Assertion Methods to compare the expected results with what actually oc-
curred. We can easily make this change for any objects or values returned to the 
test by the SUT (e.g., “return values,” “out parameters”). We can also call other 
methods on the SUT or use public fi elds to access the post-test state of the SUT; 
we can then call Assertion Methods on these values as well. 

Verify Alternative Paths 

At this point the happy path through the code is reasonably well tested. The 
alternative paths through the code are still Untested Code (see Production Bugs 
on page 268) so the next step is to write tests for these paths (whether we have 
already written the production code or we are striving to automate the tests that 
would drive us to implement them). The question to ask here is “What causes the 
alternative paths to be exercised?” The most common causes are as follows: 

• Different values passed in by the client as arguments 

• Different prior state of the SUT itself

• Different results of invoking methods on components on which the 
SUT depends

The fi rst case can be tested by varying the logic in our tests that calls the SUT 
methods we are exercising and passing in different values as arguments. The 
second case involves initializing the SUT with a different starting state. Neither 
of these cases requires any “rocket science.” The third case, however, is where 
things get interesting. 

Controlling Indirect Inputs 

Because the responses from other components are supposed to cause the SUT 
to exercise the alternative paths through the code, we need to get control 
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over these indirect inputs. We can do so by using a Test Stub that returns the 
value that should drive the SUT into the desired code path. As part of fi xture 
setup, we must force the SUT to use the stub instead of the real component. 
The Test Stub can be built two ways: as a Hard-Coded Test Stub (see Test 
Stub), which contains hand-written code that returns the specifi c values, or 
as a Confi gurable Test Stub (see Test Stub), which is confi gured by the test to 
return the desired values. In both cases, the SUT must use the Test Stub instead 
of the real component. 

Many of these alternative paths result in “successful” outputs from the SUT; 
these tests are considered Simple Success Tests and use a style of Test Stub called 
a Responder (see Test Stub). Other paths are expected to raise errors or excep-
tions; they are considered Expected Exception Tests (see Test Method) and use 
a style of stub called a Saboteur (see Test Stub).

Making Tests Repeatable and Robust 

The act of replacing a real depended-on component (DOC) with a Test Stub has 
a very desirable side effect: It makes our tests both more robust and more repeat-
able.2 By using a Test Stub, we replace a possibly nondeterministic component 
with one that is completely deterministic and under test control. This is a good 
example of the Isolate the SUT principle (see page 43). 

Verify Indirect Output Behavior 

Thus far we have focused on getting control of the indirect inputs of the SUT 
and verifying readily visible direct outputs by inspecting the post-state test of the 
SUT. This kind of result verifi cation is known as State Verifi cation (page 462). 
Sometimes, however, we cannot confi rm that the SUT has behaved correctly 
simply by looking at the post-test state. That is, we may still have some Untested
Requirements (see Production Bugs) that can only be verifi ed by doing Behavior
Verifi cation (page 468). 

We can build on what we already know how to do by using one of the close 
relatives of the Test Stub to intercept the outgoing method calls from our SUT. 
A Test Spy “remembers” how it was called so that the test can later retrieve the 
usage information and use Assertion Method calls to compare it to the expected 
usage. A Mock Object can be loaded with expectations during fi xture setup, 
which it subsequently compares with the actual calls as they occur while the 
SUT is being exercised. 

2 See Robust Test (see page 29) and Repeatable Test (see page 26) for a more detailed 
description.
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Optimize Test Execution and Maintenance 

At this point we should have automated tests for all the paths through our code. 
We may, however, have less than optimal tests: 

• We may have Slow Tests (page 253). 

• The tests may contain Test Code Duplication (page 213) that makes 
them hard to understand. 

• We may have Obscure Tests (page 186) that are hard to understand 
and maintain. 

• We may have Buggy Tests (page 260) that are caused by unreliable Test 
Utility Methods (page 599) or Conditional Test Logic (page 200). 

Make the Tests Run Faster 

Slow Tests is often the fi rst behavior smell we need to address. To make tests run 
faster, we can reuse the test fi xture across many tests—for example, by using some 
form of Shared Fixture (page 317). Unfortunately, this tactic typically produces 
its own share of problems. Replacing a DOC with a Fake Object (page 551) 
that is functionally equivalent but executes much faster is almost always a better 
solution. Use of a Fake Object builds on the techniques we learned for verifying 
indirect inputs and outputs. 

Make the Tests Easy to Understand and Maintain 

We can make Obscure Tests easier to understand and remove a lot of Test Code 
Duplication by refactoring our Test Methods to call Test Utility Methods that 
contain any frequently used logic instead of doing everything on an in-line basis. 
Creation Methods (page 415), Custom Assertions (page 474), Finder Methods 
(see Test Utility Method), and Parameterized Tests (page 607) are all examples 
of this approach. 

If our Testcase Classes (page 373) are getting too big to understand, we can 
reorganize these classes around fi xtures or features. We can also better commu-
nicate our intent by using a systematic way of naming Testcase Classes and Test 
Methods that exposes the test conditions we are verifying in them. 

Reduce the Risk of Missed Bugs 

If we are having problems with Buggy Tests or Production Bugs, we can reduce 
the risk of false negatives (tests that pass when they shouldn’t) by encapsulating 
complex test logic. When doing so, we should use intent-revealing names for our 
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Test Utility Methods. We should verify the behavior of nontrivial Test Utility 
Methods using Test Utility Tests (see Test Utility Method).

What’s Next? 

This chapter concludes Part I, The Narratives. Chapters 1–14 have provided 
an overview of the goals, principles, philosophies, patterns, smells, and coding 
idioms related to writing effective automated tests. Part II, The Test Smells, and 
Part III, The Patterns, contain detailed descriptions of each of the smells and 
patterns introduced in these narrative chapters, complete with code samples. 
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Obscure Test                       

It is diffi cult to understand the test at a glance.

Automated tests should serve at least two purposes. First, they should act as 
documentation of how the system under test (SUT) should behave; we call this 
Tests as Documentation (see page 23). Second, they should be a self-verifying 
executable specifi cation. These two goals are often contradictory because the 
level of detail needed for tests to be executable may make the test so verbose as 
to be diffi cult to understand. 

Symptoms

We are having trouble understanding what behavior a test is verifying.

Impact

The fi rst issue with an Obscure Test is that it makes the test harder to understand 
and therefore maintain. It will almost certainly preclude achieving Tests as Doc-
umentation, which in turn can lead to High Test Maintenance Cost (page 265). 

The second issue with an Obscure Test is that it may allow bugs to slip 
through because of test coding errors hidden in the Obscure Test. This can re-
sult in Buggy Tests (page 260). Furthermore, a failure of one assertion in an 
Eager Test may hide many more errors that simply aren’t run, leading to a loss 
of test debugging data. 

Causes

Paradoxically, an Obscure Test can be caused by either too much information 
in the Test Method (page 348) or too little information. Mystery Guest is an 
example of too little information; Eager Test and Irrelevant Information are 
examples of too much information. 

The root cause of an Obscure Test is typically a lack of attention to keeping 
the test code clean and simple. Test code is just as important as the production 
code, and it needs to be refactored just as often. A major contributor to an 
Obscure Test is a “just do it in-line” mentality when writing tests. Putting code 
in-line results in large, complex Test Methods because some things just take a 
lot of code to do. 

The fi rst few causes of Obscure Test discussed here relate to having the 
wrong information in the test: 

Also known as: 
Long Test, 

Complex Test, 
Verbose Test

Obscure
Test 
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• Eager Test: The test verifi es too much functionality in a single Test 
Method.

• Mystery Guest: The test reader is not able to see the cause and effect 
between fi xture and verifi cation logic because part of it is done outside 
the Test Method.

The general problem of Verbose Tests—tests that use too much code to say what 
they need to say—can be further broken down into a number of root causes: 

• General Fixture: The test builds or references a larger fi xture than is 
needed to verify the functionality in question. 

• Irrelevant Information: The test exposes a lot of irrelevant details about 
the fi xture that distract the test reader from what really affects the be-
havior of the SUT. 

• Hard-Coded Test Data: Data values in the fi xture, assertions, or argu-
ments of the SUT are hard-coded in the Test Method, obscuring cause–
effect relationships between inputs and expected outputs. 

• Indirect Testing: The Test Method interacts with the SUT indirectly via 
another object, thereby making the interactions more complex. 

Cause: Eager Test 

The test verifi es too much functionality in a single Test Method.

Symptoms

The test goes on and on verifying this, that, and “everything but the kitchen 
sink.” It is hard to tell which part is fi xture setup and which part is exercising 
the SUT. 

   public void testFlightMileage_asKm2() throws Exception {
      // set up fixture
      // exercise constructor
      Flight newFlight = new Flight(validFlightNumber);
      // verify constructed object
      assertEquals(validFlightNumber, newFlight.number);
      assertEquals("", newFlight.airlineCode);
      assertNull(newFlight.airline);
      // set up mileage
      newFlight.setMileage(1122);
      // exercise mileage translator
      int actualKilometres = newFlight.getMileageAsKm();
      // verify results
      int expectedKilometres = 1810;

Obscure
Test
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      assertEquals( expectedKilometres, actualKilometres);
      // now try it with a canceled flight
      newFlight.cancel();
      try {
         newFlight.getMileageAsKm();
         fail("Expected exception");
      } catch (InvalidRequestException e) {
         assertEquals( "Cannot get cancelled flight mileage",
                       e.getMessage());
      }
   }

Root Cause 

When executing tests manually, it makes sense to chain a number of logically 
distinct test conditions into a single test case to reduce the setup overhead of 
each test. This works because we have liveware (an intelligent human being) 
executing the tests, and this person can decide at any point whether it makes 
sense to keep going or whether the failure of a step is severe enough to abandon 
the execution of the test. 

Possible Solution 

When the tests are automated, it is better to have a suite of independent Single-
Condition Tests (see page 45) as these provide much better Defect Localization 
(see page 22). 

Cause: Mystery Guest 

The test reader is not able to see the cause and effect between fi xture and verifi -
cation logic because part of it is done outside the Test Method.

Symptoms

Tests invariably require passing data to the SUT. The data used in the fi xture 
setup and exercise SUT phases of the Four-Phase Test (page 358) defi ne the pre-
conditions of the SUT and infl uence how it should behave. The post-conditions 
(the expected outcomes) are refl ected in the data passed as arguments to the 
Assertion Methods (page 362) in the verify outcome phase of the test. 

When either the fi xture setup or the result verifi cation part of a test depends 
on information that is not visible within the test and the test reader fi nds it dif-
fi cult to understand the behavior that is being verifi ed without fi rst fi nding and 
inspecting the external information, we have a Mystery Guest on our hands. 
Here’s an example where we cannot tell what the fi xture looks like, making it 
diffi cult to relate the expected outcome to the pre-conditions of the test:

Obscure
Test 
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   public void testGetFlightsByFromAirport_OneOutboundFlight_mg()
                  throws Exception {
      loadAirportsAndFlightsFromFile("test-flights.csv");
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirportCode( "YYC");
      // Verify Outcome
      assertEquals( 1, flightsAtOrigin.size());
      FlightDto firstFlight = (FlightDto) flightsAtOrigin.get(0);
      assertEquals( "Calgary", firstFlight.getOriginCity());
   }

Impact

The Mystery Guest makes it hard to see the cause–effect relationship between 
the test fi xture (the pre-conditions of the test) and the expected outcome of 
the test. As a consequence, the tests don’t fulfi ll the role of Tests as Docu-
mentation. Even worse, someone may modify or delete the external resource 
without realizing the impact this action will have when the tests are run. This 
behavior smell has its own name: Resource Optimism (see Erratic Test on 
page 228)! 

If the Mystery Guest is a Shared Fixture (page 317), it may also lead to Erratic 
Tests if other tests modify it. 

Root Cause 

A test depends on mysterious external resources, making it diffi cult to under-
stand the behavior that it is verifying. Mystery Guests may take many forms: 

• A fi lename of an existing external fi le is passed to a method of the SUT; 
the contents of the fi le should determine the behavior of the SUT. 

• The contents of a database record identifi ed by a literal key are read 
into an object that is then used by the test or passed to the SUT. 

• The contents of a fi le are read and used in calls to Assertion Methods to 
verify the expected outcome. 

• A Setup Decorator (page 447) is used to create a Shared Fixture, and 
objects in this fi xture are then referenced via variables within the result 
verifi cation logic. 

• A General Fixture is set up using Implicit Setup (page 424), and the Test 
Methods then access them via instance variables or class variables. 

All of these scenarios share a common outcome: It is hard to see the cause–effect 
relationship between the test fi xture and the expected outcome of the test because 

 Obscure Test
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the relevant data are not visible in the tests. If the contents of the data are not 
clearly described by the names we give to the variables and fi les that contain 
them, we have a Mystery Guest.

Possible Solution 

Using a Fresh Fixture (page 311) built using In-line Setup (page 408) is the 
obvious solution for a Mystery Guest. When applied to the fi le example, this 
would involve creating the contents of the fi le as a string within our test so 
that the contents are visible and then writing them out to the fi le system 
[Setup External Resource (page 772) refactoring] or putting it into a fi le sys-
tem Test Stub (page 529) as part of the fi xture setup.1 To avoid Irrelevant 
Information, we may want to hide the details of the construction behind one 
or more evocatively named Creation Methods (page 415) that append to the 
fi le’s contents. 

If we must use a Shared Fixture or Implicit Setup, we should consider using 
evocatively named Finder Methods (see Test Utility Method on page 599) to 
access the objects in the fi xture. If we must use external resources such as fi les, 
we should put them into a special folder or directory and give them names that 
make it obvious what kind of data they hold. 

Cause: General Fixture 

The test builds or references a larger fi xture than is needed to verify the func-
tionality in question. 

Symptoms

There seems to be a lot of test fi xture being built—much more than would appear 
to be necessary for any particular test. It is hard to understand the cause–effect 
relationship between the fi xture, the part of the SUT being exercised, and the 
expected outcome of a test. 

Consider the following set of tests: 

   public void testGetFlightsByFromAirport_OneOutboundFlight()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlight.getOriginAirportId());
      // Verify Outcome

1 See In-line Resource (page 736) refactoring for details.

Obscure
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      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto[] outboundFlights =
                 findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

From reading the exercise SUT and verifi ng outcome parts of the tests, it would 
appear that they need very different fi xtures. Even though these tests are using a 
Fresh Fixture setup strategy, they are using the same fi xture setup logic by calling 
the setupStandardAirportsAndFlights method. The name of the method is a clue to 
this classic but easily recognized example of a General Fixture. A more diffi cult 
case to diagnose would be if each test created the Standard Fixture (page 305) 
in-line or if each test created a somewhat different fi xture but each fi xture con-
tained much more than was needed by each individual test. 

We may also be experiencing Slow Tests (page 253) or a Fragile Fixture (see
Fragile Test on page 239).

Root Cause 

The most common cause of this problem is a test that uses a fi xture that is designed 
to support many tests. Examples include the use of Implicit Setup or a Shared Fix-
ture across many tests with different fi xture requirements. This problem results in 
the fi xture becoming large and diffi cult to understand. The fi xture may also grow 
larger over time. The root cause is that both approaches rely on a Standard Fix-
ture that must meet the requirements of all tests that use it. The more diverse the 
needs of those tests, the more likely we are to create a General Fixture.

Impact

When the test fi xture is designed to support many different tests, it can be very 
diffi cult to understand how each test uses the fi xture. This complexity reduces the 
likelihood of using Tests as Documentation and can result in a Fragile Fixture as 
people alter the fi xture so that it can handle new tests. It can also result in Slow

 Obscure Test
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Tests because a larger fi xture takes more time to build, especially if a fi le system 
or database is involved. 

Possible Solution 

We need to move to a Minimal Fixture (page 302) to address this problem. To 
do so, we can use a Fresh Fixture for each test. If we must use a Shared Fixture,
we should consider applying the Make Resource Unique (page 737) refactoring 
to create a virtual Database Sandbox (page 650) for each test.2

Cause: Irrelevant Information 

The test exposes a lot of irrelevant details about the fi xture that distract the test 
reader from what really affects the behavior of the SUT. 

Symptoms

As test readers, we fi nd it hard to determine which of the values passed to 
objects actually affect the expected outcome: 

   public void testAddItemQuantity_severalQuantity_v10(){
      //   Set Up Fixture
      Address billingAddress =
         createAddress( "1222 1st St SW", "Calgary", "Alberta",
                        "T2N 2V2", "Canada");
      Address shippingAddress =
         createAddress( "1333 1st St SW", "Calgary", "Alberta",
                        "T2N 2V2", "Canada");
      Customer customer =
         createCustomer( 99, "John", "Doe", new BigDecimal("30"),
                         billingAddress, shippingAddress);
      Product product =
         createProduct( 88,"SomeWidget",new BigDecimal("19.99"));
      Invoice invoice = createInvoice(customer);
      // Exercise SUT
      invoice.addItemQuantity(product, 5);
      // Verify Outcome
      LineItem expected =
         new LineItem(invoice, product,5, new BigDecimal("30"),
                      new BigDecimal("69.96"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }

2 Switching to an Immutable Shared Fixture (see Shared Fixture) does not fully address 
the core of this problem because it does not help us determine which parts of the fi xture 
are needed by each test; only the parts that are modifi ed are so identifi ed!
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Fixture setup logic may seem very long and complicated as it weaves together 
many interrelated objects. This makes it hard to determine what the test is veri-
fying because the reader doesn’t understand the pre-conditions of the test: 

   public void testGetFlightsByOriginAirport_TwoOutboundFlights()
         throws Exception {
      FlightDto expectedCalgaryToSanFran = new FlightDto();
      expectedCalgaryToSanFran.setOriginAirportId(calgaryAirportId);
      expectedCalgaryToSanFran.setOriginCity(CALGARY_CITY);
      expectedCalgaryToSanFran.setDestinationAirportId(sanFranAirportId);
      expectedCalgaryToSanFran.setDestinationCity(SAN_FRAN_CITY);
      expectedCalgaryToSanFran.setFlightNumber(
         facade.createFlight(calgaryAirportId,sanFranAirportId));
      FlightDto expectedCalgaryToVan = new FlightDto();
      expectedCalgaryToVan.setOriginAirportId(calgaryAirportId);
      expectedCalgaryToVan.setOriginCity(CALGARY_CITY);
      expectedCalgaryToVan.
            setDestinationAirportId(vancouverAirportId);
      expectedCalgaryToVan.setDestinationCity(VANCOUVER_CITY);
      expectedCalgaryToVan.setFlightNumber(facade.createFlight(
            calgaryAirportId, vancouverAirportId));

The code that verifi es the expected outcome of a test can also be too complicated 
to understand: 

      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 2);
      //   verify first item
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem1.getInv(), actual.getInv());
      assertEquals(expItem1.getProd(), actual.getProd());
      assertEquals(expItem1.getQuantity(), actual.getQuantity());
      //   verify second item
      actual = (LineItem)lineItems.get(1);
      assertEquals(expItem2.getInv(), actual.getInv());
      assertEquals(expItem2.getProd(), actual.getProd());
      assertEquals(expItem2.getQuantity(), actual.getQuantity());
   }

Root Cause 

A test contains a lot of data, either as Literal Values (page 714) or as variables. 
Irrelevant Information often occurs in conjunction with Hard-Coded Test Data
or a General Fixture but can also arise because we make visible all data the 
test needs to execute rather than focusing on the data the test needs to be un-
derstood. When writing tests, the path of least resistance is to use whatever 
methods are available (on the SUT and other objects) and to fi ll in all parameters 
with values, whether or not they are relevant to the test. 

 Obscure Test
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Another possible cause is when we include all the code needed to verify 
the outcome using Procedural State Verifi cation (see State Verifi cation on
page 462) rather than using a much more compact “declarative” style to spec-
ify the expected outcome. 

Impact

It is hard to achieve Tests as Documentation if the tests contain many seemingly 
random bits of Obscure Test that don’t clearly link the pre-conditions with the 
post-conditions. Likewise, wading through many steps of fi xture setup or result 
verifi cation logic can result in High Test Maintenance Cost and can increase the 
likelihood of Production Bugs (page 268) or Buggy Tests.

Possible Solution 

The best way to get rid of Irrelevant Information in fi xture setup logic is to 
replace direct calls to the constructor or Factory Methods [GOF] with calls to 
Parameterized Creation Methods (see Creation Method) that take only the rel-
evant information as parameters. Fixture values that do not matter to the test 
(i.e., those that do not affect the expected outcome) should be defaulted within 
Creation Methods or replaced by Dummy Objects (page 728). In this way we 
say to the test reader, “The values you don’t see don’t affect the expected out-
come.” We can replace fi xture values that appear in both the fi xture setup and 
outcome verifi cation parts of the test with suitably initialized named constants 
as long as we are using a Fresh Fixture approach to fi xture setup. 

To hide Irrelevant Information in result verifi cation logic, we can use asser-
tions on entire Expected Objects (see State Verifi cation), rather than asserting 
on individual fi elds, and we can create Custom Assertions (page 474) that hide 
complex procedural verifi cation logic. 

Cause: Hard-Coded Test Data 

Data values in the fi xture, assertions, or arguments of the SUT are hard-coded 
in the Test Method, obscuring cause–effect relationships between inputs and 
expected outputs. 

Symptoms

As test readers, we fi nd it diffi cult to determine how various hard-coded (i.e., 
literal) values in the test are related to one another and which values should 
affect the behavior of the SUT. We may also encounter behavior smells such as 
Erratic Tests.
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   public void testAddItemQuantity_severalQuantity_v12(){
      //  Set Up Fixture
      Customer cust = createACustomer(new BigDecimal("30"));
      Product prod = createAProduct(new BigDecimal("19.99"));
      Invoice invoice = createInvoice(cust);
      // Exercise SUT
      invoice.addItemQuantity(prod, 5);
      // Verify Outcome
      LineItem expected = new LineItem(invoice, prod, 5,
            new BigDecimal("30"), new BigDecimal("69.96"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }

This specifi c example isn’t so bad because there aren’t very many literal values. If 
we aren’t good at doing math in our heads, however, we might miss the relation-
ship between the unit price ($19.99), the item quantity (5), the discount (30%), 
and the total price ($69.96). 

Root Cause 

Hard-Coded Test Data occurs when a test contains a lot of seemingly unrelated 
Literal Values. Tests invariably require passing data to the SUT. The data used in 
the fi xture setup and exercise SUT phases of the Four-Phase Test defi ne the pre-
conditions of the SUT and infl uence how it should behave. The post-conditions 
(the expected outcomes) are refl ected in the data passed as arguments to the 
Assertion Methods in the verify outcome phase of the test. When writing tests, 
the path of least resistance is to use whatever methods are available (on the SUT 
and other objects) and to fi ll in all parameters with values, whether or not they 
are relevant to the test. 

When we use “cut-and-paste” reuse of test logic, we fi nd ourselves replicat-
ing the literal values to the derivative tests. 

Impact

It is hard to achieve Tests as Documentation if the tests contain many seemingly 
random bits of Obscure Test that don’t clearly link the pre-conditions with the 
post-conditions. A few literal parameters might not seem like a bad thing—after 
all, they don’t require us to make that much more effort to understand a test. As 
the number of literal values grows, however, it can become much more diffi cult 
to understand a test. This is especially true when the signal-to-noise ratio drops 
dramatically because the majority of the values are irrelevant to the test. 

The second major impact occurs when collisions between tests occur because
the tests are using the same values. This situation happens only when we use a 
Shared Fixture because a Fresh Fixture strategy shouldn’t litter the scene with 
any objects with which a subsequent test can collide. 
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Possible Solution 

The best way to get rid of the Obscure Test smell is to replace the literal constants 
with something else. Fixture values that determine which scenario is being ex-
ecuted (e.g., type codes) are probably the only ones that are reasonable to leave as 
literals—but even these values can be converted to named constants. 

Fixture values that do not matter to the test (i.e., those that do not affect the 
expected outcome) should be defaulted within Creation Methods. In this way 
we say to the test reader, “The values you don’t see don’t affect the expected 
outcome.” We can replace fi xture values that appear in both the fi xture setup 
and outcome verifi cation parts of the test with suitably initialized named con-
stants as long as we are using a Fresh Fixture approach to fi xture setup. 

Values in the result verifi cation logic that are based on values used in the fi x-
ture or that are used as arguments of the SUT should be replaced with Derived
Values (page 718) to make those calculations obvious to the test reader. 

If we are using any variant of Shared Fixture, we should try to use Distinct 
Generated Values (see Generated Value on page 723) to ensure that each 
time a test is run, it uses a different value. This consideration is especially 
important for fi elds that serve as unique keys in databases. A common way of 
encapsulating this logic is to use Anonymous Creation Methods (see Creation 
Method). 

Cause: Indirect Testing 

The Test Method interacts with the SUT indirectly via another object, thereby 
making the interactions more complex. 

Symptoms

A test interacts primarily with objects other than the one whose behavior it 
purports to verify. The test must construct and interact with objects that contain 
references to the SUT rather than with the SUT itself. Testing business logic 
through the presentation layer is a common example of Indirect Testing.

   private final int LEGAL_CONN_MINS_SAME = 30;
   public void testAnalyze_sameAirline_LessThanConnectionLimit()
   throws Exception {
      // setup
      FlightConnection illegalConn =
            createSameAirlineConn( LEGAL_CONN_MINS_SAME - 1);
      // exercise
      FlightConnectionAnalyzerImpl sut =
            new FlightConnectionAnalyzerImpl();
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      String actualHtml =
            sut.getFlightConnectionAsHtmlFragment(
                       illegalConn.getInboundFlightNumber(),
                       illegalConn.getOutboundFlightNumber());
      // verification
      StringBuffer expected = new StringBuffer();
      expected.append("<span class="boldRedText">");
      expected.append("Connection time between flight ");
      expected.append(illegalConn.getInboundFlightNumber());
      expected.append(" and flight ");
      expected.append(illegalConn.getOutboundFlightNumber());
      expected.append(" is ");
      expected.append(illegalConn.getActualConnectionTime());
      expected.append(" minutes.</span>");
      assertEquals("html", expected.toString(), actualHtml);
   }

Impact

It may not be possible to test “anything that could possibly break” in the SUT 
via the intermediate object. Indeed, such tests are unlikely to be very clear or 
understandable. They certainly will not result in Tests as Documentation.

Indirect Testing may result in Fragile Tests because changes in the intermediate 
objects may require modifi cation of the tests even when the SUT is not modifi ed. 

Root Cause 

The SUT may be “private” to the class being used to access it from the test. It 
may not be possible to create the SUT directly because the constructors them-
selves are private. This problem is just one sign that the software is not designed 
for testability. 

It may be that the actual outcome of exercising the SUT cannot be observed 
directly. In such a case, the expected outcome of the test must be verifi ed through 
an intermediate object. 

Possible Solution 

It may be necessary to improve the design-for-testability of the SUT to remove this 
smell. We might be able to expose the SUT directly to the test by using an Extract 
Testable Component refactoring (a variant of the Sprout Class [WEwLC] refac-
toring). This approach may result in an untestable Humble Object (page 695) and 
an easily tested object that contains most or all of the actual logic. 

   public void testAnalyze_sameAirline_EqualsConnectionLimit()
   throws Exception {
      // setup
      Mock flightMgntStub = mock(FlightManagementFacade.class);
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      Flight firstFlight = createFlight();
      Flight secondFlight = createConnectingFlight(
                           firstFlight, LEGAL_CONN_MINS_SAME);
      flightMgntStub.expects(once()).method("getFlight")
                     .with(eq(firstFlight.getFlightNumber()))
                     .will(returnValue(firstFlight));
      flightMgntStub.expects(once()).method("getFlight")
                     .with(eq(secondFlight.getFlightNumber()))
                     .will(returnValue(secondFlight));
      // exercise
      FlightConnAnalyzer theConnectionAnalyzer =
            new FlightConnAnalyzer();
      theConnectionAnalyzer.facade = 
            (FlightManagementFacade)flightMgntStub.proxy();
      FlightConnection actualConnection =
            theConnectionAnalyzer.getConn(
                              firstFlight.getFlightNumber(),
                              secondFlight.getFlightNumber());
      // verification
      assertNotNull("actual connection", actualConnection);
      assertTrue("IsLegal", actualConnection.isLegal());
   }

Sometimes we may be forced to interact with the SUT indirectly because we 
cannot refactor the code to expose the logic we are trying to test. In these cases, 
we should encapsulate the complex logic forced by Indirect Testing behind suit-
ably named Test Utility Methods. Similarly, fi xture setup can be hidden behind 
Creation Methods and result verifi cation can be hidden by Verifi cation Methods 
(see Custom Assertion). Both are examples of SUT API Encapsulation (see Test 
Utility Method).

   public void testAnalyze_sameAirline_LessThanConnLimit()
   throws Exception {
      // setup
      FlightConnection illegalConn =
            createSameAirlineConn( LEGAL_CONN_MINS_SAME - 1);
      FlightConnectionAnalyzerImpl sut =
            new FlightConnectionAnalyzerImpl();
      // exercise SUT
      String actualHtml =
            sut.getFlightConnectionAsHtmlFragment(
                       illegalConn.getInboundFlightNumber(),
                       illegalConn.getOutboundFlightNumber());
      // verification
      assertConnectionIsIllegal(illegalConn, actualHtml);
   }

The following Custom Assertion hides the ugliness of extracting the business 
result from the presentation noise. It was created by doing a simple Extract Method 
[Fowler] refactoring on the test. Of course, this example would be more robust 
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if it searched inside the HTML for key strings rather than building up the entire 
expected string and comparing it all at once. Other Presentation Layer Tests (see
Layer Test on page 337) might then verify that the presentation logic is format-
ting the HTML string properly. 

   private void assertConnectionIsIllegal( FlightConnection conn,
                                           String actualHtml) {
      // set up expected value
      StringBuffer expected = new StringBuffer();
      expected.append("<span class="boldRedText">");
      expected.append("Connection time between flight ");
      expected.append(conn.getInboundFlightNumber());
      expected.append(" and flight ");
      expected.append(conn.getOutboundFlightNumber());
      expected.append(" is ");
      expected.append(conn.getActualConnectionTime());
      expected.append(" minutes.</span>");
      // verification
      assertEquals("html", expected.toString(), actualHtml);
   }

Solution Patterns 

A good test strategy helps keep the test code understandable. Nevertheless, just 
as “no battle plan survives the fi rst contact with the enemy,” no test infrastruc-
ture can anticipate all needs of all tests. We should expect the test infrastructure 
to evolve as the software matures and our test automation skills improve. 

We can reuse test logic for several scenarios by having several tests call Test 
Utility Methods or by asking a common Parameterized Test (page 607) to pass 
in the already built test fi xture or Expected Objects.

Writing tests in an “outside-in” way can minimize the likelihood of produc-
ing an Obscure Test that might then need to be refactored. This approach starts 
by outlining the Four-Phase Test using calls to nonexistent Test Utility Meth-
ods. Once we are satisfi ed with these tests, we can write the utility methods 
needed to run them. By writing the tests fi rst, we gain a better understanding of 
what the utility methods need to do for us to make writing the tests as simple 
as possible. The “test-infected” will, of course, write Test Utility Tests (see Test 
Utility Method) before writing the Test Utility Methods.
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Conditional Test Logic                                                 

A test contains code that may or may not be executed.

A Fully Automated Test (see page 26) is just code that verifi es the behavior of 
other code. But if this code is complicated, how do we verify that it works prop-
erly? We could write tests for our tests—but when would this recursion stop? 
The simple answer is that Test Methods (page 348) must be simple enough to 
not need tests. 

Conditional Test Logic is one factor that makes tests more complicated than 
they really should be. 

Symptoms

As a code smell, Conditional Test Logic may not produce any behavioral symp-
toms but its presence should be reasonably obvious to the test reader. View 
any control structures within a Test Method with extreme suspicion! The test 
reader may also wonder which code path is the one that is being executed. The 
following is an example of Conditional Test Logic that involves both looping 
and if statements: 

      //   verify Vancouver is in the list
      actual = null;
      i = flightsFromCalgary.iterator();
      while (i.hasNext()) {
         FlightDto flightDto = (FlightDto) i.next();
         if (flightDto.getFlightNumber().equals(
               expectedCalgaryToVan.getFlightNumber()))
         {
            actual = flightDto;
            assertEquals("Flight from Calgary to Vancouver",
                         expectedCalgaryToVan,
                         flightDto);
            break;
         }
      }
   }

This code begs the question, “What is this test code doing and how do we 
know that it is doing it correctly?” One behavioral symptom may be the pres-
ence of the related project-level smell High Test Maintenance Cost (page 265), 
which may be caused by the complexity introduced by the Conditional Test 
Logic.

Also known as:
Indented Test 

Code
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Impact

Conditional Test Logic makes it diffi cult to know exactly what a test is going 
to do when it really matters. Code that has only a single execution path al-
ways executes in exactly the same way. Code that has multiple execution paths 
presents much greater challenges and does not inspire as much confi dence 
about its outcome. 

To increase our confi dence in production code, we can write Self-Checking
Tests (see page 26) that exercise the code. How can we increase our confi dence 
in the test code if it executes differently each time we run it? It is hard to know 
(or prove) that the test is verifying the behavior we want it to verify. A test that 
has branches or loops, or that uses different values each time it is run, can be 
very diffi cult to debug simply because it isn’t completely deterministic. 

A related issue is that Conditional Test Logic makes writing the test correctly 
a more diffi cult task. Because the test itself cannot be tested easily, how do we 
know that it will actually detect the bugs it is intended to catch? [This is a gen-
eral problem with Obscure Tests (page 186); they are more likely to result in 
Buggy Tests (page 260) than simple code.]

Causes

Test automaters may introduce Conditional Test Logic for several reasons: 

• They may use if statements to steer execution to a fail statement or to 
avoid executing certain pieces of test code when the SUT fails to return 
valid data. 

• They may use loops to verify the contents of collections of objects 
(Conditional Verifi cation Logic). This may also result in an Obscure
Test.

• They may use Conditional Test Logic to verify complex objects or 
polymorphic data structures (another form of Conditional Verifi cation 
Logic). This is just a Foreign Method [Fowler] implementation of the 
equals method. 

• They may use Conditional Test Logic to initialize the test fi xture or 
Expected Object (see State Verifi cation on page 462) so they can reuse 
a single test to verify several different cases (Flexible Test).

• They may use if statements to avoid tearing down nonexistent fi xture 
objects (Complex Teardown).
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Some of these causes are worth examining in more detail. 

Cause: Flexible Test 

The test code verifi es different functionality depending on when or where it is 
run.

Symptoms

The test contains conditional logic that does different things depending on the 
current environment. Most commonly this functionality takes the form of Con-
ditional Test Logic to build different versions of the expected results based on 
some factor external to the test. 

Consider the following test, which gets the current time so that it can deter-
mine what the output of the SUT should be: 

   public void testDisplayCurrentTime_whenever() {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify outcome
      Calendar time = new DefaultTimeProvider().getTime();
      StringBuffer expectedTime = new StringBuffer();
      expectedTime.append("<span class=\"tinyBoldText\">");

      if ((time.get(Calendar.HOUR_OF_DAY) == 0)
         && (time.get(Calendar.MINUTE) <= 1)) {
         expectedTime.append( "Midnight");
      } else if ((time.get(Calendar.HOUR_OF_DAY) == 12)
                  && (time.get(Calendar.MINUTE) == 0)) { // noon
         expectedTime.append("Noon");
      } else  {
         SimpleDateFormat fr = new SimpleDateFormat("h:mm a");
         expectedTime.append(fr.format(time.getTime()));
      }
      expectedTime.append("</span>");

      assertEquals( expectedTime, result);
   }

Root Cause 

A Flexible Test is caused by a lack of control of the environment. The test 
automater probably wasn’t able to decouple the SUT from its dependencies and 
decided to adapt the test logic based on the state of the environment. 
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Impact

The fi rst issue is that using a Flexible Test makes the test harder to understand 
and therefore to maintain. The second issue is that we don’t know which test 
scenarios are actually being exercised and whether all scenarios are, in fact, 
exercised regularly. For example, in our sample test, is the midnight scenario 
ever exercised? How often? Probably rarely, if ever, because the test would have 
to be run at exactly midnight—an unlikely event, even if we timed the nightly 
build such that it ran over midnight. 

Possible Solution 

A Flexible Test is best addressed by decoupling the SUT from whatever depen-
dencies prompted the test automater to make the test fl exible. This involves 
refactoring the SUT to support substitutable dependency. We can then replace 
the dependency with a Test Double (page 522), such as a Test Stub (page 529) or 
Mock Object (page 544), and write separate tests for each circumstance previ-
ously covered by the Flexible Test.

Cause: Conditional Verifi cation Logic 

Conditional Test Logic (page 200) may also create problems when it is used to 
verify the expected outcome. This issue usually arises when the tester tries to pre-
vent the execution of assertions if the SUT fails to return the right objects or uses 
loops to verify the contents of collections returned by the SUT. 

      //   verify Vancouver is in the list
      actual = null;
      i = flightsFromCalgary.iterator();
      while (i.hasNext()) {
         FlightDto flightDto = (FlightDto) i.next();
         if (flightDto.getFlightNumber().equals(
               expectedCalgaryToVan.getFlightNumber()))
         {
            actual = flightDto;
            assertEquals("Flight from Calgary to Vancouver",
                         expectedCalgaryToVan,
                         flightDto);
            break;
         }
      }
   }

Possible Solution 

We can replace the if statements that steer execution to a call to fail with a Guard 
Assertion (page 490) that causes the test to fail before we reach the code we don’t 
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want to execute. This works well unless the test is an Expected Exception Test (see
Test Method.) In the latter case, we should use the standard Expected Exception 
Test coding idiom for the xUnit family member and language. 

We can replace Conditional Test Logic for verifi cation of complex objects 
with an Equality Assertion (see Assertion Method on page 362) on an Expected
Object. If the production code’s equals method is too strict, we can use a Custom 
Assertion (page 474) to defi ne test-specifi c equality.

We should move any loops in the verifi cation logic to a Custom Assertion.
We can then verify this assertion’s behavior by using Custom Assertion Tests 
(see Custom Assertion).

We can reuse test logic in several tests by calling a Test Utility Method (page 599) 
or a common Parameterized Test (page 607) that passes in the already built test 
fi xture and Expected Objects.

Cause: Production Logic in Test 

Symptoms

Some forms of Conditional Test Logic are found in the result verifi cation section 
of our tests. Let us look more closely inside the loops of this test: 

   public void testCombinationsOfInputValues() {
      // Set up fixture
      Calculator sut = new Calculator();
      int expected;  // TBD inside loops

      for (int i = 0; i < 10; i++) {
         for (int j = 0; j < 10; j++) {
            // Exercise SUT
            int actual = sut.calculate( i, j );

            // Verify result
            if (i==3 & j==4)  // special case
               expected = 8;
            else
               expected = i+j;

            assertEquals(message(i,j), expected, actual);
         }
      }
   }

   private String message(int i, int j) {
      return "Cell( " + String.valueOf(i)+ ","
                      + String.valueOf(j) + ")";
}
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The nested loops in this Loop-Driven Test (see Parameterized Test) exercise the 
SUT with various combinations of values of i and j as inputs. Here we will focus 
on the Conditional Test Logic inside the loop. 

Root Cause 

This Production Logic in Test is a direct result of wanting to verify multiple 
test conditions in a single Test Method. Given that multiple input values are 
passed to the SUT, we should also have multiple expected results. It is hard to 
enumerate the expected result for each set of inputs if we pass in many com-
binations of several input arguments to the SUT in nested loops. A common 
solution to this problem is to use a Calculated Value (see Derived Value on 
page 718) based on the inputs. The potential downfall (as we see here) is that 
we fi nd ourselves replicating the expected SUT logic inside our test to calculate 
the expected values for assertions. 

Possible Solution 

If at all possible, it is better to enumerate the sets of precalculated values with 
which to test the SUT. The following example tests the same logic using a 
(smaller) set of enumerated values: 

   public void testMultipleValueSets() {
      // Set Up Fixture
      Calculator sut = new Calculator();
      TestValues[] testValues = {
                     new TestValues(1,2,3),
                     new TestValues(2,3,5),
                     new TestValues(3,4,8), // special case!
                     new TestValues(4,5,9)
                                };

      for (int i = 0; i < testValues.length; i++) {
         TestValues values = testValues[i];
         // Exercise SUT
         int actual = sut.calculate( values.a, values.b);
         // Verify Result
         assertEquals(message(i), values.expectedSum, actual);
      }
   }

   private String message(int i) {
      return "Row "+ String.valueOf(i);
   }
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Cause: Complex Teardown 

Symptoms

Complex fi xture teardown code is more likely to leave the test environment cor-
rupted if it does not clean up after itself correctly. It is hard to verify that tear-
down code has been written correctly, and such code can easily result in “data 
leaks” that may later cause this or other tests to fail for no apparent reason. 
Consider this example: 

   public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
            throws Exception {
      // Set Up Fixture 
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = null;
      FlightDto expFlightDto = null;
      try {
         inboundAirport = createTestAirport("1IF");
         expFlightDto =
               createTestFlight(outboundAirport, inboundAirport);
         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport(inboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         try {
            facade.removeFlight(expFlightDto.getFlightNumber());
         } finally {
            try {
               facade.removeAirport(inboundAirport);
            } finally  {
               facade.removeAirport(outboundAirport);
            } 
         }
      }
   }

Root Cause 

Teardown is typically required only when we use persistent resources that are 
beyond the reach of our garbage collection system. Complex Teardown occurs
when many such resources are used in the same Test Method.

Possible Solution 

To avoid complex teardown logic, we should use Implicit Teardown (page 516), 
which will make the code both reusable and testable, or Automated Tear-
down (page 503), which can be verifi ed with automated unit tests. We can 
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also eliminate the need to tear down any fi xture objects by using a Fresh 
Fixture (page 311) strategy and by avoiding the use of any persistent objects 
in our tests by using some sort of Test Double.

Cause: Multiple Test Conditions 

Symptoms

A test tries to apply the same test logic to many sets of input values, each with 
its own corresponding expected result. In the following example, the test iterates 
over a collection of test values and applies the test logic to each set: 

   public void testMultipleValueSets() {
      // Set Up Fixture
      Calculator sut = new Calculator();
      TestValues[] testValues = {
                     new TestValues(1,2,3),
                     new TestValues(2,3,5),
                     new TestValues(3,4,8), // special case!
                     new TestValues(4,5,9)
                                };

      for (int i = 0; i < testValues.length; i++) {
         TestValues values = testValues[i];
         // Exercise SUT
         int actual = sut.calculate( values.a, values.b);
         // Verify Outcome
         assertEquals(message(i), values.expectedSum, actual);
      }
   }

   private String message(int i) {
      return "Row "+ String.valueOf(i);
   }

Root Cause 

The test automater is trying to test many test conditions using the same test logic in 
a single Test Method. In the preceding example, it is fairly simple Conditional Test 
Logic. Matters could be a lot worse if the code contained multiple nested loops and 
maybe even if statements to calculate different cases of the expected values. 

Possible Solution 

Of all sources of Conditional Test Logic, Multiple Test Conditions is prob-
ably the most innocuous. Other than scaring the test reader, the main impact 
of such a test is that it stops executing at the fi rst failure and doesn’t provide 
Defect Localization (see page 22) when a bug is introduced into the code. The 
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readability issue can easily be addressed by using an Extract Method [Fowler]
refactoring to create a Parameterized Test call from within the loop. The lack 
of Defect Localization can be addressed by calling the Parameterized Test
from a separate Test Method for each test condition. For large sets of values, 
a Data-Driven Test (page 288) might be a better solution. 

Conditional
Test Logic 

www.it-ebooks.info

http://www.it-ebooks.info/


209

Hard-to-Test Code                                           

Code is diffi cult to test.

Automated testing is a powerful tool that helps us develop software quickly even 
when we have a large code base to maintain. Of course, it provides these benefi ts 
only if most of our code is protected by Fully Automated Tests (see page 26). The 
effort of writing these tests must be added to the effort of writing the product 
code they verify. Not surprisingly, we would prefer to make it easy to write the 
automated tests.3

Hard-to-Test Code is one factor that makes it diffi cult to write complete, 
correct automated tests in a cost-effi cient manner. 

Symptoms

Some kinds of code are inherently diffi cult to test—GUI components, multi-
threaded code, and test code, for example. It may be diffi cult to get at the code 
to be tested because it is not visible to a test. It may be problematic to compile 
a test because the code is too highly coupled to other classes. It may be hard to 
create an instance of the object because the constructors don’t exist, are private, 
or take too many other objects as parameters. 

Impact

Whenever we have Hard-to-Test Code, we cannot easily verify the quality of 
that code in an automated way. While manual quality assessment is often pos-
sible, it doesn’t scale very well because the effort to perform this assessment after 
each code change usually means it doesn’t get done. Nor is this strategy readily 
repeated without a large test documentation cost. 

Solution Patterns 

A better solution is to make the code more amenable to testing. This topic is big 
enough that it warrants a whole chapter of its own, but this section covers a few 
of the highlights. 

3 We would also like to recoup this cost by reducing effort somewhere else. The best way 
to achieve this is to avoid Frequent Debugging (page 248) by writing the tests fi rst and 
achieving Defect Localization (see page 22).
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Causes

There are a number of reasons for Hard-to-Test Code; the most common causes 
are discussed here. 

Cause: Highly Coupled Code 

Symptoms

A class cannot be tested without also testing several other classes. 

Impact

Code that is highly coupled to other code is very diffi cult to unit test because it 
won’t execute in isolation. 

Root Cause 

Highly Coupled Code can be caused by many factors, including poor design, 
lack of object-oriented design experience, and lack of a reward structure that 
encourages decoupling. 

Possible Solution 

The key to testing overly coupled code is to break the coupling. This happens 
naturally when we are doing test-driven development. 

A technique that we often use to decouple code for the purpose of testing is 
a Test Double (page 522) or, more specifi cally, a Test Stub (page 529) or Mock
Object (page 544). This topic is covered in much more detail in Chapter 11, 
Using Test Doubles.

Retrofi tting tests onto existing code is a more challenging task, especially 
when we are dealing with a legacy code base. This is a big enough topic that 
Michael Feathers wrote a whole book on techniques for doing this, titled Work-
ing Effectively with Legacy Code [WEwLC]. 

Cause: Asynchronous Code 

Symptoms

A class cannot be tested via direct method calls. The test must start an execut-
able (such as a thread, process, or application) and wait until its start-up has 
fi nished before interacting with the executable. 
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Impact

Code that has an asynchronous interface is hard to test because the tests of these 
elements must coordinate their execution with that of the SUT. This requirement 
can add a lot of complexity to the tests and causes them to take much, much 
longer to run. The latter issue is a major concern with unit tests, which must run 
very quickly to ensure that developers will run them frequently. 

Root Cause 

The code that implements the algorithm we wish to test is highly coupled to the 
active object in which it normally executes. 

Possible Solution 

The key to testing asynchronous code is to separate the logic from the asynchronous 
access mechanism. The design-for-testability pattern Humble Object (page 695;
including Humble Dialog and Humble Executable) is a good example of a way 
to restructure otherwise asynchronous code so it can be tested in a synchronous 
manner. 

Cause: Untestable Test Code 

Symptoms

The body of a Test Method (page 348) is obscure enough (Obscure Test; see 
page 186) or contains enough Conditional Test Logic (page 200) that we wonder 
whether the test is correct. 

Impact

Any Conditional Test Logic within a Test Method has a higher probability of 
producing Buggy Tests (page 260) and will likely result in High Test Mainte-
nance Cost (page 265). Too much code in the test method body can make the 
test hard to understand and hard to construct correctly. 

Root Cause 

The code within the body of the Test Method is inherently hard to test using a 
Self-Checking Test (see page 26). To do so, we would have to replace the SUT 
with a Test Double that injects the target error and then run the test method 
inside another Expected Exception Test (see Test Method) method—much too 
much trouble to bother with in all but the most unusual circumstances. 
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Possible Solution 

We can remove the need to test the body of a Test Method by making it 
extremely simple and relocating any Conditional Test Logic from it into Test 
Utility Methods (page 599), for which we can easily write Self-Checking Tests.
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Test Code Duplication                                 

The same test code is repeated many times.

Many of the tests in a suite need to do similar things. For example, tests often 
exercise scenarios that are variations on the same theme. Tests may require simi-
lar fi xture setup or result verifi cation logic. In some cases, even the exercise SUT 
phase of many tests involves repeating the same nontrivial logic. 

The need for tests to do similar things often results in Test Code Duplication.

Symptoms

Several tests may contain a common subset of essentially the same statements, 
as in the following example: 

   public void testInvoice_addOneLineItem_quantity1_b() {
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      // Verify only item
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem.getInv(), actual.getInv());
      assertEquals(expItem.getProd(), actual.getProd());
      assertEquals(expItem.getQuantity(), actual.getQuantity());
   }

   public void testRemoveLineItemsForProduct_oneOfTwo() {
      // Set up
      Invoice inv = createAnonInvoice();
      inv.addItemQuantity(product, QUANTITY);
      inv.addItemQuantity(anotherProduct, QUANTITY);
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.removeLineItemForProduct(anotherProduct);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem.getInv(), actual.getInv());
      assertEquals(expItem.getProd(), actual.getProd());
      assertEquals(expItem.getQuantity(), actual.getQuantity());
   }
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A single test may also contain repeated groups of similar statements: 

   public void testInvoice_addTwoLineItems_sameProduct() {
      Invoice inv = createAnonInvoice();
      LineItem expItem1 = new LineItem(inv, product, QUANTITY1);
      LineItem expItem2 = new LineItem(inv, product, QUANTITY2);
      // Exercise
      inv.addItemQuantity(product, QUANTITY1);
      inv.addItemQuantity(product, QUANTITY2);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 2);
      //   Verify first item
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem1.getInv(), actual.getInv());
      assertEquals(expItem1.getProd(), actual.getProd());
      assertEquals(expItem1.getQuantity(), actual.getQuantity());
      //   Verify second item
      actual = (LineItem)lineItems.get(1);
      assertEquals(expItem2.getInv(), actual.getInv());
      assertEquals(expItem2.getProd(), actual.getProd());
      assertEquals(expItem2.getQuantity(), actual.getQuantity());
   }

Both of the preceding examples exhibit Test Code Duplication that is easily noticed. 
By comparison, it is more challenging to identify duplication when it occurs across 
Test Methods (page 348) that reside in different Testcase Classes (page 373).

Impact

“Cut and paste” often results in many copies of the same code. This code must 
be maintained every time the SUT is modifi ed in a way that affects the seman-
tics (e.g., number of arguments, argument attributes, returned object attributes, 
calling sequences) of its methods. This necessity can greatly increase the cost 
to introduce new functionality (High Test Maintenance Cost; see page 265) 
because of the effort involved in updating all tests that contain copies of the 
affected code. 

Causes

Cause: Cut-and-Paste Code Reuse 

“Cut and paste” is a powerful tool for writing code fast but it results in many 
copies of the same code, each of which must be maintained in parallel. 
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Root Cause 

Cut-and-Paste Code Reuse is often the default way to reuse logic. Developers 
who focus on details of “how” to do something will often repeat the same code 
many times because they cannot (or do not take the time to) focus on the big 
picture (the intent) of the test. 

A contributing factor may be a lack of refactoring skills or refactoring expe-
rience that keeps developers from extracting the big picture from the detailed 
code they have written. Of course, time pressure may also be the culprit that 
keeps the refactoring from occurring. As a result, test code grows more compli-
cated over time rather than becoming simpler. 

Possible Solution 

Once Test Code Duplication has occurred, the best solution is to use an Extract 
Method [Fowler] refactoring to create a Test Utility Method (page 599) from 
one of the examples and then to generalize that method to handle each of the 
copies. When the Test Code Duplication consists of fi xture setup logic, we 
end up with Creation Methods (page 415) or Finder Methods (see Test Utility 
Method). When the logic carries out result verifi cation, we end up with Custom
Assertions (page 474) or Verifi cation Methods (see Custom Assertion).

We can use an Introduce Parameter [JBrains] refactoring to convert any lit-
eral constants inside the extracted method into parameters that can be passed in 
to customize the method’s behavior for each test that calls it. 

More simply, we can avoid most Test Code Duplication by writing the Test 
Methods in an “outside-in” manner, focusing on their intent. Whenever we need 
to do something that involves several lines of code, we simply call a nonexis-
tent Test Utility Method to do it. We write all our tests this way and then fi ll in 
implementations of the Test Utility Methods to get the tests to compile and run. 
(Modern IDEs facilitate this process by providing automatic method skeleton 
generation at a click of the mouse.) 

Cause: Reinventing the Wheel 

While Cut-and-Paste Code Reuse deliberately makes copies of existing code to 
reduce the effort of writing tests, it is also possible to accidentally write the same 
sequence of statements in different tests. 

Root Cause 

This problem is primarily caused by a lack of awareness of which Test Utility 
Methods are available. It can also be caused by a predisposition to write one’s 
own code rather than reuse code written by others. 
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Possible Solution 

The technical solution is largely the same as for Cut-and-Paste Code Reuse
but the process solution is somewhat different. The test automater must look 
around more places to discover which Test Utility Methods are available before 
reinventing the wheel (i.e., writing new code). 

Further Reading 

Test Code Duplication was fi rst described in a paper at XP2001 called “Refac-
toring Test Code” [RTC]. 
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Test Logic in Production                                             

The code that is put into production contains logic that should be exercised 
only during tests.

The SUT may contain logic that cannot be run in a test environment. Tests may 
require the SUT to behave in specifi c ways to allow full test coverage. 

Symptoms

The logic in the SUT is there solely to support testing. This logic may be “extra 
stuff” that the tests require to gain access to the SUT’s internal state for fi xture 
setup or result verifi cation purposes. It may also consist of changes that the logic 
of the system undergoes when it detects that it is being tested. 

Impact

We would prefer not to end up with Test Logic in Production, as it can make 
the SUT more complex and opens the door to additional kinds of bugs that 
we would like to avoid. A system that behaves one way in the test lab and an 
entirely different way in production is a recipe for disaster! 

Causes

Cause: Test Hook 

Conditional logic within the SUT determines whether the “real” code or test-
specifi c logic is run. 

Symptoms

With this code smell, either there may be no behavioral symptoms or something 
may go wrong in production. We may see snippets of code in the SUT that look 
something like this: 

if (testing) { 
   return hardCodedCannedData; 
} else { // the real logic ... 
   return gatheredData; 
}
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Ariane

The maiden fl ight of the Ariane 5 rocket was a complete disaster: The 
rocket blew up only 37 seconds after takeoff. The culprit was a seem-
ingly innocuous bit of code that was used only while the rocket was on 
the ground but unfortunately was left running for the fi rst 40 seconds of 
fl ight. When it tried to assign a 64-bit number representing the sideways 
velocity of the rocket to a 16-bit fi eld, the navigation computer decided 
that the rocket was going the wrong way! It tried to correct the course, 
but the sudden change in direction tore the booster rocket apart. While 
this is not quite an example of Test Logic in Production (page 217), it 
certainly does illustrate the risks associated with this type of error. 

Could this disaster have been prevented by use of automated tests? While 
it is diffi cult to say with certainty, and one could certainly claim that any 
number of process changes could have detected this problem before it 
occurred, it is conceivable that automated tests could have averted this 
catastrophe.

In particular, a test should have addressed the boundary condition—
namely, what happens when a number exceeds the maximum value stor-
able. Such a test would have prevented an exception from occurring for 
the fi rst time ever in production. 

In addition, the presence of the tests from the Ariane 4 version of the 
rocket would have documented the maximum down-range velocity. It is 
quite possible that these tests would have been updated when the Ariane 
5 software was being developed and that the new tests would have failed 
because of the new rocket’s higher speed. 

For a slightly more detailed (and very interesting) description of “the 
little bug that could,” visit http://www.around.com/ariane.html. 

Impact

Code that was not designed to work in production and that has not been veri-
fi ed to work properly in the production environment could accidentally be run 
in production and create serious problems. 

The Ariane 5 rocket blew up 37 seconds after takeoff on its maiden fl ight 
because a piece of code that was used only while the rocket was on the ground 
was left running for the fi rst 40 seconds of fl ight. This code tried to assign 
a 64-bit number representing the sideways velocity of the rocket to a 16-bit 
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fi eld—an operation that convinced the rocket’s navigation computer that it 
was going the wrong way. (See the sidebar on Ariane on page 218 for more 
details.) While we believe the Test Hook would never be exercised in produc-
tion, do we really want to take this kind of chance? 

Root Cause 

In some cases, the Test Logic in Production is introduced to make the behavior 
of the SUT more deterministic by returning known (hard-coded) values. In other 
cases, the Test Logic in Production may have been introduced to avoid execut-
ing code that cannot be run in a test environment. Unfortunately, this approach 
can result in failure to execute that code in the production environment if some-
thing is misconfi gured. 

In some cases, tests may require that the SUT execute additional code that 
would otherwise be executed by a depended-on component. For example, code 
run from a trigger in a database will not run if the database is replaced by a 
Fake Database (see Fake Object on page 551); thus the test needs to ensure that 
the equivalent logic is executed from somewhere within the SUT. 

Possible Solution 

Instead of adding test logic into the production code directly, we can move logic 
into a substitutable dependency. We can put code that should be run in only pro-
duction into a Strategy [GOF] object that is installed by default and replaced by a 
Null Object [PLOPD3] when running our tests. In contrast, code that should be 
run only during tests can be put into a Strategy [GOF] object that is confi gured 
as a Null Object by default. Then, when we want the SUT to execute extra code 
during testing, we can replace this Strategy object with a test-specifi c version. To 
ensure this mechanism is confi gured properly, we should have a Constructor Test 
(see Test Method on page 348) to verify that any variables holding references to 
Strategy objects are initialized correctly when they are not overridden by the test. 

It may also be possible to override specifi c methods of the SUT in a Test-
Specifi c Subclass (page 579) if the production logic we want to circumvent is 
localized in overridable methods. This ability is enabled by Self-Calls [WWW]. 

Cause: For Tests Only 

Code exists in the SUT strictly for use by tests. 

Symptoms

Some of the methods of the SUT are used only by tests. Some of the attributes 
are public when they really should be private. 
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Impact

Software that is added to the SUT For Tests Only makes the SUT more complex. 
It can confuse potential clients of the software’s interface by introducing addi-
tional methods that should not be used by any code other than the tests. These 
methods may have been tested only in very specifi c circumstances, so they might 
not work in the typical usage patterns used by real client software. 

Root Cause 

The test automater may need to add methods to a class that expose information 
needed by the test or methods that provide greater control over initialization 
(such as for the installation of a Test Double; see page 522). Test-driven devel-
opment will lead to the creation of these additional methods even though they 
aren’t really needed by clients. When retrofi tting tests onto legacy code, the test 
automater may need access to information or functionality that is not already 
exposed.

For Tests Only can also result when a SUT is used asymmetrically in real life. 
Automated tests (especially round-trip tests) typically use software in a more 
symmetric fashion and hence may need methods that the real software clients 
do not need. 

Possible Solution 

We can assure that tests have access to private information by creating a Test-
Specifi c Subclass of the SUT, which then provides methods to expose the needed 
attributes or initialization logic. A test needs to be able to create instances of the 
subclass instead of the SUT class for this approach to work. 

If for some reason the extra methods cannot be moved to a Test-Specifi c Sub-
class, they should be clearly labeled For Tests Only. This can be done by adopt-
ing a naming convention such as starting the names with “FTO_”. 

Cause: Test Dependency in Production 

Production executables depend on test executables. 

Symptoms

We cannot build only the production code; some test code must be included 
in the build to allow the production code to compile. Alternatively, we might 
notice that we cannot run the production code if the test executables are not 
present. 
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Impact

Even if the production modules do not contain any test code, problems can arise 
if any of these modules depends on a test module. At minimum, this dependency 
increases the size of the executable even if none of the test code is actually used 
in production scenarios. It also opens the door to accidental execution of test 
code during production. 

Root Cause 

Test Dependency in Production is usually caused by a lack of attention to 
inter-module dependencies. It may also arise when a built-in self-test requires 
access to parts of the test automation infrastructure, such as Test Utility 
Methods (page 599) or the Test Automation Framework (page 298), to report 
test results. 

Possible Solution 

We must manage our dependencies carefully to ensure that no production code 
depends on test code even for innocuous things such as type defi nitions. 

Anything required by both test and production code should live in a production 
module or class that is accessible to both. 

Cause: Equality Pollution 

Another cause of Test Logic in Production is the implementation of test-specifi c 
equality in the equals method of the SUT. 

Symptoms

Equality Pollution can be diffi cult to spot once it has occurred—what is notable 
is that the SUT doesn’t actually need the equals method to be implemented. In 
other cases, behavioral symptoms may appear, such as test failure when the 
equals method is modifi ed to support the specifi c needs of a test or when the defi -
nition of equals changes within the SUT as part of a new feature or user story. 

Impact

We may write unnecessary equals methods simply to satisfy tests. We may 
also change the defi nition of equals so that it no longer satisfi es the business 
requirements.

Equality Pollution may make it diffi cult to introduce the equals logic pre-
scribed by some new requirement if it already exists to support test-specifi c 
equality for another test. 
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Root Cause 

Equality Pollution is caused by a lack of awareness of the concept of test-specifi c 
equality. Some early versions of dynamic Mock Object (page 544) generation tools 
forced us to use the SUT’s defi nition of equals, which led to Equality Pollution.

Possible Solution 

When a test requires test-specifi c equality, we should use a Custom Asser-
tion (page 474) instead of modifying the equals method just so that we can use a 
built-in Equality Assertion (see Assertion Method on page 362).

When using dynamic Mock Object generation tools, we should use a Com-
parator [WWW] rather than relying on the equals method supplied by the SUT. 
We can also implement the equals method on a Test-Specifi c Subclass of an 
Expected Object (see State Verifi cation on page 462) to avoid adding it to a 
production class directly. 

Further Reading 

For Tests Only and Equality Pollution were fi rst introduced in a paper at XP2001 
called “Refactoring Test Code” [RTC]. 
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Chapter 16
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Assertion Roulette

It is hard to tell which of several assertions within the same 
test method caused a test failure. 

Symptoms

A test fails. Upon examining the output of the Test Runner (page 377), we cannot 
determine exactly which assertion failed. 

Impact

When a test fails during an automated Integration Build [SCM], it may be hard 
to tell exactly which assertion failed. If the problem cannot be reproduced on 
a developer’s machine (as may be the case if the problem is caused by environ-
mental issues or Resource Optimism; see Erratic Test on page 228) fi xing the 
problem may be diffi cult and time-consuming. 

Causes

Cause: Eager Test 

A single test verifi es too much functionality. 

Symptoms

A test exercises several methods of the SUT or calls the same method several 
times interspersed with fi xture setup logic and assertions. 

   public void testFlightMileage_asKm2() throws Exception {
      // set up fixture
      // exercise constructor
      Flight newFlight = new Flight(validFlightNumber);
      // verify constructed object
      assertEquals(validFlightNumber, newFlight.number);
      assertEquals("", newFlight.airlineCode);
      assertNull(newFlight.airline);
      // set up mileage
      newFlight.setMileage(1122);
      // exercise mileage translator
      int actualKilometres = newFlight.getMileageAsKm();
      // verify results
      int expectedKilometres = 1810;
      assertEquals( expectedKilometres, actualKilometres);
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      // now try it with a canceled flight
      newFlight.cancel();
      try {
         newFlight.getMileageAsKm();
         fail("Expected exception");
      } catch (InvalidRequestException e) {
         assertEquals( "Cannot get cancelled flight mileage",
                       e.getMessage());
      }
   }

Another possible symptom is that the test automater wants to modify the Test 
Automation Framework (page 298) to keep going after an assertion has failed 
so that the rest of the assertions can be executed. 

Root Cause 

An Eager Test is often caused by trying to minimize the number of unit tests 
(whether consciously or unconsciously) by verifying many test conditions 
in a single Test Method (page 348). While this is a good practice for manu-
ally executed tests that have “liveware” interpreting the results and adjusting 
the tests in real time, it just doesn’t work very well for Fully Automated Tests 
(see page 26). 

Another common cause of Eager Tests is using xUnit to automate customer 
tests that require many steps, thereby verifying many aspects of the SUT in 
each test. These tests are necessarily longer than unit tests but care should be 
taken to keep them as short as possible (but no shorter!).

Possible Solution 

For unit tests, we break up the test into a suite of Single-Condition Tests (see 
page 45) by teasing apart the Eager Test. It may be possible to do so by using 
one or more Extract Method [Fowler] refactorings to pull out independent 
pieces into their own Test Methods. Sometimes it is easier to clone the test once 
for each test condition and then clean up each Test Method by removing any 
code that is not required for that particular test conditions. Any code required 
to set up the fi xture or put the SUT into the correct starting state can be ex-
tracted into a Creation Method (page 415). A good IDE or compiler will then 
help us determine which variables are no longer being used. 

If we are automating customer tests using xUnit, and this effort has resulted 
in many steps in each test because the work fl ows require complex fi xture setup, 
we could consider using some other way to set up the fi xture for the latter parts 
of the test. If we can use Back Door Setup (see Back Door Manipulation on
page 327) to create the fi xture for the last part of the test independently of the 
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fi rst part, we can break one test into two, thereby improving our Defect Local-
ization (see Goals of Test Automation). We should repeat this process as many 
times as it takes to make the tests short enough to be readable at a single glance 
and to Communicate Intent (see page 41) clearly. 

Cause: Missing Assertion Message 

Symptoms

A test fails. Upon examining the output of the Test Runner, we cannot deter-
mine exactly which assertion failed. 

Root Cause 

This problem is caused by the use of Assertion Method (page 362) calls with 
identical or missing Assertion Messages (page 370). It is most commonly 
encountered when running tests using a Command-Line Test Runner (see Test 
Runner) or a Test Runner that is not integrated with the program text editor or 
development environment. 

In the following test, we have a number of Equality Assertions (see Assertion 
Method):

   public void testInvoice_addLineItem7() {
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem.getInv(), actual.getInv());
      assertEquals(expItem.getProd(), actual.getProd());
      assertEquals(expItem.getQuantity(), actual.getQuantity());
   }

When an assertion fails, will we know which one it was? An Equality Assertion
typically prints out both the expected and the actual values—but it may prove 
diffi cult to tell which assertion failed if the expected values are similar or print 
out cryptically. A good rule of thumb is to include at least a minimal Assertion
Message whenever we have more than one call to the same kind of Assertion
Method.

Possible Solution 

If the problem occurred while we were running a test using a Graphical Test 
Runner (see Test Runner) with IDE integration, we should be able to click on 
the appropriate line in the stack traceback to have the IDE highlight the failed 
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assertion. Failing this, we can turn on the debugger and single-step through the 
test to see which assertion statement fails. 

If the problem occurred while we were running a test using a Command-
Line Test Runner, we can try running the test from a Graphical Test Runner
with IDE integration to determine the offending assertion. If that doesn’t work, 
we may have to resort to using line numbers (if available) or apply a process of 
elimination to deduce which of the assertions it couldn’t be to narrow down the 
possibilities. Of course, we could just bite the bullet and add a unique Assertion
Message (even just a number!) to each call to an Assertion Method.

Further Reading 

Assertion Roulette and Eager Test were fi rst described in a paper presented at 
XP2001 called “Refactoring Test Code” [RTC]. 
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Erratic Test                                             

One or more tests behave erratically; sometimes they pass 
and sometimes they fail. 

Symptoms

We have one or more tests that run but give different results depending on when 
they are run and who is running them. In some cases, the Erratic Test will con-
sistently give the same results when run by one developer but fail when run by 
someone else or in a different environment. In other cases, the Erratic Test will 
give different results when run from the same Test Runner (page 377). 

Impact

We may be tempted to remove the failing test from the suite to “keep the bar 
green” but this would result in an (intentional) Lost Test (see Production Bugs 
on page 268). If we choose to keep the Erratic Test in the test suite despite the 
failures, the known failure may obscure other problems, such as another issue 
detected by the same tests. Just having a test fail can cause us to miss additional 
failures because it is much easier to see the change from a green bar to a red bar
than to notice that two tests are failing instead of just the one we expected. 

Troubleshooting Advice 

Erratic Tests can be challenging to troubleshoot because so many potential causes 
exist. If the cause cannot be easily determined, it may be necessary to collect data 
systematically over a period of time. Where (in which environments) did the 
tests pass, and where did they fail? Were all the tests being run or just a subset 
of them? Did any change in behavior occur when the test suite was run several 
times in a row? Did any change in behavior occur when it was run from several 
Test Runners at the same time? 

Once we have some data, it should be easier to match up the observed symp-
toms with those listed for each of the potential causes and to narrow the list of 
possibilities to a handful of candidates. Then we can collect some more data 
focusing on differences in symptoms between the possible causes. Figure 16.1 
summarizes the process for determining which cause of an Erratic Test we are 
dealing with.
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Figure 16.1  Troubleshooting an Erratic Test.

Causes

Tests may behave erratically for a number of reasons. The underlying cause can 
usually be determined through some persistent sleuthing by paying attention to 
patterns regarding how and when the tests fail. Some of the causes are common 
enough to warrant giving them names and specifi c advice for rectifying them. 

Cause: Interacting Tests 

Tests depend on other tests in some way. Note that Interacting Test Suites and 
Lonely Test are specifi c variations of Interacting Tests.

Symptoms

A test that works by itself suddenly fails in the following circumstances:

• Another test is added to (or removed from) the suite.

• Another test in the suite fails (or starts to pass).

• The test (or another test) is renamed or moved in the source fi le.

• A new version of the Test Runner is installed. 

Root Cause 

Interacting Tests usually arise when tests use a Shared Fixture (page 317), with 
one test depending in some way on the outcome of another test. The cause of 
Interacting Tests can be described from two perspectives: 
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• The mechanism of interaction

• The reason for interaction

The mechanism for interaction could be something blatantly obvious—for 
example, testing an SUT that includes a database—or it could be more subtle. 
Anything that outlives the lifetime of the test can lead to interactions; static 
variables can be depended on to cause Interacting Tests and, therefore, should 
be avoided in both the SUT and the Test Automation Framework (page 298)! 
See the sidebar “There’s Always an Exception” on page 384 for an exam-
ple of the latter problem. Singletons [GOF] and Registries [PEAA] are good 
examples of things to avoid in the SUT if at all possible. If we must use them, 
it is best to include a mechanism to reinitialize their static variables at the 
beginning of each test. 

Tests may interact for a number of reasons, either by design or by accident: 

• Depending on the fi xture constructed by the fi xture setup phase of 
another test

• Depending on the changes made to the SUT during the exercise SUT 
phase of another test

• A collision caused by some mutually exclusive action (which may be 
either of the problems mentioned above) between two tests run in the 
same test run

The dependencies may suddenly cease to be satisfi ed if the depended-on test

• Is removed from the suite, 

• Is modifi ed to no longer change the state of the SUT, 

• Fails in its attempt to change the state of the SUT, or 

• Is run after the test in question (because it was renamed or moved to a 
different Testcase Class; see page 373). 

Similarly, collisions may start occurring when the colliding test is

• Added to the suite, 

• Passes for the fi rst time, or 

• Runs before the dependent test. 

In many of these cases, multiple tests will fail. Some of the tests may fail for a 
good reason—namely, the SUT is not doing what it is supposed to do. Depen-
dent tests may fail for the wrong reason—because they were coded to depend 

Erratic Test 

www.it-ebooks.info

http://www.it-ebooks.info/


231

on other tests’ success. As a result, they may be giving a “false-positive” (false-
failure) indication. 

In general, depending on the order of test execution is not a wise approach 
because of the problems described above. Most variants of the xUnit frame-
work do not make any guarantees about the order of test execution within a 
test suite. (TestNG, however, promotes interdependencies between tests by pro-
viding features to manage the dependencies.) 

Possible Solution 

Using a Fresh Fixture (page 311) is the preferred solution for Interacting Tests; it 
is almost guaranteed to solve the problem. If we must use a Shared Fixture, we 
should consider using an Immutable Shared Fixture (see Shared Fixture) to pre-
vent the tests from interacting with one another through changes in the fi xture 
by creating from scratch those parts of the fi xture that they intend to modify. 

If an unsatisfi ed dependency arises because another test does not create 
the expected objects or database data, we should consider using Lazy Setup
(page 435) to create the objects or data in both tests. This approach ensures 
that the fi rst test to execute creates the objects or data for both tests. We can 
put the fi xture setup code into a Creation Method (page 415) to avoid Test 
Code Duplication (page 213). If the tests are on different Testcase Classes, we 
can move the fi xture setup code to a Test Helper (page 643). 

Sometimes the collision may be caused by objects or database data that are 
created in our test but not cleaned up afterward. In such a case, we should con-
sider implementing Automated Fixture Teardown (see Automated Teardown on
page 503) to remove them safely and effi ciently. 

A quick way to fi nd out whether any tests depend on one another is to run 
the tests in a different order than the normal order. Running the entire test 
suite in reverse order, for example, would do the trick nicely. Doing so regularly 
would help avoid accidental introduction of Interacting Tests.

Cause: Interacting Test Suites 

In this special case of Interacting Tests, the tests are in different test suites. 

Symptoms

A test passes when it is run in its own test suite but fails when it is run within a 
Suite of Suites (see Test Suite Object on page 387).

Suite1.run()--> Green
Suite2.run()--> Green
Suite(Suite1,Suite2).run()--> Test C in Suite2 fails
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Root Cause 

Interacting Test Suites usually occur when tests in separate test suites try to cre-
ate the same resource. When they are run in the same suite, the fi rst one succeeds 
but the second one fails while trying to create the resource. 

The nature of the problem may be obvious just by looking at the test failure 
or by reading the failed Test Method (page 348). If it is not, we can try remov-
ing other tests from the (nonfailing) test suite, one by one. When the failure 
stops occurring, we simply examine the last test we removed for behaviors that 
might cause the interactions with the other (failing) test. In particular, we need 
to look at anything that might involve a Shared Fixture, including all places 
where class variables are initialized. These locations may be within the Test 
Method itself, within a setUp method, or in any Test Utility Methods (page 599) 
that are called. 

Warning: There may be more than one pair of tests interacting in the same test 
suite! The interaction may also be caused by the Suite Fixture Setup (page 441) 
or Setup Decorator (page 447) of several Testcase Classes clashing rather than 
by a confl ict between the actual Test Methods!

Variants of xUnit that use Testcase Class Discovery (see Test Discovery on
page 393), such as NUnit, may appear to not use test suites. In reality, they 
do—they just don’t expect the test automaters to use a Test Suite Factory (see
Test Enumeration on page 399) to identify the Test Suite Object to the Test 
Runner.

Possible Solution 

We could, of course, eliminate this problem entirely by using a Fresh Fixture.
If this solution isn’t within our scope, we could try using an Immutable Shared 
Fixture to prevent the tests’ interaction. 

If the problem is caused by leftover objects or database rows created by one 
test that confl ict with the fi xture being created by a later test, we should con-
sider using Automated Teardown to eliminate the need to write error-prone 
cleanup code. 

Cause: Lonely Test 

A Lonely Test is a special case of Interacting Tests. In this case, a test can be run 
as part of a suite but cannot be run by itself because it depends on something in a 
Shared Fixture that was created by another test (e.g., Chained Tests; see page 454) 
or by suite-level fi xture setup logic (e.g., a Setup Decorator).

We can address this problem by converting the test to use a Fresh Fixture or 
by adding Lazy Setup logic to the Lonely Test to allow it to run by itself. 
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Cause: Resource Leakage 

Tests or the SUT consume fi nite resources.

Symptoms

Tests run more and more slowly or start to fail suddenly. Reinitializing the Test 
Runner, SUT, or Database Sandbox (page 650) clears up the problem—only to 
have it reappear over time. 

Root Cause 

Tests or the SUT consume fi nite resources by allocating those resources and 
failing to free them afterward. This practice may make the tests run more 
slowly. Over time, all the resources are used up and tests that depend on them 
start to fail. 

This problem can be caused by one of two types of bugs: 

• The SUT fails to clean up the resources properly. The sooner we detect 
this behavior, the sooner we can track it down and fi x it. 

• The tests themselves cause the resource leakage by allocating resources 
as part of fi xture setup and failing to clean them up during fi xture 
teardown.

Possible Solution 

If the problem lies in the SUT, then the tests have done their job and we can fi x 
the bug. If the tests are causing the resource leakage, then we must eliminate the 
source of the leaks. If the leaks are caused by failure to clean up properly when 
tests fail, we may need to ensure that all tests do Guaranteed In-line Teardown (see
In-line Teardown on page 509) or convert them to use Automated Teardown.

In general, it is a good idea to set the size of all resource pools to 1. This 
choice will cause the tests to fail much sooner, allowing us to more quickly 
determine which tests are causing the leak(s). 

Cause: Resource Optimism 

A test that depends on external resources has nondeterministic results depending 
on when or where it is run. 

Symptoms

A test passes when it is run in one environment and fails when it is run in 
another environment. 

 Erratic Test

Erratic Test

www.it-ebooks.info

http://www.it-ebooks.info/


234 Chapter 16  Behavior Smells 

Root Cause 

A resource that is available in one environment is not available in another 
environment.

Possible Solution 

If possible, we should convert the test to use a Fresh Fixture by creating the 
resource as part of the test’s fi xture setup phase. This approach ensures that the 
resource exists wherever it is run. It may necessitate the use of relative address-
ing of fi les to ensure that the specifi c location in the fi le system exists regardless 
of where the SUT is executed. 

If an external resource must be used, the resources should be stored in 
the source code repository [SCM] so that all Test Runners run in the same en-
vironment.

Cause: Unrepeatable Test 

A test behaves differently the fi rst time it is run compared with how it behaves 
on subsequent test runs. In effect, it is interacting with itself across test runs.

Symptoms

Either a test passes the fi rst time it is run and fails on all subsequent runs, or it 
fails the fi rst time and passes on all subsequent runs. Here’s an example of what 
“Pass-Fail-Fail” might look like: 

Suite.run()--> Green
Suite.run()--> Test C fails
Suite.run()--> Test C fails
User resets something
Suite.run()--> Green
Suite.run()--> Test C fails

Here’s an example of what “Fail-Pass-Pass” might look like: 

Suite.run()--> Test C fails
Suite.run()--> Green
Suite.run()--> Green
User resets something
Suite.run()--> Test C fails 
Suite.run()--> Green

Be forewarned that if our test suite contains several Unrepeatable Tests, we may 
see results that look more like this: 

Suite.run()--> Test C fails
Suite.run()--> Test X fails
Suite.run()--> Test X fails
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User resets something
Suite.run()--> Test C fails
Suite.run()--> Test X fails

Test C exhibits the “Fail-Pass-Pass” behavior, while test X exhibits the “Pass-
Fail-Fail” behavior at the same time. It is easy to miss this problem because we 
see a red bar in each case; we notice the difference only if we look closely to see 
which tests fail each time we run them. 

Root Cause 

The most common cause of an Unrepeatable Test is the use—either deliberate 
or accidental—of a Shared Fixture. A test may be modifying the test fi xture such 
that, during a subsequent run of the test suite, the fi xture is in a different state. 
Although this problem most commonly occurs with a Prebuilt Fixture (see Shared 
Fixture), the only true prerequisite is that the fi xture outlasts the test run. 

The use of a Database Sandbox may isolate our tests from other developers’ 
tests but it won’t prevent the tests we run from colliding with themselves or 
with other tests we run from the same Test Runner.

The use of Lazy Setup to initialize a fi xture holding class variable can result 
in the test fi xture not being reinitialized on subsequent runs of the same test 
suite. In effect, we are sharing the test fi xture between all runs started from the 
same Test Runner.

Possible Solution 

Because a persistent Shared Fixture is a prerequisite for an Unrepeatable Test,
we can eliminate the problem by using a Fresh Fixture for each test. To fully 
isolate the tests, we must make sure that no shared resource, such as a Database
Sandbox, outlasts the lifetimes of the individual tests. One option is to replace 
a database with a Fake Database (see Fake Object on page 551). If we must 
work with a persistent data store, we should use Distinct Generated Values (see
Generated Value on page 723) for all database keys to ensure that we create 
different objects for each test and test run. The other alternative is to implement 
Automated Teardown to remove all newly created objects and rows safely and 
effi ciently. 

Cause: Test Run War 

Test failures occur at random when several people are running tests 
simultaneously. 
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Symptoms

We are running tests that depend on some shared external resource such as a 
database. From the perspective of a single person running tests, we might see 
something like this: 

Suite.run() --> Test 3 fails
Suite.run() --> Test 2 fails
Suite.run() --> All tests pass
Suite.run() --> Test 1 fails

Upon describing our problem to our teammates, we discover that they are 
having the same problem at the same time. When only one of us runs tests, all 
of the tests pass. 

Impact

A Test Run War can be very frustrating because the probability of it occurring 
increases the closer we get to a code cutoff deadline. This isn’t just Murphy’s law 
kicking in: It really does happen more often at this point! We tend to commit 
smaller changes at more frequent intervals as the deadline approaches (think 
“last-minute bug fi xing”!). This, in turn, increases the likelihood that someone 
else will be running the test suite at the same time, which itself increases the like-
lihood of test collisions between test runs occurring at the same time. 

Root Cause 

A Test Run War can happen only when we have a globally Shared Fixture that 
various tests access and sometimes modify. This shared fi xture could be a fi le 
that must be opened or read by either a test or the SUT, or it could consist of the 
records in a test database. 

Database contention can be caused by the following activities: 

• Trying to update or delete a record while another test is also updating 
the same record 

• Trying to update or delete a record while another test has a read lock 
(pessimistic locking) on the same record

File contention can be caused by an attempt to access a fi le that has already been 
opened by another instance of the test running from a different Test Runner.

Possible Solution 

Using a Fresh Fixture is the preferred solution for a Test Run War. An even sim-
pler solution is to give each Test Runner his or her own Database Sandbox. This 
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should not involve making any changes to the tests but will completely eliminate 
the possibility of a Test Run War. It will not, however, eliminate other sources of 
Erratic Tests because the tests can still interact through the Shared Fixture (the 
Database Sandbox). Another option is to switch to an Immutable Shared Fixture
by having each test create new objects whenever it plans to change those objects. 
This approach does require changes to the Test Methods.

If the problem is caused by leftover objects or database rows created by one 
test that pollutes the fi xture of a later test, another solution is using Automated
Teardown to clean up after each test safely and effi ciently. This measure, by 
itself, is unlikely to completely eliminate a Test Run War but it might reduce its 
frequency. 

Cause: Nondeterministic Test 

Test failures occur at random, even when only a single Test Runner is running 
tests.

Symptoms

We are running tests and the results vary each time we run them, as shown here:

Suite.run() --> Test 3 fails
Suite.run() --> Test 3 crashes
Suite.run() --> All tests pass
Suite.run() --> Test 3 fails

After comparing notes with our teammates, we rule out a Test Run War either 
because we are the only person running tests or because the test fi xture is not 
shared between users or computers. 

As with an Unrepeatable Test, having multiple Nondeterministic Tests in 
the same test suite can make it more diffi cult to detect the failure/error pat-
tern: It looks like different tests are failing rather than a single test producing 
different results. 

Impact

Debugging Nondeterministic Tests can be very time-consuming and frustrating 
because the code executes differently each time. Reproducing the failure can 
be problematic, and characterizing exactly what causes the failure may require 
many attempts. (Once the cause has been characterized, it is often a straight-
forward process to replace the random value with a value known to cause the 
problem.) 
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Root Cause 

Nondeterministic Tests are caused by using different values each time a test is 
run. Sometimes, of course, it is a good idea to use different values each time the 
same test is run. For example, Distinct Generated Values may legitimately be 
used as unique keys for objects stored in a database. Use of generated values as 
input to an algorithm where the behavior of the SUT is expected to differ for 
different values can cause Nondeterministic Tests, however, as in the following 
examples:

• Integer values where negative (or even zero) values are treated differ-
ently by the system, or where there is a maximum allowable value. If 
we generate a value at random, the test could fail in some test runs and 
pass on others. 

• String values where the length of a string has minimum or maximum 
allowed values. This problem often occurs accidentally when we gener-
ate a random or unique numeric value and then convert it to a string 
representation without using an explicit format that guarantees the 
length is constant. 

It might seem like a good idea to use random values because they would improve 
our test coverage. Unfortunately, this tactic decreases our understanding of the 
test coverage and the repeatability of our tests (which violates the Repeatable Test
principle; see page 26). 

Another potential cause of Nondeterministic Tests is the use of Conditional
Test Logic (page 200) in our tests. Its inclusion can result in different code 
paths being executed on different test runs, which in turn makes our tests non-
deterministic. A common “reason” cited for doing so is the Flexible Test (see
Conditional Test Logic). Anything that makes the tests less than completely 
deterministic is a bad idea! 

Possible Solution 

The fi rst step is to make our tests repeatable by ensuring that they execute in a 
completely linear fashion by removing any Conditional Test Logic. Then we can 
go about replacing any random values with deterministic values. If this results in 
poor test coverage, we can add more tests for the interesting cases we aren’t cov-
ering. A good way to determine the best set of input values is to use the bound-
ary values of the equivalence classes. If their use results in a lot of Test Code 
Duplication, we can extract a Parameterized Test (page 607) or put the input val-
ues and the expected results into a fi le read by a Data-Driven Test (page 288).
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Fragile Test    

A test fails to compile or run when the SUT is changed in ways that 
do not affect the part the test is exercising. 

Symptoms

We have one or more tests that used to run and pass but now either fail 
to compile and run or fail when they are run. When we have changed the 
behavior of the SUT in question, such a change in test results is expected. 
When we don’t think the change should have affected the tests that are fail-
ing or we haven’t changed any production code or tests, we have a case of 
Fragile Tests.

Past efforts at automated testing have often run afoul of the “four sensitivities” 
of automated tests. These sensitivities are what cause Fully Automated Tests (see 
page 26) that previously passed to suddenly start failing. The root cause for tests 
failing can be loosely classifi ed into one of these four sensitivities. Although each 
sensitivity may be caused by a variety of specifi c test coding behaviors, it is useful 
to understand the sensitivities in their own right. 

Impact

Fragile Tests increase the cost of test maintenance by forcing us to visit many 
more tests each time we modify the functionality of the system or the fi xture. 
They are particularly deadly when projects rely on highly incremental delivery, 
as in agile development (such as eXtreme Programming).

Troubleshooting Advice 

We need to look for patterns in how the tests fail. We ask ourselves, “What do 
all of the broken tests have in common?” The answer to this question should 
help us understand how the tests are coupled to the SUT. Then we look for ways 
to minimize this coupling. 

Figure 16.2 summarizes the process for determining which sensitivity we are 
dealing with.
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Figure 16.2  Troubleshooting a Fragile Test. 

The general sequence is to fi rst ask ourselves whether the tests are failing to 
compile; if so, Interface Sensitivity is likely to blame. With dynamic languages 
we may see type incompatibility test errors at runtime—another sign of Interface 
Sensitivity.

If the tests are running but the SUT is providing incorrect results, we must 
ask ourselves whether we have changed the code. If so, we can try backing out 
of the latest code changes to see if that fi xes the problem. If that tactic stops the 
failing tests,1 then we had Behavior Sensitivity.

If the tests still fail with the latest code changes backed out, then something 
else must have changed and we must be dealing with either Data Sensitiv-
ity or Context Sensitivity. The former occurs only when we use a Shared Fix-
ture (page 317) or we have modifi ed fi xture setup code; otherwise, we must 
have a case of Context Sensitivity.

While this sequence of asking questions isn’t foolproof, it will give the right 
answer probably nine times out of ten. Caveat emptor!

Causes

Fragile Tests may be the result of several different root causes. They may be 
a sign of Indirect Testing (see Obscure Test on page 186)—that is, using the 
objects we modifi ed to access other objects—or they may be a sign that we have 
Eager Tests (see Assertion Roulette on page 224) that are verifying too much 
functionality. Fragile Tests may also be symptoms of overcoupled software that 
is hard to test in small pieces (Hard-to-Test Code; see page 209) or our lack of 
experience with unit testing using Test Doubles (page 522) to test pieces in isola-
tion (Overspecifi ed Software).

1 Other tests may fail because we have removed the code that made them pass—but 
at least we have established which part of the code they depend on.
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Regardless of their root cause, Fragile Tests usually show up as one of the 
four sensitivities. Let’s start by looking at them in a bit more detail; we’ll 
then examine some more detailed examples of how specifi c causes change test 
output.

Cause: Interface Sensitivity 

Interface Sensitivity occurs when a test fails to compile or run because some part 
of the interface of the SUT that the test uses has changed. 

Symptoms

In statically typed languages, Interface Sensitivity usually shows up as a failure 
to compile. In dynamically typed languages, it shows up only when we run the 
tests. A test written in a dynamically typed language may experience a test error 
when it invokes an application programming interface (API) that has been modi-
fi ed (via a method name change or method signature change). Alternatively, the 
test may fail to fi nd a user interface element it needs to interact with the SUT via 
a user interface. Recorded Tests (page 278) that interact with the SUT through 
a user interface2 are particularly prone to this problem. 

Possible Solution 

The cause of the failures is usually reasonably apparent. The point at which the 
test fails (to compile or execute) will usually point out the location of the prob-
lem. It is rare for the test to continue to run beyond the point of change—after 
all, it is the change itself that causes the test error. 

When the interface is used only internally (within the organization or applica-
tion) and by automated tests, SUT API Encapsulation (see Test Utility Method 
on page 599) is the best solution for Interface Sensitivity. It reduces the cost 
and impact of changes to the API and, therefore, does not discourage necessary 
changes from being made. A common way to implement SUT API Encapsula-
tion is through the defi nition of a Higher-Level Language (see page 41) that is 
used to express the tests. The verbs in the test language are translated into the 
appropriate method calls by the encapsulation layer, which is then the only soft-
ware that needs to be modifi ed when the interface is altered in somewhat back-
ward-compatible ways. The “test language” can be implemented in the form 
of Test Utility Methods such as Creation Methods (page 415) and Verifi cation 
Methods (see Custom Assertion on page 474) that hide the API of the SUT 
from the test. 

2 Often called “screen scraping.”
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The only other way to avoid Interface Sensitivity is to put the interface 
under strict change control. When the clients of the interface are external 
and anonymous (such as the clients of Windows DLLs), this tactic may be 
the only viable alternative. In these cases, a protocol usually applies to mak-
ing changes to interfaces. That is, all changes must be backward compatible; 
before older versions of methods can be removed, they must be deprecated, 
and deprecated methods must exist for a minimum number of releases or 
elapsed time. 

Cause: Behavior Sensitivity 

Behavior Sensitivity occurs when changes to the SUT cause other tests to fail. 

Symptoms

A test that once passed suddenly starts failing when a new feature is added to 
the SUT or a bug is fi xed.

Root Cause 

Tests may fail because the functionality they are verifying has been modifi ed. 
This outcome does not necessarily signal a case of Behavior Sensitivity because it 
is the whole reason for having regression tests. It is a case of Behavior Sensitivity
in any of the following circumstances: 

• The functionality the regression tests use to set up the pre-test state of 
the SUT has been modifi ed.

• The functionality the regression tests use to verify the post-test state of 
the SUT has been modifi ed.

• The code the regression tests use to tear down the fi xture has been 
changed.

If the code that changed is not part of the SUT we are verifying, then we are 
dealing with Context Sensitivity. That is, we may be testing too large a SUT. In 
such a case, what we really need to do is to separate the SUT into the part we 
are verifying and the components on which that part depends. 

Possible Solution 

Any newly incorrect assumptions about the behavior of the SUT used during 
fi xture setup may be encapsulated behind Creation Methods. Similarly, assump-
tions about the details of post-test state of the SUT can be encapsulated in Cus-
tom Assertions or Verifi cation Methods. While these measures won’t eliminate 
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the need to update test code when the assumptions change, they certainly do 
reduce the amount of test code that needs to be changed. 

Cause: Data Sensitivity 

Data Sensitivity occurs when a test fails because the data being used to test the 
SUT has been modifi ed. This sensitivity most commonly arises when the con-
tents of the test database change. 

Symptoms

A test that once passed suddenly starts failing in any of the following circum-
stances:

• Data is added to the database that holds the pre-test state of the SUT.

• Records in the database are modifi ed or deleted.

• The code that sets up a Standard Fixture (page 305) is modifi ed.

• A Shared Fixture is modifi ed before the fi rst test that uses it.

In all of these cases, we must be using a Standard Fixture, which may be either 
a Fresh Fixture (page 311) or a Shared Fixture such as a Prebuilt Fixture (see
Shared Fixture).

Root Cause 

Tests may fail because the result verifi cation logic in the test looks for data that 
no longer exists in the database or uses search criteria that accidentally include 
newly added records. Another potential cause of failure is that the SUT is being 
exercised with inputs that reference missing or modifi ed data and, therefore, the 
SUT behaves differently. 

In all cases, the tests make assumptions about which data exist in the data-
base—and those assumptions are violated. 

Possible Solution 

In those cases where the failures occur during the exercise SUT phase of the test, 
we need to look at the pre-conditions of the logic we are exercising and make 
sure they have not been affected by recent changes to the database. 

In most cases, the failures occur during result verifi cation. We need to 
examine the result verifi cation logic to ensure that it does not make any un-
reasonable assumptions about which data exists. If it does, we can modify the 
verifi cation logic. 
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Why Do We Need 100 Customers?

A software development coworker of mine was working on a project 
as an analyst. One day, the manager she was working for came into her 
offi ce and asked, “Why have you requested 100 unique customers be cre-
ated in the test database instance?” 

As a systems analyst, my coworker was responsible for helping the busi-
ness analysts defi ne the requirements and the acceptance tests for a large, 
complex project. She wanted to automate the tests but had to overcome 
several hurdles. One of the biggest hurdles was the fact that the SUT got 
much of its data from an upstream system—it was too complex to try to 
generate this data manually. 

The systems analyst came up with a way to generate XML from tests 
captured in spreadsheets. For the fi xture setup part of the tests, she trans-
formed the XML into QaRun (a Record and Playback Test tool—see
Recorded Test on page 278) scripts that would load the data into the 
upstream system via the user interface. Because it took a while to run 
these scripts and for the data to make its way downstream to the SUT, the 
systems analyst had to run these scripts ahead of time. This meant that 
a Fresh Fixture (page 311) strategy was unachievable; a Prebuilt Fix-
ture (page 429) was the best she could do. In an attempt to avoid the 
Interacting Tests (see Erratic Test on page 228) that were sure to result 
from a Shared Fixture (page 317), the systems analyst decided to imple-
ment a virtual Database Sandbox (page 650) using a Database Partition-
ing Scheme based on a unique customer number for each test. This way, 
any side effects of one test couldn’t affect any other tests. 

Given that she had about 100 tests to automate, the systems analyst 
needed about 100 test customers defi ned in the database. And that’s 
what she told her manager. 

The failure can show up in the result verifi cation logic even if the problem is that 
the inputs of the SUT refer to nonexistent or modifi ed data. This may require ex-
amining the “after” state of the SUT (which differs from the expected post-test 
state) and tracing it back to discover why it does not match our expectations. 
This should expose the mismatch between SUT inputs and the data that existed 
before the test started executing. 

The best solution to Data Sensitivity is to make the tests independent of 
the existing contents of the database—that is, to use a Fresh Fixture. If this 
is not possible, we can try using some sort of Database Partitioning Scheme 
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(see Database Sandbox on page 650) to ensure that the data modifi ed for one 
test does not overlap with the data used by other tests. (See the sidebar “Why 
Do We Need 100 Customers?” on page 244 for an example.) 

Another solution is to verify that the right changes have been made to the 
data. Delta Assertions (page 485) compare before and after “snapshots” of the 
data, thereby ignoring data that hasn’t changed. They eliminate the need to 
hard-code knowledge about the entire fi xture into the result verifi cation phase 
of the test. 

Cause: Context Sensitivity 

Context Sensitivity occurs when a test fails because the state or behavior of the 
context in which the SUT executes has changed in some way. 

Symptoms

A test that once passed suddenly starts failing for mysterious reasons. Unlike 
with an Erratic Test (page 228), the test produces consistent results when run 
repeatedly over a short period of time. What is different is that it consistently 
fails regardless of how it is run. 

Root Cause 

Tests may fail for two reasons: 

• The functionality they are verifying depends in some way on the time 
or date. 

• The behavior of some other code or system(s) on which the SUT 
depends has changed.

A major source of Context Sensitivity is confusion about which SUT we are 
intending to verify. Recall that the SUT is whatever piece of software we are intend-
ing to verify. When unit testing, it should be a very small part of the overall system 
or application. Failure to isolate the specifi c unit (e.g., class or method) is bound 
to lead to Context Sensitivity because we end up testing too much software all at 
once. Indirect inputs that should be controlled by the test are then left to chance. If 
someone then modifi es a depended-on component (DOC), our tests fail. 

To eliminate Context Sensitivity, we must track down which indirect input to 
the SUT has changed and why. If the system contains any date- or time-related 
logic, we should examine this logic to see whether the length of the month or 
other similar factors could be the cause of the problem. 

If the SUT depends on input from any other systems, we should examine these 
inputs to see if anything has changed recently. Logs of previous interactions 
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with these other systems are very useful for comparison with logs of the failure 
scenarios.

If the problem comes and goes, we should look for patterns related to when 
it passes and when it fails. See Erratic Test for a more detailed discussion of 
possible causes of Context Sensitivity.

Possible Solution 

We need to control all the inputs of the SUT if our tests are to be deterministic. 
If we depend on inputs from other systems, we may need to control these inputs 
by using a Test Stub (page 529) that is confi gured and installed by the test. If the 
system contains any time- or date-specifi c logic, we need to be able to control the 
system clock as part of our testing. This may necessitate stubbing out the system 
clock with a Virtual Clock [VCTP] that gives the test a way to set the starting 
time or date and possibly to simulate the passage of time. 

Cause: Overspecifi ed Software 

A test says too much about how the software should be structured or behave. 
This form of Behavior Sensitivity (see Fragile Test on page 239) is associated with 
the style of testing called Behavior Verifi cation (page 468). It is characterized by 
extensive use of Mock Objects (page 544) to build layer-crossing tests. The main 
issue is that the tests describe how the software should do something, not what it 
should achieve. That is, the tests will pass only if the software is implemented in 
a particular way. This problem can be avoided by applying the principle Use the 
Front Door First (see page 40) whenever possible to avoid encoding too much 
knowledge about the implementation of the SUT into the tests. 

Cause: Sensitive Equality 

Objects to be verifi ed are converted to strings and compared with an expected 
string. This is an example of Behavior Sensitivity in that the test is sensitive 
to behavior that it is not in the business of verifying. We could also think of 
it as a case of Interface Sensitivity where the semantics of the interface have 
changed. Either way, the problem arises from the way the test was coded; 
using the string representations of objects for verifying them against expected 
values is just asking for trouble. 

Cause: Fragile Fixture 

When a Standard Fixture is modifi ed to accommodate a new test, several other 
tests fail. This is an alias for either Data Sensitivity or Context Sensitivity
depending on the nature of the fi xture in question. 

Also known as:
Overcoupled 

Test
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Further Reading 

Sensitive Equality and Fragile Fixture were fi rst described in [RTC], which was 
the fi rst paper published on test smells and refactoring test code. The four sen-
sitivities were fi rst described in [ARTRP], which also described several ways to 
avoid Fragile Tests in Recorded Tests.
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Frequent Debugging

Manual debugging is required to determine the cause of most test failures. 

Symptoms

A test run results in a test failure or a test error. The output of the Test Run-
ner (page 377) is insuffi cient for us to determine the problem. Thus we have to 
use an interactive debugger (or sprinkle print statements throughout the code) 
to determine where things are going wrong. 

If this case is an exception, we needn’t worry about it. If most test fail-
ures require this kind of debugging, however, we have a case of Frequent 
Debugging.

Causes

Frequent Debugging is caused by a lack of Defect Localization (see page 22) in 
our suite of automated tests. The failed tests should tell us what went wrong either 
through their individual failure messages (see Assertion Message on page 370) 
or through the pattern of test failures. If they don’t: 

• We may be missing the detailed unit tests that would point out a logic 
error inside an individual class. 

• We may be missing the component tests for a cluster of classes (i.e., a 
component) that would point out an integration error between the indi-
vidual classes. This can happen when we use Mock Objects (page 544) 
extensively to replace depended-on objects but the unit tests of the 
depended-on objects don’t match the way the Mock Objects are pro-
grammed to behave. 

I’ve encountered this problem most frequently when I wrote higher-level (func-
tional or component) tests but failed to write all the unit tests for the individual 
methods. (Some people would call this approach storytest-driven development
to distinguish it from unit test-driven development, in which every little bit of 
code is pulled into existence by a failing unit test.) 

Frequent Debugging can also be caused by Infrequently Run Tests (see Pro-
duction Bugs on page 268). If we run our tests after every little change we 
make to the software, we can easily remember what we changed since the last 
time we ran the tests. Thus, when a test fails, we don’t have to spend a lot 

Also known as:
Manual 
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of time troubleshooting the software to discover where the bug is—we know 
where it is because we remember putting it there! 

Impact

Manual debugging is a slow, tedious process. It is easy to overlook subtle indi-
cations of a bug and spend many hours tracking down a single logic error. Fre-
quent Debugging reduces productivity and makes development schedules much 
less predictable because a single manual debugging session could extend the time 
required to develop the software by half a day or more. 

Solution Patterns 

If we are missing the customer tests for a piece of functionality and manual user 
testing has revealed a problem not exposed by any automated tests, we probably 
have a case of Untested Requirements (see Production Bugs). We can ask our-
selves, “What kind of automated test would have prevented the manual debug-
ging session?” Better yet, once we have identifi ed the problem, we can write a 
test that exposes it. Then we can use the failing test to do test-driven bug fi xing.
If we suspect this to be a widespread problem, we can create a development task 
to identify and write any additional tests that would be required to fi ll the gap 
we just exposed. 

Doing true test-driven development is the best way to avoid the circumstances 
that lead to Frequent Debugging. We should start as close as possible to the 
skin of the application and do storytest-driven development—that is, we should 
write unit tests for individual classes as well as component tests for the collec-
tions of related classes to ensure we have good Defect Localization.
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Manual Intervention

A test requires a person to perform some manual action 
each time it is run. 

Symptoms

The person running the test must do something manually either before the test 
is run or partway through the test run; otherwise, the test fails. The Test Runner
may need to verify the results of the test manually. 

Impact

Automated tests are all about getting early feedback on problems introduced 
into the software. If the cost of getting that feedback is too high—that is, if it 
takes the form of Manual Intervention—we likely won’t run the tests very often 
and we won’t get the feedback very often. If we don’t get that feedback very 
often, we’ll probably introduce lots of problems between test runs, which will 
ultimately lead to Frequent Debugging (page 248) and High Test Maintenance 
Cost (page 265). 

Manual Intervention also makes it impractical to have a fully automated 
Integration Build [SCM] and regression test process. 

Causes

The causes of Manual Intervention are as varied as the kinds of things our soft-
ware does or encounters. The following are some general categories of the kinds 
of issues that require Manual Intervention. This list is by no means exhaustive, 
though.

Cause: Manual Fixture Setup 

Symptoms

A person has to set up the test environment manually before the automated tests 
can be run. This activity may take the form of confi guring servers, starting server 
processes, or running scripts to set up a Prebuilt Fixture (page 429).

Root Cause 

This problem is typically caused by a lack of attention to automating the fi xture 
setup phase of the test. It may also be caused by excessive coupling between 
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components in the SUT that prevents us from testing a majority of the code in 
the system inside the development environment. 

Possible Solution 

We need to make sure that we are writing Fully Automated Tests. This may 
require opening up test-specifi c APIs to allow tests to set up the fi xture. Where 
the issue is related to an inability to run the software in the development envi-
ronment, we may need to refactor the software to decouple the SUT from the 
steps that would otherwise need to be done manually.

Cause: Manual Result Verifi cation 

Symptoms

We can run the tests but they almost always pass—even when we know that the 
SUT is not returning the correct results. 

Root Cause 

If the tests we write are not Self-Checking Tests (see page 26), we can be given a 
false sense of security because tests will fail only if an error/exception is thrown. 

Possible Solution 

We can ensure that our tests are all self-checking by including result verifi ca-
tion logic such as calls to Assertion Methods (page 362) within the Test Meth-
ods (page 348).

Cause: Manual Event Injection 

Symptoms

A person must intervene during test execution to perform some manual action 
before the test can proceed. 

Root Cause 

Many events in a SUT are hard to generate under program control. Examples 
include unplugging network cables, bringing down database connections, and 
clicking buttons on a user interface. 

Impact

If a person needs to do something manually, it both increases the effort to run 
the test and ensures that the test cannot be run unattended. This torpedoes any 
attempt to do a fully automated build-and-test cycle. 

 Manual Intervention
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Possible Solution 

The best solution is to fi nd ways to test the software that do not require a real 
person to do the manual actions. If the events are reported to the SUT through 
asynchronous events, we can have the Test Method invoke the SUT directly, 
passing it a simulated event object. If the SUT experiences the situation as a syn-
chronous response from some other part of the system, we can get control of the 
indirect inputs by replacing some part of the SUT with a Test Stub (page 529) 
that simulates the circumstances to which we want to expose the SUT. 

Further Reading 

Refer to Chapter 11, Using Test Doubles, for a much more detailed description 
of how to get control of the indirect inputs of the SUT.

Manual 
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Slow Tests      

The tests take too long to run. 

Symptoms

The tests take long enough to run that developers don’t run them every time they make 
a change to the SUT. Instead, the developers wait until the next coffee break or another 
interruption before running them. Or, whenever they run the tests, they walk around 
and chat with other team members (or play Doom or surf the Internet or . . .). 

Impact

Slow Tests obviously have a direct cost: They reduce the productivity of the 
person running the test. When we are test driving the code, we’ll waste precious 
seconds every time we run our tests; when it is time to run all the tests before we 
commit our changes, we’ll have an even more signifi cant wait time. 

Slow Tests also have many indirect costs: 

• The bottleneck created by holding the “integration token” longer because 
we need to wait for the tests to run after merging all our changes. 

• The time during which other people are distracted by the person wait-
ing for his or her test run to fi nish. 

• The time spent in debuggers fi nding a problem that was inserted 
sometime after the last time we ran the test. The longer it has been 
since the test was run, the less likely we are to remember exactly what 
we did to break the test. This cost is a result of the breakdown of the 
rapid feedback that automated unit tests provide. 

A common reaction to Slow Tests is to immediately go for a Shared Fix-
ture (page 317). Unfortunately, this approach almost always results in other 
problems, including Erratic Tests (page 228). A better solution is to use a Fake 
Object (page 551) to replace slow components (such as the database) with faster 
ones. However, if all else fails and we must use some kind of Shared Fixture, we 
should make it immutable if at all possible. 

Troubleshooting Advice 

Slow Tests can be caused either by the way the SUT is built and tested or by 
the way the tests are designed. Sometimes the problem is obvious—we can just 
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watch the green bar grow as we run the tests. There may be notable pauses in the 
execution; we may see explicit delays coded in a Test Method (page 348). If the 
cause is not obvious, however, we can run different subsets (or subsuites) of tests 
to see which ones run quickly and which ones take a long time to run. 

A profi ling tool can come in handy to see where we are spending the extra 
time in test execution. Of course, xUnit gives us a simple means to build our 
own mini-profi ler: We can edit the setUp and tearDown methods of our Testcase 
Superclass (page 638). We then write out the start/end times or test duration 
into a log fi le, along with the name of the Testcase Class (page 373) and Test 
Method. Finally, we import this fi le into a spreadsheet, sort by duration, and 
voila—we have found the culprits. The tests with the longest execution times 
are the ones on which it will be most worthwhile to focus our efforts. 

Causes

The specifi c cause of the Slow Tests could lie either in how we built the SUT or 
in how we coded the tests themselves. Sometimes, the way the SUT was built 
forces us to write our tests in a way that makes them slow. This is particularly a 
problem with legacy code or code that was built with a “test last” perspective. 

Cause: Slow Component Usage 

A component of the SUT has high latency. 

Root Cause 

The most common cause of Slow Tests is interacting with a database in many of 
the tests. Tests that have to write to a database to set up the fi xture and read a 
database to verify the outcome (a form of Back Door Manipulation; see page 327) 
take about 50 times longer to run than the same tests that run against in-memory 
data structures. This is an example of the more general problem of using slow 
components. 

Possible Solution 

We can make our tests run much faster by replacing the slow components with 
a Test Double (page 522) that provides near-instantaneous responses. When the 
slow component is the database, the use of a Fake Database (see Fake Object)
can make the tests run on average 50 times faster! See the sidebar “Faster Tests 
Without Shared Fixtures” on page 319 for other ways to skin this cat. 
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Cause: General Fixture 

Symptoms

Tests are consistently slow because each test builds the same over-engineered 
fi xture. 

Root Cause 

Each test constructs a large General Fixture each time a Fresh Fixture (page 311) 
is built. Because a General Fixture contains many more objects than a Mini-
mal Fixture (page 302), it naturally takes longer to construct. Fresh Fixture
involves setting up a brand-new instance of the fi xture for each Testcase Object
(page 382), so multiply “longer” by the number of tests to get an idea of the 
magnitude of the slowdown! 

Possible Solution 

Our fi rst inclination is often to implement the General Fixture as a Shared Fix-
ture to avoid rebuilding it for each test. Unless we can make this Shared Fixture
immutable, however, this approach is likely to lead to Erratic Tests and should 
be avoided. A better solution is to reduce the amount of fi xture setup performed 
by each test. 

Cause: Asynchronous Test 

Symptoms

A few tests take inordinately long to run; those tests contain explicit delays. 

Root Cause 

Delays included within a Test Method slow down test execution considerably. 
This slow execution may be necessary when the software we are testing spawns 
threads or processes (Asynchronous Code; see Hard-to-Test Code on page 209)
and the test needs to wait for them to launch, run, and verify whatever side ef-
fects they were expected to have. Because of the variability in how long it takes 
for these threads or processes to be started, the test usually needs to include 
a long delay “just in case”—that is, to ensure it passes consistently. Here’s an 
example of a test with delays: 
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public class RequestHandlerThreadTest extends TestCase {
   private static final int TWO_SECONDS = 3000;

   public void testWasInitialized_Async() = throws InterruptedException {
      // Setup
      RequestHandlerThread sut = new RequestHandlerThread();
      // Exercise
      sut.start();
      //    Verify
      Thread.sleep(TWO_SECONDS);
      assertTrue(sut.initializedSuccessfully());
   }

   public void testHandleOneRequest_Async()
            throws InterruptedException {
      // Setup
      RequestHandlerThread sut = new RequestHandlerThread();
      sut.start();
      // Exercise
      enqueRequest(makeSimpleRequest());
      // Verify
      Thread.sleep(TWO_SECONDS);
      assertEquals(1, sut.getNumberOfRequestsCompleted());
      assertResponseEquals(makeSimpleResponse(), getResponse());
   }
}

Impact

A two-second delay might not seem like a big deal. But consider what happens 
when we have a dozen such tests: It would take almost half a minute to run these 
tests. In contrast, we can run several hundred normal tests each second. 

Possible Solution 

The best way to address this problem is to avoid asynchronicity in tests by test-
ing the logic synchronously. This may require us to do an Extract Testable Com-
ponent (page 767) refactoring to implement a Humble Executable (see Humble 
Object on page 695).

Cause: Too Many Tests 

Symptoms

There are so many tests that they are bound to take a long time to run regardless 
of how fast they execute. 

Slow Tests 
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Root Cause 

The obvious cause of this problem is having so many tests. Perhaps we have such 
a large system that the large number of tests really is necessary, or perhaps we 
have too much overlap between tests. 

The less obvious cause is that we are running too many of the tests too fre-
quently!

Possible Solution 

We don’t have to run all the tests all the time! The key is to ensure that all tests 
are run regularly. If the entire suite is taking too long to run, consider creating 
a Subset Suite (see Named Test Suite on page 592) with a suitable cross section 
of tests; run this subsuite before every commit operation. The rest of the tests 
can be run regularly, albeit less often, by scheduling them to run overnight or at 
some other convenient time. Some people call this technique a “build pipeline.” 
For more on this and other ideas, see the sidebar “Faster Tests Without Shared 
Fixtures” on page 319. 

If the system is large in size, it is a good idea to break it into a number 
of fairly independent subsystems or components. This allows teams work-
ing on each component to work independently and to run only those tests 
specific to their own component. Some of those tests should act as proxies 
for how the other components would use the component; they must be kept 
up-to-date if the interface contract changes. Hmmm, Tests as Documenta-
tion (see page 23); I like it! Some end-to-end tests that exercise all the com-
ponents together (likely a form of storytests) would be essential, but they 
don’t need to be included in the pre-commit suite.
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Chapter 17 

Project Smells 

Smells in This Chapter
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Buggy Tests                  

Bugs are regularly found in the automated tests.

Fully Automated Tests (see page 26) are supposed to act as a “safety net” 
for teams doing iterative development. But how can we be sure the safety net 
actually works? 

Buggy Tests is a project-level indication that all is not well with our auto-
mated tests. 

Symptoms

A build fails, and a failed test is to blame. Upon closer inspection, we discover 
that the code being testing works correctly, but the test indicated it was broken. 

We encountered Production Bugs (page 268) despite having tests that verify 
the specifi c scenario in which the bug was found. Root-cause analysis indicates 
the test contains a bug that precluded catching the error in the production code. 

Impact

Tests that give misleading results are dangerous! Tests that pass when they 
shouldn’t (a false negative, as in “nothing wrong here”) give a false sense of 
security. Tests that fail when they shouldn’t (a false positive) discredit the tests. 
They are like the little boy who cried, “Wolf!”; after a few occurrences, we tend 
to ignore them. 

Causes

Buggy Tests can have many causes. Most of these problems also show up as 
code or behavior smells. As project managers, we are unlikely to see these un-
derlying smells until we specifi cally look for them. 

Cause: Fragile Test 

Buggy Tests may just be project-level symptoms of a Fragile Test (page 239). For 
false-positive test failures, a good place to start is the “four sensitivities”: Interface 
Sensitivity (see Fragile Test), Behavior Sensitivity (see Fragile Test), Data Sensi-
tivity (see Fragile Test), and Context Sensitivity (see Fragile Test). Each of these 
sensitivities could be the change that caused the test to fail. Removing the sensi-
tivities by using Test Doubles (page 522) and refactoring can be challenging but 
ultimately it will make the tests much more dependable and cost-effective. 

Buggy Tests 
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Cause: Obscure Test 

A common cause of false-negative test results (tests that pass when they shouldn’t) 
is an Obscure Test (page 186), which is diffi cult to get right—especially when 
we are modifying existing tests that were broken by a change we made. Because 
automated tests are hard to test, we don’t often verify that a modifi ed test still 
catches all the bugs it was initially designed to trap. As long as we see a green 
bar, we think we are “good to go.” In reality, we may have created a test that 
never fails. 

Obscure Tests are best addressed through refactoring of tests to focus on 
the reader of the tests. The real goal is Tests as Documentation (see page 23)—
anything less will increase the likelihood of Buggy Tests.

Cause: Hard-to-Test Code 

Another common cause of Buggy Tests, especially with “legacy software” 
(i.e., any software that doesn’t have a complete suite of automated tests), is that the 
design of the software is not conducive to automated testing. This Hard-to-Test 
Code (page 209) may force us to use Indirect Testing (see Obscure Test), which 
in turn may result in a Fragile Test.

The only way Hard-to-Test Code will become easy to test is if we refactor the 
code to improve its testability. (This transformation is described in Chapter 6, 
Test Automation Strategy, and Chapter 11, Using Test Doubles.) If this is not an 
option, we may be able to reduce the amount of test code affected by a change 
by applying SUT API Encapsulation (see Test Utility Method on page 599).

Troubleshooting Advice 

When we have Buggy Tests, it is important to ask lots of questions. We must ask 
the “fi ve why’s” [TPS] to get to the bottom of the problem—that is, we must 
determine exactly which code and/or behavior smells are causing the Buggy
Tests and fi nd the root cause of each smell. 

Solution Patterns 

The solution depends very much on why the Buggy Tests occurred. Refer to the 
underlying behavior and code smells for possible solutions. 

As with all “project smells,” we should look for project-level causes. These 
include not giving developers enough time to perform the following activities: 

 Buggy Tests
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• Learn to write the tests properly

• Refactor the legacy code to make test automation easier and more robust 

• Write the tests fi rst

Failure to address these project-level causes guarantees that the problems will 
recur in the near future. 

Buggy Tests
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Developers Not Writing Tests          

Developers aren’t writing automated tests. 

Symptoms

We hear that our developers aren’t writing tests. Or maybe we have observed 
Production Bugs (page 268) and asked, “Why are so many bugs getting 
through?”, only to be told, “Because we aren’t writing tests to cover that part 
of the software.” 

Impact

If the team isn’t writing automated tests for every piece of software “that could 
possibly break,” it is mortgaging its future. The current pace of software develop-
ment will not be sustainable over the long haul because the system will be in test 
debt. It will take longer and longer to add new functionality, and refactoring the 
code to improve its design will be fraught with peril (so it will happen less and 
less frequently). This problem marks the beginning of a trip down the proverbial 
“slippery slope” to traditional paranoid, non-agile development. If that is where 
we aspire to be, we should stay the course. Otherwise, it is time to take action. 

Causes

Cause: Not Enough Time 

Developers may have trouble writing tests in the time they are given to do 
the development. This problem could be caused by an overly aggressive devel-
opment schedule or supervisors/team leaders who instruct developers, “Don’t 
waste time writing tests.” Alternatively, developers may not have the skills 
needed to write tests effi ciently and may not be allocated the time required to 
work their way up the learning curve. 

If time is what the developers need, managers need to adjust the proj-
ect schedule to give them that time. This extension need be only a temporary 
adjustment while the developers learn the skills and test automation infrastructure 
that will enable them to write the tests more quickly. In my experience, once 
developers have internalized the process, they can write the tests and the code in 
the same amount of time it once took them to write and debug just the code. 
The time spent writing the tests is more than compensated for by the time not 
spent in the debugger. 

 Developers Not Writing Tests

Developers 
Not Writing 
Tests

www.it-ebooks.info

http://www.it-ebooks.info/


264 Chapter 17  Project Smells

Cause: Hard-to-Test Code 

A common cause of Developers Not Writing Tests, especially with “legacy soft-
ware” (i.e., any software that doesn’t have a complete suite of automated tests), is 
that the design of the software is not conducive to automated testing. This situa-
tion is described in more detail in its own smell, Hard-to-Test Code (page 209). 

Cause: Wrong Test Automation Strategy 

Another cause of Developers Not Writing Tests may be a test environment 
or test automation strategy that leads to Fragile Tests (page 239) or Obscure
Tests (page 186) that take too long to write. We need to ask the “fi ve why’s” 
[TPS] to fi nd the root causes. Then we can address those causes and get the ship 
back on course. 

Troubleshooting Advice 

Project-level smells such as Developers Not Writing Tests are more likely to be 
detected by a project manager, scrum master, or team leader than by a developer. 
As managers, we may not know how to fi x the problem, but our awareness 
and recognition of it is what matters. This unique perspective allows managers 
to ask the development team questions about why they aren’t writing tests, in 
which circumstances, and how long it takes to write tests when they do so. Then 
managers can encourage and empower the developers to come up with ways of 
addressing the root causes so that they write all the necessary tests. 

Of course, managers must give the developers their full support in carrying 
out whatever improvement plan they come up with. That support must include 
enough time to learn the requisite skills and build or set up the necessary test 
infrastructure. And managers shouldn’t expect things to turn around overnight. 
They might set a process improvement goal for each iteration, such as “20% 
reduction in code not tested” or “20% improvement in code coverage.” These 
goals should be reasonable and at a high-enough level that they encourage the 
right behavior, as opposed to just making the numbers look good. (A goal of 205 
more tests written, for example, could be achieved without increasing the test 
coverage one iota simply by splitting tests into smaller pieces or cloning tests.) 

Developers 
Not Writing 

Tests

www.it-ebooks.info

http://www.it-ebooks.info/


265

High Test Maintenance Cost                              

Too much effort is spent maintaining existing tests.

Test code needs to be maintained along with the production code it verifi es. As 
an application evolves, we will likely have to revisit our tests on a regular basis 
whenever we change the SUT classes to add new functionality or whenever we 
refactor the tests to simplify those classes. High Test Maintenance Cost occurs 
when the tests become overly diffi cult to understand and maintain. 

Symptoms

Development of new functionality slows down. Every time we add some new 
functionality, we need to make extensive changes to the existing tests. Develop-
ers or test automaters may tell the project manager or coach that they need a 
“test refactoring/cleanup iteration.” 

If we have been tracking the amount of time we spend writing the new tests 
and modifying existing tests separately from the time we spend implementing 
the code to make the tests pass, we notice that most of the time is spent modify-
ing the existing tests. 

Most test maintainability issues are accompanied by other smells, such as the 
following:

• A Fragile Test (page 239) indicates that tests are too closely coupled to 
the SUT. 

• A Fragile Fixture (see Fragile Test) signals that too many tests depend 
on the same fi xture design (Standard Fixture on page 305), which leads 
to High Test Maintenance Cost.

• An Erratic Test (page 228) may be a sign that a Shared Fixture (page 317) 
is causing our problem. 

Impact

Team productivity drops signifi cantly because the tests take so much effort to main-
tain. Developers may be agitating to “cut and run” (remove the affected tests from 
the test suites). While writing the production code is mandatory, maintaining the 
tests is completely optional (at least to the uninformed). If nothing is done about this 
problem, the entire test automation effort may be wasted when the team or manage-
ment decides that test automation just “doesn’t work” and abandons the tests. 
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Causes

The root cause of High Test Maintenance Cost is failing to pay attention to 
the principles described in Chapter 5, Principles of Test Automation. A more 
immediate cause is often too much Test Code Duplication (page 213) and tests 
that are too closely coupled to the API of the SUT. 

Cause: Fragile Test 

Tests that fail because minor changes were made to the SUT are called Fragile
Tests. They result in High Test Maintenance Cost because they need to be revis-
ited and “giggled” after all manner of minor changes that really shouldn’t affect 
them.

The root cause of this failure can be any of the “four sensitivities”: Inter-
face Sensitivity (see Fragile Test), Behavior Sensitivity (see Fragile Test), Data
Sensitivity (see Fragile Test), and Context Sensitivity (see Fragile Test). We can 
reduce the High Test Maintenance Cost by protecting the tests against as many 
of these sensitivities as possible through the use of Test Doubles (page 522) 
and by refactoring the system into smaller components and classes that can be 
tested individually. 

Cause: Obscure Test 

Obscure Tests (page 186) are a major contributor to High Test Maintenance 
Cost because they take longer to understand each time they are visited. When 
they need to be modifi ed, they take more effort to adjust and are much less likely 
to “work the fi rst time,” resulting in more debugging of tests. Obscure Tests are 
also more likely to end up not catching conditions they were intended to detect, 
which can lead to Buggy Tests (page 260). 

Obscure Tests are best addressed by refactoring tests to focus on the reader 
of the tests. The real goal is Tests as Documentation (see page 23)—anything 
less will increase the likelihood of High Test Maintenance Cost.

Cause: Hard-to-Test Code 

“Legacy software” (i.e., any software that doesn’t have a complete suite of auto-
mated tests) can be hard to test because we typically write the tests “last” (after 
the software already exists). If the design of the software is not conducive to 
automated testing, we may be forced to use Indirect Testing (see Obscure Test)
via awkward interfaces that involve a lot of accidental complexity; that effort 
may result in Fragile Tests.
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It will take both time and effort to refactor the code to improve its testability. 
Nevertheless, that time and effort are well spent if they eliminate the High Test 
Maintenance Cost. If refactoring is not an option, we may be able to reduce 
the amount of test code affected by a change by doing SUT API Encapsulation 
(see Test Utility Method on page 599) using Test Utility Methods. For example, 
Creation Methods (page 415) encapsulate the constructors, thereby rendering 
the tests less susceptible to changes in constructor signatures or semantics. 

Troubleshooting Advice 

As a project-level smell, High Test Maintenance Cost is as likely to be detected 
by a project manager, scrum master, or team leader as by a developer. While 
managers may not have the technical depth needed to troubleshoot and fi x the 
problem, the fact that they become aware of it is what is important. This aware-
ness allows the manager to question the development team about how long it is 
taking to maintain tests, how often test maintenance occurs, and why it is neces-
sary. Then the manager can challenge the developers to fi nd a better way—one 
that won’t result in such High Test Maintenance Costs!

Of course, the developers will need the manager’s support to carry out 
whatever improvement plan they come up with. That support must include 
time to conduct the investigations (spikes), learning/training time, and time to 
do the actual work. Managers can make time for this activity by having “test 
refactoring stories,” adjusting the velocity to reduce the new functionality com-
mitted to the customer, or other means. Regardless of how managers carve out 
this time, they must remember that if they don’t give the development team the 
resources needed to fi x the problem now, the problem will simply get worse and 
become even more challenging to fi x in the future when the team has twice as 
many tests. 
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Production Bugs

We fi nd too many bugs during formal tests or in production. 

Symptoms

We have put a lot of effort into writing automated tests, yet the number of bugs 
showing up in formal (i.e., system) testing or production remains too high. 

Impact

It takes longer to troubleshoot and fi x bugs found in formal testing than those 
found in development, and even longer to troubleshoot and fi x bugs found in 
production. We may be forced to delay shipping the product or putting the 
application into production to allow time for the bug fi xes and retesting. This 
time and effort translate directly into monetary costs and consume resources 
that might otherwise be used to add more functionality to the product or to 
build other products. The delay may also damage the organization’s credibility 
in the eyes of its customers. Poor quality has an indirect cost as well, in that it 
lowers the value of the product or service we are supplying. 

Causes

Bugs may slip through to production for several reasons, including Infrequently
Run Tests or Untested Code. The latter problem may result from Missing Unit 
Tests or Lost Tests.

By specifying that “enough tests” be run, we mean the test coverage should 
be adequate, rather than that some specifi c number of tests must be carried out. 
Changes to Untested Code are more likely to result in Production Bugs because 
there are no automated tests to tell the developers when they have introduced 
problems. Untested Requirements aren’t being verifi ed every time the tests are 
run, so we don’t know for sure what is working. Both of these problems are 
related to Developers Not Writing Tests (page 263). 

Cause: Infrequently Run Tests 

Symptoms

We hear that our developers aren’t running the tests very often. When we ask some 
questions, we discover that running the tests takes too long(Slow Tests; see page 253)
or produces too many extraneous failures (Buggy Tests; see page 260). 

Production 
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We see test failures in the daily Integration Build [SCM]. When we dig deeper, 
we fi nd that developers often commit their code without running the tests on 
their own machines. 

Root Cause 

Once they’ve seen the benefi ts of working with the safety net of automated tests, 
most developers will continue using these tests unless something gets in the way. 
The most common impediments are Slow Tests that slow down the pre-integration 
regression testing or Unrepeatable Tests (see Erratic Test on page 228) that force 
developers to restart their test environment or do Manual Intervention (page 250) 
before running the tests. 

Possible Solution 

If the root cause is Unrepeatable Tests, we can try switching to a Fresh Fix-
ture (page 311) strategy to make the tests more deterministic. If the cause is Slow
Tests, we must put more effort into speeding up the test run. 

Cause: Lost Test 

Symptoms

The number of tests being executed in a test suite has declined (or has not 
increased as much as expected). We may notice this directly if we are paying 
attention to test counts. Alternatively, we may fi nd a bug that should have been 
caused by a test that we know exists but, upon poking around, we discover that 
the test has been disabled. 

Root Cause 

Lost Tests can be caused by either a Test Method (page 348) or a Testcase 
Class (page 373) that has been disabled or has never been added to the AllTests 
Suite (see Named Test Suite on page 592).

Tests can be accidentally left out (i.e., never run) of test suite in the following 
circumstances:

• We forget to add the [test] attribute to the Test Method, or we acci-
dentally use a method name that doesn’t match the naming convention 
used by the Test Discovery (page 393) mechanism.

• We forget to add a call to suite.addTest to add the Test Method to the Test 
Suite Object (page 387) when we are automating tests in a Test Automation 
Framework (page 298) that supports only Test Enumeration (page 399). 
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• We forget to add a call to the Test Method explicitly in the Test Suite 
Procedure (see Test Suite Object) in procedural-language variations of 
xUnit.

• We forget to add the test suite to the Suite of Suites (see Test Suite Object)
or forget to add the [Test Fixture] attribute to the Testcase Class.

Tests that ran in the past may have been disabled in any of the following ways: 

• We renamed the Test Method to not match the pattern that causes Test 
Discovery to include the test in the test suite (e.g., the method name 
starts with “test . . .”). 

• We added an [Ignore] attribute in variants of xUnit that use method 
attributes to indicate Test Methods.

• We commented out (or deleted) the code that adds the test (or suite) to 
the suite explicitly. 

Typically, a Lost Test occurs when a test is failing and someone disables it to 
avoid having to wade through the failing tests when running other tests. It may 
also occur accidentally, of course. 

Possible Solution 

There are a number of ways to avoid introducing Lost Tests.
We can use a Single Test Suite (see Named Test Suite) to run a single Test 

Method instead of disabling the failing or slow test. We can use the Test Tree 
Explorer (see Test Runner on page 377) to drill down and run a single test 
from within a test suite. Both of these techniques are made diffi cult by Chained
Tests (page 454)—a deliberate form of Interacting Tests (see Erratic Test)—so
this is just one more reason to avoid them. 

If our variant of xUnit supports it, we can use the provided mechanism to 
ignore1 a test. It will typically remind us of the number of tests not being run 
so we don’t forget to re-enable them. We can also confi gure our continuous
integration tool to fail the build if the number of tests “ignored” exceeds a 
certain threshold. 

We can compare the number of tests we have after check-in with the number 
of tests that existed in the code branch immediately before we started integra-
tion. We simply verify that this count has increased by the number of tests we 
have added. 

1 For example, NUnit lets us put the attribute [Ignore] on a Test Method to keep it from 
being run.
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We can implement or take advantage of Test Discovery if our programming 
language supports refl ection. 

We can use a different strategy for fi nding the tests to run in the Integration 
Build. Some build tools (such as Ant) let us fi nd all fi les that match a name pat-
tern (e.g., those ending in “Test”). We won’t lose entire test suites if we use this 
capability to pick up all the tests. 

Cause: Missing Unit Test 

Symptoms

All the unit tests pass but a customer test continues to fail. At some point, the 
customer test passed—but no unit tests were written to verify the behavior of the 
individual classes. Then, a subsequent code change modifi ed the behavior of one of 
the classes, which broke its functionality. 

Root Cause 

Missing Unit Tests often happen when a team focuses on writing the customer 
tests but fails to do test-driven development using unit tests. The team members 
may have built enough functionality to pass the customer tests, but a subsequent 
refactoring broke it. Unit tests would likely have prevented the code change 
from reaching the Integration Build. 

Missing Unit Tests can also arise during test-driven development when devel-
opers get ahead of themselves and write some code without having a failing test 
to guide them. 

Possible Solution 

The trite answer is to write more unit tests. Of course, this is easier said than 
done, and it isn’t always effective. Doing true test-driven development is the 
best way to avoid having Missing Unit Tests without writing unnecessary tests 
merely to get the test count up. 

Cause: Untested Code 

Symptoms

We may just “know” that some piece of code in the SUT is not being exercised 
by any tests. Perhaps we have never seen that code execute, or perhaps we used 
code coverage tools to prove this fact beyond a doubt. In the following example, 
how can we test that when timeProvider throws an exception, this exception is 
handled correctly? 
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   public String getCurrentTimeAsHtmlFragment()
         throws TimeProviderEx {
      Calendar currentTime;
      try {
         currentTime = getTimeProvider().getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.

Root Cause 

The most common cause of Untested Code is that the SUT includes code paths 
that react to particular ways that a depended-on component (DOC) behaves 
and we haven’t found a way to exercise those paths. Typically, the DOC is 
being called synchronously and either returns certain values or throws excep-
tions. During normal testing, only a subset of the possible equivalence classes
of indirect inputs are actually encountered. 

Another common cause of Untested Code is incompleteness of the test suite 
caused by incomplete characterization of the functionality exposed via the 
SUT’s interface. 

Possible Solution 

If the Untested Code is caused by an inability to control the indirect inputs of 
the SUT, the most common solution is to use a Test Stub (page 529) to feed the 
various kinds of indirect inputs into the SUT to cover all the code paths. Other-
wise, it may be suffi cient to confi gure the DOC to cause it to return the various 
indirect inputs required to fully test the SUT. 

Cause: Untested Requirement 

Symptoms

We may just “know” that some piece of functionality is not being tested. Alter-
natively, we may be trying to test a piece of software but cannot see any visible 
functionality that can be tested via the public interface of the software. All the 
tests we have written pass, however. 

When doing test-driven development, we know we need to add some 
code to handle a requirement. However, we cannot fi nd a way to express the 
need for code to log the action in a Fully Automated Test (see page 26) such 
as this: 
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   public void testRemoveFlight() throws Exception {
      // set up
      FlightDto expectedFlightDto = createARegisteredFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight should not exist after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
   }

Note that this test does not verify that the correct logging action has been done. 
It will pass regardless of whether the logging was implemented correctly—or 
even at all. Here’s the code that this test is verifying, complete with the indirect 
output of the SUT that has not been implemented correctly:

   public void removeFlight(BigDecimal flightNumber)
            throws FlightBookingException {
      System.out.println("      removeFlight("+flightNumber+")");
      dataAccess.removeFlight(flightNumber);
      logMessage("CreateFlight", flightNumber); // Bug!
   }

If we plan to depend on the information captured by logMessage when maintain-
ing the application in production, how can we ensure that it is correct? Clearly, 
it is desirable to have automated tests verify this functionality. 

Impact

Part of the required behavior of the SUT could be accidentally disabled without 
causing any tests to fail. Buggy software could be delivered to the customer. The 
fear of introducing bugs could discourage ruthless refactoring or deletion of 
code suspected to be unneeded (i.e., dead code). 

Root Cause 

The most common cause of Untested Requirements is that the SUT includes 
behavior that is not visible through its public interface. It may have expected 
“side effects” that cannot be observed directly by the test (such as writing out 
a fi le or record or calling a method on another object or component)—in other 
words, it may have indirect outputs. 

When the SUT is an entire application, the Untested Requirement may be a 
result of not having a full suite of customer tests that verify all aspects of the 
visible behavior of the SUT. 
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Production 
Bugs

Possible Solution 

If the problem is missing customer tests, we need to write at least enough cus-
tomer tests to ensure that all components are integrated properly. This may 
require improving the design-for-testability of the application by separating the 
presentation layer from the business logic layer. 

When we have indirect outputs that we need to verify, we can do Behavior
Verifi cation (page 468) through the use of Mock Objects (page 544). Testing of 
indirect outputs is covered in Chapter 11, Using Test Doubles.

Cause: Neverfail Test 

Symptoms

We may just “know” that some piece of functionality is not working, even 
though the tests for that functionality pass. When doing test-driven develop-
ment, we have added a test for functionality we have not yet written but we 
cannot get the test to fail. 

Impact

If a test won’t fail even when the code to implement the functionality doesn’t 
exist, how useful is it for Defect Localization (see page 22)? Not very!

Root Cause 

This problem can be caused by improperly coded assertions such as assertTrue-
(aVariable, true) instead of assertEquals(aVariable, true) or just assertTrue(aVariable).
Another cause is more sinister: When we have asynchronous tests, failures thrown 
in the other thread or process may not be seen or reported by the Test Runner.

Possible Solution 

We can implement cross-thread failure detection mechanisms to ensure that 
asynchronous tests do, indeed, fail. An even better solution is to refactor the 
code to support a Humble Executable (see Humble Object on page 695).
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Chapter 18 

Test Strategy Patterns 
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Recorded Test                                                                  

How do we prepare automated tests for our software?

We automate tests by recording interactions with the application and 
playing them back using a test tool.

Automated tests serve several purposes. They can be used for regression testing 
software after it has been changed. They can help document the behavior of the 
software. They can specify the behavior of the software before it has been writ-
ten. How we prepare the automated test scripts affects which purposes they can 
be used for, how robust they are to changes in the SUT, and how much skill and 
effort it takes to prepare them. 

Recorded Tests allow us to rapidly create regression tests after the SUT has 
been built and before it is changed. 

How It Works 

We use a tool that monitors our interactions with the SUT as we work with 
it. This tool keeps track of most of what the SUT communicates to us and our 
responses to the SUT. When the recording session is done, we can save the ses-
sion to a fi le for later playback. When we are ready to run the test, we start up 
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the “playback” part of the tool and point it at the recorded session. It starts up 
the SUT and feeds it our recorded inputs in response to the SUT’s outputs. It may 
also compare the SUT’s outputs with the SUT’s responses during the recording 
session. A mismatch may be cause for failing the test. 

Some Recorded Test tools allow us to adjust the sensitivity of the compari-
sons that the tool makes between what the SUT said during the recording ses-
sion and what it said during the playback. Most Recorded Test tools interact 
with the SUT through the user interface. 

When to Use It 

Once an application is up and running and we don’t expect a lot of changes 
to it, we can use Recorded Tests to do regression testing. We could also use 
Recorded Tests when an existing application needs to be refactored (in anticipa-
tion of modifying the functionality) and we do not have Scripted Tests (page 285) 
available to use as regression tests. It is typically much quicker to produce a set 
of Recorded Tests than to prepare Scripted Tests for the same functionality. In 
theory, the test recording can be done by anyone who knows how to operate 
the application; very little technical expertise should be required. In practice, 
many of the commercial tools have a steep learning curve. Also, some technical 
expertise may be required to add “checkpoints,” to adjust the sensitivity of the 
playback tool, or to adjust the test script if the recording tool became confused 
and recorded the wrong information. 

Most Recorded Test tools interact with the SUT through the user interface. This 
approach makes them particularly prone to fragility if the user interface of the 
SUT is evolving (Interface Sensitivity; see Fragile Test on page 239). Even small 
changes such as changing the internal name of a button or fi eld may be enough 
to cause the playback tool to stumble. The tools also tend to record information 
at a very low and detailed level, making the tests hard to understand (Obscure 
Test; page 186); as a result, they are also diffi cult to repair by hand if they are 
broken by changes to the SUT. For these reasons, we should plan on rerecording 
the tests fairly regularly if the SUT will continue to evolve. 

If we want to use the Tests as Documentation (see page 23) or if we want to 
use the tests to drive new development, we should consider using Scripted Tests.
These goals are diffi cult to address with commercial Recorded Test tools because 
most do not let us defi ne a Higher-Level Language (see page 41) for the test 
recording. This issue can be addressed by building the Recorded Test capability 
into the application itself or by using Refactored Recorded Test.
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Variation: Refactored Recorded Test 

A hybrid of the two strategies is to use the “record, refactor, playback”1 sequence 
to extract a set of “action components” or “verbs” from the newly Recorded
Tests and then rewire the test cases to call these “action components” instead 
of having detailed in-line code. Most commercial capture/replay tools provide 
the means to turn Literal Values (page 714) into parameters that can be passed 
into the “action component” by the main test case. When a screen changes, we 
simply rerecord the “action component”; all the test cases continue to function 
by automatically using the new “action component” defi nition. This strategy is 
effectively the same as using Test Utility Methods (page 599) to interact with the 
SUT in unit tests. It opens the door to using the Refactored Recorded Test com-
ponents as a Higher-Level Language in Scripted Tests. Tools such as Mercury 
Interactive’s BPT2 use this paradigm for scripting tests in a top-down manner; 
once the high-level scripts are developed and the components required for the 
test steps are specifi ed, more technical people can either record or hand-code the 
individual components. 

Implementation Notes 

We have two basic choices when using a Recorded Test strategy: We can either 
acquire third-party tools that record the communication that occurs while we 
interact with the application or we can build a “record and playback” mecha-
nism right into our application. 

Variation: External Test Recording 

Many test recording tools are available commercially, each of which has its own 
strengths and weaknesses. The best choice will depend on the nature of the user 
interface of the application, our budget, the complexity of the functionality to 
be verifi ed, and possibly other factors. 

If we want to use the tests to drive development, we need to pick a tool that 
uses a test-recording fi le format that is editable by hand and easily understood. 
We’ll need to handcraft the contents—this situation is really an example of a 
Scripted Test even if we are using a “record and playback” tool to execute the 
tests.

1 The name “record, refactor, playback” was coined by Adam Geras.
2 BPT is short for “Business Process Testing.”
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Variation: Built-In Test Recording 

It is also possible to build a Recorded Test capability into the SUT. In such a 
case, the test scripting “language” can be defi ned at a fairly high level—high 
enough to make it possible to hand-script the tests even before the system is 
built. In fact, it has been reported that the VBA macro capability of Microsoft’s 
Excel spreadsheet started out as a mechanism for automated testing of Excel. 

Example: Built-In Test Recording 

On the surface, it doesn’t seem to make sense to provide a code sample for a 
Recorded Test because this pattern deals with how the test is produced, not 
how it is represented. When the test is played back, it is in effect a Data-Driven
Test (page 288). Likewise, we don’t often refactor to a Recorded Test because it 
is often the fi rst test automation strategy attempted on a project. Nevertheless, 
we might introduce a Recorded Test after attempting Scripted Tests if we discover 
that we have too many Missing Tests (page 268) because the cost of manual auto-
mation is too high. In that case, we would not be trying to turn existing Scripted
Tests into Recorded Tests; we would just record new tests. 

Here’s an example of a test recorded by the application itself. This test was 
used to regression-test a safety-critical application after it was ported from C on 
OS2 to C++ on Windows. Note how the recorded information forms a domain-
specifi c Higher-Level Language that is quite readable by a user.

<interaction-log>
   <commands>
      <!-- more commands omitted -->
      <command seqno="2" id="Supply Create">
         <field name="engineno" type="input">
            <used-value>5566</used-value>
            <expected></expected>
            <actual status="ok"/>
         </field>
         <field name="direction" type="selection">
            <used-value>SOUTH</used-value>
            <expected>
               <value>SOUTH</value>
               <value>NORTH</value>
            </expected>
            <actual>
               <value status="ok">SOUTH</value>
               <value status="ok">NORTH</value>
            </actual>
         </field>
      </command>
      <!-- more commands omitted -->
   </commands>
</interaction-log>
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This sample depicts the output of having played back the tests. The actual elements 
were inserted by the built-in playback mechanism. The status attributes indicate 
whether these elements match the expected values. We applied a style sheet to these 
fi les to format them much like a Fit test with color-coded results. The business users 
on the project then handled the recording, replaying, and result analysis. 

This recording was made by inserting hooks in the presentation layer of the 
software to record the lists of choices offered the user and the user’s responses. 
An example of one of these hooks follows: 

if (playback_is_on()) {
  choice = get_choice_for_playback(dialog_id, choices_list);
} else {
  choice  = display_dialog(choices_list, row, col, title, key);
}

if (recording_is_on())  {
   record_choice(dialog_id, choices_list, choice, key);
}

The method get_choice_for_playback retrieves the contents of the used-value element 
instead of asking the user to pick from the list of choices. The method record_choice
generates the actual element and makes the “assertions” against the expected
elements, recording the result in the status attribute of each element. Note that 
recording_is_on() returns true whenever we are in playback mode so that the test 
results can be recorded.

Example: Commercial Record and Playback Test Tool 

Almost every commercial testing tool uses a “record and playback” metaphor. 
Each tool also defi nes its own Recorded Test fi le format, most of which are 
very verbose. The following is a “short” excerpt from a test recorded using 
Mercury Interactive’s QuickTest Professional [QTP] tool. It is shown in “Expert 
View,” which exposes what is really recorded: a VbScript program! The example 
includes comments (preceded by “@@”) that were inserted manually to clarify 
what this test is doing; these comments would be lost if the test were rerecorded 
after a change to the application caused the test to no longer run. 

@@
@@ GoToPageMaintainTaxonomy()
@@
Browser("Inf").Page("Inf").WebButton("Login").Click
Browser("Inf").Page("Inf_2").Check CheckPoint("Inf_2")
Browser("Inf").Page("Inf_2"").Link("TAXONOMY LINKING").Click
Browser("Inf").Page("Inf_3").Check CheckPoint("Inf_3")
Browser("Inf").Page("Inf_3").Link("MAINTAIN TAXONOMY").Click
Browser("Inf").Page("Inf_4").Check CheckPoint("Inf_4")
@@

Recorded 
Test 

282 Chapter 18  Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/


@@ AddTerm("A","Top Level", "Top Level Definition")
@@
Browser("Inf").Page("Inf_4").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf").Check CheckPoint("Inf_5")
Browser("Inf_2").Page("Inf").WebEdit("childCodeSuffix").Set "A" 
Browser("Inf_2").Page("Inf").
   WebEdit("taxonomyDto.descript").Set "Top Level" 
Browser("Inf_2").Page("Inf").
   WebEdit("taxonomyDto.definiti").Set "Top Level Definition"
Browser("Inf_2").Page("Inf").WebButton("Save").Click
wait 4
Browser("Inf").Page("Inf_5").Check CheckPoint("Inf_5_2")
@@
@@ SelectTerm("[A]-Top Level")
@@
Browser("Inf").Page("Inf_5").
   WebList("selectedTaxonomyCode").Select "[A]-Top Level"
@@
@@ AddTerm("B","Second Top Level", "Second Top Level Definition")
@@
Browser("Inf").Page("Inf_5").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf_2").Check CheckPoint("Inf_2_2")
   infofile_;_Inform_Alberta_21.inf_;_hightlight id_;
      _Browser("Inf_2").Page("Inf_2")_;_
@@
@@ and it goes on, and on, and on ....

Note how the test describes all inputs and outputs in terms of the user interface 
of the application. It suffers from two main issues: Obscure Tests (caused by the 
detailed nature of the recorded information) and Interface Sensitivity (resulting 
in Fragile Tests).

Refactoring Notes 

We can make this test more useful as documentation, reduce or avoid High Test 
Maintenance Cost (page 265), and support composition of other tests from a 
Higher-Level Language by using a series of Extract Method [Fowler] refactorings. 

Example: Refactored Commercial Recorded Test 

The following example shows the same test refactored to Communicate Intent 
(see page 41): 

GoToPage_MaintainTaxonomy()
AddTerm("A","Top Level", "Top Level Definition")
SelectTerm("[A]-Top Level")
AddTerm("B","Second Top Level", "Second Top Level Definition")
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Note how much more intent revealing this test has become. The Test Utility 
Methods we extracted look like this: 

Method GoToPage_MaintainTaxonomy()
   Browser("Inf").Page("Inf").WebButton("Login").Click 
   Browser("Inf").Page("Inf_2").Check CheckPoint("Inf_2")
   Browser("Inf").Page("Inf_2").Link("TAXONOMY LINKING").Click
   Browser("Inf").Page("Inf_3").Check CheckPoint("Inf_3")
   Browser("Inf").Page("Inf_3").Link("MAINTAIN TAXONOMY").Click
   Browser("Inf").Page("Inf_4").Check CheckPoint("Inf_4")
End

Method AddTerm( code, name, description)
   Browser("Inf").Page("Inf_4").Link("Add").Click 
   wait 4
   Browser("Inf_2").Page("Inf").Check CheckPoint("Inf_5")
   Browser("Inf_2").Page("Inf").
      WebEdit("childCodeSuffix").Set code 
   Browser("Inf_2").Page("Inf").
      WebEdit("taxonomyDto.descript").Set name 
   Browser("Inf_2").Page("Inf").
      WebEdit("taxonomyDto.definiti").Set description 
   Browser("Inf_2").Page("Inf").WebButton("Save").Click 
   wait 4
   Browser("Inf").Page("Inf_5").Check CheckPoint("Inf_5_2")
end

Method SelectTerm( path )
   Browser("Inf").Page("Inf_5").
      WebList("selectedTaxonomyCode").Select path 
   Browser("Inf").Page("Inf_5").Link("Add").Click 
   wait 4
end

This example is one I hacked together to illustrate the similarities to what we do 
in xUnit. Don’t try running this example at home—it is probably not syntactically 
correct. 

Further Reading 

The paper “Agile Regression Testing Using Record and Playback” [ARTRP] 
describes our experiences building a Recorded Test mechanism into an applica-
tion to facilitate porting it to another platform. 
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Scripted Test                                                                   

How do we prepare automated tests for our software?

We automate the tests by writing test programs by hand.

Automated tests serve several purposes. They can be used for regression testing 
software after it has been changed. They can help document the behavior of the 
software. They can specify the behavior of the software before it has been written. 
How we prepare the automated test scripts affects which purpose they can be 
used for, how robust they are to changes in the SUT, and how much skill and 
effort it takes to prepare them. 

Scripted Tests allow us to prepare our tests before the software is developed 
so they can help drive the design. 

How It Works 

We automate our tests by writing test programs that interact with the SUT for the 
purpose of exercising its functionality. Unlike Recorded Tests (page 278), these 
tests can be either customer tests or unit tests. These test programs are often 
called “test scripts” to distinguish them from the production code they test. 
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When to Use It 

We almost always use Scripted Tests when preparing unit tests for our software. 
This is because it is easier to access the individual units directly from software 
written in the same programming language. It also allows us to exercise all the 
code paths, including the “pathological” cases. 

Customer tests are a slightly more complicated picture; we should use a 
Scripted Test whenever we use automated storytests to drive the develop-
ment of software. Recorded Tests don’t serve this need very well because 
it is diffi cult to record tests without having an application from which to 
record them. Preparing Scripted Tests takes programming experience as well 
as experience in testing techniques. It is unlikely that most business users on 
a project would be interested in learning how to prepare Scripted Tests. An 
alternative to scripting tests in a programming language is to defi ne a Higher-
Level Language (see page 41) for testing the SUT and then to implement 
the language as a Data-Driven Test (page 288) Interpreter [GOF]. An open-
source framework for defi ning Data-Driven Tests is Fit and its wiki-based 
cousin, FitNesse. Canoo WebTest is another tool that supports this style 
of testing. 

In case of an existing legacy application,3 we can consider using Recorded
Tests as a way of quickly creating a suite of regression tests that will protect us 
while we refactor the code to introduce testability. We can then prepare Scripted
Tests for our now testable application. 

Implementation Notes 

Traditionally, Scripted Tests were written as “test programs,” often using a spe-
cial test scripting language. Nowadays, we prefer to write Scripted Tests using 
a Test Automation Framework (page 298) such as xUnit in the same language 
as the SUT. In this case, each test program is typically captured in the form 
of a Test Method (page 348) on a Testcase Class (page 373). To minimize Manual
Intervention (page 250), each test method should implement a Self-Checking
Test (see page 26) that is also a Repeatable Test (see page 26).

3 Among test drivers, a legacy application is any system that lacks a safety net of auto-
mated tests.
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Example: Scripted Test 

The following is an example of a Scripted Test written in JUnit: 

   public void testAddLineItem_quantityOne(){
      final BigDecimal BASE_PRICE = UNIT_PRICE;
      final BigDecimal EXTENDED_PRICE = BASE_PRICE;
      //   Set Up Fixture
      Customer customer = createACustomer(NO_CUST_DISCOUNT);
      Invoice invoice = createInvoice(customer);
      //   Exercise SUT
      invoice.addItemQuantity(PRODUCT, QUAN_ONE);
      // Verify Outcome
      LineItem expected =
         createLineItem( QUAN_ONE, NO_CUST_DISCOUNT,
                         EXTENDED_PRICE, PRODUCT, invoice);
      assertContainsExactlyOneLineItem( invoice, expected );
   }

   public void testChangeQuantity_severalQuantity(){
      final int ORIGINAL_QUANTITY = 3;
      final int NEW_QUANTITY = 5;
      final BigDecimal BASE_PRICE =
         UNIT_PRICE.multiply(   new BigDecimal(NEW_QUANTITY));
      final BigDecimal EXTENDED_PRICE =
         BASE_PRICE.subtract(BASE_PRICE.multiply(
                     CUST_DISCOUNT_PC.movePointLeft(2)));
      //   Set Up Fixture
      Customer customer = createACustomer(CUST_DISCOUNT_PC);
      Invoice invoice = createInvoice(customer);
      Product product = createAProduct( UNIT_PRICE);
      invoice.addItemQuantity(product, ORIGINAL_QUANTITY);
      // Exercise SUT
      invoice.changeQuantityForProduct(product, NEW_QUANTITY);
      // Verify Outcome
      LineItem expected = createLineItem( NEW_QUANTITY,
          CUST_DISCOUNT_PC, EXTENDED_PRICE, PRODUCT, invoice);
      assertContainsExactlyOneLineItem( invoice, expected );
   }

About the Name 

Automated test programs are traditionally called “test scripts,” probably due 
to the heritage of such test programs—originally they were implemented in 
interpreted test scripting languages such as Tcl. The downside of calling them 
Scripted Tests is that this nomenclature opens the door to confusion with the 
kind of script a person would follow during manual testing as opposed to 
unscripted testing such as exploratory testing.

Further Reading 

Many books have been written about the process of writing Scripted Tests and 
using them to drive the design of the SUT. A good place to start would be [TDD-BE] 
or [TDD-APG]. 
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Data-Driven Test                                                             

How do we prepare automated tests for our software?
How do we reduce Test Code Duplication?

We store all the information needed for each test in a data fi le and write an 
interpreter that reads the fi le and executes the tests.

Testing can be very repetitious not only because we must run the same test 
over and over again, but also because many of the tests differ only slightly. For 
example, we might want to run essentially the same test with slightly different 
system inputs and verify that the actual output varies accordingly. Each of these 
tests would consist of exactly the same steps. While having so many tests is an 
excellent way to ensure good coverage of functionality, it is not so good for test 
maintainability because any change made to the algorithm of one of these tests 
must be propagated to all of the similar tests. 

A Data-Driven Test is one way to get excellent coverage while minimizing 
the amount of test code we need to write and maintain. 

How It Works 

We write a Data-Driven Test interpreter that contains all the common logic 
from the tests. We put the data that varies from test to test into the Data-Driven 
Test fi le that the interpreter reads to execute the tests. For each test it performs 
the same sequence of actions to implement the Four-Phase Test (page 358). First, 
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the interpreter retrieves the test data from the fi le and sets up the test fi xture us-
ing the data from the fi le. Second, it exercises the SUT with whatever arguments 
the fi le specifi es. Third, it compares the actual results produced by the SUT (e.g., 
returned values, post-test state) with the expected results from the fi le. If the 
results don’t match, it marks the test as failed; if the SUT throws an exception, 
it catches the exception and marks the test accordingly and continues. Fourth, 
the interpreter does any fi xture teardown that is necessary and then moves on to 
the next test in the fi le. 

A test that might otherwise require a series of complex steps can be reduced 
to a single line of data in the Data-Driven Test fi le. Fit is a popular example of 
a framework for writing Data-Driven Tests.

When to Use It 

A Data-Driven Test is an alternative strategy to a Recorded Test (page 278) and 
a Scripted Test (page 285). It can also be used as part of a Scripted Test strategy, 
however, and Recorded Tests are, in fact, Data-Driven Tests when they are played 
back. A Data-Driven Test is an ideal strategy for getting business people involved 
in writing automated tests. By keeping the format of the data fi le simple, we make 
it possible for the business person to populate the fi le with data and execute the 
tests without having to ask a technical person to write test code for each test. 

We can consider using a Data-Driven Test as part of a Scripted Test strategy 
whenever we have a lot of different data values with which we wish to exercise 
the SUT where the same sequence of steps must be executed for each data value. 
Usually, we discover this similarity over time and refactor fi rst to a Parameterized
Test (page 607) and then to a Data-Driven Test. We may also want to arrange a 
standard set of steps in different sequences with different data values much like 
in an Incremental Tabular Test (see Parameterized Test). This approach gives us 
the best coverage with the least amount of test code to maintain and makes it 
very easy to add more tests as they are needed. 

Another consideration when deciding whether to use Data-Driven Tests is 
whether the behavior we are testing is hard-coded or driven by confi guration 
data. If we automate tests for data-driven behavior using Scripted Tests, we must 
update the test programs whenever the confi guration data changes. This behavior 
is just plain unnatural because it implies that we must commit changes to our 
source code repository [SCM] whenever we change the data in our confi guration 
database.4 By making the tests data-driven, changes to the confi guration data or 

4 Of course, we should be managing our test data in a version-controlled Repository, 
too—but that topic could fi ll another book; see [RDb] for details.
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meta-objects are then driven by changes to the Data-Driven Tests—a much more 
natural relationship. 

Implementation Notes 

Our implementation options depend on whether we are using a Data-Driven
Test as a distinct test strategy or as part of an xUnit-based strategy. Using a 
Data-Driven Test as a stand-alone test strategy typically involves using open-
source tools such as Fit or commercial Recorded Test tools such as QTP. Using 
a Data-Driven Test as part of a Scripted Test strategy may involve implementing a 
Data-Driven Test interpreter within xUnit. 

Regardless of which strategy we elect to follow, we should use the appropri-
ate Test Automation Framework (page 298) if one is available. By doing so, we 
effectively convert our tests into two parts: the Data-Driven Test interpreter 
and the Data-Driven Test fi les. Both of these assets should be kept under ver-
sion control so that we can see how they have evolved over time and to allow 
us to back out any misguided changes. It is particularly important to store the 
Data-Driven Test fi les in some kind of Repository, even though this concept may 
be foreign to business users. We can make this operation transparent by provid-
ing the users with a Data-Driven Test fi le-authoring tool such as FitNesse, or we 
can set up a “user-friendly” Repository such as a document management system 
that just happens to support version control as well. 

It is also important to run these tests as part of the continuous integration
process to confi rm that tests that once passed do not suddenly begin to fail. 
Failing to do so can result in bugs creeping into the software undetected and 
signifi cant troubleshooting effort once the bugs are detected. Including the cus-
tomer tests in the continuous integration process requires some way to keep 
track of which customer tests were already passing, because we don’t insist that 
all customer tests pass before any code is committed. One option is to keep 
two sets of input fi les, migrating tests that pass from the “still red” fi le into the 
“all green” fi le that is used for regression testing as part of the automatic build 
process.

Variation: Data-Driven Test Framework (Fit) 

We should consider using a prebuilt Data-Driven Test framework when we are 
using Data-Driven Tests as a test strategy. Fit is a framework originally conceived 
by Ward Cunningham as a way of involving business users in the automation 
of tests. Although Fit is typically used to automate customer tests, it can also 
be used for unit tests if the number of tests warrants building the necessary fi x-
tures. Fit consists of two parts: the framework and a user-created fi xture. The Fit 
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Framework is a generic Data-Driven Test interpreter that reads the input fi le and 
fi nds all tables in it. It looks in the top-left cell of each table for a fi xture classname 
and then searches our test executable for that class. When it fi nds a class, it creates 
an instance of the class and passes control to that instance as it reads each row and 
column of the table. We can override methods defi ned by the framework to specify 
what should happen for each cell in the table. A Fit fi xture, then, is an adapter that 
Fit calls to interpret a table of data and invoke methods on the SUT. 

The Fit table can also contain expected results from the SUT. Fit compares 
the specifi ed values with the actual values returned by the SUT. Unlike Asser-
tion Methods (page 362) in xUnit, however, Fit does not abandon a test at the 
fi rst value that does not match the expected value. Instead, it colors in each cell 
in the table, with green cells indicating actual values that matched the expected 
values and red cells indicating wrong or unexpected values. 

Using Fit offers several advantages: 

• There is much less code to write than when we build our own test 
Interpreter [GOF]. 

• The output makes sense to a business person, not just a technical person. 

• The tests don’t stop at the fi rst failed assertion. Fit has a way of com-
municating multiple failures/errors in a way that allows us to see the 
failure patterns very easily. 

• There are a plethora of fi xture types available to subclass or use as is. 

So why wouldn’t we use Fit for all our unit testing instead of xUnit? The main 
disadvantages of using Fit are described here: 

• The test scenarios need to be very well understood before we can build 
the Fit fi xture. We then need to translate each test’s logic into a tabular 
representation; this isn’t always a good fi t, especially for developers who 
are used to thinking procedurally. While it may be appropriate to have 
testers who can write the Fit fi xtures for customer tests, this approach 
wouldn’t be appropriate for true unit tests unless we had close to a 1:1 
tester-to-developer ratio. 

• The tests need to employ the same SUT interaction logic in each test.5 To 
run several different styles of tests, we would probably have to build one 
or more different fi xtures for each style of test. Building a new fi xture 
is typically more complex than writing a few Test Methods (page 348). 

5 The tabular data must be injected into the SUT during the fi xture setup or exercise SUT
phases or retrieved from the SUT during the result verifi cation phase.

 Data-Driven Test

Data-Driven
Test

www.it-ebooks.info

http://www.it-ebooks.info/


Although many different fi xture types are available to subclass or use 
as is, their use in this way is yet another thing that developers would be 
required to learn to do their jobs. Even then, not all unit tests are ame-
nable to automation using Fit. 

• Fit tests aren’t normally integrated into developers’ regression tests that 
are run via xUnit. Instead, these tests must be run separately—which 
introduces the possibility that they will not be run at each check-in. 
Some teams include Fit tests as part of their continuous integration 
build process to partially mitigate this issue. Other teams have reported 
great success having a second “customer” build service or server that 
runs all the customer tests. 

Each of these issues is potentially surmountable, of course. In general, xUnit is 
a more appropriate framework for unit testing than Fit; the reverse is true for 
customer tests. 

Variation: Naive xUnit Test Interpreter 

When we have a small number of Data-Driven Tests that we wish to run as part 
of an xUnit-based Scripted Test strategy, the simplest implementation is to write 
a Test Method containing a loop that reads one set of input data values from the 
fi le along with the expected results. This is the equivalent of converting a single 
Parameterized Test and all its callers into a Tabular Test (see Parameterized 
Test). As with a Tabular Test, this approach to building the Data-Driven Test
interpreter will result in a single Testcase Object (page 382) with many asser-
tions. This has several ramifi cations: 

• The entire set of Data-Driven Tests will count as a single test. Hence, 
converting a set of Parameterized Tests into a single Data-Driven Test
will reduce the count of tests executed. 

• We will stop executing the Data-Driven Test on the fi rst failure or 
error. As a consequence, we will lose a lot of our Defect Localization 
(see page 22). Some variants of xUnit do allow us to specify that failed 
assertions shouldn’t abort execution of the Test Method.

• We need to make sure our assertion failures tell us which subtest we 
were executing when the failure occurred. 

We could address the last two issues by including a try/catch statement inside the 
loop but surrounding the test logic and then continuing the code’s execution. 
Nevertheless, we still need to fi nd a way to report the test results in a meaningful 
way (e.g., “Failed subtests 1, 3, and 6 with . . .”). 
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To make it easier to extend the Data-Driven Test interpreter to handle sev-
eral different kinds of tests in the same data fi le, we can include a “verb” or 
“action word” as part of each entry in the data fi le. The interpreter can then 
dispatch to a different Parameterized Test based on the action word. 

Variation: Test Suite Object Generator 

We can avoid the “stop on fi rst failure” problem associated with a Naive xUnit 
Test Interpreter by having the suite method on the Test Suite Factory (see Test 
Enumeration on page 399) fabricate the same Test Suite Object (page 387) 
structure as the built-in mechanism for Test Discovery (page 393). To do so, 
we build a Testcase Object for each entry in the Data-Driven Test fi le and ini-
tialize each object with the test data for the particular test.6 That object knows 
how to execute the Parameterized Test with the data loaded into it when the 
test suite was built. This ensures that the Data-Driven Test continues execut-
ing even after the fi rst Testcase Object encounters an assertion failure. We can 
then let the Test Runner (page 377) count the tests, errors, and failures in the 
normal way. 

Variation: Test Suite Object Simulator 

An alternative to building the Test Suite Object is to create a Testcase Object
that behaves like one. This object reads the Data-Driven Test fi le and iterates 
over all the tests when asked to run. It must catch any exceptions thrown by 
the Parameterized Test and continue executing the subsequent tests. When 
fi nished, the Testcase Object must report the correct number of tests, failures, 
and errors back to the Test Runner. It also needs to implement any other meth-
ods on the standard test interface on which the Test Runner depends, such as 
returning the number of tests in the “suite,” returning the name and status of 
each test in the suite (for the Graphical Test Tree Explorer, see Test Runner), 
and so forth. 

Motivating Example 

Let’s assume we have a set of tests as follows: 
   def test_extref
        sourceXml = "<extref id='abc' />"
        expectedHtml = "<a href='abc.html'>abc</a>"
        generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")

6 This is very similar to how xUnit’s built-in Test Method Discovery (see Test Discovery)
mechanism works, except that we are passing in the test data in addition to the Test 
Method name.
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   end

   def test_testterm_normal
      sourceXml = "<testterm id='abc'/>"
      expectedHtml = "<a href='abc.html'>abc</a>"
      generateAndVerifyHtml(sourceXml,expectedHtml,"<testterm>")
   end

   def test_testterm_plural
      sourceXml = "<testterms id='abc'/>"
      expectedHtml = "<a href='abc.html'>abcs</a>"
      generateAndVerifyHtml(sourceXml,expectedHtml,"<plural>")
   end

The succinctness of these tests is made possible by defi ning the Parameterized
Test as follows: 

   def generateAndVerifyHtml( sourceXml, expectedHtml, 
                           message, &block)
      mockFile = MockFile.new
      sourceXml.delete!("\t")
      @handler = setupHandler(sourceXml, mockFile )
      block.call unless block == nil
      @handler.printBodyContents
      actual_html = mockFile.output
      assert_equal_html( expectedHtml,
                         actual_html,
                         message + "html output")
       actual_html
   end

The main problem with these tests is that they are still written in code when, in 
fact, the only difference between them is the data used as input. 

Refactoring Notes 

The solution, of course, is to extract the common logic of the Parameterized
Tests into a Data-Driven Test interpreter and to collect all sets of parameters 
into a single data fi le that can be edited by anyone. We need to write a “main” 
test that knows which fi le to read the test data from and a bit of logic to read 
and parse the test fi le. This logic can call our existing Parameterized Test logic 
and let xUnit keep track of the test execution statistics for us. 

Example: xUnit Data-Driven Test with XML Data File 

In this example, we will use XML as our fi le representation. Each test consists of 
a test element with three main parts: 
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• An action that tells the Data-Driven Test interpreter which test logic to 
run (e.g., crossref)

• The input to be passed to the SUT—in this case, the sourceXml element

• The HTML we expect the SUT to produce (in the expectedHtml element)

These three components are wrapped up in a testsuite element. 

<testsuite id="CrossRefHandlerTest">
   <test id="extref">
      <action>crossref</action>
      <sourceXml>
         <extref id='abc'/>
      </sourceXml>
      <expectedHtml>
         <a href='abc.html'>abc</a>
      </expectedHtml>
   </test>
   <test id="TestTerm">
      <action>crossref</action>
      <sourceXml>
         <testterm id='abc'/>
      </sourceXml>
      <expectedHtml>
         <a href='abc.html'>abc</a>
      </expectedHtml>
   </test>
   <test id="TestTerm Plural">
      <action>crossref</action>
      <sourceXml>
         <testterms id='abc'/>
      </sourceXml>
      <expectedHtml>
         <a href='abc.html'>abcs</a>
      </expectedHtml>
   </test>
</testsuite>

This XML fi le could be edited by anyone with an XML editor without any concern 
for introducing test logic errors. All the logic for verifying the expected outcome 
is encapsulated by the Data-Driven Test interpreter in much the same way as it 
would be by a Parameterized Test. For viewing purposes we could hide the XML 
structure from the user by defi ning a style sheet. In addition, many XML editors 
will turn the XML into a form-based input to simplify editing. 

To avoid dealing with the complexities of manipulating XML, the interpreter 
can also use a CSV fi le as input. 
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Example: xUnit Data-Driven Test with CSV Input File 

The test in the previous example would look like this as a CSV fi le: 

ID,    Action,     SourceXml,         ExpectedHtml
Extref,crossref,<extref id='abc'/>,<a href='abc.html'>abc</a>
TTerm,crossref,<testterm id='abc'/>,<a href='abc.html'>abc</a>
TTerms,crossref,<testterms id='abc'/>,<a href='abc.html'>abcs</a>

The interpreter is relatively simple and is built on the logic we had already devel-
oped for our Parameterized Test. This version reads the CSV fi le and uses Ruby’s 
split function to parse each line. 

   def test_crossref
      executeDataDrivenTest "CrossrefHandlerTest.txt"
   end

   def executeDataDrivenTest filename
      dataFile = File.open(filename)
      dataFile.each_line do | line |
        desc, action, part2 = line.split(",")
         sourceXml, expectedHtml, leftOver = part2.split(",")
          if "crossref"==action.strip
            generateAndVerifyHtml sourceXml, expectedHtml, desc
         else # new "verbs" go before here as elsif's
            report_error( "unknown action" + action.strip )
         end
      end
    end

Unless we changed the implementation of generateAndVerifyHtml to catch assertion 
failures and increment a failure counter, this Data-Driven Test will stop executing 
at the fi rst failed assertion. While this behavior would be acceptable for regres-
sion testing, it would not provide very good Defect Localization.

Example: Data-Driven Test Using Fit Framework 

If we wanted to have even more control over what the user can do, we could 
create a Fit “column fi xture” with the columns “id,” “action,” “source XML,” 
and “expected Html()” and let the user edit an HTML Web page instead 
(Figure 18.1). 
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[Figure 18.1: ‘CrossrefHandlerFitTest.vsd’]

Figure 18.1  A Data-Driven test built using the Fit framework. 

When using Fit, the test interpreter is the Fit framework extended by the Fit 
fi xture class specifi c to the test: 

public class CrossrefHandlerFixture extends ColumnFixture {
   // Input columns
   public String id;
   public String action;
   public String sourceXML;

   // Output columns
   public String expectedHtml() {
      return generateHtml(sourceXML);
   }
}

The methods of this fi xture class are called by the Fit framework for each cell 
in each line in the Fit table based on the column headers. Simple names are 
interpreted as the instance variable of the fi xture (e.g., “id,” “source XML”). 
Column names ending in “()” signify a function that Fit calls and then compares 
its result with the contents of the cell. 

The resulting output is shown in Figure 18.2. This colored-in table allows us 
to get an overview of the results of running one fi le of tests at a single glance. 

Figure 18.2  The results of executing the Fit test. 
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Test Automation Framework                                                                                         

How do we make it easy to write and run tests written by different people?

We use a framework that provides all the mechanisms needed to run the test logic 
so the test writer needs to provide only the test-specifi c logic.

Writing and running automated tests involves several steps, but many of these 
steps are the same for every test. If every test had to include an implementation 
of these steps, writing automated tests would be very tedious, time-consuming, 
prone to errors, and expensive. 

Using a Test Automation Framework is a way to minimize the effort of writing 
Fully Automated Tests (see page 26). 

How It Works 

We build a framework that implements all the mechanisms required to run suites 
of tests and record the results. These mechanisms include the ability to fi nd in-
dividual tests, assemble them into a test suite, execute each test in turn, verify 
expected outcomes, collect and report any test failures or errors, and clean up 
when failures or errors do occur. The framework provides a way to plug in and 
run the test-specifi c behavior that test automaters write. 
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Why We Do This 

Building Fully Automated Tests that are repeatable and robust is a much more 
complicated process than just writing a test script that invokes the SUT. We need 
to handle success cases and error cases, both expected and unexpected. We need 
to set up and tear down test fi xtures. We need to specify which test(s) to run. We 
also need to report on the results after we have run a suite of tests. 

The amount of effort required to build Fully Automated Tests can act as 
a serious deterrent to automation of tests. We can reduce the cost of getting 
started signifi cantly by providing a framework that implements the most com-
mon functionality—the only entry cost is then incurred while learning to use 
the framework. This cost, in turn, can be reduced if the framework implements 
a common protocol such as xUnit that makes it easier for us to learn a second 
or third framework once we have experience with the fi rst. 

Using a framework also helps isolate the implementation of the logic re-
quired to run the tests from the logic of the tests. This approach can help reduce 
Test Code Duplication (page 213) and minimize the occurrence of Obscure
Tests (page 186). It also ensures that test written by different test automaters
can be run easily in a single test run with a single report on the test results.

Implementation Notes 

Many kinds of Test Automation Frameworks are available, from both com-
mercial vendors and open-source resources. They can be classifi ed into two 
main categories: “robot user” test tools and Scripted Tests (page 285). The 
latter category can be further subdivided into the xUnit and Data-Driven
Tests (page 288) families of Test Automation Frameworks.

Variation: Robot User Test Frameworks 

A large number of third-party test automation tools are designed to test applica-
tions via the user interface. Most of them use the “record and playback” test 
metaphor. This metaphor leads to some very seductive marketing materials, 
because it makes test automation seem as simple as running some tests manu-
ally while recording the test session. Such a robot user test tool consists of two 
major parts: the “test recorder,” which monitors and records the interactions 
between the user and the SUT, and the “test runner,” which executes the Recorded 
Tests (page 278). Most of these test automation tools are also frameworks that 
support a number of “widget recognizer” plug-ins. Most commercial tools come 
with a gaggle of built-in widget recognizers. 
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Variation: The xUnit Family of Test Automation Frameworks 

Most unit-testing tools belong to the xUnit family of testing frameworks 
designed for automating Hand-Scripted Tests (see Scripted Test). xUnit has 
been ported to (or developed from scratch for) most current programming 
languages. The xUnit family of unit-testing frameworks consists of several 
major components. The most visible is the Test Runner (page 377), which can 
be invoked either from the command line or as a Graphical Test Runner (see
Test Runner). It builds the Testcase Objects (page 382), collects them into Test 
Suite Objects (page 387), and invokes each of the Test Methods (page 348). 
The other major component of the xUnit frameworks is the library of built-in 
Assertion Methods (page 362) that are used within the Test Methods to specify 
the expected outcome of each test. 

Variation: Data-Driven Test Frameworks 

A Data-Driven Test framework provides a way to plug in interpreters that know 
how to execute a specifi c kind of test step. This fl exibility, in effect, extends the 
format of the input fi le with new “verbs” and objects. Such a framework also 
provides a test runner that reads in the fi le, passes control to the plug-ins when 
their corresponding data formats are encountered, and keeps track of statistics 
for the test run. The most notable member of the Data-Driven Test Frameworks
family is Fit, which enables test automaters to write tests in tabular form and to 
“plug in” fi xture classes that know how to interpret specifi c formats of tables. 

Example: Test Automation Framework 

The Test Automation Framework looks somewhat different for each of the 
possible ways to automate tests. To see these variations, refer to Recorded Test,
Scripted Test, and Data-Driven Test for examples of the respective Test Auto-
mation Frameworks.

Further Reading 

Some of the more popular examples of Test Automation Frameworks for xUnit 
are JUnit (Java), SUnit (Smalltalk), CppUnit (C++), NUnit (all .NET languages), 
runit (Ruby), PyUnit (Python), and VbUnit (Visual Basic). A more complete and 
up-to-date list can be found at http://xprogramming.com, along with a list of the 
available extensions (e.g., HttpUnit, Cactus). 
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Other open-source Test Automation Frameworks include Fit, Canoo Web-
Test, and Watir. Commercial Test Automation Frameworks include QTP, BPT, 
and eCATT, among many others. 

In Test-Driven Development—By Example [TDD-BE], Kent Beck illustrates 
TDD by building a Test Automation Framework in Python. In an approach he 
likens to “doing brain surgery on yourself,” he uses the emerging Test Automa-
tion Framework to run the tests he writes for each new capability. This applica-
tion is a very good example of both TDD and bootstrapping. 
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Minimal Fixture

Which fi xture strategy should we use?

We use the smallest and simplest fi xture possible for each test.

Every test needs some kind of test fi xture. A key part of understanding a test 
is understanding the test fi xture and recognizing how it infl uences the expected 
outcome of the test. Tests are much easier to understand if the fi xture is small 
and simple. 

Why We Do This 

A Minimal Fixture is important for achieving Tests as Documentation 
(see page 23) and for avoiding Slow Tests (page 253). A test that uses a Minimal 
Fixture will always be easier to understand than one that uses a fi xture contain-
ing unnecessary or irrelevant information. This is true whether we are using a 
Fresh Fixture (page 311) or a Shared Fixture (page 317), although the effort to 
build a Minimal Fixture is typically higher with a Shared Fixture because it must 
be designed to handle several tests. Defi ning a Minimal Fixture is much easier 
for a Fresh Fixture because it need serve only a single test. 

Fixture

Fixture

SUT

Testcase Class

setUp

test_1

test_2

test_n

Fixture

Fixture

SUT

Testcase Class

setUp

test_1

test_2

test_n

Also known as: 
Minimal
Context

Minimal
Fixture

302 Chapter 18  Test Strategy Patterns

www.it-ebooks.info

http://www.it-ebooks.info/


Implementation Notes 

We design a fi xture that includes only those objects that are absolutely necessary 
to express the behavior that the test verifi es. Another way to phrase this is “If 
the object is not important to understand the test, it is important not to include 
it in the fi xture.” 

To build a Minimal Fixture, we ruthlessly remove anything from the fi xture 
that does not help the test communicate how the SUT should behave. Two 
forms of “minimization” can be considered: 

• We can eliminate objects entirely. That is, we don’t even build the 
objects as part of the fi xture. If the object isn’t necessary to prove 
something about how the SUT behaves, we don’t include it at all. 

• We can hide unnecessary attributes of the object when they don’t con-
tribute to the understanding of the expected behavior. 

A simple way to fi nd out whether an object is necessary as part of the fi xture 
is to remove it. If the test fails as a result, the object was probably necessary 
in some way. Of course, it may have been necessary only as an argument to 
some method we are not interested in or as an attribute that is never used (even 
though the object to which the attribute belongs is required for some reason). 
Including these kinds of objects as part of fi xture setup defi nitely contributes to 
Obscure Tests (page 186). We can eliminate these unnecessary objects in one of 
two ways: (1) by hiding them or (2) by eliminating the need for them by passing 
in Dummy Objects (page 728) or using Entity Chain Snipping (see Test Stub 
on page 529). If the SUT actually accesses the object as it is executing the logic 
under test, however, we may be forced to include the object as part of the test 
fi xture. 

Having determined that the object is necessary for the execution of the test, 
we must now ask whether the object is helpful in understanding the test. If we 
were to initialize it “off-stage,” would that make it harder to understand the 
test? Would the object lead to an Obscure Test by acting as a Mystery Guest 
(see Obscure Test)? If so, we want to keep the object visible. Boundary values
are a good example of a case in which we do want to keep the objects and at-
tributes that take on the boundary values visible. 

If we have established that the object or attribute isn’t necessary for 
understanding the test, we should make every effort to eliminate it from the 
Test Method (page 348), albeit not necessarily from the test fi xture. Creation 
Methods (page 415) are a common way of achieving this goal. We can hide 
the attributes of objects that don’t affect the outcome of the test but that are 
needed for construction of the object by using Creation Methods to fi ll in all 
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the “don’t care” attributes with meaningful default values. We can also hide 
the creation of necessary depended-on objects within the Creation Methods.
A good example of this occurs when we write tests that require badly formed 
objects as input (for testing the SUT with invalid inputs). In this case we don’t 
want to confuse the issue by showing all valid attributes of the object being 
passed to the SUT; there could be many of these extraneous attributes. 
Instead, we want to focus on the invalid attribute. To do so, we can use the One 
Bad Attribute pattern (see Derived Value on page 718) to build malformed 
objects with a minimum of code by calling a Creation Method to construct a 
valid object and then replacing a single attribute with the invalid value that 
we want to verify the SUT will handle correctly. 
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Standard Fixture

Which fi xture strategy should we use?

We reuse the design of the text fi xture across the many tests.

To execute an automated test, we require a text fi xture that is well understood 
and completely deterministic. Designing a custom test fi xture for each test requires 
extra effort. A Standard Fixture offers a way to reuse the same fi xture design in 
several tests without necessarily sharing the same fi xture instance.

How It Works 

A Standard Fixture is more about attitude than about technology. It requires us 
to decide early on in the testing process that we will design a Standard Fixture
that can be used by several or many tests rather than mining a common fi xture 
from tests that were designed independently. In a sense, a Standard Fixture is the 
result of “Big Design Upfront” of the test fi xture for a whole suite of tests. We 
then defi ne our specifi c tests using this common test fi xture design. 

The choice of a Standard Fixture is independent of the choice between a 
Fresh Fixture (page 311) and a Shared Fixture (page 317). A Shared Fixture
is, by defi nition, a Standard Fixture. The reverse is not true, however, because 
a Standard Fixture focuses on reuse of the fi xture’s design—not the time when 
the fi xture is built or its visibility. Having chosen to use a Standard Fixture, we 
still need to decide whether each test will build its own instance of the Standard

Fixture
Setup

Exercise

Verify

Teardown

SUT

Fixture
Setup

Exercise

Verify

Teardown

SUT

Standard Fixture
Setup Logic

Fixture
Setup

Exercise

Verify

Teardown

SUT

Fixture
Setup

Exercise

Verify

Teardown

SUT

Standard Fixture
Setup Logic

Also known as: 
Standard
Context

 Standard Fixture

Standard 
Fixture

305

www.it-ebooks.info

http://www.it-ebooks.info/


Fixture (a Fresh Fixture) or whether we will build it once as a Shared Fixture
and reuse it across many tests. 

When to Use It 

When I was reviewing an early draft of this book with Series Editor Martin 
Fowler, he asked me, “Do people actually do this?” This question exemplifi es 
the philosophical divide of fi xture design. Coming from an agile background, 
Martin lets each test pull a fi xture into existence. If several tests happen to need 
the same fi xture, then it makes sense to factor it out into the setUp method and 
split the class into one Testcase Class per Fixture (page 631). It doesn’t even occur 
to Martin to design a Standard Fixture that all tests can use. So who uses them? 

Standard Fixtures are something of a tradition in the testing (quality assess-
ment) community. It is very commonplace to defi ne a large Standard Fixture that 
is then used as a test bed for testing activities. This approach makes a lot of sense 
in the context of manual execution of many customer tests because it eliminates 
the need for each tester to spend a lot of time setting up the test environment for 
each customer test and it allows several testers to work in the same test environ-
ment at the same time. Some test automaters also use Standard Fixtures when 
defi ning their automated customer tests. This strategy is especially prevalent 
when test automaters use a Shared Fixture, for obvious reasons. 

In the xUnit community, use of a Standard Fixture simply to avoid designing a 
Minimal Fixture (page 302) for each test is considered undesirable and has been 
given the name General Fixture (see Obscure Test on page 186). A more accepted 
example is the use of Implicit Setup (page 424) in conjunction with Testcase 
Class per Fixture because only a few Test Methods (page 348) share the design 
of the fi xture and they do so because they need the same design. As we make a 
Standard Fixture more reusable across many tests with disparate needs, it tends 
to grow larger and more complex. This trend can lead to a Fragile Fixture (see
Fragile Test on page 239) as the needs of new tests introduce changes that break 
existing clients of the Standard Fixture. Depending on how we go about building 
the Standard Fixture, we may also fi nd ourselves entertaining a Mystery Guest 
(see Obscure Test) if the cause–effect relationships between the fi xture and out-
come are not easy to discern either because the fi xture setup is hidden from the 
test or because it is not clear which characteristics of the referenced part of the 
Standard Fixture serve as pre-conditions for the test. 

A Standard Fixture will also take longer to build than a Minimal Fixture
because there is more fi xture to construct. When we are building a Fresh Fixture
for each Testcase Object (page 382), this effort can lead to Slow Tests (page 253), 
especially if the fi xture setup involves a database. (See the sidebar “Unit Test Rulz”
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Unit Test Rulz   

Michael Feathers of Object Mentor writes: 

I’ve used these rules with a large number of teams. They encour-
age good design and rapid feedback and they seem to help teams 
avoid a lot of trouble. 

A test is not a unit test if: 

• It talks to the database.

• It communicates across the network.

• It touches the fi le system.

• It can’t run correctly at the same time as any of your other unit 
tests.

• You have to do special things to your environment (such as 
editing confi g fi les) to run it.

Tests that do these things aren’t bad. Often they are worth writ-
ing, and they can be written in a unit test harness. However, it is 
important to be able to separate them from true unit tests so that 
we can keep a set of tests that we can run fast whenever we make 
our changes. 

http://www.objectmentor.com 

for an opinion about what kinds of behavior are acceptable for a unit test.) For 
these reasons, we may be better off using a Minimal Fixture to avoid the extra 
fi xture setup overhead associated with creating objects that are only needed in 
other tests. 

Implementation Notes 

As mentioned earlier, we can use a Standard Fixture as either a Fresh Fixture or 
a Shared Fixture, and we can set it up using either Implicit Setup or Delegated 
Setup (page 411).7 When using it as a Fresh Fixture, we can defi ne a Test Utility 
Method (page 599) (function or procedure) that builds the Standard Fixture; we 
can then call the Test Utility Method from each test that needs this particular design 
of fi xture. Alternatively, we can take advantage of xUnit support for Implicit Setup
by putting all of the fi xture construction logic in the setUp method. 

7 Doing it with In-line Setup (page 408) would be silly—we would have to copy the code 
to construct the Standard Fixture to every Test Method.
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When building a Standard Fixture for use as a Shared Fixture, we can employ 
any of the Shared Fixture setup patterns including Suite Fixture Setup (page 441), 
Lazy Setup (page 435), and Setup Decorator (page 447). 

Motivating Example 

As mentioned earlier, we are most likely to end up using a Standard Fixture
because we started that way—and we probably started that way as the result 
of the background of one of the project participants. We probably would not 
refactor our tests to use a Standard Fixture when those tests are already written 
to use a Minimal Fixture unless we were refactoring to create a Testcase Class 
per Fixture. For the sake of illustration, let’s assume that we did want to get to 
“here” from “there.” The following example uses Creation Methods (page 415) 
to build a custom Fresh Fixture for each test:

   public void testGetFlightsByFromAirport_OneOutboundFlight_c()
            throws Exception {
      FlightDto outboundFlight = createOneOutboundFlightDto();
      // Exercise System
      List flightsAtOrigin =
            facade.getFlightsByOriginAirport(
                            outboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights_c()
            throws Exception {
      FlightDto[] outboundFlights =
         createTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                       outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

To keep this test short, we have used Delegated Setup to populate the SUT with 
the Minimal Fixture needed for each test. We could have included the fi xture 
setup code in-line in each method, but that choice would take us down the road 
toward an Obscure Test.

Standard 
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Refactoring Notes 

Technically speaking, converting a pile of tests to a Standard Fixture isn’t really a 
“refactoring” because we actually change the behavior of these tests. The biggest 
challenge is designing the reusable Standard Fixture in such a way that each Test 
Method can fi nd some part of the fi xture that serves its needs. This means synthe-
sizing all of the individual purpose-built Minimal Fixtures into a single “jack of 
all trades” fi xture. Not surprisingly, this reworking of the code can be a nontrivial 
exercise when we have a lot of tests. 

The easy and mechanical part of the refactoring is to convert the logic in 
each test that constructs the fi xture into calls to Finder Methods (see Test Utility 
Method) that retrieve the appropriate part of the Standard Fixture. This transfor-
mation is most easily done as a series of steps. First, we extract the in-line fi xture 
construction logic in each Test Method into one or more Creation Methods with 
Intent-Revealing Names [SBPP]. Next, we do a global replace on the “create” part 
of each call to “fi nd.” Finally, we generate (either manually or using our IDE’s 
“quick fi x” capability) the Finder Methods needed to get the calls to compile. 
Inside each Finder Methods we add in code to return the relevant part of the 
Standard Fixture.

Example: Standard Fixture 

Here’s the example given earlier converted to use a Standard Fixture:

   public void testGetFlightsByFromAirport_OneOutboundFlight()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto[] outboundFlights =
                 findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlights[0].getOriginAirportId());
      // Verify Outcome

 Standard Fixture
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      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

To make the use of a Standard Fixture really obvious, this example shows a 
Fresh Fixture that is created explicitly in each test by calling the same Creation
Method to set up the Standard Fixture (i.e., using Delegated Setup). We could 
have achieved the same effect by putting the fi xture construction logic into the 
setUp method, thus using Implicit Setup. The resulting test would look identical 
to one that uses a Shared Fixture.

Standard 
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Fresh Fixture                                                                                            

Which fi xture strategy should we use?

Each test constructs its own brand-new test fi xture for its 
own private use. 

Every test needs a test fi xture. It defi nes the state of the test environment before 
the test. The choice of whether to build the fi xture from scratch each time the 
test is run or to reuse a fi xture built earlier is a key test automation decision. 

When each test creates a Fresh Fixture, Erratic Tests (page 228) are less 
likely and the testing effort is more likely to result in Tests as Documentation 
(see page 23). 

How It Works 

We design and build the test fi xture such that only a single run of a single test will 
use it. We construct the fi xture as part of running the test and tear down the fi xture 
when the test has fi nished. We do not reuse any fi xture left over by other tests or 
other test runs. This way, we start and end every test with a “clean slate.” 

Fixture
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Teardown

SUTFixture
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SUT
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Also known as: 
Fresh Context, 
Private Fixture
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When to Use It 

We should use a Fresh Fixture whenever we want to avoid any interdependencies 
between tests that can result in Erratic Tests such as Lonely Tests (see Erratic Test)
or Interacting Tests (see Erratic Test). If we cannot use a Fresh Fixture because it 
slows the tests down too much, we should consider using an Immutable Shared 
Fixture (see Shared Fixture on page 317) before resorting to a Shared Fixture.
Note that using a Database Partitioning Scheme (see Database Sandbox on page
650) to create a private Database Sandbox for the test that no other tests will 
touch does not result in a Fresh Fixture because subsequent test runs could use 
the same fi xture. 

Implementation Notes 

A fi xture is considered a Fresh Fixture if we intend to use it a single time. Whether 
the Fresh Fixture is transient or persistent depends on the nature of the SUT and 
how the tests are written (Figure 18.3). While the intent is the same, the implemen-
tation considerations are somewhat different when the Fresh Fixture is persistent. 
Fixture setup is largely unaffected, so it is discussed as a feature common to all 
such fi xtures. Fixture teardown is specifi c to the particular variation. 

Figure 18.3  Test fi xture strategies. A fi xture can be either Fresh, Shared, or a 
combination of the two (the immutable Shared Fixture) based on whether some, 
or all, of it persists between tests.
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Why Does a Fixture Persist? 

The fi xture we construct may hang around after the Test Method (page 348) 
has fi nished executing for one of two reasons. First, if the fi xture primarily 
consists of the state of some other objects or components on which the SUT 
depends, its persistence is determined by whether those other objects are them-
selves persistent. A database is one such beast. That’s because as soon as some 
code persists the fi xture objects into a database, the objects “hang around” 
long after our test is done. Their existence in the database opens the door 
to collisions between multiple runs of our own test (Unrepeatable Test; see 
Erratic Test). Other tests may also be able to access those objects, which can 
result in other forms of Erratic Tests such as Interacting Tests and Test Run 
Wars. If we must use a database or other form of object persistence, we should 
take extra steps to keep the fi xture private. In addition, we should tear down 
the fi xture after each Test Method.

The second reason that a fi xture might persist lies within the control of our 
tests—namely, which kind of variable we choose to hold the reference to the 
fi xture. Local variables naturally go out of scope when the Test Method fi nishes 
executing; therefore any fi xture held in a local variable will be destroyed by 
garbage collection. Instance variables go out of scope when the Testcase Object
is destroyed8  and require explicit teardown only if the xUnit framework doesn’t 
recreate the Testcase Objects during each test run. By contrast, class variables
usually result in persistent fi xtures that can outlive a single test method or even 
a test run and should therefore be avoided when using a Fresh Fixture.

In practice, our fi xture will not normally be persistent in unit tests9 unless 
we have tightly coupled our application logic to the database. A fi xture is more 
likely to be persistent when we are writing customer tests or possibly compo-
nent tests.

Fresh Fixture Setup 

Construction of the fi xture is largely unaffected by whether it is persistent or tran-
sient. The primary consideration is the location of the code to set up the fi xture. We 
can use In-line Setup (page 408) if the fi xture setup is relatively simple. For more 
complex fi xtures, we generally prefer using Delegated Setup (page 411) when our 

8 Most members of the xUnit family create a separate Testcase Object (page 382) for 
each Test Method. A few do not, however. This difference can trip up unwary test 
automaters when they fi rst start using these members of the family because instance 
variables may unexpectedly act like class variables. For a detailed description of this 
issue, see the sidebar “There’s Always an Exception” (page 384).
9 The sidebar “Unit Test Rulz” (page 307) explains what constitutes a unit test.
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Test Methods are organized using Testcase Class per Class (page 617) or Testcase 
Class per Feature (page 624). We can use Implicit Setup (page 424) to build the 
fi xture if we have used the Testcase Class per Fixture (page 631) organization. 

Variation: Transient Fresh Fixture 

If we need to refer to the fi xture from several places in the test, we should use 
only local variables or instance variables to refer to the fi xture. In most cases we 
can depend on Garbage-Collected Teardown (page 500) to destroy the fi xture 
without any effort on our part. 

Note that a Standard Fixture (page 305) can also be a Fresh Fixture if the 
fi xture is built from scratch before each Test Method is run. This approach reuses 
the design of the fi xture rather than the instance. It is commonly encountered 
when we use Implicit Setup but we are not using Testcase Class per Fixture to 
organize our Test Methods.

Variation: Persistent Fresh Fixture 

If we do end up using a Persistent Fresh Fixture, either we need to tear down the 
fi xture or we need to take special measures to avoid the need for its teardown. 
We can tear down the fi xture using In-line Teardown (page 509), Implicit Tear-
down (page 516), Delegated Teardown (see In-line Teardown), or Automated
Teardown (page 503) to leave the test environment in the same state as when 
we entered it. 

To avoid fi xture teardown, we can use a Distinct Generated Value (see
Generated Value on page 723) for each fi xture object that must be unique. 
This strategy can become the basis of a Database Partitioning Scheme that 
seeks to isolate the tests and test runners from one another. It would prevent 
Resource Leakage (see Erratic Test) in case our teardown process fails. We can 
also combine this approach with one of the teardown patterns to be doubly 
sure that no Unrepeatable Tests or Interacting Tests exist. 

Not surprisingly, this additional work has some drawbacks: It makes tests 
more complicated to write and it often leads to Slow Tests (page 253). A natural 
reaction is to take advantage of the persistence of the fi xture by reusing it across 
many tests, thereby avoiding the overhead of setting it up and tearing it down. 
Unfortunately, this choice has many undesirable ramifi cations because it violates 
one of our major principles: Keep Tests Independent (see page 42). The result-
ing Shared Fixture invariably leads to Interacting Tests and Unrepeatable Tests,
if not immediately, then at some point down the road. We should not venture 
down this road without fully understanding the consequences! 

Fresh
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Motivating Example 

Here’s an example of a Shared Fixture:

   static Flight flight;
   public void setUp() {
      if (flight == null) {  // Lazy SetUp
         Airport departAirport = new Airport("Calgary", "YYC");
         Airport destAirport = new Airport("Toronto", "YYZ");
         flight = new Flight( flightNumber,
                             departAirport,
                             destAirport);
      }
   }

   public void testGetStatus_inital_S() {
      // implicit setup
      // exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // teardown
   }
   public void testGetStatus_cancelled() {
      // implicit setup partially overridden
      flight.cancel();
      // exercise SUT and verify outcome
      assertEquals(FlightState.CANCELLED, flight.getStatus());
      // teardown
   }

Based on the code that actually sets up the fi xture as shown here, it is a normal 
Shared Fixture, but we could have just as easily used a Prebuilt Fixture (page 429) 
for this motivating example. Either way, these tests could start interacting at any 
time.

Refactoring Notes 

Suppose we are using a Shared Fixture (same design, single copy) and decide to 
refactor it to use a Fresh Fixture. We can start by refactoring the test to use a 
fresh Standard Fixture (same design, many copies). Then we can decide whether 
we want to further evolve the test so that it builds a Minimal Fixture (page 302) 
by pruning the fi xture setup logic to the bare minimum using a Minimize 
Data (page 738) refactoring. This point would also be good time to group Test 
Methods that need the same type of test fi xture into a Testcase Class per Fixture
and use Implicit Setup; this use of a Standard Fixture would reduce the number 
of Minimal Fixtures we need to design and build. 
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Example: Fresh Fixture 

Here’s the same test converted to a Fresh Fixture to avoid any possibility of 
Interacting Tests:

   public void testGetStatus_inital() {
       // setup
      Flight flight = createAnonymousFlight();
      // exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // teardown
      //     garbage-collected
   }

   public void testGetStatus_cancelled2() {
      // setup
      Flight flight = createAnonymousCancelledFlight();
      // exercise SUT and verify outcome
      assertEquals(FlightState.CANCELLED, flight.getStatus());
      // teardown
      //     garbage-collected
   }

Note the use of Anonymous Creation Methods (see Creation Method on page 415) 
to construct the appropriate state Flight object in each test. 

Fresh
Fixture
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Shared Fixture

How can we avoid Slow Tests?
Which fi xture strategy should we use?

We reuse the same instance of the test fi xture across many tests.

To execute an automated test, we require a text fi xture that is well understood 
and completely deterministic. Setting up a Fresh Fixture (page 311) can be time-
consuming, especially when we are dealing with complex system state stored in 
a test database. 

We can make our tests run faster by reusing the same fi xture for several or 
many tests.

How It Works 

The basic concept is pretty simple: We create a Standard Fixture (page 305) fi xture 
that outlasts the lifetime of a single Testcase Object (page 382). This approach 
allows multiple tests to reuse the same test fi xture without destroying that fi xture 
and recreating it between tests. A Shared Fixture can be either a Prebuilt Fixture
that is reused by one or more tests in many test runs or a fi xture that is created by 
one test and reused by another test within the same test run. In either case, the key 
consideration is that many tests do not create their own fi xtures but rather reuse a 
fi xture “left over” from some other activity. The tests run faster because they have 
less fi xture setup to perform, which may result in the test automater having to do 
less work to defi ne the fi xture for each test. 
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When to Use It 

Regardless of why we use them, Shared Fixtures come with some baggage that 
we should understand before we head down this path. The major issue with a 
Shared Fixture is that it can lead to interactions between tests, possibly resulting 
in Erratic Tests (page 228) if some tests depend on the outcomes of other tests. 
Another potential problem is that a fi xture designed to serve many tests is bound 
to be much more complicated than the Minimal Fixture (page 302) needed for a 
single test. This greater complexity will typically take more effort to design and 
can lead to a Fragile Fixture (see Fragile Test on page 239) later on down the 
road when we need to modify the fi xture. 

A Shared Fixture will often result in an Obscure Test (page 186) because 
the fi xture is not constructed inside the test. This potential disadvantage can be 
mitigated by using Finder Methods (see Test Utility Method on page 599) with 
Intent-Revealing Names [SBPP] to access the relevant parts of the fi xture. 

There are some valid reasons for using a Shared Fixture and some misguided 
ones. Many of the variations have been devised primarily to mitigate the negative 
consequences of using a Shared Fixture. So, what are good reasons for using a 
Shared Fixture?

Variation: Slow Tests 

We can use a Shared Fixture when we cannot afford to build a new Fresh Fixture
for each test. Typically, this scenario will occur when it takes too much processing 
to build a new fi xture for each test, which often leads to Slow Tests (page 253). 
It most commonly occurs when we are testing with real test databases due to 
the high cost of creating each of the records. This growth in overhead tends to 
be exacerbated when we use the API of the SUT to create the reference data, 
because the SUT often does a lot of input validation, which may involve reading 
some of the just-written records. 

A better solution is to make the tests run faster by not interacting with the 
database at all. For a more complete list of options, see the solutions to Slow
Tests and the sidebar “Faster Tests Without Shared Fixtures” (page 319). 
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Faster Tests Without Shared Fixtures         

The fi rst reaction to Slow Tests (page 253) is often to switch to a Shared
Fixture (page 317) approach. Several other solutions are available, how-
ever. This sidebar describes some experiences on several projects. 

Fake Database 
On one of our early XP projects, we wrote a lot of tests that accessed 
the database. At fi rst we used a Shared Fixture. When we encountered 
Interacting Tests (see Erratic Test on page 228) and later Test Run Wars 
(see Erratic Test), however, we changed to a Fresh Fixture (page 311) 
approach. Because these tests needed a fair bit of reference data, they 
were taking a long time to run. On average, for every read or write the 
SUT did to or from the database, each test did several more. It was tak-
ing 15 minutes to run the full test suite of several hundred tests, which 
greatly impeded our ability to integrate our work quickly and often. 

At the time, we were using a data access layer to keep the SQL out of 
our code. We soon discovered that it allowed us to replace the real data-
base with a functionally equivalent Fake Database (see Fake Object on
page 551). We started out by using simple HashTables to store the objects 
against a key. This approach allowed us to run many of our simpler tests 
“in memory” rather than against the database. And that bought us a sig-
nifi cant drop in test execution time. 

Our persistence framework supported an object query interface. We were 
able to build an interpreter of the object queries that ran against our 
HashTable database implementation and that allowed the majority of our 
tests to work entirely in memory. On average, our tests ran about 50 times 
faster in memory than with the database. For example, a test suite that took 
10 minutes to run with the database took 10 seconds to run in memory. 

This approach was so successful that we have reused the same testing 
infrastructure on many of our subsequent projects. Using the faked-out 
persistence framework also means we don’t have to bother with building 
a “real database” until our object models stabilize, which can be several 
months into the project. 

Incremental Speedups 
Ted O’Grady and Joseph King are agile team leads on a large (50-plus 
developers, subject matter experts, and testers) eXtreme Programming
project. Like many project teams building database-centric applications, 
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they suffered from Slow Tests. But they found a way around this problem: 
As of late 2005, their check-in test suite ran in less than 8 minutes com-
pared to 8 hours for a full test run against the database. That is a pretty 
impressive speed difference. Here is their story: 

Currently we have about 6,700 tests that we run on a regular 
basis. We’ve actually tried a few things to speed up the tests and 
they’ve evolved over time.

In January 2004, we were running our tests directly against a 
database via Toplink. 

In June 2004, we modifi ed the application so we could run tests 
against an in-memory, in-process Java database (HSQL). This cut 
the time to run in half. 

In August 2004, we created a test-only framework that allowed 
Toplink to work without a database at all. That cut the time to 
run all the tests by a factor of 10. 

In July 2005, we built a shared “check-in” test execution server 
that allowed us to run tests remotely. This didn’t save any time at 
fi rst but it has proven to be quite useful nonetheless. 

In July 2005, we also started using a clustering framework that al-
lowed us to run tests distributed across a network. This cut the 
time to run the tests in half. 

In August 2005, we removed the GUI and Master Data (reference data 
crud) tests from the “check-in suite” and ran them only from Cruise 
Control. This cut the time to run by approximately 15% to 20%. 

Since May 2004, we have also had Cruise Control run all the tests 
against the database at regular intervals. The time it takes Cruise 
Control to complete [the build and run the tests] has grown with 
the number of tests from an hour to nearly 8 hours now. 

When a threshold has been met that prevents the developers from 
(a) running [the tests] frequently when developing and (b) creat-
ing long check-in queues as people wait for the token to check in, 
we have adapted by experimenting with new techniques. As a rule 
we try to keep the running of the tests under 5 minutes, with any-
thing over 8 minutes being a trigger to try something new. 

We have resisted thus far the temptation to run only a subset of 
the tests and instead focused on ways to speed up running all the 
tests—although as you can see, we have begun removing the tests 
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developers must run continuously (e.g., Master Data and GUI 
test suites are not required to check in, as they are run by Cruise 
Control and are areas that change infrequently). 

Two of the most interesting solutions recently (aside from the in-
memory framework) are the test server and the clustering frame-
work. 

The test server (named the “check-in” box here) is actually quite 
useful and has proven to be reliable and robust. We bought an 
Opteron box that is roughly twice as fast as the development 
boxes (really, the fastest box we could fi nd). The server has an 
account set up for each development machine in the pit. Using 
the UNIX tool rsynch, the Eclipse workspace is synchronized 
with the user’s corresponding server account fi le system. A series 
of shell scripts then recreates the database on the server for the 
remote account and runs all the development tests. When the tests 
have completed, a list of times to run each test is dumped to the 
console, along with a MyTestSuite.java class containing all the 
test failures, which the developer can use to run locally to fi x any 
tests that have broken. The biggest advantage the remote server 
has provided is that it makes running a large number of tests feel 
fast again, because the developer can continue working while he 
or she waits for the results of the test server to come back. 

The clustering framework (based on Condor) was quite fast but had 
the defect that it had to ship the entire workspace (11MB) to all the 
nodes on the network (×20), which had a signifi cant cost, especially 
when a dozen pairs are using it. In comparison, the test server uses 
rsynch, which copies only the fi les that are new or different in the 
developer’s workspace. The clustering framework also proved to be 
less reliable than the server solution, frequently not returning any 
status of the test run. There were also some tests that would not run 
reliably on the framework. Since it gave us roughly the same perfor-
mance as the “check-in” test server, we have put this solution on the 
back burner. 

Further Reading 
A more detailed description of the fi rst experience can be found at http://
FasterTestsPaper.gerardmeszaros.com.
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Variation: Incremental Tests 

We may also use Shared Fixtures when we have a long, complex sequence of 
actions, each of which depends on the previous actions. In customer tests, this 
may show up as a work fl ow; in unit tests, it may be a sequence of method calls 
on the same object. This case might be tested using a single Eager Test (see As-
sertion Roulette on page 224). The alternative is to put each distinct action into 
a separate Test Method (page 348) that builds upon the actions of a previous test 
operating on a Shared Fixture. This approach, which is an example of Chained
Tests (page 454), is how testers in the “testing” (i.e., QA) community often 
operate: They set up a fi xture and then run a sequence of tests, each of which 
builds upon the fi xture. The testers do have one signifi cant advantage over our 
Fully Automated Tests (see page 26): When a test partway through the chain 
fails, they are available to make decisions about how to recover or whether it is 
worth proceeding at all. In contrast, our automated tests just keep running, and 
many of them will generate test failures or errors because they did not fi nd the 
fi xture as expected and, therefore, the SUT behaved (probably correctly) differ-
ently. The resulting test results can obscure the real cause of the failure in a sea 
of red. With some experience it is often possible to recognize the failure pattern 
and deduce the root cause.10

This troubleshooting can be made simpler by starting each Test Method with 
one or more Guard Assertions (page 490) that document the assumptions the 
Test Method makes about the state of the fi xture. When these assertions fail, 
they tell us to look elsewhere—either at tests that failed earlier in the test suite
or at the order in which the tests were run. 

Implementation Notes 

A key implementation question with Shared Fixtures is, How do tests know about 
the objects in the Shared Fixture so they can (re)use them? Because the point of 
a Shared Fixture is to save execution time and effort by having multiple tests use 
the same instance of the test fi xture, we’ll need to keep a reference to the fi xture 
we create. That way, we can fi nd the fi xture if it already exists and we can inform 
other tests that it now exists once we have constructed it. We have more choices 
available to us with Per-Run Fixtures because we can “remember” the fi xture we 
set up in code more easily than a Prebuilt Fixture (page 429) set up by a different 
program. Although we could just hard-code the identifi ers (e.g., database keys) of 
the fi xture objects into all our tests, that technique would result in a Fragile Fix-
ture. To avoid this problem, we need to keep a reference to the fi xture when we 
create it and we need to make it possible for all tests to access that reference. 

10 It may not be as simple as looking at the fi rst test that failed.
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Variation: Per-Run Fixture 

The simplest form of Shared Fixture is the Per-Run Fixture, in which we set up 
the fi xture at the beginning of a test run and allow it to be shared by the tests 
within the run. Ideally, the fi xture won’t outlive the test run and we don’t have 
to worry about interactions between test runs such as Unrepeatable Tests (a 
cause of Erratic Tests). If the fi xture is persistent, such as when it is stored in a 
database, we may need to do explicit fi xture teardown. 

If a Per-Run Fixture is shared only within a single Testcase Class (page 373), 
the simplest solution is to use a class variable for each fi xture object we need to 
hold a reference to and then use either Lazy Setup (page 435) or Suite Fixture 
Setup (page 441) to initialize the objects just before we run the fi rst test in the 
suite. If we want to share the test fi xture between many Testcase Classes, we’ll 
need to use a Setup Decorator (page 447) to hold the setUp and tearDown methods 
and a Test Fixture Registry (see Test Helper on page 643) (which could just be 
the test database) to access the fi xture. 

Variation: Immutable Shared Fixture 

The problem with Shared Fixtures is that they lead to Erratic Tests if tests modify 
the Shared Fixture (page 317). Shared Fixtures violate the Independent Test prin-
ciple (see page 42). We can avoid this problem by making the Shared Fixture
immutable; that is, we partition the fi xture needed by tests into two logical parts. 
The fi rst part is the stuff every test needs to have present but is never modifi ed by 
any tests—that is, the Immutable Shared Fixture. The second part is the objects 
that any test needs to modify or delete; these objects should be built by each test 
as Fresh Fixtures.

The most diffi cult part of applying an Immutable Shared Fixture is deciding 
what constitutes a change to an object. The key guideline is this: If any test per-
ceives something done by another test as a change to an object in the Immutable
Shared Fixture, then that change shouldn’t be allowed in any test with which it 
shares the fi xture. Most commonly, the Immutable Shared Fixture consists of 
reference data that is needed by the actual per-test fi xtures. The per-test fi xtures 
can then be built as Fresh Fixtures on top of the Immutable Shared Fixture.

Motivating Example 

The following example shows a Testcase Class setting up the test fi xture via 
Implicit Setup (page 424). Each Test Method uses an instance variable to access 
the contents of the fi xture. 
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   public void testGetFlightsByFromAirport_OneOutboundFlight()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto[] outboundFlights =
                 findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

Note that the setUp method is run once for each Test Method. If the fi xture setup 
is fairly complex and involves accessing a database, this approach could result 
in Slow Tests.

Refactoring Notes 

To convert a Testcase Class from a Standard Fixture to a Shared Fixture, we 
simply convert the instance variables into class variables to make the fi xture 
outlast the creating Testcase Object. We then need to initialize the class vari-
ables just once to avoid recreating them for each Test Method; Lazy Setup is an 
easy way to accomplish this task. Of course, other ways to set up the Shared
Fixture are also possible, such as Setup Decorator or Suite Fixture Setup.

Example: Shared Fixture 

This example shows the fi xture converted to a Shared Fixture set up using Lazy
Setup.

   protected void setUp() throws Exception {
      if (sharedFixtureInitialized) {
         return;
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      }
      facade = new FlightMgmtFacadeImpl();
      setupStandardAirportsAndFlights();
      sharedFixtureInitialized = true;
   }

   protected void tearDown() throws Exception {
      // We cannot delete any objects because we don't know
      // whether this is the last test
   }

The Lazy Initialization [SBPP] logic in the setUp method ensures that the Shared
Fixture is created whenever the class variable is uninitialized. The Test Methods
have also been modifi ed to use a Finder Method to access the contents of the 
fi xture: 

   public void testGetFlightsByFromAirport_OneOutboundFlight()
            throws Exception {
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                           outboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
            throws Exception {
      FlightDto[] outboundFlights =
         findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                      outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

The details of how the Test Utility Methods such as setupStandardAirportsAndFlights
are implemented are not shown here, because they are not important for under-
standing this example. It should be enough to understand that these methods 
create the airports and fl ights and store references to them in static variables 
so that all Test Methods can access the same fi xture either directly or via Test 
Utility Methods.
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Example: Immutable Shared Fixture 

Here’s an example of Shared Fixture “pollution”: 

   public void testCancel_proposed_p()throws Exception {
      // shared fixture
      BigDecimal proposedFlightId = findProposedFlight();
      //      exercise SUT
      facade.cancelFlight(proposedFlightId);
      // verify outcome
      try{
         assertEquals(FlightState.CANCELLED,
                      facade.findFlightById(proposedFlightId));
      } finally {
         // teardown
         // try to undo the damage; hope this works!
         facade.overrideStatus( proposedFlightId,
                                FlightState.PROPOSED);
      }
   }

We can avoid this problem by making the Shared Fixture immutable; that is, we 
partition the fi xture needed by tests into two logical parts. The fi rst part is the 
stuff every test needs to have present but is never modifi ed by any tests—that is, 
the Immutable Shared Fixture. The second part is the objects that any test needs 
to modify or delete; these objects should be built by each test as Fresh Fixtures.

Here’s the same test modifi ed to use an Immutable Shared Fixture. We simply 
created our own mutableFlight within the test. 

   public void testCancel_proposed() throws Exception {
      // fixture setup
      BigDecimal mutableFlightId =
         createFlightBetweenInsigificantAirports();
      // exercise SUT
      facade.cancelFlight(mutableFlightId);
      // verify outcome
      assertEquals( FlightState.CANCELLED,
                    facade.findFlightById(mutableFlightId));
      // teardown
      //   None required because we let the SUT create
      //   new IDs for each flight. We might need to clean out
      //   the database eventually.
   }

Note that we don’t need any fi xture teardown logic in this version of the test because 
the SUT uses a Distinct Generated Value (see Generated Value on page 723)—that 
is, we do not supply a fl ight number. We also use the predefi ned dummyAirport1 and 
dummyAirport2 to avoid changing the number of fl ights for airports used by other 
tests. Therefore, the mutable fl ights can accumulate in the database trouble-free. 
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Back Door Manipulation                                                       

How can we verify logic independently when we cannot use 
a round-trip test?

We set up the test fi xture or verify the outcome by going through a back door 
(such as direct database access).

Every test requires a starting point (the test fi xture) and an expected fi nishing 
point (the expected results). The “normal” approach is to set up the fi xture and 
verify the outcome by using the API of the SUT itself. In some circumstances this 
is either not possible or not desirable. 

In some situations we can use Back Door Manipulation to set up the fi xture 
and/or verify the SUT’s state. 

How It Works 

The state of the SUT comes in many fl avors. It can be stored in memory, on disk 
as fi les, in a database, or in other applications with which the SUT interacts. 
Whatever form it takes, the pre-conditions of a test typically require that the 
state of the SUT is not just known but is a specifi c state. Likewise, at the end of 
the test we often want to do State Verifi cation (page 462) of the SUT’s state. 

If we have access to the state of the SUT from outside the SUT, the test can 
set up the pre-test state of the SUT by bypassing the normal API of the SUT 
and interacting directly with whatever is holding that state via a “back door.” 
When exercising of the SUT has been completed, the test can similarly access 
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the post-test state of the SUT via a back door to compare it with expected 
outcome. For customer tests, the back door is most commonly a test database, 
but it could also be some other component on which the SUT depends, including 
a Registry [PEAA] object or even the fi le system. For unit tests, the back 
door is some other class or object or an alternative interface of the SUT (or a 
Test-Specifi c Subclass; page 579) that exposes the state in a way “normal” clients 
wouldn’t use. We can also replace a depended-on component (DOC) with a 
suitably confi gured Test Double (page 522) instead of using the real thing if 
that makes the job easier. 

When to Use It 

We might choose to use Back Door Manipulation for several reasons which we’ll 
examine in more detail shortly. A prerequisite for using this technique is that some 
sort of back door to the state of the system must exist. The main drawback of 
Back Door Manipulation is that our tests—or the Test Utility Methods (page 599) 
they call—become much more closely coupled to the design decisions we make 
about how to represent the state of the SUT. If we need to change those decisions, 
we may encounter Fragile Tests (page 239). We need to decide whether this price 
is acceptable on a case-by-case basis. We can greatly reduce the impact of the close 
coupling by encapsulating all Back Door Manipulation in Test Utility Methods.

Using Back Door Manipulation can also lead to Obscure Tests (page 186) by 
hiding the relationship of the test outcome to the test fi xture. We can avoid this 
problem by including the test data being passed to the Back Door Manipulation
mechanism within the Testcase Class (page 373), or at least mitigate it by using 
Finder Methods (see Test Utility Method) to refer to the objects in the fi xture 
via intent-revealing names. 

A common application of Back Door Manipulation involves testing basic 
CRUD (Create, Read, Update, Delete) operations on the SUT’s state. In such a 
case, we want to verify that the information persisted and can be recovered in the 
same form. It is diffi cult to write round-trip tests for “Read” without also testing 
“Create”; likewise, it is diffi cult to test “Update” or “Delete” without testing both 
“Create” and “Read.” We can certainly test these operations by using round-trip 
tests, but this kind of testing won’t detect certain types of systemic problems, such 
as putting information into the wrong database column. One solution is to con-
duct layer-crossing tests that use Back Door Manipulation to set up or verify the 
contents of the database directly. For a “Read” test, the test sets up the contents 
of the database using Back Door Setup and then asks the SUT to read the data. 
For a “Write” test, the test asks the system to write certain objects and then uses 
Back Door Verifi cation on the contents of the database. 
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Variation: Back Door Setup 

One reason for doing Back Door Manipulation is to make tests run faster. If a 
system does a lot of processing before putting data into its data store, the time it 
takes for a test to set up the fi xture via the SUT’s API could be quite signifi cant. 
One way to make the tests run faster is to determine what those data stores 
should look like and then create a means to set them up via the back door 
rather than through the API. Unfortunately, this technique introduces its own 
problem: Because Back Door Setup bypasses enforcement of the object creation 
business rules, we may fi nd ourselves creating fi xtures that are not realistic and 
possibly even invalid. This problem may creep in over time as the business rules 
are modifi ed in response to changing business needs. At the same time, this ap-
proach may allow us to create test scenarios that the SUT will not let us set up 
through its API. 

When we share a database between our SUT and another application, we 
need to verify that we are using the database correctly and that we can handle 
all possible data confi gurations the other applications might create. Back Door 
Setup is a good way to establish these confi gurations—and it may be the only 
way if the SUT either doesn’t write those tables or writes only specifi c (and 
valid) data confi gurations. Back Door Setup lets us create those “impossible” 
confi gurations easily so we can verify how the SUT behaves in these situations. 

Variation: Back Door Verifi cation 

Back Door Verifi cation involves sneaking in to do State Verifi cation of the SUT’s 
post-exercise state via a back door; it is mostly applicable to customer tests (or 
functional tests, as they are sometimes called). The back door is typically an 
alternative way to examine the objects in the database, usually through a stan-
dard API such as SQL or via data exports that can then be examined with a fi le 
comparison utility program. 

As mentioned earlier, Back Door Manipulation can make tests run faster. If 
the only way to get at the SUT’s state is to invoke an expensive operation (such 
as a complex report) or an operation that further modifi es the SUT’s state, we 
may be better off using Back Door Manipulation.

Another reason for doing Back Door Manipulation is that other systems 
expect the SUT to store its state in a specifi c way, which they can then access 
directly. This is a form of indirect output. In this situation, standard round-trip 
tests cannot prove that the SUT’s behavior is correct because they cannot 
detect a systematic problem if the “Write” and “Read” operations make the 
same mistake, such as putting information into the wrong database column. 
The solution is a layer-crossing test that looks at the contents of the database 
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directly to verify that the information is stored correctly. For a “Write” test, 
the test asks the system to write certain objects and then inspects the contents 
of the database via the back door. 

Variation: Back Door Teardown 

We can also use Back Door Manipulation to tear down a Fresh Fixture (page 311) 
that is stored in a test database. This ability is especially benefi cial if we can use 
bulk database commands to wipe clean whole tables, as in Table Truncation 
Teardown (page 661) or Transaction Rollback Teardown (page 668). 

Implementation Notes 

How we implement Back Door Manipulation depends on where the fi xture lives 
and how easily we can access the state of the SUT. It also depends on why we 
are doing Back Door Manipulation. This section lists the most common imple-
mentations, but feel free to use your imagination and come up with other ways 
to use this pattern. 

Variation: Database Population Script 

When the SUT stores its state in a database that it accesses as it runs, the easiest 
way to do Back Door Manipulation is to load data directly into that database 
before invoking the SUT. This approach is most commonly required when we 
are writing customer tests, but it may also be required for unit tests if the classes 
we are testing interact directly with the database. We must fi rst determine the 
pre-conditions of the test and, from that information, identify the data that the 
test requires for its fi xture. We then defi ne a database script that inserts the cor-
responding records directly into the database bypassing the SUT logic. We use 
this Database Population Script whenever we want to set up the test fi xture—a 
decision that depends on which test fi xture strategy we have chosen. (See Chap-
ter 6, Test Automation Strategy, for more on that topic.) 

When deciding to use a Database Population Script, we will need to maintain 
both the Database Population Script and the fi les it takes as input whenever we 
modify either the structure of the SUT’s data stores or the semantics of the data 
in them. This requirement can increase the maintenance cost of the tests. 

Variation: Data Loader 

A Data Loader is a special program that loads data into the SUT’s data store. 
It differs from a Database Population Script in that the Data Loader is written 
in a programming language rather than a database language. This gives us a bit 
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more fl exibility and allows us to use the Data Loader even when the system state 
is stored somewhere other than a relational database. 

If the data store is external to the SUT, such as in a relational database, the 
Data Loader can be “just another application” that writes to that data store. 
It would use the database in much the same way as the SUT but would get its 
inputs from a fi le rather than from wherever the SUT normally gets its inputs 
(e.g., other “upstream” programs). When we are using an object relational 
mapping (ORM) tool to access the database from our SUT, a simple way to 
build the Data Loader is to use the same domain objects and mappings in our 
Data Loader. We just create the desired objects in memory and commit the 
ORM’s unit of work to save them into the database. 

If the SUT stores data in internal data structures (e.g., in memory), the Data 
Loader may need to be an interface provided by the SUT itself. The following 
characteristics differentiate it from the normal functionality provided by the SUT: 

• It is used only by the tests. 

• It reads the data from a fi le rather than wherever the SUT normally gets 
the data. 

• It bypasses a lot of the “edit checks” (input validation) normally done 
by the SUT. 

The input fi les may be simple fl at fi les containing comma- or tab-delimited text, 
or they could be structured using XML. DbUnit is an extension of JUnit that 
implements Data Loader for fi xture setup. 

Variation: Database Extraction Script 

When the SUT stores its state in a database that it accesses as it runs, we can 
take advantage of this structure to do Back Door Verifi cation. We simply use a 
database script to extract data from the test database and verify that it contains 
the right data either by comparing it to previously prepared “extract” fi les or by 
ensuring that specifi c queries return the right number of records. 

Variation: Data Retriever 

A Data Retriever is the analog of a Data Loader that retrieves the state from the 
SUT when doing Back Door Verifi cation. Like a trusty dog, it “fetches” the data 
so that we can compare it with our expected results within our tests. DbUnit is an 
extension of JUnit that implements Data Retriever to support result verifi cation. 
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Variation: Test Double as Back Door 

So far, all of the implementation techniques described here have involved inter-
acting with a DOC of the SUT to set up or tear down the fi xture or to verify the 
expected outcome. Probably the most common form of Back Door Manipula-
tion involves replacing the DOC with a Test Double. One option is to use a 
Fake Object (page 551) that we have preloaded with some data as though the 
SUT had already been interacting with it; this strategy allows us to avoid using 
the SUT to set up the SUT’s state. The other option is to use some kind of Con-
fi gurable Test Double (page 558), such as a Mock Object (page 544) or a Test 
Stub (page 529). Either way, we can completely avoid Obscure Tests by making 
the state of the Test Double visible within the Test Method (page 348). 

When we want to perform Behavior Verifi cation (page 468) of the calls made 
by the SUT to one or more DOCs, we can use a layer-crossing test that replaces 
the DOC with a Test Spy (page 538) or a Mock Object. When we want to 
verify that the SUT behaves a specifi c way when it receives indirect inputs from 
a DOC (or when in some specifi c external state), we can replace the DOC with 
a Test Stub.

Motivating Example 

The following round-trip test verifi es the basic functionality of removing a fl ight 
by interacting with the SUT only via the front door. But it does not verify the 
indirect outputs of the SUT—namely, that the SUT is expected to call a logger to 
log each time a fl ight is removed along with the day/time when the request was 
made and the user ID of the requester. In many systems, this would be an ex-
ample of “layer-crossing behavior”: The logger is part of a generic infrastructure 
layer, while the SUT is an application-specifi c behavior. 

   public void testRemoveFlight() throws Exception {
      // setup
      FlightDto expectedFlightDto = createARegisteredFlight();
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight should not exist after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
   }
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Refactoring Notes 

We can convert this test to use Back Door Verifi cation by adding result verifi cation 
code to access and verify the logger’s state. We can do so either by reading that state 
from the logger’s database or by replacing the logger with a Test Spy that saves the 
state for easy access by the tests. 

Example: Back Door Result Verifi cation Using a Test Spy 

Here’s the same test converted to use a Test Spy to access the post-test state of 
the logger: 

   public void testRemoveFlightLogging_recordingTestStub()
            throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnUnregFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      //    Test Double setup
      AuditLogSpy logSpy = new AuditLogSpy();
      facade.setAuditLog(logSpy);
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertEquals("number of calls", 1,
                   logSpy.getNumberOfCalls());
      assertEquals("action code",
                   Helper.REMOVE_FLIGHT_ACTION_CODE,
                   logSpy.getActionCode());
      assertEquals("date", helper.getTodaysDateWithoutTime(),
                   logSpy.getDate());
      assertEquals("user", Helper.TEST_USER_NAME,
                   logSpy.getUser());
      assertEquals("detail",
                   expectedFlightDto.getFlightNumber(),
                   logSpy.getDetail());
   }

This approach would be the better way to verify the logging if the logger’s data-
base contained so many entries that it wasn’t practical to verify the new entries 
using Delta Assertions (page 485). 

Example: Back Door Fixture Setup 

The next example shows how we can set up a fi xture using the database as a 
back door to the SUT. The test inserts a record into the EmailSubscription table 
and then asks the SUT to fi nd it. It then makes assertions on various fi elds of the 
object returned by the SUT to verify that the record was read correctly. 
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   static final String     TABLE_NAME = "EmailSubscription";
   static final BigDecimal RECORD_ID  = new BigDecimal("111");

   static final String LOGIN_ID = "Bob";
   static final String EMAIL_ID = "bob@foo.com";

   public void setUp() throws Exception {
      String xmlString =
            "<?xml version='1.0' encoding='UTF-8'?>" +
            "<dataset>" +
            "    <" + TABLE_NAME +
            "        EmailSubscriptionId='" + RECORD_ID +  "'" +
            "        UserLoginId='" + LOGIN_ID + "'" +
            "        EmailAddress='" + EMAIL_ID + "'" +
            "        RecordVersionNum='62' " +
            "        CreateByUserId='MappingTest' " +
            "        CreateDateTime='2004-03-01 00:00:00.0'  " +
            "        LastModByUserId='MappingTest' " +
            "        LastModDateTime='2004-03-01 00:00:00.0'/>" +
            "</dataset>";
      insertRowsIntoDatabase(xmlString);
   }

   public void testRead_Login() throws Exception {
      // exercise
      EmailSubscription subs =
            EmailSubscription.findInstanceWithId(RECORD_ID);
      // verify
      assertNotNull("Email Subscription", subs);
      assertEquals("User Name", LOGIN_ID, subs.getUserName());
   }

   public void testRead_Email() throws Exception {
      // exercise
      EmailSubscription subs =
            EmailSubscription.findInstanceWithId(RECORD_ID);
      // verify
      assertNotNull("Email Subscription", subs);
      assertEquals("Email Address",
                   EMAIL_ID,
                   subs.getEmailAddress());
   }

The XML document used to populate the database is built within the Testcase 
Class so as to avoid the Mystery Guest (see Obscure Test) that would have been 
created if we had used an external fi le for loading the database [the discussion of 
the In-line Resource (page 736) refactoring explains this approach]. To make the 
test clearer, we call intent-revealing methods that hide the details of how we use 
DbUnit to load the database and clean it out at the end of the test using Table 
Truncation Teardown. Here are the bodies of the Test Utility Methods used in 
this example: 
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   private void insertRowsIntoDatabase(String xmlString)
            throws Exception {
      IDataSet dataSet = new FlatXmlDataSet(new StringReader(xmlString));
      DatabaseOperation.CLEAN_INSERT.
            execute( getDbConnection(), dataSet);
   }

   public void tearDown() throws Exception{
      emptyTable(TABLE_NAME);
   }

   public void emptyTable(String tableName) throws Exception {
      IDataSet dataSet = new DefaultDataSet(new DefaultTable(tableName));
      DatabaseOperation.DELETE_ALL.
            execute(getDbConnection(), dataSet);
   }

Of course, the implementations of these methods are specifi c to DbUnit; we 
must change them if we use some other member of the xUnit family. 

Some other observations on these tests: To avoid an Eager Test (see Assertion 
Roulette on page 224), the assertion on each fi eld appears in a separate 
test. This structure could result in Slow Tests (page 253) because these tests 
interact with a database. We could use Lazy Setup (page 435) or Suite Fixture 
Setup (page 441) to avoid setting up the fi xture more than once as long as the 
resulting Shared Fixture (page 317) was not modifi ed by any of the tests. (I 
chose not to further complicate this example by taking this tack.) 

Further Reading 

See the sidebar “Database as SUT API?” on page 336 for an example of when 
the back door is really a front door. 
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Database as SUT API?

A common technique for setting up test fi xtures is Back Door Setup (see
Back Door Manipulation on page 327); for verifying test outcomes, Back
Door Verifi cation (see Back Door Manipulation) is a popular option. But 
when is a test that interacts directly with the database behind a SUT not 
considered to be going through the back door? 

On a recent project, some friends were struggling with this very question, 
though at fi rst they didn’t realize it. One of their analysts (who was also a 
power user) seemed overly focused on the database schema. At fi rst, they 
put this narrow focus down to the analyst’s Powerbuilder background 
and tried to break him of the habit. That didn’t work. The analyst just 
dug in his heels. The developers tried explaining that on agile projects it 
was important not to try to defi ne the whole data schema at the begin-
ning of the project; instead, the schema evolved as the requirements were 
implemented.

Of course, the analyst complained every time they modifi ed the database 
schema because the changes broke all his queries. As the project unfold-
ed, the other team members slowly started to understand that the analyst 
really did need a stable database against which to run queries. It was his 
way to verify the correctness of the data generated by the system. 

Once they recognized this requirement, the developers were able to treat the 
query schema as a formal interface provided by the system. Customer tests 
were written against this interface and developers had to ensure that those 
tests still passed whenever they changed the database. To minimize the 
impact of database refactorings, they defi ned a set of query views that 
implemented this interface. This approach allowed them to refactor the 
database as needed. 

When might you fi nd yourself in this situation? Any time your customer 
applies reporting tools (such as Crystal Reports) to your database, an 
argument can be made as to whether part of the requirements is a stable 
reporting interface. Similarly, if the customer uses scripts (such as DTS 
or SQL) to load data into the database, there may be a requirement for a 
stable data loading interface. 

Back Door 
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Layer Test                                                             

How can we verify logic independently when it is part of 
a layered architecture?

We write separate tests for each layer of the layered architecture.

It is diffi cult to obtain good test coverage when testing an entire application in 
a top-to-bottom fashion; we are bound to end up doing Indirect Testing (see
Obscure Test on page 186) on some parts of the application. Many applications 
use a Layered Architecture [DDD, PEAA, WWW] to separate the major technical 
concerns. Most applications have some kind of presentation (user interface) lay-
er, a business logic layer or domain layer, and a persistence layer. Some layered 
architectures have even more layers. 

An application with a layered architecture can be tested more effectively by 
testing each layer in isolation. 

How It Works 

We design the SUT using a layered architecture that separates the presentation 
logic from the business logic and from any persistence mechanism or interfaces 
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to other systems.11 We put all business logic into a Service Layer [PEAA] that
exposes the application functionality to the presentation layer as an API. We 
treat each layer of the architecture as a separate SUT. We write component tests 
for each layer independent of the other layers of the architecture. That is, for 
layer n of the architecture, the tests will take the place of layer n+1; we may op-
tionally replace layer n-1 with a Test Double (page 522). 

When to Use It 

We can use a Layer Test whenever we have a layered architecture and we want 
to provide good test coverage of the logic in each layer. It can be much simpler 
to test each layer independently than it is to test all the layers at once. This is 
especially true when we want to do defensive coding for return values of calls 
across the layer boundary. In software that is working correctly, these errors 
“should never happen”; in real life, they do. To make sure our code handles 
these errors, we can inject these “never happen” scenarios as indirect inputs 
to our layer. 

Layer Tests are very useful when we want to divide up the project team into 
subteams based on the technology in which the team members specialize. Each 
layer of an architecture tends to require different knowledge and often uses 
different technologies; therefore, the layer boundaries serve as natural team 
boundaries. Layer Tests can be a good way to nail down and document the 
semantics of the layer interfaces. 

Even when we choose to use a Layer Test strategy, it is a good idea to include 
a few “top-to-bottom” tests just to verify that the various layers are integrated 
correctly. These tests need to cover only one or two basic scenarios; we don’t 
need to test every business test condition because all of them have already been 
tested in the Layer Tests for at least one of the layers. 

Most of the variations on this pattern refl ect which layer is being tested inde-
pendently of the other layers. 

Variation: Presentation Layer Test 

One could write a whole book just on patterns of presentation layer testing. The 
specifi c patterns depend on the nature of the presentation layer technology (e.g., 
graphical user interface, traditional Web interface, “smart” Web interface, Web 
services). Regardless of the technology, the key is to test the presentation logic 
separately from the business logic so that we don’t have to worry about changes 

11 Not all presentation logic relates to the user interface; this logic can also appear in a 
messaging interface used by another application.
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in the underlying logic affecting our presentation layer tests. (They are hard 
enough to automate well as it is!) 

Another consideration is to design the presentation layer so that its logic can 
be tested independently of the presentation framework. Humble Dialog (see
Humble Object on page 695) is the key design-for-testability pattern to apply 
here. In effect, we are defi ning sublayers within the presentation layer; the layer 
containing the Humble Dialogs is the “presentation graphic layer” and the layer 
we have made testable is the “presentation behavior layer.” This separation of 
layers allows us to verify that buttons are activated, menu items are grayed out, 
and so on, without instantiating any of the real graphical objects. 

Variation: Service Layer Test 

The Service Layer is where most of our unit tests and component tests are 
traditionally concentrated. Testing the business logic using customer tests is 
a bit more challenging because testing the Service Layer via the presentation 
layer often involves Indirect Testing and Sensitive Equality (see Fragile Test on
page 239), either of which can lead to Fragile Tests and High Test Maintenance 
Cost (page 265). Testing the Service Layer directly helps avoid these problems. 

To avoid Slow Tests (page 253), we usually replace the persistence layer with 
a Fake Database (see Fake Object on page 551) and then run the tests. In fact, 
most of the impetus behind a layered architecture is to isolate this code from the 
other, harder-to-test layers. Alistair Cockburn puts an interesting spin on this 
idea in his description of a Hexagonal Architecture at http://alistair.cockburn.us 
[WWW].

The Service Layer may come in handy for other uses. It can be used to run the 
application in “headless” mode (without a presentation layer attached), such as 
when using macros to automate frequently done tasks in Microsoft Excel. 

Variation: Persistence Layer Test 

The persistence layer also needs to be tested. Round-trip tests will often suffi ce 
if the application is the only one that uses the data store. But these tests won’t 
catch one kind of programming error: when we accidentally put information 
into the wrong columns. As long as the data type of the interchanged columns is 
compatible and we make the same error when reading the data, our round-trip 
tests will pass! This kind of bug won’t affect the operation of our application but 
it might make support more diffi cult and it will cause problems in interactions 
with other applications. 

When other applications also use the data store, it is highly advisable to imple-
ment at least a few layer-crossing tests that verify information is put into the 
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correct columns of tables. We can use Back Door Manipulation (page 327) to 
either set up the database contents or to verify the post-test database contents. 

Variation: Subcutaneous Test 

A Subcutaneous Test is a degenerate form of Layer Test that bypasses the pre-
sentation layer of the system to interact directly with the Service Layer. In most 
cases, the Service Layer is not isolated from the layer(s) below; therefore, we 
test everything except the presentation. Use of a Subcutaneous Test does not 
require as strict a separation of concerns as does a Service Layer Test, which 
makes Subcutaneous Test easier to use when we are retrofi tting tests onto an 
application that wasn’t designed for testability. We should use a Subcutaneous
Test whenever we are writing customer tests for an application and we want 
to ensure our tests are robust. A Subcutaneous Test is much less likely to be 
broken by changes to the application12 because it does not interact with the 
application via the presentation layer; as a consequence, a whole category of 
changes won’t affect it. 

Variation: Component Test 

A Component Test is the most general form of Layer Test, in that we can think 
of the layers being made up of individual components that act as “micro-layers.” 
Component Tests are a good way to specify or document the behavior of indi-
vidual components when we are doing component-based development and some 
of the components must be modifi ed or built from scratch. 

Implementation Notes 

We can write our Layer Tests as either round-trip tests or layer-crossing tests. 
Each has advantages. In practice, we typically mix both styles of tests. The 
round-trip tests are easier to write (assuming we already have a suitable Fake
Object available to use for layer n-1). We need to use layer-crossing tests, how-
ever, when we are verifying the error-handling logic in layer n.

Round-Trip Tests 

A good starting point for Layer Tests is the round-trip test, as it should be 
suffi cient for most Simple Success Tests (see Test Method on page 348). These 
tests can be written such that they do not care whether we have fully isolated 
the layer of interest from the layers below. We can either leave the real com-
ponents in place so that they are exercised indirectly, or we can replace them 

12 Less likely than a test that exercises the logic via the presentation layer, that is.
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with Fake Objects. The latter option is particularly useful when by a database 
or asynchronous mechanisms in the layer below lead to Slow Tests.

Controlling Indirect Inputs 

We can replace a lower layer of the system with a Test Stub (page 529) that 
returns “canned” results based on what the client layer passes in a request (e.g., 
Customer 0001 is a valid customer, 0002 is a dormant customer, 0003 has three 
accounts). This technique allows us to test the client logic with well-understood 
indirect inputs from the layer below. It is particularly useful when we are auto-
mating Expected Exception Tests (see Test Method) or when we are exercising 
behavior that depends on data that arrives from an upstream system.13 The 
alternative is to use Back Door Manipulation to set up the indirect inputs. 

Verifying Indirect Outputs 

When we want to verify the indirect outputs of the layer of interest, we can use 
a Mock Object (page 544) or Test Spy (page 538) to replace the components in 
the layer below the SUT. We can then compare the actual calls made to the DOC 
with the expected calls. The alternative is to use Back Door Manipulation to 
verify the indirect outputs of the SUT after they have occurred. 

Motivating Example 

When trying to test all layers of the application at the same time, we must verify 
the correctness of the business logic through the presentation layer. The following 
test is a very simple example of testing some trivial business logic through a 
trivial user interface: 

   private final int LEGAL_CONN_MINS_SAME = 30;
   public void testAnalyze_sameAirline_LessThanConnectionLimit()
   throws Exception {
      // setup
      FlightConnection illegalConn =
            createSameAirlineConn( LEGAL_CONN_MINS_SAME - 1);
      // exercise
      FlightConnectionAnalyzerImpl sut =
            new FlightConnectionAnalyzerImpl();
      String actualHtml =
            sut.getFlightConnectionAsHtmlFragment(
                       illegalConn.getInboundFlightNumber(),
                       illegalConn.getOutboundFlightNumber());

13 Typically this data goes directly into a shared database or is injected via a “data 
pump.”

 Layer Test

Layer Test

341

www.it-ebooks.info

http://www.it-ebooks.info/


      // verification
      StringBuffer expected = new StringBuffer();
      expected.append("<span class="boldRedText">");
      expected.append("Connection time between flight ");
      expected.append(illegalConn.getInboundFlightNumber());
      expected.append(" and flight ");
      expected.append(illegalConn.getOutboundFlightNumber());
      expected.append(" is ");
      expected.append(illegalConn.getActualConnectionTime());
      expected.append(" minutes.</span>");
      assertEquals("html", expected.toString(), actualHtml);
   }

This test contains knowledge about the business layer functionality (what makes 
a connection illegal) and presentation layer functionality (how an illegal connec-
tion is presented). It also depends on the database because the FlightConnections
are retrieved from another component. If any of these areas change, this test 
must be revisited as well. 

Refactoring Notes 

We can split this test into two separate tests: one to test the business logic 
(What constitutes an illegal connection?) and one to test the presentation 
layer (Given an illegal connection, how should it be displayed to the user?). 
We would typically do so by duplicating the entire Testcase Class (page 373), 
stripping out the presentation layer logic verifi cation from the business layer 
Test Methods, and stubbing out the business layer object(s) in the presentation 
layer Test Methods.

Along the way, we will probably fi nd that we can reduce the number of tests 
in at least one of the Testcase Classes because few test conditions exist for that 
layer. In this example, we started out with four tests (the combinations of same/
different airlines and time periods), each of which tested both the business and 
presentation layers; we ended up with four tests in the business layer (the origi-
nal combinations but tested directly) and two tests in the presentation layer 
(formatting of legal and illegal connections).14 Therefore, only the latter two 
tests need to be concerned with the details of the string formatting and, when a 
test fails, we know which layer holds the bug. 

We can take our refactoring even further by using a Replace Dependency 
with Test Double (page 739) refactoring to turn this Subcutaneous Test into a 
true Service Layer Test.

14 I’m glossing over the various error-handling tests to simplify this discussion, but note 
that a Layer Test also makes it easier to exercise the error-handling logic.
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Example: Presentation Layer Test 

The following example shows the earlier test refactored to verify the behavior 
of the presentation layer when an illegal connection is requested. It stubs out 
the FlightConnAnalyzer and confi gures it with the illegal connection to return to 
the HtmlFacade when it is called. This technique gives us complete control over the 
indirect input of the SUT. 

   public void testGetFlightConnAsHtml_illegalConnection()
   throws Exception {
      // setup
      FlightConnection illegalConn = createIllegalConnection();
      Mock analyzerStub = mock(IFlightConnAnalyzer.class);
      analyzerStub.expects(once()).method("analyze")
            .will(returnValue(illegalConn));
      HTMLFacade htmlFacade =
            new HTMLFacade( (IFlightConnAnalyzer)analyzerStub.proxy());
      // exercise
      String actualHtmlString =
            htmlFacade.getFlightConnectionAsHtmlFragment(
                        illegalConn.getInboundFlightNumber(),
                        illegalConn.getOutboundFlightNumber());
      // verify
      StringBuffer expected = new StringBuffer();
      expected.append("<span class="boldRedText">");
      expected.append("Connection time between flight ");
      expected.append(illegalConn.getInboundFlightNumber());
      expected.append(" and flight ");
      expected.append(illegalConn.getOutboundFlightNumber());
      expected.append(" is ");
      expected.append(illegalConn.getActualConnectionTime());
      expected.append(" minutes.</span>");
      assertEquals("returned HTML",
                   expected.toString(),
                   actualHtmlString);
   }

We must compare the string representations of the HTML to determine whether 
the code has generated the correct response. Fortunately, we need only two such 
tests to verify the basic behavior of this component. 

Example: Subcutaneous Test 

Here’s the original test converted into a Subcutaneous Test that bypasses the 
presentation layer to verify that the connection information is calculated cor-
rectly. Note the lack of any string manipulation in this test. 

Layer Test
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   private final int LEGAL_CONN_MINS_SAME = 30;
   public void testAnalyze_sameAirline_LessThanConnectionLimit()
   throws Exception {
      // setup
      FlightConnection expectedConnection =
            createSameAirlineConn( LEGAL_CONN_MINS_SAME -1);
      // exercise
      IFlightConnAnalyzer theConnectionAnalyzer =
            new FlightConnAnalyzer();
      FlightConnection actualConnection =
            theConnectionAnalyzer.getConn(
                  expectedConnection.getInboundFlightNumber(),
                  expectedConnection.getOutboundFlightNumber());
      // verification
      assertNotNull("actual connection", actualConnection);
      assertFalse("IsLegal", actualConnection.isLegal());
   }

While we have bypassed the presentation layer, we have not attempted to isolate 
the Service Layer from the layers below. This omission could result in Slow Tests
or Erratic Tests (page 228). 

Example: Business Layer Test 

The next example shows the same test converted into a Service Layer Test that 
is fully isolated from the layers below it. We have used JMock to replace these 
components with Mock Objects that verify the correct fl ights are being looked 
up and that inject the corresponding fl ight constructed into the SUT. 

   public void testAnalyze_sameAirline_EqualsConnectionLimit()
   throws Exception {
      // setup
      Mock flightMgntStub = mock(FlightManagementFacade.class);
      Flight firstFlight = createFlight();
      Flight secondFlight = createConnectingFlight(
                           firstFlight, LEGAL_CONN_MINS_SAME);
      flightMgntStub.expects(once()).method("getFlight")
                     .with(eq(firstFlight.getFlightNumber()))
                     .will(returnValue(firstFlight));
      flightMgntStub.expects(once()).method("getFlight")
                     .with(eq(secondFlight.getFlightNumber()))
                     .will(returnValue(secondFlight));
      // exercise
      FlightConnAnalyzer theConnectionAnalyzer = new FlightConnAnalyzer();
      theConnectionAnalyzer.facade = 
            (FlightManagementFacade)flightMgntStub.proxy();
      FlightConnection actualConnection =
            theConnectionAnalyzer.getConn(
                              firstFlight.getFlightNumber(),
                              secondFlight.getFlightNumber());
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      // verification
      assertNotNull("actual connection", actualConnection);
      assertTrue("IsLegal", actualConnection.isLegal());
   }

This test runs very quickly because the Service Layer is fully isolated from any 
underlying layers. It is also likely to be much more robust because it tests much 
less code. 
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Test Method    

Where do we put our test code?

We encode each test as a single Test Method on some class.

Fully Automated Tests (see page 26) consist of test logic. That logic has to live 
somewhere before we can compile and execute it. 

How It Works        

We defi ne each test as a method, procedure, or function that implements the four 
phases (see Four-Phase Test on page 358) necessary to realize a Fully Automated 
Test. Most notably, the Test Method must include assertions if it is to be a Self-
Checking Test (see page 26). 

We organize the test logic following one of the standard Test Method templates 
to make the type of test easily recognizable by test readers. In a Simple Success 
Test, we have a purely linear fl ow of control from fi xture setup through exercis-
ing the SUT to result verifi cation. In an Expected Exception Test, language-based 
structures direct us to error-handling code. If we reach that code, we pass the test; 
if we don’t, we fail it. In a Constructor Test, we simply instantiate an object and 
make assertions against its attributes. 
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Why We Do This 

We have to encode the test logic somewhere. In the procedural world, we would 
encode each test as a test case procedure located in a fi le or module. In object -
oriented programming languages, the preferred option is to encode them as 
methods on a suitable Testcase Class (page 373) and then to turn these Test 
Methods into Testcase Objects (page 382) at runtime using either Test Discovery
(page 393) or Test Enumeration (page 399). 

We follow the standard test templates to keep our Test Methods as simple 
as possible. This greatly increases their utility as system documentation
(see page 23) by making it easier to fi nd the description of the basic behavior of 
the SUT. It is a lot easier to recognize which tests describe this basic behavior if 
only Expected Exception Tests contain error-handling language constructs such 
as try/catch.

Implementation Notes 

We still need a way to run all the Test Methods tests on the Testcase Class. One 
solution is to defi ne a static method on the Testcase Class that calls each of the 
test methods. Of course, we would also have to deal with counting the tests and 
determining how many passed and how many failed. Because this functionality 
is needed for a test suite anyway, a simple solution is to instantiate a Test Suite 
Object (page 387) to hold each Test Method.1 This approach is easy to imple-
ment if we create an instance of the Testcase Class for each Test Method using 
either Test Discovery or Test Enumeration.

In statically typed languages such as Java and C#, we may have to include 
a throws clause as part of the Test Method declaration so the compiler won’t 
complain about the fact that we are not handling the checked exceptions that 
the SUT has declared it may throw. In effect, we tell the compiler that “The Test 
Runner (page 377) will deal with the exceptions.” 

Of course, different kinds of functionality need different kinds of Test 
Methods. Nevertheless, almost all tests can be boiled down to one of three 
basic types.

Variation: Simple Success Test 

Most software has an obvious success scenario (or “happy path”). A Simple
Success Test verifi es the success scenario in a simple and easily recognized way. 

1 See the sidebar “There’s Always an Exception” (page 384) for an explanation of when 
this isn’t the case.
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We create an instance of the SUT and call the method(s) that we want to test. We 
then assert that the expected outcome has occurred. In other words, we follow 
the normal steps of a Four-Phase Test. What we don’t do is catch any exceptions 
that could happen. Instead, we let the Test Automation Framework (page 298) 
catch and report them. Doing otherwise would result in Obscure Tests (page 186) 
and would mislead the test reader by making it appear as if exceptions were 
expected. See Tests as Documentation for the rationale behind this approach. 

Another benefi t of avoiding try/catch-style code is that when errors do occur, 
it is a lot easier to track them down because the Test Automation Framework
reports the location where the actual error occurred deep in the SUT rather 
than the place in our test where we called an Assertion Method (page 362) such 
as fail or assertTrue. These kinds of errors turn out to be much easier to trouble-
shoot than assertion failures. 

Variation: Expected Exception Test 

Writing software that passes the Simple Success Test is pretty straightforward. 
Most of the defects in software appear in the various alternative paths—especially 
the ones that relate to error scenarios, because these scenarios are often Untested
Requirements (see Production Bugs on page 268) or Untested Code (see Produc-
tion Bugs). An Expected Exception Test helps us verify that the error scenarios 
have been coded correctly. We set up the test fi xture and exercise the SUT in 
each way that should result in an error. We ensure that the expected error has 
occurred by using whatever language construct we have available to catch the 
error. If the error is raised, fl ow will pass to the error-handling block. This diver-
sion may be enough to let the test pass, but if the type or message contents of the 
exception or error is important (such as when the error message will be shown 
to a user), we can use an Equality Assertion (see Assertion Method) to verify it. 
If the error is not raised, we call fail to report that the SUT failed to raise an 
error as expected. 

We should write an Expected Exception Test for each kind of exception that 
the SUT is expected to raise. It may raise the error because the client (i.e., our 
test) has asked it to do something invalid, or it may translate or pass through an 
error raised by some other component it uses. We should not write an Expected
Exception Test for exceptions that the SUT might raise but that we cannot force 
to occur on cue, because these kinds of errors should show up as test failures 
in the Simple Success Tests. If we want to verify that these kinds of errors are
handled properly, we must fi nd a way to force them to occur. The most common 
way to do so is to use a Test Stub (page 529) to control the indirect input of the 
SUT and raise the appropriate errors in the Test Stub.
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Exception tests are very interesting to write about because of the different 
ways the xUnit frameworks express them. JUnit 3.x provides a special Expected-
Exception class to inherit from. This class forces us to create a Testcase Class
for each Test Method (page 348), however, so it really doesn’t save any effort 
over coding a try/catch block and does result in a large number of very small 
Testcase Classes. Later versions of JUnit and NUnit (for .NET) provide a special 
ExpectedException method attribute (called an annotation in Java) to tell the Test 
Automation Framework to fail the test if that exception isn’t raised. This method 
attribute allows us to include message text if we want to specify exactly which 
text to expect in addition to the type of the exception. 

Languages that support blocks, such as Smalltalk and Ruby, can provide 
special assertions to which we pass the block of code to be executed as well 
as the expected exception/error object. The Assertion Method implements 
the error-handling logic required to determine whether the error has, in fact, 
occurred. This makes our Test Methods much simpler, even though we may 
need to examine the names of the assertions more closely to see which type of 
test we have. 

Variation: Constructor Test 

We would have a lot of Test Code Duplication (page 213) if every test we wrote 
had to verify that the objects it creates in its fi xture setup phase are correctly 
instantiated. We avoid this step by testing the constructor(s) separately from 
other Test Methods whenever the constructor contains anything more com-
plex than a simple fi eld assignment from the constructor parameters. These 
Constructor Tests provide better Defect Localization (see page 22) than includ-
ing constructor logic verifi cation in other tests. We may need to write one or 
more tests for each constructor signature. Most Constructor Tests will follow a 
Simple Success Test template; however, we can use an Expected Exception Test
to verify that the constructor correctly reports invalid arguments by raising 
an exception. 

We should verify each attribute of the object or data structure regardless of 
whether we expect it to be initialized. For attributes that should be initialized, 
we can use an Equality Assertion to specify the correct value. For attributes that 
should not be initialized, we can use a Stated Outcome Assertion (see Assertion 
Method) appropriate to the type of the attribute [e.g., assertNull(anObjectReference)
for object variables or pointers]. Note that if we are organizing our tests with 
one Testcase Class per Fixture (page 631), we can put each assertion into a sepa-
rate Test Method to give optimal Defect Localization.
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Variation: Dependency Initialization Test 

When we have an object with a substitutable dependency, we need to make sure 
that the attribute that holds the reference to the depended-on component (DOC) 
is initialized to the real DOC when the software is run in production. A Depen-
dency Initialization Test is a Constructor Test that asserts that this attribute is 
initialized correctly. It is often done in a different Test Method from the normal 
Constructor Tests to improve its visibility. 

Example: Simple Success Test 

The following example illustrates a test where the novice test automater has 
included code to catch exceptions that he or she knows might occur (or that the 
test automater might have encountered while debugging the code). 

   public void testFlightMileage_asKm() throws Exception {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      try {
         // exercise SUT
         newFlight.setMileage(1122);
         // verify results
         int actualKilometres = newFlight.getMileageAsKm();
         int expectedKilometres = 1810;
         // verify results
         assertEquals( expectedKilometres, actualKilometres);
      } catch (InvalidArgumentException e) {
         fail(e.getMessage());
      } catch (ArrayStoreException e) {
         fail(e.getMessage());
      }
   }

The majority of the code is unnecessary and just obscures the intent of the test. 
Luckily for us, all of this exception handling can be avoided. xUnit has built-in 
support for catching unexpected exceptions. We can rip out all the exception-
handling code and let the Test Automation Framework catch any unexpected
exception that might be thrown. Unexpected exceptions are counted as test 
errors because the test terminates in a way we didn’t anticipate. This is useful 
information and is not considered to be any more severe than a test failure. 

   public void testFlightMileage_asKm() throws Exception {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      newFlight.setMileage(1122);
      // exercise mileage translator
      int actualKilometres = newFlight.getMileageAsKm();
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      // verify results
      int expectedKilometres = 1810;
      assertEquals( expectedKilometres, actualKilometres);
   }

This example is in Java (a statically typed language), so we had to declare that 
the SUT may throw an exception as part of the Test Method signature. 

Example: Expected Exception Test Using try/catch 

The following example is a partially complete test to verify an exception case. 
The novice test automater has set up the right test condition to cause the SUT 
to raise an error. 

   public void testSetMileage_invalidInput() throws Exception {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      // exercise SUT
      newFlight.setMileage(-1122);  // invalid
      // how do we verify an exception was thrown?
   }

Because the Test Automation Framework will catch the exception and fail the test, 
the Test Runner will not exhibit the green bar even though the SUT’s behavior 
is correct. We can introduce an error-handling block around the exercise phase 
of the test and use it to invert the pass/fail criteria (pass when the exception is 
thrown; fail when it is not). Here’s how to verify that the SUT fails as expected in 
JUnit 3.x: 

   public void testSetMileage_invalidInput() throws Exception {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      try {
         // exercise SUT
         newFlight.setMileage(-1122);
         fail("Should have thrown InvalidInputException");
      } catch( InvalidArgumentException e) {
         // verify results
         assertEquals( "Flight mileage must be positive",
                       e.getMessage());
      }
   }

This style of try/catch can be used only in languages that allow us to specify exactly 
which exception to catch. It won’t work if we want to catch a generic exception or 
the same exception that the Assertion Method fail throws, because these excep-
tions will send us into the catch clause. In these cases we need to use the same style 
of Expected Exception Test as used in tests of Custom Assertions (page 474). 
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   public void testSetMileage_invalidInput2() throws Exception {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      try {
         // exercise SUT
         newFlight.setMileage(-1122);
         // cannot fail() here if SUT throws same kind of exception
      } catch( AssertionFailedError e) {
         // verify results
         assertEquals( "Flight mileage must be positive",
                       e.getMessage());
         return;
      }
      fail("Should have thrown InvalidInputException");
   }

Example: Expected Exception Test Using Method Attributes 

NUnit provides a method attribute that lets us write an Expected Exception Test
without forcing us to code a try/catch block explicitly.

   [Test]
   [ExpectedException(typeof( InvalidArgumentException),
                              "Flight mileage must be > zero")]
   public void testSetMileage_invalidInput_AttributeWithMessage()
   {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      // exercise SUT
      newFlight.setMileage(-1122);
   }

This approach does make the test much more compact but doesn’t provide a 
way to specify anything but the type of the exception or the message it contains. 
If we want to make any assertions on other contents of the exception (to avoid 
Sensitive Equality; see Fragile Test on page 239), we’ll need to use try/catch.

Example: Expected Exception Test Using Block Closure 

Smalltalk’s SUnit provides another mechanism to achieve the same thing: 

   testSetMileageWithInvalidInput
      self
         should: [Flight new mileage: -1122]
         raise: RuntimeError new 'Should have raised error'

Because Smalltalk supports block closures, we pass the block of code to be 
executed to the method should:raise: along with the expected Exception object. 
Ruby’s Test::Unit uses the same approach: 
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def testSetMileage_invalidInput
   flight = Flight.new();
   assert_raises( RuntimeError, "Should have raised error") do
      flight.setMileage(-1122)
   end
end

The code between the do/end pair is a closure that is executed by the assert_raises
method. If it doesn’t raise an instance of the fi rst argument (the class RuntimeError),
the test fails and presents the error message supplied. 

Example: Constructor Test 

In this example, we need to build a fl ight to test the conversion of the fl ight 
distance from miles to kilometers. First, we’ll make sure the fl ight is constructed 
properly. 

   public void testFlightMileage_asKm2() throws Exception {
      // set up fixture
      // exercise constructor
      Flight newFlight = new Flight(validFlightNumber);
      // verify constructed object
      assertEquals(validFlightNumber, newFlight.number);
      assertEquals("", newFlight.airlineCode);
      assertNull(newFlight.airline);
      // set up mileage
      newFlight.setMileage(1122);
      // exercise mileage translator
      int actualKilometres = newFlight.getMileageAsKm();
      // verify results
      int expectedKilometres = 1810;
      assertEquals( expectedKilometres, actualKilometres);
      // now try it with a canceled flight
      newFlight.cancel();
      try {
         newFlight.getMileageAsKm();
         fail("Expected exception");
      } catch (InvalidRequestException e) {
         assertEquals( "Cannot get cancelled flight mileage",
                       e.getMessage());
      }
   }

This test is not a Single-Condition Test (see page 45) because it examines both 
object construction and distance conversion behavior. If object construction 
fails, we won’t know which issue was the cause of the failure until we start 
debugging the test. 
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It would be better to separate this Eager Test (see Assertion Roulette on page
224) into two tests, each of which is a Single-Condition Test. This is most easily 
done by cloning the Test Method, renaming each copy to refl ect what it would 
do if it were a Single-Condition Test, and then removing any code that doesn’t 
satisfy that goal. 

Here’s an example of a simple Constructor Test:

   public void testFlightConstructor_OK() throws Exception {
      // set up fixture
      // exercise SUT
      Flight newFlight = new Flight(validFlightNumber);
      // verify results
      assertEquals( validFlightNumber, newFlight.number );
      assertEquals( "", newFlight.airlineCode );
      assertNull( newFlight.airline );
   }

While we are at it, we might as well specify what should occur if an invalid 
argument is passed to the constructor by using the Expected Exception Test
template for our Constructor Test:

   public void testFlightConstructor_badInput() {
      // set up fixture
      BigDecimal invalidFlightNumber = new BigDecimal(-1023);
      // exercise SUT
      try {
         Flight newFlight = new Flight(invalidFlightNumber);
         fail("Didn't catch negative flight number!");
      } catch (InvalidArgumentException e) {
         // verify results
         assertEquals( "Flight numbers must be positive",
                       e.getMessage());
      }
   }

Now that we know that our constructor logic is well tested, we are ready to 
write our Simple Success Test for our mileage translation functionality. Note 
how much simpler it has become because we can focus on verifying the business 
logic:

   public void testFlightMileage_asKm() throws Exception {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      newFlight.setMileage(1122);
      // exercise mileage translator
      int actualKilometres = newFlight.getMileageAsKm();
      // verify results
      int expectedKilometres = 1810;
      assertEquals( expectedKilometres, actualKilometres);
   }
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So what happens if the constructor logic is defective? This test will likely fail 
because its output depends on the value passed to the constructor. The con-
structor test will also fail. That failure will tell us to look at the constructor 
logic fi rst. Once that problem is fi xed, this test will likely pass. If it doesn’t, then 
we can focus on fi xing the getMileageAsKm method logic. This is a good example 
of Defect Localization.
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Four-Phase Test            

How do we structure our test logic to make what we are testing obvious?

We structure each test with four distinct parts executed in sequence.

How It Works           

We design each test to have four distinct phases that are executed in sequence: 
fi xture setup, exercise SUT, result verifi cation, and fi xture teardown. 

• In the fi rst phase, we set up the test fi xture (the “before” picture) that 
is required for the SUT to exhibit the expected behavior as well as any-
thing you need to put in place to be able to observe the actual outcome 
(such as using a Test Double; see page 522). 

• In the second phase, we interact with the SUT. 

• In the third phase, we do whatever is necessary to determine whether 
the expected outcome has been obtained. 

• In the fourth phase, we tear down the test fi xture to put the world back 
into the state in which we found it. 

Why We Do This 

The test reader must be able to quickly determine what behavior the test is 
verifying. It can be very confusing when various behaviors of the SUT are being 
invoked—some to set up the pre-test state (fi xture) of the SUT, others to exercise 

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Setup

Exercise

Verify

Teardown

Testcase
Class

Create

Testcase
Object

testMethod_n

Testcase
Object

testMethod_1testMethod_1

testMethod_n

Test

Suite

Object

Exercise

Create

Exercise

Create

Fixture

SUT
Run

Suite

Test Runner

Setup

Exercise

Verify

Teardown

Testcase
Class

Four-Phase 
Test

Chapter 19  xUnit Basics Patterns358

www.it-ebooks.info

http://www.it-ebooks.info/


the SUT, and yet others to verify the post-test state of the SUT. Clearly identifying 
the four phases makes the intent of the test much easier to see. 

The fi xture setup phase of the test establishes the SUT’s state prior to the test, 
which is an important input to the test. The exercise SUT phase is where we actu-
ally run the software we are testing. When reading the test, we need to see which 
software is being run. The result verifi cation phase of the test is where we specify 
the expected outcome. The fi nal phase, fi xture teardown, is all about housekeeping. 
We wouldn’t want to obscure the important test logic with it because it is com-
pletely irrelevant from the perspective of Tests as Documentation (see page 23). 

We should avoid the temptation to test as much functionality as pos-
sible in a single Test Method (page 348) because that can result in Obscure
Tests (page 186). In fact, it is preferable to have many small Single-Condition
Tests (see page 45). Using comments to mark the phases of a Four-Phase Test
is a good source of self-discipline, in that it makes it very obvious when our 
tests are not Single-Condition Tests. It will be self-evident if we have multiple 
exercise SUT phases separated by result verifi cation phases or if we have inter-
spersed fi xture setup and exercise SUT phases. Sure, the tests may work—but 
they will provide less Defect Localization (see page 22) than if we have a bunch 
of independent Single-Condition Tests.

Implementation Notes 

We have several options for implementing the Four-Phase Test. In the simplest 
case, each test is completely free-standing. All four phases of the test are con-
tained within the body of the Test Method. This structure implies we are using 
In-line Setup (page 408) and either Garbage-Collected Teardown (page 500) or 
In-line Teardown (page 509). It is the most appropriate choice when we are using 
Testcase Class per Class (page 617) or Testcase Class per Feature (page 624) to 
organize our Test Methods.

The other choice is to take advantage of the Test Automation Framework’s
(page 298) support for Implicit Setup (page 424) and Implicit Teardown (page 516). 
We factor out the common fi xture setup and fi xture teardown logic into setUp and 
tearDown methods on the Testcase Class (page 373). This leaves only the exercise SUT 
and result verifi cation phases in the Test Method. This approach is an appropriate 
choice when we are using Testcase Class per Fixture (page 631). We can also use 
this approach to set up common parts of the fi xture when using Testcase Class per 
Class (page 617) or Testcase Class per Feature or to tear down the fi xture when 
using Automated Teardown (page 503).
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Example: Four-Phase Test (In-line) 

Here is an example of a test that is clearly a Four-Phase Test:

   public void testGetFlightsByOriginAirport_NoFlights_inline()
            throws Exception {
      // Fixture setup
      NonTxFlightMngtFacade facade =new NonTxFlightMngtFacade();
      BigDecimal airportId = facade.createTestAirport("1OF");
      try {
         // Exercise system
         List flightsAtDestination1 =
                     facade.getFlightsByOriginAirport(airportId);
         // Verify outcome
         assertEquals( 0, flightsAtDestination1.size() );
      } finally {
         // Fixture teardown
         facade.removeAirport( airportId );
      }
   }

All four phases of the Four-Phase Test are included as in-line code. Because the 
calls to Assertion Methods (page 362) raise exceptions, we need to surround the 
fi xture teardown part of the Test Method with a try/fi nally construct to ensure that 
it is run in all cases. 

Example: Four-Phase Test (Implicit Setup/Teardown) 

Here is the same Four-Phase Test with the fi xture setup and fi xture teardown 
logic moved out of the Test Method:

   NonTxFlightMngtFacade facade = new NonTxFlightMngtFacade();
   private BigDecimal airportId;

   protected void setUp() throws Exception {
      // Fixture setup
      super.setUp();
      airportId = facade.createTestAirport("1OF");
   }

   public void testGetFlightsByOriginAirport_NoFlights_implicit()
            throws Exception {
      // Exercise SUT
      List flightsAtDestination1 =
            facade.getFlightsByOriginAirport(airportId);
      // Verify outcome
      assertEquals( 0, flightsAtDestination1.size() );
   }

   protected void tearDown() throws Exception {
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      // Fixture teardown
      facade.removeAirport(airportId);
      super.tearDown();
   }

Because the tearDown method is called automatically even after test failures, 
we don’t need the try/fi nally construct inside the Test Method. The downside, 
however, is that references to our fi xture must be held in instance variables 
rather than local variables.

Four-Phase 
Test

 Four-Phase Test 361

www.it-ebooks.info

http://www.it-ebooks.info/


Assertion Method

How do we make tests self-checking?

We call a utility method to evaluate whether an expected 
outcome has been achieved.

A key part of writing Fully Automated Tests (see page 26) is to make them Self-
Checking Tests (see page 26) to avoid having to inspect the outcome of each 
test for correctness each time it is run. This strategy involves fi nding a way to 
express the expected outcome so that it can be verifi ed automatically by the 
test itself. 

Assertion Methods give us a way to express the expected outcome in a way 
that is both executable by the computer and useful to the human reader, who can 
then use the Tests as Documentation (see page 23). 

How It Works             

We encode the expected outcome of the test as a series of assertions that state what 
should be true for the test to pass. The assertions are realized as calls to Assertion
Methods that encapsulate the mechanism that causes the test to fail. The Assertion
Methods may be provided by the Test Automation Framework (page 298) or by 
the test automater as Custom Assertions (page 474). 
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Why We Do This 

Encoding the expected outcome using Conditional Test Logic (page 200) is very 
verbose and makes tests hard to read and understand. It is also much more likely 
to lead to Test Code Duplication (page 213) and Buggy Tests (page 260). Asser-
tion Methods help us avoid these issues by moving that complexity into reusable 
Test Utility Methods (page 599); these methods can then be verifi ed as working 
correctly using Test Utility Tests (see Test Utility Method).

Implementation Notes 

Although all members of the xUnit family provide Assertion Methods, they do 
so with a fair degree of variability. The key implementation considerations are 
as follows: 

• How to call the Assertion Methods

• How to choose the best Assertion Method to call

• What information to include in the Assertion Message (page 370)

Calling Built-in Assertion Methods 

The way the Assertion Methods are called from within the Test Method (page 348) 
varies from language to language and from framework to framework. The lan-
guage features determine what is possible and preferable, while the framework 
builders chose which options to use. The names these developers chose for the 
Assertion Methods were infl uenced by how they chose to access them. Here are 
the most common options for accessing the Assertion Methods:

• The Assertion Methods are inherited from a Testcase Superclass (page 638) 
provided by the framework. Such methods may be invoked as though 
they were provided locally on the Testcase Class (page 373). The original 
version of Java’s JUnit, for example, used this approach by providing a 
Testcase Superclass that inherits from the class Assert, which contains the 
actual Assertion Methods.

• The Assertion Methods are provided via a globally accessible class or 
module. They are invoked using the class or module name to fully qualify 
the Assertion Method name. NUnit, for example, uses this approach 
[e.g., Assert.isTrue(x);]. JUnit does allow assertions to be invoked as static 
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methods on the Assert class [e.g., Assert.assertTrue(x)] but this is not usually 
necessary because they are inherited via the Testcase Superclass.

• The Assertion Methods are provided as “mix-ins” or macros. Ruby’s Test::
Unit, for example, provides the Assertion Methods in a module called 
Assert that can be included in any class,2 thereby allowing the Assertion 
Methods to be used as though defi ned within the Testcase Class [e.g., 
assert_equal(a,b)]. CppUnit, by contrast, defi nes the Assertion Methods as 
macros, which are expanded before the compiler sees the code. 

Assertion Messages

Assertion Methods typically take an optional Assertion Message as a text param-
eter that is included in the output when the assertion fails. This structure allows the 
test automater to explain to the test maintainer exactly which Assertion Method
failed and to better explain what should have occurred. The error detected by the 
test will be much easier to debug if the Assertion Method provides more informa-
tion about why it failed. Choosing the right Assertion Method goes a long way 
toward achieving this goal because many of the built-in Assertion Methods provide 
useful diagnostic information about the values of the arguments. This is especially 
true for Equality Assertions.

One of the biggest differences between members of the xUnit family is where 
the optional Assertion Message appears in the argument list. Most members 
tack it on to the end as an optional argument. JUnit, however, makes the Asser-
tion Message the fi rst argument when it is present. 

Choosing the Right Assertion 

We have two goals for the calls to Assertion Methods in our Test Methods:

• Fail the test when something other than the expected outcome occurs

• Document how the SUT is supposed to behave (i.e., Tests as Documen-
tation)

To achieve these goals we must strive to use the most appropriate Assertion
Method. While the syntax and naming conventions vary from one member of 
the xUnit family to the next, most provide a basic set of assertions that fall into 
the following categories: 

2 This approach is particularly useful when we are building Mock Objects (page 544) because 
these objects are outside the Testcase Class but need to invoke Assertion Methods.
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• Single-Outcome Assertions such as fail; these take no arguments because 
they always behave the same way. 

• Stated Outcome Assertions such as assertNotNull(anObjectReference) and 
assertTrue(aBooleanExpression); these compare a single argument to an 
outcome implied by the method name. 

• Expected Exception Assertions such as assert_raises(expectedError) 

{ codeToExecute }; these evaluate a block of code and a single expected 
exception argument. 

• Equality Assertions such as assertEqual(expected, actual); these compare 
two objects or values for equality. 

• Fuzzy Equality Assertions such as assertEqual(expected, actual, tolerance);
these determine whether two values are “close enough” to each other 
by using a “tolerance” or “comparison mask.” 

Variation: Equality Assertion 

Equality Assertions are the most common examples of Assertion Methods.
They are used to compare the actual outcome with an expected outcome that is 
expressed in the form of a constant Literal Value (page 714) or an Expected Object 
(see State Verifi cation on page 462). By convention, the expected value is speci-
fi ed fi rst and the actual value follows it. The diagnostic message that is generated 
by the Test Automation Framework makes sense only when they are provided in 
this order. The equality of the two objects is usually determined by invoking the 
equals method on the expected object. If the SUT’s defi nition of equals is not what 
we want to use in our tests, either we can make Equality Assertions on individual 
fi elds of the object or we can implement our test-specifi c equality on a Test-Specifi c 
Subclass (page 579) of the Expected Object.

Variation: Fuzzy Equality Assertion 

When we cannot guarantee an exact match due to variations in precision or 
expected variations in value, it may be appropriate to use a Fuzzy Equality 
Assertion. Typically, these assertions look just like Equality Assertions with the 
addition of an extra “tolerance” or “comparison map” parameter that specifi es 
how close the actual argument must be to the expected one. The most common 
example of a Fuzzy Equality Assertion is the comparison of fl oating-point num-
bers where the limitations of arithmetic precision need to be accounted for 
by providing a tolerance (the maximum acceptable distance between the two 
values).
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We use the same approach when comparing XML documents where direct 
string comparisons may result in failure owing to certain fi elds having unpre-
dictable content. In this case, the “fuzz” specifi cation is a “comparison schema” 
that specifi es which fi elds need to match or which fi elds should be ignored. This 
kind of Equality Assertion is very similar to asserting that a string conforms to 
a regular expression or other form of pattern matching. 

Variation: Stated Outcome Assertion 

Stated Outcome Assertions are a way of saying exactly what the outcome should 
be without passing an expected value as an argument. The outcome must be 
common enough to warrant a special Assertion Method. The most common 
examples are as follows: 

•  assertTrue(aBooleanExpression), which fails if the expression evaluates to 
FALSE

•  assertNotNull(anObjectReference), which fails if the objectReference doesn’t 
refer to a valid object

Stated Outcome Assertions are often used as Guard Assertions (page 490) to 
avoid Conditional Test Logic.

Variation: Expected Exception Assertion 

In languages that support block closures, we can use a variation of a Stated 
Outcome Assertion that takes an additional parameter specifying the kind of 
exception we expect. We can use this Expected Exception Assertion to say, “Run 
this block and verify that the following exception is thrown.” This format is more 
compact than using a try/catch construct. Some typical examples follow: 

• should: [aBlockToExecute] raise: expectedException in Smalltalk’s SUnit 

• assert_raises( expectedError) { codeToExecute } in Ruby’s Test::Unit 

Variation: Single-Outcome Assertion 

A Single-Outcome Assertion always behaves the same way. The most commonly 
used Single-Outcome Assertion is fail, which causes a test to be treated as a 
failure. It is typically used in two circumstances: 

• As an Unfi nished Test Assertion (page 494) when a test is fi rst identifi ed 
and implemented as a nearly empty Test Method. By including a call to 
fail, we can have the Test Runner (page 377) remind us that we still have 
a test to fi nish writing. 
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• As part of a try/catch (or equivalent) block in an Expected Exception Test 
(see Test Method) by including a call to fail in the try block immediately 
after the call that is expected to throw an exception. If we don’t want 
to assert something about the exception that was caught, we can avoid 
an empty catch block by using the Single-Outcome Assertion success to 
document that this is the expected outcome. 

One circumstance in which we really should not use Single-Outcome Assertions
is in Conditional Test Logic. There is almost never a good reason to include 
conditional logic in a Test Method, as there is usually a more declarative way 
to handle this situation using other styles of Assertion Methods. For example, 
use of Guard Assertions results in tests that are more easily understood and less 
likely to yield incorrect results. 

Motivating Example 

The following example illustrates the kind of code that would be required for 
each item we wanted to verify if we did not have Assertion Methods. All we 
really want to do is this:

      if (x.equals(y)) {
         throw new AssertionFailedError(
               "expected: <" + x.toString() +
               "> but found: <" + y.toString() + ">");
      } else  { // Okay, continue
        // ...
      }

Unfortunately, this code will cause a NullPointerException if x is null, and it would 
be hard to distinguish this exception from an error in the SUT. Thus we need to 
put some guard clauses around this functionality so that we always throw an 
AssertionFailedException:

      if (x == null) { // cannot do null.equals(null)
         if (y == null ) {  // they are both null so equal
            return;
         } else {
            throw new AssertionFailedError(
               "expected null but found: <" + y.toString() +">");
         }
      } else if (!x.equals(y)) { // comparable but not equal!
         throw new AssertionFailedError(
                  "expected: <" + x.toString() +
                  "> but found: <" + y.toString() + ">");

      } // equal
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Yikes! That got pretty messy. And we’ll have to do the same thing for every 
attribute we want to verify? This is not good. There must be a better way. 

Refactoring Notes 

Luckily for us, the inventors of xUnit recognized this problem and did the requisite 
Extract Method [Fowler] refactoring to create a library of Assertion Methods that 
we can call instead. We simply replace the mess of in-line if statements and thrown 
exceptions with a call to the appropriate Assertion Method. The next example is 
the code for the JUnit assertEquals method. Although the intent of this example 
is the same as the code we wrote earlier, it has been rewritten in terms of guard 
clauses that identify when things are equal. 

   /**
    * Asserts that two objects are equal. If they are not,
    * an AssertionFailedError is thrown with the given message.
    */
   static public void assertEquals(String message,
                                   Object expected,
                                    Object actual) {
      if (expected == null && actual == null)
         return;
      if (expected != null && expected.equals(actual))
         return;
      failNotEquals(message, expected, actual);
   }

The method failNotEquals is a Test Utility Method that fails the test and provides 
a diagnostic assertion message. 

Example: Equality Assertion 

Here is the same assertion logic recoded to take advantage of JUnit’s Equality
Assertion:

      assertEquals( x, y );

Here is the same assertion coded in C#. Note the classname qualifi er and the 
resulting difference in the method name: 

      Assert.AreEqual( x, y );

Example: Fuzzy Equality Assertion 

To compare two fl oating-point numbers (which are rarely ever really equal), we 
specify the acceptable differences using a Fuzzy Equality Assertion:
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      assertEquals( 3.1415, diameter/2/radius, 0.001);
      assertEquals( expectedXml, actualXml, elementsToCompare );

Example: Stated Outcome Assertion 

To insist that a particular outcome has occurred, we use a Stated Outcome 
Assertion:

      assertNotNull( a );
      assertTrue( b > c );
      assertNonZero( b );

Example: Expected Exception Assertion 

Here is an example of how we verify that the correct exception was raised when 
we have blocks. In Smalltalk’s SUnit, it looks like this: 

      self
         should: [Flight new mileage: -1122]
         raise: RuntimeError new 'Should have raised error'

The should: indicates the block of code to run (surrounded by square brackets), 
while the raise: specifi es the expected exception object. In Ruby, it looks like 
this:

      assert_raises( RuntimeError,
                  "Should have raised error")
                  {flight.setMileage(-1122) }

The Ruby language syntax also lets us use this “control structure”-style syntax 
by delimiting the block using do/end instead of curly braces: 

   assert_raises( RuntimeError, "Should have raised error") do
      flight.setMileage(-1122)
   end

Example: Single-Outcome Assertion 

To fail the test, use the Single Outcome Assertion: 

      fail( "Expected an exception" );
      unfinishedTest();
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Assertion Message

How do we structure our test logic to know which assertion failed?

We include a descriptive string argument in each call to an 
Assertion Method.

We make tests Self-Checking (see page 26) by including calls to Assertion Meth-
ods (page 362) that specify the expected outcome. When a test fails, the Test 
Runner (page 377) writes an entry to the test result log. 

A well-crafted Assertion Message makes it very easy to determine which asser-
tion failed and exactly what the symptoms were when the failure happened. 

How It Works          

Every Assertion Method takes an optional string parameter that is included in the 
failure log. When the condition being asserted is not true, the Assertion Message is 
output to the Test Runner’s log along with whatever output the assertion method 
normally generates. 

When to Use It 

There are two schools of thought on this subject. Test drivers who belong to the 
“single assertion per Test Method” school believe that they don’t need to include 
Assertion Messages because only one assertion can possibly fail and, therefore, 
they always know exactly which assertion happened. They count on the Assertion 
Method to include the arguments (e.g., expected “x” but was “y”) but they don’t 
need to include a message. 

Testcase
Object

testMethod_1

Testcase
Object

testMethod_n

Test

Test Failed:
message

Suite

Object

Create

Fixture

SUT
run

Setup
Exercise

Teardown
Assertion
  Method

message

message

Testcase
Class

testMethod_1

testMethod_n

Suite

Test Runner

Verify

Testcase
Object

testMethod_1

Testcase
Object

testMethod_n

Test

Test Failed:
message

Suite

Object

Create

Fixture

SUT
run

Setup
Exercise

Teardown
Assertion
  Method

message

message

Testcase
Class

testMethod_1

testMethod_n

Suite

Test Runner

Verify

Assertion 
Message

Chapter 19  xUnit Basics Patterns370

www.it-ebooks.info

http://www.it-ebooks.info/


Conversely, people who fi nd themselves coding several or many assertion 
method calls in their tests should strongly consider including a message that at 
least distinguishes which assertion failed. This information is especially impor-
tant if the tests are frequently run using a Command-Line Test Runner (see Test 
Runner), which rarely provides failure location information. 

Implementation Notes 

It is easy to state that we need a message for each assertion method call—but 
what should we say in the message? It is useful to take a moment as we write 
each assertion and ask ourselves what the person reading the failure log would 
hope to get out of it. 

Variation: Assertion-Identifying Message 

When we include several assertions of the same type in the same Test 
Method (page 348), we make it more diffi cult to determine exactly which one 
failed the test. By including some unique text in each Assertion Message, we can 
make it very easy to determine which assertion method call failed. A common 
practice is to use the name of the variable or attribute being asserted on as the 
message. This technique is very simple and requires very little thought. Another 
option is to number the assertions. This information would certainly be unique 
but understanding it may be less intuitive as we would have to look at the code 
to determine which assertion was failing. 

Variation: Expectation-Describing Message 

When a test fails, we know what has actually happened. The big question is, 
“What should have happened?” There are several ways of documenting the 
expected behavior for the test reader. For example, we could place comments in 
the test code. A better solution is to include a description of the expectation in 
the Assertion Message. While this is done automatically for an Equality Asser-
tion (see Assertion Method), we need to provide this information ourselves for 
any Stated Outcome Assertions (see Assertion Method).

Variation: Argument-Describing Message 

Some types of Assertion Methods provide less helpful failure messages than 
others. Among the worst are Stated Outcome Assertions such as assertTrue
(aBooleanExpression). When they fail, all we know is that the stated outcome did 
not occur. In these cases we can include the expression that was being evalu-
ated (including the actual values) as part of the Assertion Message text. The 
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test maintainer can then examine the failure log and determine what was being 
evaluated and why it caused the test to fail. 

Motivating Example 
      assertTrue( a > b  );
      assertTrue( b > c );

This code emits a failure message—something like “Assertion Failed.” From 
this output, we cannot even tell which of the two Assertion Messages failed. Not 
very useful, is it? 

Refactoring Notes 

Fixing this problem is a simple matter of adding one more parameter to each 
Assertion Method call. In this case, we want to communicate that we are 
expecting “a” to be greater than “b.” Of course, it would also be useful to be 
able to see what the values of “a” and “b” actually were. We can add both 
pieces of information into the Assertion Message through some judicious string 
concatenation.

Example: Expectation-Describing Message 

Here is the same test with the Argument-Describing Message added: 

      assertTrue( "Expected a > b but a was '" + a.toString() +
                        "' and b was '" + b.toString() + "'", 
                  a.gt(b) );
      assertTrue( "Expected b > c but b was '" + b.toString() +
                        "' and c was '" + c.toString + "'",
                  b > c );

This will now result in a useful failure message: 

Assertion Failed. Expected a > b but a was '17' and b was '19'. 

Of course, this output would be even more meaningful if the variables had 
Intent-Revealing Names [SBPP]! 
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Testcase Class                        

Where do we put our test code?

We group a set of related Test Methods on a single Testcase Class.

We put our test logic into Test Methods (page 348) but those Test Methods need 
to be associated with a class. A Testcase Class gives us a place to host those 
methods that we can later turn into Testcase Objects (page 382). 

How It Works        

We collect all Test Methods that are related in some way onto a special kind 
of class, the Testcase Class. At runtime, the Testcase Class acts as a Test Suite 
Factory (see Test Enumeration on page 399) that creates a Testcase Object for 
each Test Method. It adds all of these objects to a Test Suite Object (page 387) 
that the Test Runner (page 377) will use to run them all. 

Why We Do This 

In object-oriented languages, we prefer to put our Test Methods onto a class 
rather than having them as global functions or procedures (even if that is allowed). 
By making them instance methods of a Testcase Class, we can create a Testcase 
Object for each test by instantiating the Testcase Class once for each Test Method.
This strategy allows us to manipulate the Test Methods at runtime. 
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Class–Instance Duality

Back in high school physics, we learned about the “wave–particle duality” 
of light. Sometimes light acts like a particle (e.g., going through a small 
aperture), and sometimes it acts like a wave (e.g., rainbows). The behavior 
of Testcase Classes (page 373) sometimes reminds me of this concept. Let 
me explain why. 

Developers new to xUnit often ask, “Why is the class we subclass called 
TestCase when we have several Test Methods on it? Shouldn’t it be called 
TestSuite?” These questions make a lot of sense when we are focused 
primarily on the view of the class when we are writing the test code as 
opposed to when we are running the code. 

When we are writing test code, we concentrate on the Test Methods. The 
Testcase Class is primarily just a place to put the methods. About the only 
time we think of objects is when we use Implicit Setup (page 424) and 
need to create fi elds (instance variables) to hold them between the invo-
cation of the setUp method and when they are used in the Test Method.
When developers new to xUnit test automation are writing their fi rst tests, 
they tend to code by example. Following an existing example is a good 
way to get something working quickly but it doesn’t necessarily help the 
developer understand what is really going on. 

At runtime, the xUnit framework typically creates one instance of the 
Testcase Class for each Test Method. The Testcase Class acts as a Test 
Suite Factory (see Test Enumeration on page 399) that builds a Test Suite 
Object (page 387) containing all the instances of itself, one instance for 
each Test Method. Now, it’s not very often that a static method on a class 
returns an instance of another class containing many instances of itself. 
If this behavior wasn’t odd enough, the fact that xUnit reports the test 
failures using the Test Method name can be enough to obscure from many 
test automaters the existence of “objects inside.” 

When we examine the object relationships at runtime, things become a bit 
clearer. The Test Suite Object returned by the Test Suite Factory contains 
one or more Testcase Objects (page 382). So far, so good. Each of these 
objects is an instance of our Testcase Class. Each instance is confi gured 
to run one of the Test Methods. More importantly, each will run a differ-
ent Test Method. (How this happens is described in more detail in Test 
Discovery on page 393.) So each instance of our Testcase Class is, indeed, 
a test case. The Test Methods are just how we tell each instance what it 
should test. 
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Further Reading 
Martin Fowler has a great piece on his blog about this issue called “JUnit 
New Instance” [JNI]. 

We could, of course, implement each Test Method on a separate class—but that 
creates additional overhead and clutters the class namespace. It also makes it 
harder (although not impossible) to reuse functionality between tests. 

Implementation Notes 

Most of the complexity of writing tests involves how to write the Test Methods:
what to include in-line and what to factor out into Test Utility Methods (page 599), 
how to Isolate the SUT (see page 43), and so on. 

The real magic associated with the Testcase Class occurs at runtime and 
is described in Testcase Object and Test Runner. As far as we are concerned, 
all we have to do is write some Test Methods that contain our test logic 
and let the Test Runner work its magic. We can avoid Test Code Duplica-
tion (page 213) by using an Extract Method [Fowler] refactoring to factor 
out common code into Test Utility Methods. These methods can be left on the 
Testcase Class or they can be moved to an Abstract Testcase superclass (see Test-
case Superclass on page 638), a Test Helper class (page 643), or a Test Helper 
Mixin (see Testcase Superclass).

Example: Testcase Class 

Here is an example of a simple Testcase Class:

public class TestScheduleFlight extends TestCase {

   public void testUnscheduled_shouldEndUpInScheduled() throws Exception {
      Flight flight = FlightTestHelper.
            getAnonymousFlightInUnscheduledState();
      flight.schedule();
      assertTrue( "isScheduled()", flight.isScheduled());
   }

   public void testScheduledState_shouldThrowInvalidRequestEx()
            throws Exception {
      Flight flight = FlightTestHelper.
            getAnonymousFlightInScheduledState();
      try {
         flight.schedule();
         fail("not allowed in scheduled state");
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      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "schedule",
                      e.getRequest());
         assertTrue(  "isScheduled()", flight.isScheduled());
      }
   }

   public void testAwaitingApproval_shouldThrowInvalidRequestEx()
            throws Exception {
      Flight flight = FlightTestHelper.
            getAnonymousFlightInAwaitingApprovalState();
      try {
         flight.schedule();
         fail("not allowed in schedule state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "schedule",
                      e.getRequest());
         assertTrue(  "isAwaitingApproval()",
                      flight.isAwaitingApproval());
      }
   }
}

Further Reading 

In some variants of xUnit (most notably VbUnit and NUnit), the Testcase Class is 
called a test fi xture. This usage should not be confused with the test fi xture (or test 
context) that consists of everything we need to have in place before we can start 
exercising the SUT.3 Neither should it be confused with the fi xture term as used 
by the Fit framework, which is the Adapter [GOF] that interacts with the Fit table 
and thereby implements a Data-Driven Test (page 288) Interpreter [GOF].

3 These are the pre-conditions of the test.

Testcase 
Class

376 Chapter 19  xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/


Test Runner                     

How do we run the tests?

We defi ne an application that instantiates a Test Suite Object and executes 
all the Testcase Objects it contains.

Assuming we have defi ned our Test Methods (page 348) on one or more 
Testcase Classes (page 373), how do we actually cause the Test Automation 
Frameworks (page 298) to run our tests? 

How It Works         

Each member of the xUnit family of Test Automation Frameworks provides 
some form of command-line or graphical application that can be used to run 
our automated tests and report on the results. The Test Runner uses Test Enu-
meration (page 399), Test Discovery (page 393), or Test Selection (page 403) to 
obtain a Composite [GOF] test object. The latter may either be a single Testcase 
Object (page 382), a Test Suite Object (page 387), or a Composite test suite (a 
Suite of Suites; see Test Suite Object). Because all of these objects implement the 
same interface, the Test Runner need not care whether it is dealing with a single 
test or a multilevel suite. The Test Runner keeps track of, and reports on, how 
many tests it has run, how many tests had failed assertions, and how many tests 
raised errors or exceptions.
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Why We Do This 

We wouldn’t want each test automater to have to provide a special means of 
running his or her own test suites. That requirement would just get in the way 
of our ability to simultaneously run all the tests automated by different people. 
By providing a standard Test Runner, we encourage developers to make it easy 
to run tests written by different people. We can also provide different ways of 
running the same tests. 

Implementation Notes 

Several styles of Test Runners are available. The most common variations are 
running tests from within an IDE and running tests from the command line. 
All of these schemes depend on the fact that all Testcase Objects implement a 
standard interface. 

Standard Test Interface 

Statically typed languages (such as Java and C#) typically include an interface 
type (fully abstract class) that defi nes the interface that all Testcase Objects and 
Test Suite Objects must implement. Some languages (such as C# and Java 5.0) 
“mix” in the implementation by using class attributes or annotations on the 
Testcase Class. In dynamically typed languages, this interface may not exist 
explicitly. Instead, each implementation class simply implements the standard 
interface methods. Typically, the standard test interface includes methods on it 
to count the available tests and to run the tests. Where the framework supports 
Test Enumeration, each Testcase Class and test suite class must also implement 
the Test Suite Factory method (see Test Enumeration on page 399), which is 
typically called suite.

Variation: Graphical Test Runner 

A Graphical Test Runner is typically a desktop application or part of an IDE 
(either built-in or a plug-in) for running tests. At least one, IeUnit, runs inside a 
Web browser rather than an IDE. The most common feature of the Graphical
Test Runner is some sort of real-time progress indicator. This monitor typically 
includes a running count of test failures and errors and often includes a colored 
progress bar that starts off green and turns red as soon as an error or failure is 
encountered. Some members of the xUnit family include a graphical Test Tree 
Explorer as a means to drill down and run a single test from within a Suite of 
Suites.

Test Runner

378 Chapter 19  xUnit Basics Patterns

www.it-ebooks.info

http://www.it-ebooks.info/


Here is the Graphical Test Runner from the JUnit plug-in for Eclipse: 

The red bar near the top indicates that at least one test has failed. The upper 
text pane shows a list of test failures and test errors. The lower pane shows the 
traceback from the failed test selected in the upper pane. 

Variation: Command-Line Test Runner 

Command-Line Test Runners are designed to be used from an operating system 
command line or from batch fi les or shell scripts. They are very handy when 
working remotely via remote shells or when running the tests from a build script 
such as “make,” Ant, or a continuous integration tool such as “Cruise Control.” 

The following example shows how to run an runit (one of the xUnit imple-
mentations for the Ruby programming language) test from the command line: 
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>ruby testrunner.rb c:/examples/tests/SmellHandlerTest.rb
Loaded suite SmellHandlerTest
Started
.....
Finished in 0.016 seconds.
5 tests, 6 assertions, 0 failures, 0 errors
>Exit code: 0

The fi rst line is the invocation at the command prompt. In this example we are 
running the tests defi ned in a single Testcase Class, SmellHandlerTest. The next 
two lines are the initial feedback as the tests begin. The series of dots indicates 
the tests’ progress, one per test completed. This particular Command-Line Test 
Runner replaces the dot with an “E” or an “F” if the test produces an error or 
fails. The last three lines are summary statistics that provide an overview of 
what happened. Typically, the exit code is set to the total number of failed/error 
tests so that a non-zero exit code can be interpreted easily as a build failure when 
run from an automated build tool. 

Variation: File System Test Runner 

Some Command-Line Test Runners provide the option of searching a specifi ed 
directory for all fi les that are tests and running them all at once. This automated 
Testcase Class Discovery (see Test Discovery) avoids the need to build the Suite
of Suites in code (Test Enumeration) and helps avoid Lost Tests (see Production 
Bugs on page 268).

In addition, some external tools will search the fi le system for fi les matching 
specifi c patterns and then invoke an arbitrary command against the matched 
fi les. These fi les can be passed to the Test Runner from a build tool. 

Variation: Test Tree Explorer 

Members of the xUnit family that turn each Test Method into a Testcase Object
can manipulate the tests easily. Many of them provide a graphical representation 
of the Suite of Suites and allow the user to select an entire Test Suite Object or 
a single Testcase Object to run. This eliminates the need to create a Single Test 
Suite (see Named Test Suite on page 592) class to run a single test. 

Here is the Test Tree Explorer of JUnit plug-in for Eclipse shown “popped 
out” over other Eclipse views: 

Test Runner 
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The left pane of the IDE is the JUnit view within Eclipse. The progress bar ap-
pears at the top of the view, the upper pane is the Test Tree Explorer, and the 
lower pane is the traceback for the currently selected test failure. Note that some 
Test Suite Objects in the Test Tree Explorer are “open,” revealing their contents; 
others are closed down. The colored annotation next to each Testcase Object
shows its status; the annotations for each Test Suite Object indicate whether any 
contained Testcase Objects failed or produced an error. The Test Suite Object
called “Test for com.clrstream.ex8.test” is a Suite of Suites for the package “com.
clrstream.ex8.test”; “Test for allJUnitTests” is the topmost Suite of Suites for run-
ning all the tests. 

 Test Runner
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Testcase Object

How do we run the tests?

We create a Command object for each test and call the run method when we 
wish to execute it.

The Test Runner (page 377) needs a way to fi nd and invoke the appropriate Test 
Methods (page 348) and to present the results to the user. Many Graphical Test 
Runners (see Test Runner) let the user drill down into the tree of tests and pick 
individual tests to run. This capability requires that the Test Runner be able to 
inspect and manipulate the tests at runtime. 

How It Works                  

We instantiate a Command [GOF] object to represent each Test Method that 
should execute. We use the Testcase Class (page 373) as a Test Suite Factory
to create a Test Suite Object (page 387) to hold all the Testcase Objects for a 
particular Testcase Class. We can use either Test Discovery (page 393) or Test 
Enumeration to create the Testcase Objects.
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Why We Do This 

Treating tests as fi rst-class objects opens up many new possibilities that are not 
available to us if we treat the tests as simple procedures. It is a lot easier for the 
Test Runner of the Test Automation Framework (page 298) to manipulate tests 
when they are objects. We can hold them in collections (Test Suite Objects), 
iterate over them, invoke them, and so on. 

Most members of the xUnit family create a separate Testcase Object for 
each test to isolate the tests from one another as prescribed by Independent 
Test (see page 42). Unfortunately, there is always an exception (see the sidebar 
“There’s Always an Exception” on page 384), and users of the affected Test 
Automation Frameworks need to be a bit more cautious. 

Implementation Notes 

Each Testcase Object implements a standard test interface so that the Test 
Runner does not need to know the specifi c interface for each test. This scheme 
allows each Testcase Object to act as a Command object [GOF]. This allows 
us to build collections of these Testcase Objects, which we can then iterate 
across to do counting, running, displaying, and other operations. 

In most programming languages, we need to create a class to defi ne the 
behavior of the Testcase Objects. We could create a separate Testcase Class
for each Testcase Object. It is more convenient to host many Test Methods
on a single Testcase Class, however, as this strategy results in fewer classes to 
manage and facilitates reuse of Test Utility Methods (page 599). This approach 
requires that each Testcase Object of the Testcase Class have a way to deter-
mine which Test Method it should invoke. Pluggable Behavior [SBPP] is the 
most common way to do this. The constructor of the Testcase Class takes the 
name of the method to be invoked as a parameter and stores this name in an 
instance variable. When the Test Runner invokes the run method on the Test-
case Object, it uses refl ection to fi nd and invoke the method whose name is in 
the instance variable. 

Testcase 
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There’s Always an Exception   

Whether we are learning to conjugate verbs in a new language or looking 
for patterns in how software is built, there’s always an exception! 

One of the most notable exceptions in the xUnit family relates to 
the use of a Testcase Object (page 382) to represent each Test Meth-
od (page 348) at runtime. This key design feature of xUnit offers a 
way to achieve an Independent Test (see page 42). The only members 
of the xUnit family that don’t follow this scheme are TestNG and 
NUnit (version 2.x). For the reasons described below, the builders 
of NUnit 2.0 chose to stray from the well-worn path of one Testcase 
Object per Test Method and create only a single instance of the Test-
case Class (page 373). This instance, which they call the test fi xture, is 
then reused for each Test Method. One of the authors of NUnit 2.0, 
James Newkirk, writes: 

I think one of the biggest screw-ups that was made when we wrote 
NUnit V2.0 was to not create a new instance of the test fi xture class 
for each contained test method. I say “we” but I think this one was 
my fault. I did not quite understand the reasoning in JUnit for cre-
ating a new instance of the test fi xture for each test method. I look 
back now and see that reusing the instance for each test method 
allows someone to store a member variable from one test and use 
it in another. This can introduce execution-order dependencies, 
which for this type of testing is an anti-pattern. It is much better to 
fully isolate each test method from the others. This requires that a 
new object be created for each test method.

Unfortunately, this has some very interesting—and undesirable—
consequences when one is familiar with the “JUnit New Instance Behav-
ior” of a separate Testcase Object per method. Because the object is reused, 
any objects it refers to via an instance variable are available to all subse-
quent tests. This results in an implicit Shared Fixture (page 317) along 
with all the forms of Erratic Tests (page 228) that go with it. James goes 
on to say: 

Since it would be diffi cult to change the way that NUnit works now, 
and too many people would complain, I now make all of the mem-
ber variables in test fi xture classes static. It’s almost like truth in 
advertising. The result is that there is only one instance of this 
variable, no matter how many test fi xture objects are created. If 
the variable is static, then someone who may not be familiar with 
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how NUnit executes would not assume that a new one is created 
before each test is executed. This is the closest I can get to how 
JUnit works without changing the way that NUnit executes test 
methods.

Martin Fowler felt this exception was important enough that he wrote 
an article about why JUnit’s approach is correct. See http://martinfowler.
com/bliki/JunitNewInstance.html.

Example: Testcase Object 

The main evidence of the existence of Testcase Objects appears in the Test Tree 
Explorer (see Test Runner) when we “drill down” into the Test Suite Object to 
expose the Testcase Objects it contains. Let’s look at an example from the JUnit 
Graphical Test Runner that is built into Eclipse. Here’s the list of objects created 
from the sample code from the write-up of Testcase Class:

TestSuite("...flightstate.featuretests.AllTests")
   TestSuite("...flightstate.featuretests.TestApproveFlight")
      TestApproveFlight("testScheduledState_shouldThrowIn..ReEx")
      TestApproveFlight("testUnsheduled_shouldEndUpInAwai..oval")
      TestApproveFlight("testAwaitingApproval_shouldThrow..stEx")
      TestApproveFlight("testWithNullArgument_shouldThrow..ntEx")
      TestApproveFlight("testWithInvalidApprover_shouldTh..ntEx")
   TestSuite("...flightstate.featuretests.TestDescheduleFlight")
      TestDescheduleFlight("testScheduled_shouldEndUpInSc..tate")
      TestDescheduleFlight("testUnscheduled_shouldThrowIn..stEx")
      TestDescheduleFlight("testAwaitingApproval_shouldTh..stEx")
   TestSuite("...flightstate.featuretests.TestRequestApproval")
      TestRequestApproval("testScheduledState_shouldThrow..stEx")
      TestRequestApproval("testUnsheduledState_shouldEndU..oval")
      TestRequestApproval("testAwaitingApprovalState_shou..stEx")
   TestSuite("...flightstate.featuretests.TestScheduleFlight")
      TestScheduleFlight("testUnscheduled_shouldEndUpInSc..uled")
      TestScheduleFlight("testScheduledState_shouldThrowI..stEx")
      TestScheduleFlight("testAwaitingApproval_shouldThro..stEx")

The name outside the parentheses is the name of the class; the string inside the 
parentheses is the name of the object created from that class. By convention, the 
name of the Test Method4 to be run is used as the name of the Testcase Object,
and the name of a Test Suite Object is whatever string was passed to the Test 
Suite Object constructor. In this example we’ve used the full package and class-
name of the Testcase Class.

4 I replaced part of the name with “..” to keep each line within the page width limit.
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This is what this scheme might look like when viewed in a Test Tree Explorer:

Testcase 
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Test Suite Object         

How do we run the tests when we have many tests to run?

We defi ne a collection class that implements the standard test interface and 
use it to run a set of related Testcase Objects. 

Given that we have created Test Methods (page 348) containing our test logic 
and placed them on a Testcase Class (page 373) so we can construct a Testcase 
Object (page 382) for each test, it would be nice to be able to run these tests as 
a single user operation. 

How It Works                  

We defi ne a Composite [GOF] Testcase Object called a Test Suite Object to hold 
the collection of individual Testcase Objects to execute. When we want to run 
all tests in the test suite at once, the Test Runner (page 377) asks the Test Suite 
Object to run all its tests. 

Why We Do This 

Treating test suites as fi rst-class objects makes it easier for the Test Runner of 
the Test Automation Framework (page 298) to manipulate tests in the test suite. 
With or without a Test Suite Object, the Test Runner would have to hold some 
kind of collection of Testcase Objects (so that we could iterate over them, count 
them, and so on). When we make the collection “smart,” it becomes a simple 
matter to add other uses such as the Suite of Suites.
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Variation: Testcase Class Suite 

To run all the Test Methods in a single Testcase Class, we simply build a Test 
Suite Object for the Testcase Class and add one Testcase Object for each Test 
Method. This allows us to run all the Test Methods in the Testcase Class simply 
by passing the name of the Testcase Class to the Test Runner.

Variation: Suite of Suites 

We can build up larger Named Test Suites (page 592) by organizing smaller 
test suites into a tree structure. The Composite pattern makes this organization 
invisible to the Test Runner, allowing it to treat a Suite of Suites exactly the 
same way it treats a simple Testcase Class Suite or a single Testcase Object.

Implementation Notes 

As a Composite object, each Test Suite Object implements the same interface as 
a simple Testcase Object. Thus neither the Test Runner nor the Test Suite Object
needs to be aware of whether it is holding a reference to a single test or an entire 
suite. This makes it easier to implement any operations that involve iterating 
across all the tests such as counting, running, and displaying. 

Before we can do anything with our Test Suite Object, we must construct it. 
We can choose from several options to do so: 

• Test Discovery (page 393): We can let the Test Automation Framework
discover our Testcase Classes and Test Methods for us. 

• Test Enumeration (page 399): We can write code that enumerates 
which Test Methods we want to include in a Test Suite Object. This 
usually involves creating a Test Suite Factory (see Test Enumeration).

• Test Selection (page 403): We can specify which subset of the Testcase 
Objects we want to include from an existing Test Suite Object.

Variation: Test Suite Procedure 

Sometimes we have to write code in programming or scripting languages that do 
not support objects. Given that we have written a number of Test Methods, we 
need to give the Test Runner some way to fi nd the tests. A Test Suite Procedure 
allows us to enumerate all the tests we want to run by invoking each test in turn. 
The calls to each test are hard-coded within the body of the Test Suite Object. 
Of course, a Test Suite Procedure may call several other Test Suite Procedures
to realize a Suite of Suites.

Test Suite 
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The major disadvantage of this approach is that it forces us into Test 
Enumeration, which increases both the effort required to write tests and the 
likelihood of Lost Tests (see Production Bugs on page 268). Because we do not 
treat our code as “data,” we lose the ability to manipulate the code at runtime. 
As a consequence, it is more diffi cult to build a Graphical Test Runner (see Test 
Runner) with a hierarchy (tree) view of our Suite of Suites.

Example: Test Suite Object 

Most members of the xUnit family implement Test Discovery, so there isn’t much 
of an example of Test Suite Object to see. The main evidence of the existence of 
Test Suite Objects appears in the Test Tree Explorer (see Test Runner) when we 
“drill down” into the Test Suite Object to expose the Testcase Objects it contains. 
Here’s an example from the JUnit Graphical Test Runner built into Eclipse: 

Example: Suite of Suites Built Using Test Enumeration 
Here is an example of using Test Enumeration to construct a Suite of Suites:

public class AllTests {

   public static Test suite() {

Test Suite 
Object
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      TestSuite suite = new TestSuite("Test for allJunitTests");
      suite.addTestSuite(
             com.clrstream.camug.example.test.InvoiceTest.class);
      suite.addTest(com.clrstream.ex7.test.AllTests.suite());
      suite.addTest(com.clrstream.ex8.test.AllTests.suite());
      suite.addTestSuite(com.xunitpatterns.guardassertion.Example.class);
      return suite;
   }
}

The fi rst and last lines add the Test Suite Objects created from a single Testcase 
Class. Each of the middle two lines calls the Test Suite Factory for another Suite
of Suites. The Test Suite Object we return is likely at least three levels deep: 

1. The Test Suite Object we instantiated and populated before returning

2. The AllTests Test Suite Objects returned by the two calls to factory 
methods

3. The Test Suite Objects for each of the Testcase Classes aggregated into 
those Test Suite Objects

This is illustrated in the following tree of objects: 

TestSuite("Test for allJunitTests");
   TestSuite("com.clrstream.camug.example.test.InvoiceTest")
      TestCase("testInvoice_addLineItem")
      ...
      TestCase("testRemoveLineItemsForProduct_oneOfTwo")
   TestSuite("com.clrstream.ex7.test.AllTests")
      TestSuite("com.clrstream.ex7.test.TimeDisplayTest")
         TestCase("testDisplayCurrentTime_AtMidnight")
         TestCase("testDisplayCurrentTime_AtOneMinAfterMidnight")
         TestCase("testDisplayCurrentTime_AtOneMinuteBeforeNoon")
         TestCase("testDisplayCurrentTime_AtNoon")
         ...
      TestSuite("com.clrstream.ex7.test.TimeDisplaySolutionTest")
         TestCase("testDisplayCurrentTime_AtMidnight")
         TestCase("testDisplayCurrentTime_AtOneMinAfterMidnight")
         TestCase("testDisplayCurrentTime_AtOneMinuteBeforeNoon")
         TestCase("testDisplayCurrentTime_AtNoon")
         ...
   TestSuite("com.clrstream.ex8.test.AllTests")
      TestSuite("com.clrstream.ex8.FlightMgntFacadeTest")
         TestCase("testAddFlight")
         TestCase("testAddFlightLogging")
         TestCase("testRemoveFlight")
         TestCase("testRemoveFlightLogging")
         ...
   TestSuite("com.xunitpatterns.guardassertion.Example")
         TestCase("testWithConditionals")
         TestCase("testWithoutConditionals")
         ...

Test Suite 
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Note that this class doesn’t subclass any other class. It does need to import 
TestSuite and the classes it is using as Test Suite Factories.

Example: Test Suite Procedure 

In the early days of agile software development, before any agile project manage-
ment tools were available, I built a set of Excel spreadsheets for managing tasks 
and user stories. To make life simpler, I automated frequently performed tasks 
such as sorting all stories by release and iteration, sorting tasks by iteration and 
status, and so on. Eventually, I got bold enough to write a macro (a program, 
really) that would sum up the estimated and actual effort of all tasks for each 
story. At this point, the code was becoming somewhat complex and was more 
challenging to maintain. In particular, if one of the named ranges used by the 
sorting macros was accidentally deleted, the macro would produce an error. 

Unfortunately, there was no xUnit framework for VBA at the time, so all of 
this work was done without Tests as Safety Net (see page 24). Here is the main 
program of the reporting macro. All output was written to a new sheet in the 
workbook.

'Main Macro

Sub summarizeActivities()
   Call VerifyVersionCompatability
   Call initialize
   Call SortByActivity

   For row = firstTaskDataRow To lastTaskDataRow
      If numberOfNumberlessTasks < MaxNumberlessTasks Then
         thisActivity =
            ActiveSheet.Cells(row, TaskActivityColumn).Value

         If thisActivity <> currentActivity Then
            Call finalizeCurrentActivityTotals
            currentActivity = thisActivity
            Call initializeCurrentActivityTotals
         End If

         Call accumulateActivityTotals(row)
      Else
         lastTaskDataRow = row   ' end the For loop right away
      End If
   Next row
   Call cleanUp
End Sub

Test Suite 
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Without any tests or Test Automation Framework, I had to do what I could to 
introduce some kind of regression testing. In this case, it was enough of a challenge 
(and a win) just to be able to exercise all the macros. If they ran to completion, it 
was a much better indication that I hadn’t broken anything major than not running 
the macros at all. Because VBA is based on Visual Basic 5, it has no classes. Thus 
we have no Testcase Class and no runtime Testcase Objects.  The following is an 
example of the various Test Suite Procedures and the Test Methods my tests called: 

Sub TestAll()
    Call TestAllStoryMacros
    Call TestAllTaskMacros
    Call TestReportingMacros
    Call TestToolbarMenus  'All The Same
End Sub

Sub TestAllStoryMacros()
    Call TestActivitySorting
    Call TestStoryHiding
    Call ReportSuccess("All Story Macros")
End Sub

Sub TestActivitySorting()
    Call SortStoriesbyAreaAndNumber
    Call SortActivitiesByIteration
    Call SortActivitiesByIterationAndOrder
    Call SortActivitiesByNumber
    Call SortActivitiesByPercentDone
End Sub

Sub TestReportingMacros()
    Call summarizeActivities
End Sub

The fi rst Test Suite Procedure is a Suite of Suites; the second Test Suite Procedure
is the equivalent of a single Test Suite Object. The third Sub is the Test Method for 
exercising all of the sorting macros. The last Sub exercises the summarizeActivities
macro using a Prebuilt Fixture (page 429). 5

5 For those who might be wondering what happened to the verify outcome phase of the 
test, there isn’t one in this test. It is neither a Self-Checking Test nor a Single-Condition
Test. Shame on me!
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Test Discovery

How does the Test Runner know which tests to run?

The Test Automation Framework discovers all tests that belong to the test 
suite automatically. 

Given that we have written a number of Test Methods (page 348) on one or more 
Testcase Classes (page 373), we need to give the Test Runner (page 377) some 
way to fi nd the tests. Test Discovery eliminates most of the hassles associated with 
Test Enumeration (page 399). 

How It Works 

The Test Automation Framework (page 298) uses runtime refl ection (or com-
pile-time knowledge) to discover all Test Methods that belong to the test suite 
and/or all Test Suite Objects (page 387) that belong to a Suite of Suites (see
Test Suite Object). It then builds up the Test Suite Objects containing the 
corresponding Testcase Objects (page 382) and other Test Suite Objects in 
preparation for running all the tests. 

When to Use It 

We should use Test Discovery whenever our Test Automation Framework
supports it. This pattern reduces the effort required to automate tests and greatly 
reduces the possibility of Lost Tests (see Production Bugs on page 268). The 
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only times to consider using Test Enumeration are (1) when our framework 
does not support Test Discovery and (2) when we wish to defi ne a Named Test 
Suite (page 592) that consists of a subset of tests6 chosen from other test suites 
and the Test Automation Framework does not support Test Selection (page 403). 
It is not uncommon to combine Test Suite Enumeration (see Test Enumeration)
with Test Method Discovery; the reverse is less common. 

Implementation Notes 

Building the Suite of Suites to be executed by the Test Runner involves two steps. 
First, we must fi nd all Test Methods to be included in each Test Suite Object.
Second, we must fi nd all Test Suite Objects to be included in the test run, albeit 
not necessarily in this order. Each of these steps may be done manually via Test 
Method Enumeration (see Test Enumeration) and Test Suite Enumeration or 
automatically via Test Method Discovery and Testcase Class Discovery.

Variation: Testcase Class Discovery 

Testcase Class Discovery is the process by which the Test Automation Frame-
work discovers the Testcase Classes on which it should do Test Method Dis-
covery. One solution involves tagging each Testcase Class by subclassing a 
Testcase Superclass (page 638) or implementing a Marker Interface [PJV1]. 
Another alternative, used in the .NET languages and newer versions of JUnit, 
is to use a class attribute (e.g., "[Test Fixture]") or annotation (e.g., "@Testcase")
to identify each Testcase Class. Yet another solution is to put all Testcase 
Classes into a common directory and point the Test Runner or some other 
program at this directory. A fourth solution is to follow a Testcase Class
naming convention and use an external program to fi nd all fi les matching 
this naming pattern. Whichever way we choose to perform this task, once 
a Testcase Class has been discovered we can proceed to either Test Method 
Discovery or Test Method Enumeration.

Variation: Test Method Discovery 

Test Method Discovery involves providing a way for the Test Automation Frame-
work to discover the Test Methods in our Testcase Classes. There are two basic 
ways to indicate that a method of a Testcase Class is a Test Method. The more 
traditional approach is to use a Test Method naming convention such as “starts 
with ‘test’.” The Test Automation Framework then iterates over all methods of 
the Testcase Class, selects those that start with the string “test” (e.g., testCounters), 

6 A Smoke Test [SCM] suite is a good example.
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and calls the one-argument constructor to create the Testcase Object for that Test 
Method. The other alternative, which is used in the .NET languages and newer 
versions of JUnit, is to use a method attribute (e.g., “[Test]”) or annotation (e.g., 
“@Test”) to identify each Test Method.

Motivating Example 

The following example illustrates the kind of code that would be required for 
each Test Method to do Test Method Enumeration if we did not have Test 
Discovery available: 

public:
   static CppUnit::Test *suite()
   {
      CppUnit::TestSuite *suite =
              new CppUnit::TestSuite( "ComplexNumberTest" );
      suite>addTest(
            new CppUnit::TestCaller<ComplexNumberTest>(
                        "testEquality",
                        &ComplexNumberTest::testEquality ) );
      suite>addTest(
            new CppUnit::TestCaller<ComplexNumberTest>(
                        "testAddition",
                        &ComplexNumberTest::testAddition ) );
      return suite;
   }

This example is from the tutorial for an earlier version of CppUnit. Newer 
versions no longer require this approach. 

Refactoring Notes 

Luckily for the users of existing xUnit family members, the inventors of xUnit 
realized the importance of Test Discovery. Therefore all we have to do is follow 
their advice on how to identify our test methods. If the developers of our xUnit 
version used a naming convention, we may have to do a Rename Method [Fowler] 
refactoring to get xUnit to discover our Test Method. If they implemented method 
attributes, we just add the appropriate attribute to our Test Methods.

Example: Test Method Discovery (Using Method Naming 
and Compiler Macro) 

When the programming language is capable of managing the tests as objects 
and invoking the methods but cannot easily fi nd all methods to use as tests, we 
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may need to give it a small push as encouragement to do so. Newer versions 
of CppUnit provide a macro that fi nds all Test Methods at compile time and 
generates the code to build the test suite as illustrated in the previous example. 
The following code snippet triggers the Test Method Discovery:

CPPUNIT_TEST_SUITE_REGISTRATION( FlightManagementFacadeTest );

This macro uses a method naming convention to determine which methods 
(“member functions”) it should turn into Testcase Objects by wrapping each 
with a TestCaller, much like in the manual example we saw earlier. 

Example: Test Method Discovery (Using Method Naming) 

The following examples are more notable for the code that is missing than for 
the code that is present. Note that there is no code to add the Test Methods to 
the Test Suite Object.

In this Java example, the framework automatically runs all test methods that 
start with “test” and have no arguments (a total of two): 

public class TimeDisplayTest extends TestCase {
   public void testDisplayCurrentTime_AtMidnight()
            throws Exception {
      // Set up SUT
      TimeDisplay theTimeDisplay = new TimeDisplay();
      // Exercise SUT
      String actualTimeString =
            theTimeDisplay.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( "Midnight",
                    expectedTimeString,
                    actualTimeString);
   }

   public void testDisplayCurrentTime_AtOneMinuteAfterMidnight()
            throws Exception {
      // Set up SUT
      TimeDisplay actualTimeDisplay = new TimeDisplay();
      // Exercise SUT
      String actualTimeString =
            actualTimeDisplay.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
            "<span class=\"tinyBoldText\">12:01 AM</span>";
      assertEquals( "12:01 AM",
                    expectedTimeString,
                    actualTimeString);
   }
}

Test 
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Example: Test Method Discovery (Using Method Attributes) 

In this C# example, the tests are labeled with the method attribute [Test]. Both 
CsUnit and NUnit use this way of identifying Test Methods.

   [Test]
   public void testFlightMileage_asKm()
   {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      newFlight.setMileage(1122);
      // exercise mileage translator
      int actualKilometres = newFlight.getMileageAsKm();
      int expectedKilometres = 1810;
      // verify results
      Assert.AreEqual( expectedKilometres, actualKilometres);
   }

   [Test]
   [ExpectedException(typeof(InvalidArgumentException))]
   public void testSetMileage_invalidInput_attribute()
   {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      // exercise SUT
      newFlight.setMileage(-1122);
   }

Example: Testcase Class Discovery (Using Class Attributes) 

Here is an example of using a class attribute to identify a Testcase Class (called 
a “Test Fixture” in NUnit) to the Test Runner:

[TestFixture]
public class SampleTestcase
{

}

Example: Testcase Class Discovery (Using Common 
Location and Testcase Superclass) 

The following Ruby example fi nds all fi les with the .rb extension in the “tests” 
directory and requires them from this fi le. This causes Test::Unit to look for all tests 
in each fi le because the Testcase Class in each fi le extends Test::Unit::TestCase.

Dir['tests/*.rb'].each do |each|
   require each
end
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The Dir['tests/*.rb'] returns a collection of fi les over which the each method iter-
ates with the block containing “require each” to implement Testcase Class Dis-
covery. The Ruby interpreter and Test::Unit fi nish the job by doing Test Method 
Discovery on each required class. 

Test 
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Test Enumeration

How does the Test Runner know which tests to run?

The test automater manually writes the code that enumerates all tests that 
belong to the test suite. 

Given that we have written a number of Test Methods (page 348) on one or 
more Testcase Classes (page 373), we need to give the Test Runner (page 377) 
some way to fi nd the tests. Test Enumeration is the way we do so when we lack 
support for Test Discovery (page 393). 

How It Works 

The test automater manually writes the code that enumerates all Test Methods
that belong to the test suite and/or all Test Suite Objects (page 387) that belong 
to a Suite of Suites (see Test Suite Object). This is typically done by implement-
ing the method suite either on a Testcase Class for Test Method Enumeration or 
on a Test Suite Factory for Test Suite Enumeration.

When to Use It 

We need to use Test Enumeration if our Test Automation Framework (page 298) 
does not support Test Discovery. We can also choose to use Test Enumeration
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when we wish to defi ne a Named Test Suite (page 592) that consists of a subset 
of tests7 chosen from other test suites and the framework does not support Test 
Selection (page 403). 

Many members of the xUnit family support Test Discovery at the Test Method
level but force us to use Test Enumeration at the Testcase Class level. 

Implementation Notes 

Building the Suite of Suites to be executed by the Test Runner involves two steps. 
First, we must fi nd all Test Methods to be included in each Test Suite Object.
Second, we must fi nd all Test Suite Objects to be included in the test run, albeit 
not necessarily in this order. Each of these steps may be done manually via 
Test Method Enumeration and Test Suite Enumeration or automatically via Test 
Method Discovery (see Test Discovery) and Testcase Class Discovery (see Test 
Discovery). When done manually, we typically use a “Test Suite Factory” that 
returns the Test Suite Object.

Variation: Test Suite Enumeration 

Many members of the xUnit family require that we provide a Test Suite Factory
that builds the top-level Suite of Suites (often called “AllTests”) as means to 
specify which Test Suite Objects we would like to include in a test run. We do 
so by providing a class method on a factory class; this Factory Method [GOF] 
is called suite in most members of the xUnit family. Inside the suite method we 
use calls to methods such as addTest to add each nested Test Suite Object to the 
suite we are building. 

Although this approach is fairly fl exible, it can result in Lost Tests (see
Production Bugs on page 268). The alternative is to let the development tools 
build the AllTests Suite (see Named Test Suite) automatically or to use a Test 
Runner that fi nds all test suites in a fi le system directory automatically. For 
example, NUnit provides a built-in mechanism that implements Testcase Class 
Discovery at the assembly level. We can also use third-party tools such as Ant 
to fi nd all Testcase Class fi les in a directory structure. 

Even in statically typed languages such as Java, the Test Suite Factory (see
Test Enumeration on page 399) does not need to subclass a specifi c class or 
implement a specifi c interface. Instead, the only dependencies are on the generic 
Test Suite Object class it returns and the Testcase Classes or Test Suite Factories
it asks for the nested suites. 

7 A Smoke Test [SCM] suite is a good example.
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Variation: Test Method Enumeration 

Many members of the xUnit family now support Test Method Discovery. If we 
happen to be using a version that does not, we need to fi nd all Test Methods in a 
Testcase Class, turn them into Testcase Objects (page 382), and put them into a 
Test Suite Object. We implement Test Method Enumeration by providing a class 
method, typically called suite, on the Testcase Class itself. 

The capability to construct an object that calls an arbitrary method is often in-
herited from the Test Automation Framework via a Testcase Superclass (page 638) 
or mixed in via a class attribute or Include directive. In some members of the xUnit 
family, this Pluggable Behavior [SBPP] capability is provided by a separate class 
(see the CppUnit example below). 

Variation: Direct Test Method Invocation 

In the pure procedural world where we cannot treat a Test Method as an object 
or data item, we have no choice but to hand-code a Test Suite Procedure (see
Test Suite Object) for each test suite. This procedure then calls each Test Method
(or other Test Suite Procedures) one by one. 

Example: Test Method Enumeration in CppUnit 

Early versions of most xUnit family members required that the test automater 
add each Test Method manually. Those versions that cannot use refl ection still 
have this requirement. Here is an example from an older version of CppUnit 
that uses this approach: 

public:
   static CppUnit::Test *suite()
   {
      CppUnit::TestSuite *suite =
              new CppUnit::TestSuite( "ComplexNumberTest" );
      suite>addTest(
            new CppUnit::TestCaller<ComplexNumberTest>(
                        "testEquality",
                        &ComplexNumberTest::testEquality ) );
      suite>addTest(
            new CppUnit::TestCaller<ComplexNumberTest>(
                        "testAddition",
                        &ComplexNumberTest::testAddition ) );
      return suite;
   }

This example also illustrates how CppUnit wraps each Test Method with an 
instance of a class (TestCaller) to turn it into a Testcase Object.

 Test Enumeration
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Example: Test Method Invocation (Hard-Coded) 

The following example is from a test suite for a program written in VBA (Visual 
Basic for Applications, the macro language used in Microsoft Offi ce products), 
which lacks support for objects: 

Sub TestAllStoryMacros()
    Call TestActivitySorting
    Call TestStoryHiding
    Call ReportSuccess("All Story Macros")
End Sub

Example: Test Suite Enumeration 

We can use Test Suite Enumeration when the Test Automation Framework does 
not support Test Discovery or when we want to defi ne a Named Test Suite that 
includes only a subset of the tests. 

The main drawback of using Test Suite Enumeration for running all tests is 
the potential for Lost Tests if we forget to include a new test suite in the AllTests 
Suite. This risk can be reduced by paying attention to the number of tests that 
were run when we fi rst checked out the code and ensuring that the number run 
just before check-in goes up by the number of new tests we added. 

public class AllTests {

   public static Test suite() {
      TestSuite suite = new TestSuite("Test for allJunitTests");
      //$JUnit-BEGIN$
      suite.addTestSuite(
             com.clrstream.camug.example.test.InvoiceTest.class);
      suite.addTest(com.clrstream.ex7.test.AllTests.suite());
      suite.addTest(com.clrstream.ex8.test.AllTests.suite());
      suite.addTestSuite(
             com.xunitpatterns.guardassertion.Example.class);
      //$JUnit-END$
      return suite;
   }
}

In this example, we take advantage of the IDE’s ability to (re)generate the AllTests
suite for us. (Eclipse will regenerate the code between the two marker comments 
whenever we request it to do so.) We still need to remember to regenerate the 
suite occasionally, but this approach goes a long way toward avoiding Lost Tests
in the absence of Test Discovery.

Test 
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Test Selection                                                       

How does the Test Runner know which tests to run?

The Test Automation Framework selects the Test Methods to be run at 
runtime based on attributes of the tests. 

Given that we have written a number of Test Methods (page 348) on one or more 
Testcase Classes (page 373), we need to give the Test Runner (page 377) some way 
to fi nd those tests. Test Selection is a way to pick subsets of tests dynamically. 

How It Works 

The test automater specifi es the subset of tests to be run when invoking the Test 
Runner by providing test selection criteria. These selection criteria may be based 
on implicit or explicit attributes of the Testcase Classes or Test Methods.

When to Use It 

We should use Test Selection when we wish to run a subset of tests chosen from 
other test suites and we do not want to maintain a separate structure built using 
Test Enumeration (page 399). A Smoke Test [SCM] suite is a common usage; see 
Named Test Suite (page 592) for other uses. 
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Implementation Notes 

Test Selection can be implemented either by creating a Subset Suite (see
Named Test Suite) from an existing Test Suite Object (page 387) or by skip-
ping some of the tests within the Test Suite Object as we execute the Testcase 
Objects (page 382) it contains. 

As with Test Discovery (page 393) and Test Enumeration, Test Selection
can be applied at two different levels: selecting Testcase Classes or selecting 
Test Methods. Test Selection can be built into the Test Automation Frame-
work (page 298) or it can be implemented more crudely as part of the build 
task.

Variation: Testcase Class Selection 

We can select the Testcase Classes to be examined for Test Methods in several 
ways. The crudest way to do Testcase Class Selection is simply to place the Test-
case Classes into test packages based on some criteria. Unfortunately, this strategy 
works only for a single test classifi cation scheme and is likely to reduce the value 
of Tests as Documentation (see page 23). A somewhat more fl exible approach is 
to use a naming convention such as “contains ‘WebServer’” to select only those 
classes that verify the behavior of certain parts of the system. This, too, is some-
what constrained in its utility. 

The most fl exible way to implement Test Selection is within the Test Auto-
mation Framework. We can use class attributes (.NET) or annotations (Java) to 
indicate characteristics of the Testcase Class. The same technique can also be 
applied at the Test Method level. 

Variation: Test Method Selection 

When implemented as part of the Test Automation Framework, Test Method 
Selection can be done by specifying the “category” (or categories) to which a Test 
Method belongs. This usually requires language support for method attributes 
(.NET) or annotations (Java). It could also be based on a method name scheme, 
although this approach is not as fl exible and would require tighter coupling to 
the Test Runner.

Example: Testcase Class Selection Using Class Attributes 

The following example of Testcase Class Selection is from NUnit. The class 
attribute Category(“FastSuite”) indicates that all tests in this Testcase Class
should be included (or excluded) when the category “FastSuite” is specifi ed 
in the Test Runner.

404 Chapter 19  xUnit Basics Patterns
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[TestFixture]
[Category("FastSuite")]
public class CategorizedTests
{
   [Test]
   public void testFlightConstructor_OK()
   // Methods omitted
}

Example: Test Method Selection Using Method Attributes 

This example of Test Method Selection is from NUnit. The method attribute
Category(“SmokeTest”) indicates that this Test Method should be included (or 
excluded) when the category “SmokeTest” is specifi ed in the Test Runner.

   [Test]
   [Category("SmokeTests")]
   public void testFlightMileage_asKm()
   {
      // set up fixture
      Flight newFlight = new Flight(validFlightNumber);
      newFlight.setMileage(1122);
      // exercise mileage translator
      int actualKilometres = newFlight.getMileageAsKm();
      int expectedKilometres = 1810;
      // verify results
      Assert.AreEqual( expectedKilometres, actualKilometres);
   }
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Chapter 20 

Fixture Setup Patterns 
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In-line Setup

How do we construct the Fresh Fixture?

Each Test Method creates its own Fresh Fixture by calling the 
appropriate constructor methods to build exactly the test fi xture 

it requires.

To execute an automated test, we require a text fi xture that is well understood 
and completely deterministic. We can use the Fresh Fixture (page 311) approach 
to build a Minimal Fixture (page 302) for the use of this one test. Setting up the 
test fi xture on an in-line basis in each test is the most obvious way to build it. 

How It Works

Each Test Method (page 348) sets up its own test fi xture by directly calling what-
ever SUT code is required to construct exactly the test fi xture it requires. We put 
the code that creates the fi xture, the fi rst phase of the Four-Phase Test (page 358), 
at the top of each Test Method.
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When to Use It

We can use In-line Setup when the fi xture setup logic is very simple and straightforward. 
As soon as the fi xture setup gets at all complex, we should consider using Delegated 
Setup (page 411) or Implicit Setup (page 424) for part or all of the fi xture setup.

We can also use In-line Setup when we are writing a fi rst draft of tests and haven’t 
yet fi gured out which part of the fi xture setup will be repeated from test to test. 
This is an example of applying the “Red–Green–Refactor” process pattern to the 
tests themselves. Nevertheless, we need to be careful when we refactor the tests to 
ensure that we don’t break the tests in ways that are undetectable. 

A third occasion to use In-line Setup is when refactoring obtuse fi xture setup 
code. A fi rst step may be to use In-line Method [Fowler] refactorings on all 
Creation Methods (page 415) and the setUp method. Then we can try using a 
series of Extract Method [Fowler] refactorings to defi ne a new set of Creation
Methods that are more intent-revealing and reusable. 

Implementation Notes 

In practice, most fi xture setup logic will include a mix of styles, such as In-line
Setup building on top of Implicit Setup or Delegated Setup interspersed with 
In-line Setup.

Example: In-line Setup 

Here’s an example of simple in-line setup. Everything each Test Method needs 
for exercising the SUT is included in-line. 

   public void testStatus_initial() {
      // in-line setup
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");
      Flight flight = new Flight( flightNumber,
                                 departureAirport,
                                 destinationAirport);
      // exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // tearDown:
        //    garbage-collected
   }

   public void testStatus_cancelled() {
      // in-line setup
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");

In-line Setup 
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      Flight flight = new Flight( flightNumber,
                                  departureAirport,
                                  destinationAirport);
      flight.cancel(); // still part of setup
      // exercise SUT and verify outcome
      assertEquals(FlightState.CANCELLED, flight.getStatus());
      // tearDown:
        //    garbage-collected
   }

Refactoring Notes 

In-line Setup is normally the starting point for refactoring, not the end goal. 
Sometimes, however, we fi nd ourselves with tests that are too hard to under-
stand because of all the stuff happening behind the scenes, which is a form of 
Mystery Guest (see Obscure Test on page 186). At other times, we may fi nd 
ourselves modifying the previously setup fi xture in many of the tests. 

Both of these situations are indications it may be time to refactor our test 
class into multiple classes based on the fi xture they build. First, we use an In-
line Method refactoring on the code to produce an In-line Setup. Next, we 
reorganize the tests using an Extract Class [Fowler] refactoring. Finally, we use 
a series of Extract Method refactorings to defi ne a more understandable set of 
fi xture setup methods. 

In-line Setup 
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Delegated Setup

How do we construct the Fresh Fixture?

Each Test Method creates its own Fresh Fixture by calling Creation Methods 
from within the Test Methods.

To execute an automated test, we require a text fi xture that is well understood 
and completely deterministic. We are using a Fresh Fixture (page 311) approach 
to build a Minimal Fixture (page 302) for the use of this one test and we’d like 
to avoid Test Code Duplication (page 213). 

Delegated Setup lets us reuse the code to set up the fi xture without compromis-
ing our goal of Tests as Documentation (see page 23). 

How It Works 

Each Test Method (page 348) sets up its own test fi xture by calling one or more 
Creation Methods (page 415) to construct exactly the test fi xture it requires. 
To ensure Tests as Documentation, we build a Minimal Fixture using Creation
Methods that build fully formed objects that are ready for use by the test. We 
strive to ensure that the method calls will convey the “big picture” to the test 
reader by passing in only those values that affect the behavior of the SUT. 
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When to Use It 

We can use a Delegated Setup when we want to avoid the Test Code Duplication
caused by having to set up similar fi xtures for several tests and we want to keep 
the nature of the fi xture visible within the Test Methods. A reasonable goal is to 
encapsulate the essential but irrelevant steps of setting up the fi xture and leave 
only the steps and values essential to understanding the test within the Test Meth-
od. This scheme helps us achieve Tests as Documentation by ensuring that excess 
In-line Setup (page 408) code does not obscure the intent of the test. It also avoids 
the Mystery Guest problem (see Obscure Test on page 186) by leaving the Intent-
Revealing Name [SBPP] of the Creation Method call within the Test Method.

Furthermore, Delegated Setup allows us to use whatever organization scheme 
we want for our Test Methods. In particular, we are not forced to put Test Methods
that require the same test fi xture into the same Testcase Class (page 373) just to 
reuse the setUp method as we would have to when using Implicit Setup (page 424). 
Furthermore, Delegated Setup helps prevent Fragile Tests (page 239) by moving 
much of the nonessential interaction with the SUT out of the very numerous Test 
Methods and into a much smaller number of Creation Method bodies, where it is 
easier to maintain. 

Implementation Notes 

With modern refactoring tools, we can often create the fi rst cut of a Creation 
Method by performing a simple Extract Method [Fowler] refactoring. As we are 
writing a set of tests using “clone and twiddle,” we must watch for any Test Code 
Duplication in the fi xture setup logic within our tests. For each object that needs to 
be verifi ed in the verifi cation logic, we extract a Creation Method that takes only 
those attributes as parameters that affect the outcome of the test. 

Initially, we can leave the Creation Method on our Testcase Class. If we need 
to share them with another class, however, we can move the Creation Methods
to an Abstract Testcase class (see Testcase Superclass on page 638) or a Test 
Helper (page 643) class. 

Motivating Example 

Suppose we are testing the state model of the Flight class. In each test, we need 
to have a fl ight in the right state. Because a fl ight needs to connect at least two 
airports, we need to create airports before we can create a fl ight. Of course, air-
ports are typically associated with cities or states/provinces. To keep the example 
manageable, let’s assume that our airports require only a city name and an air-
port code. 

Delegated
Setup
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   public void testStatus_initial() {
      // in-line setup
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");
      Flight flight = new Flight(flightNumber,
                                 departureAirport,
                                 destinationAirport);
      // exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // teardown
        //    garbage-collected
   }

   public void testStatus_cancelled() {
      // in-line setup
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");
      Flight flight = new Flight( flightNumber,
                                 departureAirport,
                                 destinationAirport);
      flight.cancel(); // still part of setup
      // Exercise SUT and verify outcome
      assertEquals(FlightState.CANCELLED, flight.getStatus());
      // teardown
        //    garbage-collected
   }

These tests contain a fair amount of Test Code Duplication.

Refactoring Notes 

We can refactor the fi xture setup logic by using an Extract Method refactoring 
to remove any frequently repeated code sequences into utility methods with 
Intent-Revealing Names. We leave the calls to the methods in the test, however, 
so that the reader can see what is being done. The method calls that remain 
within the test will convey the “big picture” to the test reader. The utility meth-
od bodies contain the irrelevant mechanics of carrying out the intent. If we need 
to share the Delegated Setups with another Testcase Class, we can use either a 
Pull Up Method [Fowler] refactoring to move them to a Testcase Superclass or 
a Move Method [Fowler] refactoring to move them to a Test Helper class. 

Example: Delegated Setup 

In this version of the test, we use a method that hides the fact that we need two 
airports instead of creating the two airports needed by the fl ight within each Test 
Method. We could produce this version of the tests either through refactoring or 
by writing the test in this intent-revealing style right off the bat. 

 Delegated Setup
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   public void testGetStatus_initial() {
       // setup
      Flight flight = createAnonymousFlight();
      // exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // teardown
      //     garbage-collected
   }

   public void testGetStatus_cancelled2() {
      // setup
      Flight flight = createAnonymousCancelledFlight();
      // exercise SUT and verify outcome
      assertEquals(FlightState.CANCELLED, flight.getStatus());
      // teardown
      //     garbage-collected
   }

The simplicity of these tests was made possible by the following Creation Methods,
which hide the “necessary but irrelevant” steps from the test reader: 

   private int uniqueFlightNumber = 2000;

   public Flight createAnonymousFlight(){
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");
      Flight flight =
         new Flight( new BigDecimal(uniqueFlightNumber++),
                     departureAirport,
                     destinationAirport);
      return flight;
   }
   public Flight createAnonymousCancelledFlight(){
      Flight flight = createAnonymousFlight();
      flight.cancel();
      return flight;
   }

Delegated
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Creation Method

How do we construct the Fresh Fixture?

We set up the test fi xture by calling methods that hide the mechanics of 
building ready-to-use objects behind Intent-Revealing Names. 

Fixture setup usually involves the creation of a number of objects. In many 
cases, the details of those objects (i.e., the attribute values) are unimportant but 
must be specifi ed to satisfy each object’s constructor method. Including all of 
this unnecessary complexity within the fi xture setup part of the test can lead to 
Obscure Tests (page 186) and certainly doesn’t help us achieve Tests as Docu-
mentation (see page 23)! 

How can a properly initialized object be created without having to clutter 
the test with In-line Setup (page 408)? The answer, of course, is to encapsulate 
this complexity. Delegated Setup (page 411) moves the mechanics of the fi xture 
setup into other methods but leaves overall control and coordination within 
the test itself. But what to delegate to? A Creation Method is one way we can 
encapsulate the mechanics of object creation so that irrelevant details do not 
distract the reader. 
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How It Works 

As we write tests, we don’t bother asking whether a desired utility function 
exists; we just use it! (It helps to pretend that we have a loyal helper sitting 
next to us who will quickly fi ll in the bodies of any functions we call that do 
not exist as yet.) We write our tests in terms of these magic functions with 
Intent-Revealing Names [SBPP], passing as parameters only those things that 
will be verifi ed in the assertions or that should affect the outcome of the test. 

Once we’ve written the test in this very intent-revealing style, we must implement 
all of the magic functions that we’ve been calling. The functions that create objects 
are our Creation Methods; they encapsulate the complexity of object creation. The 
simple ones call the appropriate constructor, passing it suitable default values for 
anything needed but not supplied as a parameter. If any of the constructor argu-
ments are other objects, the Creation Method will fi rst create those depended-on 
objects before calling the constructor. 

The Creation Method may be placed in all the same places where we put 
Test Utility Methods (page 599). As usual, the decision is based on the expected 
scope of reuse and the Creation Method’s dependencies on the API of the SUT. 
A related pattern is Object Mother (see Test Helper on page 643), which is a 
combination of Creation Method, Test Helper, and optionally Automated Tear-
down (page 503). 

When to Use It 

We should use a Creation Method whenever constructing a Fresh Fixture
(page 311) requires signifi cant complexity and we value Tests as Documentation.
Another key indicator for using Creation Method is that we are building the 
system in a highly incremental way and we expect the API of the system (and 
especially the object constructors) to change frequently. Encapsulating knowl-
edge of how to create a fi xture object is a special case of SUT API Encapsulation 
(see Test Utility Method), and it helps us avoid both Fragile Tests (page 239) and 
Obscure Tests.

The main drawback of a Creation Method is that it creates another API for 
test automaters to learn. This isn’t much of a problem for the initial test devel-
opers because they are typically involved in building this API but it can create 
“one more thing” for new additions to the team to learn. Even so, this API 
should be pretty easy to understand because it is just a set of Factory Methods 
[GOF] organized in some way. 

If we are using a Prebuilt Fixture (page 429), we should use Finder Methods 
(see Test Utility Method) to locate the prebuilt objects. At the same time, we 
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may still use Creation Methods to lay mutable objects that we plan to modify 
on top of an Immutable Shared Fixture (see Shared Fixture on page 317).

Several variations of Creation Method are worth exploring. 

Variation: Parameterized Creation Method 

While it is possible (and often very desirable) for Creation Methods to take no 
parameters whatsoever, many tests will require some customization of the cre-
ated object. A Parameterized Creation Method allows the test to pass in some 
attributes to be used in the creation of the object. In such a case, we should pass 
only those attributes that are expected to affect (or those we want to demon-
strate do not affect) the test’s outcome; otherwise, we could be headed down the 
slippery slope to Obscure Tests.

Variation: Anonymous Creation Method 

An Anonymous Creation Method automatically creates a Distinct Generated 
Value (see Generated Value on page 723) as the unique identifi er for the object it 
is creating even though the arguments it receives may not be unique. This behav-
ior is invaluable for avoiding Unrepeatable Tests (see Erratic Test on page 228)
because it ensures that every object we create is unique, even across multiple test 
runs. If the test cares about some attributes of the object to be created, it can 
pass them as parameters of the Creation Method; this behavior turns the Anony-
mous Creation Method into a Parameterized Anonymous Creation Method.

Variation: Parameterized Anonymous Creation Method 

A Parameterized Anonymous Creation Method is a combination of several other 
variations of Creation Method in that we pass in some attributes to be used in 
the creation of the object but let the Creation Method create the unique identi-
fi er for it. A Creation Method could also take zero parameters if the test doesn’t 
care about any of the attributes. 

Variation: Named State Reaching Method 

Some SUTs are essentially stateless, meaning we can call any method at any 
time. By contrast, when the SUT is state-rich and the validity or behavior of 
methods is affected by the state of the SUT, it is important to test each method 
from each possible starting state. We could chain a bunch of such tests together 
in a single Test Method (page 348), but that approach would create an Eager
Test (see Assertion Roulette on page 224). It is better to use a series of Single-
Condition Tests (see page 45) for this purpose. Unfortunately, that leaves us 
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with the problem of how to set up the starting state in each test without a lot of 
Test Code Duplication (page 213). 

One obvious solution is to put all tests that depend on the same starting state 
into the same Testcase Class (page 373) and to create the SUT in the appropri-
ate state in the setUp method using Implicit Setup (page 424) (called Testcase 
Class per Fixture; see page 631). The alternative is to use Delegated Setup by 
calling a Named State Reaching Method; this approach allows us to choose 
some other way to organize our Testcase Classes.

Either way, the code that sets up the SUT will be easier to understand if it 
is short and sweet. That’s where a Named State Reaching Method comes in 
handy. By encapsulating the logic required to create the test objects in the cor-
rect state in a single place (whether on the Testcase Class or a Test Helper), we 
reduce the amount of code we must update if we need to change how we put 
the test object into that state. 

Variation: Attachment Method 

Suppose we already have a test object and we want to modify it in some way. We 
fi nd ourselves performing this task in enough tests to want to code this modifi ca-
tion once and only once. The solution in this case is an Attachment Method. The 
main difference between this variation and the original Creation Method pattern 
is that we pass in the object to be modifi ed (one that was probably returned by 
another Creation Method) and the object we want to set one of its attributes to; 
the Attachment Method does the rest of the work for us. 

Implementation Notes 

Most Creation Methods are created by doing an Extract Method [Fowler] refac-
toring on parts of an existing test. When we write tests in an “outside-in” man-
ner, we assume that the Creation Methods already exist and fi ll in the method 
bodies later. In effect, we defi ne a Higher-Level Language (see page 41) for defi n-
ing our fi xtures. Nevertheless, there is another, completely different way to defi ne 
Creation Methods.

Variation: Reuse Test for Fixture Setup 

We can set up the fi xture by calling another Test Method to do the fi xture setup 
for us. This assumes that we have some way of accessing the fi xture that the 
other test created, either through a Registry [PEAA] object or through instance 
variables of the Testcase Object (page 382). 

It may be appropriate to implement a Creation Method in this way when 
we already have tests that depend on other tests to set up their test fi xture but 
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we want to reduce the likelihood that a change in the test execution order of 
Chained Tests (page 454) will cause tests to fail. Mind you, the tests will run 
more slowly because each test will call all the preceding tests it depends on each 
time each test is run rather than each test being run only once per test run. Of 
course, each test needs to call only the specifi c tests it actually depends on, not all 
tests in the test suite. This slowdown won’t be very noticeable if we have replaced 
any slow components, such as a database, with a Fake Object (page 551). 

Wrapping the Test Method in a Creation Method is a better option than 
calling the Test Method directly from the client Test Method because most Test 
Methods are named based on which test condition(s) they verify, not what (fi x-
ture) they leave behind. The Creation Method lets us put a nice Intent-Revealing 
Name between the client Test Method and the implementing Test Method. It 
also solves the Lonely Test (see Erratic Test) problem because the other test is 
run explicitly from within the calling test rather than just assuming that it was 
already run. This scheme makes the test less fragile and easier to understand but 
it won’t solve the Interacting Tests (see Erratic Test) problem: If the test we call 
fails and leaves the test fi xture in a different state than we expected, our test will 
likely fail as well, even if the functionality we are testing is still working. 

Motivating Example 

In the following example, the testPurchase test requires a Customer to fi ll the role of 
the buyer. The fi rst and last names of the buyer have no bearing on the act of pur-
chasing, but are required parameters of the Customer constructor; we do care that 
the Customer’s credit rating is good (“G”) and that he or she is currently active. 

   public void testPurchase_firstPurchase_ICC() {
      Customer buyer =
         new Customer(17, "FirstName", "LastName", "G","ACTIVE");
      // ...
   }
   public void testPurchase_subsequentPurchase_ICC() {
      Customer buyer =
         new Customer(18, "FirstName", "LastName", "G","ACTIVE");
      // ...
   }

The use of constructors in tests can be problematic, especially when we are 
building an application incrementally. Every change to the parameters of the 
constructor will force us to revisit a lot of tests or jump through hoops to keep 
the constructor signatures backward compatible for the sake of the tests. 
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Refactoring Notes 

We can use an Extract Method refactoring to remove the direct call to the construc-
tor. We can give the new Creation Method an appropriate Intent-Revealing Name 
such as createCustomer based on the style of Creation Method we have created. 

Example: Anonymous Creation Method 

In the following example, instead of making that direct call to the Customer
constructor, we now use the Customer Creation Method. Notice that the coupling 
between the fi xture setup code and the constructor has been removed. If another 
parameter such as phone number is added to the Customer constructor, only the 
Customer Creation Method must be updated to provide a default value; the fi xture 
setup code remains insulated from the change thanks to encapsulation. 

   public void testPurchase_firstPurchase_ACM() {
      Customer buyer = createAnonymousCustomer();
      // ...
   }
   public void testPurchase_subsequentPurchase_ACM() {
      Customer buyer = createAnonymousCustomer();
      // ...
   }

We call this pattern an Anonymous Creation Method because the identity of 
the customer does not matter. The Anonymous Creation Method might look 
something like this: 

   public Customer createAnonymousCustomer() {
      int uniqueid = getUniqueCustomerId();
      return new Customer(uniqueid,
                          "FirstName" + uniqueid,
                          "LastName" + uniqueid,
                          "G", "ACTIVE");
   }

Note the use of a Distinct Generated Value to ensure that each anonymous Customer
is slightly different to avoid accidentally creating an identical Customer.

Example: Parameterized Creation Method 

If we wanted to supply some of the Customer’s attributes as parameters, we could 
defi ne a Parameterized Creation Method:

   public void testPurchase_firstPurchase_PCM() {
      Customer buyer =
            createCreditworthyCustomer("FirstName", "LastName");
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      // ...
   }
   public void testPurchase_subsequentPurchase_PCM() {
      Customer buyer = createCreditworthyCustomer("FirstName", "LastName");
      // ...
   }

Here’s the corresponding Parameterized Creation Method defi nition: 

   public Customer createCreditworthyCustomer(
                      String firstName, String lastName) {
      int uniqueid = getUniqueCustomerId();
      Customer customer =
          new Customer(uniqueid,firstName,lastName,"G","ACTIVE");
      customer.setCredit(CreditRating.EXCELLENT);
      customer.approveCredit();
      return customer;
   }

Example: Attachment Method 

Here’s an example of a test that uses an Attachment Method to associate two 
customers to verify that both get the best discount either of them has earned or 
negotiated:

   public void testPurchase_relatedCustomerDiscount_AM() {
      Customer buyer = createCreditworthyCustomer("Related", "Buyer");
      Customer discountHolder = 
            createCreditworthyCustomer("Discount", "Holder");
      createRelationshipBetweenCustomers( buyer, discountHolder);
      // ...
   }

Behind the scenes, the Attachment Method does whatever it takes to establish 
the relationship: 

   private void createRelationshipBetweenCustomers(
                                     Customer buyer,
                                     Customer discountHolder) {
      buyer.addToRelatedCustomersList( discountHolder );
      discountHolder.addToRelatedCustomersList( buyer );
   }

Although this example is relatively simple, the call to this method is still easier to 
understand than reading both the method calls of which it consists. 
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Example: Test Reused for Fixture Setup 

We can reuse other tests to set up the fi xture for our test. Here is an example of 
how not to do it: 

   private Customer buyer;
   private AccountManager sut =  new AccountManager();
   private Account account;

   public void testCustomerConstructor_SRT() {
      // Exercise
      buyer = new Customer(17, "First", "Last", "G", "ACTIVE");
      // Verify
      assertEquals( "First", buyer.firstName(), "first");
      // ...
   }
   public void testPurchase_SRT() {
      testCustomerConstructor_SRT();  // Leaves in field "buyer"
      account = sut.createAccountForCustomer( buyer );
      assertEquals( buyer.name, account.customerName, "cust");
      // ...
   }

The problem here is twofold. First, the name of the Test Method we are calling 
describes what it verifi es (e.g., a name) and not what it leaves behind (i.e., a Customer
in the buyer fi eld. Second, the test does not return a Customer; it leaves the Customer in 
an instance variable. This scheme works only because the Test Method we want 
to reuse is on the same Testcase Class; if it were on an unrelated class, we would 
have to do a few backfl ips to access the buyer. A better way to accomplish this goal 
is to encapsulate this call behind a Creation Method:

   private Customer buyer;
   private AccountManager sut =  new AccountManager();
   private Account account;

   public void testCustomerConstructor_RTCM() {
      // Exercise
      buyer = new Customer(17, "First", "Last", "G", "ACTIVE");
      // Verify
      assertEquals( "First", buyer.firstName(), "first");
      // ...
   }
   public void testPurchase_RTCM() {
      buyer = createCreditworthyCustomer();
      account = sut.createAccountForCustomer( buyer );
      assertEquals( buyer.name, account.customerName, "cust");
      // ...
   }
   public Customer createCreditworthyCustomer() {
      testCustomerConstructor_RTCM();
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      return buyer;
      // ...
   }

Notice how much more readable this test has become? We can see where the buyer
came from! This was easy to do because both Test Methods were on the same 
class. If they were on different classes, our Creation Method would have to create 
an instance of the other Testcase Class before it could run the test. Then it would 
have to fi nd a way to access the buyer instance variable so that it could return it 
to the calling Test Method. Creation
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Implicit Setup

How do we construct the Fresh Fixture?

We build the test fi xture common to several tests in the setUp method.

To execute an automated test, we require a text fi xture that is well understood 
and completely deterministic. We are using a Fresh Fixture (page 311) approach 
to build the Minimal Fixture (page 302) for the use of this one test. 

Implicit Setup is a way to reuse the fi xture setup code for all Test Meth-
ods (page 348) in a Testcase Class (page 373). 

How It Works 

All tests in a Testcase Class create identical Fresh Fixtures by doing test fi xture 
setup in a special setUp method on the Testcase Class. The setUp method is called 
automatically by the Test Automation Framework (page 298) before it calls each 
Test Method. This allows the fi xture setup code placed in the setUp method to 
be reused without reusing the same instance of the test fi xture. This approach is 
called “implicit” setup because the calls to the fi xture setup logic are not explicit 
within the Test Method, unlike with In-line Setup (page 408) and Delegated Set-
up (page 411). 
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When to Use It 

We can use Implicit Setup when several Test Methods on the same Testcase Class
need an identical Fresh Fixture. If all Test Methods need the exact same fi xture, 
then the entire Minimal Fixture needed by each test can be set up in the setUp
method. This form of Test Method organization is known as Testcase Class per 
Fixture (page 631). 

When the Test Methods need different fi xtures because we are using a Testcase 
Class per Feature (page 624) or Testcase Class per Class (page 617) scheme, it 
is more diffi cult to use Implicit Setup and still build a Minimal Fixture. We can 
use the setUp method only to set up the part of the fi xture that does not cause any 
problems for the other tests. A reasonable compromise is to use Implicit Setup to 
set up the parts of the fi xture that are essential but irrelevant and leave the setup 
of critical (and different from test to test) parts of the fi xture to the individual 
Test Methods. Examples of “essential but irrelevant” fi xture setup include ini-
tializing variables with “don’t care” values and initializing hidden “plumbing” 
such as database connections. Fixture setup logic that directly affects the state of 
the SUT should be left to the individual Test Methods unless every Test Method
requires the same starting state. 

The obvious alternatives for creating a Fresh Fixture are In-line Setup, in 
which we include all setup logic within each Test Method without factoring out 
any common code, and Delegated Setup, in which we move all common fi xture 
setup code into a set of Creation Methods (page 415) that we can call from 
within the setup part of each Test Method. 

Implicit Setup removes a lot of Test Code Duplication (page 213) and helps 
prevent Fragile Tests (page 239) by moving much of the nonessential interaction 
with the SUT out of the very numerous tests and into a much smaller num-
ber of places where it is easier to maintain. It can, however, lead to Obscure
Tests (page 186) when a Mystery Guest makes the test fi xture used by each test 
less obvious. It can also lead to a Fragile Fixture (see Fragile Test) if all tests in 
the class do not really need identical test fi xtures. 

Implementation Notes 

The main implementation considerations for Implicit Setup are as follows: 

• How do we cause the fi xture setUp method to be called?

• How do we tear the fi xture down?

• How do the Test Methods access the fi xture? 
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Calling the Setup Code 

A setUp method is the most common way to handle Implicit Setup; it consists of 
having the Test Automation Framework call the setUp method before each Test 
Method. Strictly speaking, the setUp method is not the only form of implicit fi x-
ture setup. Suite Fixture Setup (page 441), for example, is used to set up and tear 
down a Shared Fixture (page 317) that is reused by the Test Methods on a single 
Testcase Class. In addition, Setup Decorator (page 447) moves the setUp method 
to a Decorator [GOF] object installed between the Test Suite Object (page 387) 
and the Test Runner (page 377). Both are forms of Implicit Setup because the 
setUp logic is not explicit within the Test Method.

Tearing Down the Fixture 

The fi xture teardown counterpart of Implicit Setup is Implicit Teardown (page 516). 
Anything that we set up in the setUp method that is not automatically cleaned up by 
Automated Teardown (page 503) or garbage collection should be torn down in the 
corresponding tearDown method. 

Accessing the Fixture 

The Test Methods need to be able to access the test fi xture built in the 
setUp method. When they were used in the same method, local variables were 
suffi cient. To communicate between the setUp method and the Test Method, how-
ever, the local variables must be changed into instance variables. We must be 
careful not to make them class variables as this will result in the potential for a 
Shared Fixture. (See the sidebar “There’s Always an Exception” on page 384 for a 
description of when instance variations do not provide this level of isolation.) 

Motivating Example 

In the following example, each test needs to create a fl ight between a pair of 
airports.

   public void testStatus_initial() {
      // in-line setup
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");
      Flight flight = new Flight( flightNumber,
                                 departureAirport,
                                 destinationAirport);
      // exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
      // teardown
        //    garbage-collected
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   }

   public void testStatus_cancelled() {
      // in-line setup
      Airport departureAirport = new Airport("Calgary", "YYC");
      Airport destinationAirport = new Airport("Toronto", "YYZ");
      Flight flight = new Flight( flightNumber,
                                 departureAirport,
                                 destinationAirport);
      flight.cancel(); // still part of setup
      // exercise SUT and verify outcome
      assertEquals(FlightState.CANCELLED, flight.getStatus());
      // teardown
        //    garbage-collected
   }

Refactoring Notes 

These tests contain a fair amount of Test Code Duplication. We can remove this 
duplication by refactoring this Testcase Class to use Implicit Setup. There are 
two refactoring cases to consider.

First, when we discover that all tests are doing similar work to set up their 
test fi xtures but are not sharing a setUp method, we can do an Extract Meth-
od [Fowler] refactoring of the fi xture setup logic in one of the tests to create 
our setUp method. We will also need to convert any local variables to instance 
variables (fi elds) that hold the references to the resulting fi xture until the Test 
Method can access it. 

Second, when we discover that a Testcase Class already uses the setUp method to 
build the fi xture and has tests that need a different fi xture, we can use an Extract 
Class [Fowler] refactoring to move all Test Methods that need a different setup 
method to a different class. We need to ensure any instance variables that are used 
to convey knowledge of the fi xture from the setup method to the Test Methods
are transferred along with the setUp method. Sometimes it is simpler to clone the 
Testcase Class and delete each test from one or the other copy of the class; we can 
then delete from each class any instance variables that are no longer being used. 

Example: Implicit Setup 

In this modifi ed example, we have moved all common fi xture setup code to the 
setUp method of our Testcase Class. This avoids the need to repeat this code in 
each test and makes each test much shorter—which is a good thing. 

   Airport departureAirport;
   Airport destinationAirport;
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   Flight flight;

   public void setUp() throws Exception{
      super.setUp(); 
      departureAirport = new Airport("Calgary", "YYC");
      destinationAirport = new Airport("Toronto", "YYZ");
      BigDecimal flightNumber = new BigDecimal("999");
      flight = new Flight( flightNumber , departureAirport,
                          destinationAirport);
   }

   public void testGetStatus_initial() {
      // implicit setup
      // exercise SUT and verify outcome
      assertEquals(FlightState.PROPOSED, flight.getStatus());
   }

   public void testGetStatus_cancelled() {
      // implicit setup partially overridden
      flight.cancel();
      // exercise SUT and verify outcome
      assertEquals(FlightState.CANCELLED, flight.getStatus());
   }

This approach has several disadvantages, which arise because we are not 
organizing our Test Methods around a Testcase Class per Fixture. (We are using 
Testcase Class per Feature here.) All the Test Methods on the Testcase Class
must be able to make do with the same fi xture (at least as a starting point), as 
evidenced by the partially overridden fi xture setup in the second test in the exam-
ple. The fi xture is also not very obvious in these tests. Where does the fl ight come 
from? Is there anything special about it? We cannot even rename the instance 
variable to communicate the nature of the fl ight better because we are using it to 
hold fl ights with different characteristics in each test. 
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Prebuilt Fixture

How do we cause the Shared Fixture to be built before the fi rst 
test method that needs it?

We build the Shared Fixture separately from running the tests.

When we choose to use a Shared Fixture (page 317), whether it be for reasons 
of convenience or out of necessity, we need to create the Shared Fixture before 
we use it. 

How It Works 

We create the fi xture sometime before running the test suite. We can create the 
fi xture a number of different ways that we’ll discuss later. The most important 
point is that we don’t need to build the fi xture each time the test suite is run 
because the fi xture outlives both the mechanism used to build it and any one 
test run that uses it. 

When to Use It 

We can reduce the overhead of creating a Shared Fixture each time a test suite is 
run by creating the fi xture only occasionally. This pattern is especially appropri-
ate when the cost of constructing the Shared Fixture is extremely high or cannot 
be automated easily. 
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Because of the Manual Intervention (page 250) required to (re)build the fi xture 
before the tests are run, we’ll probably end up using the same fi xture several times, 
which can lead to Erratic Tests (page 228) caused by shared fi xture pollution. We 
may be able to avoid these problems by treating the Prebuilt Fixture as an Immu-
table Shared Fixture (see Shared Fixture) and building a Fresh Fixture (page 311) 
for anything we plan to modify. 

The alternatives to a Prebuilt Fixture are a Shared Fixture that is built once 
per test run and a Fresh Fixture. Shared Fixtures can be constructed using Suite
Fixture Setup (page 441), Lazy Setup (page 435), or Setup Decorator (page 447). 
Fresh Fixtures can be constructed using In-line Setup (page 408), Implicit
Setup (page 424), or Delegated Setup (page 411). 

Variation: Global Fixture 

A Global Fixture is a special case of Prebuilt Fixture where we shared the fi xture 
between multiple test automaters. The key difference is that the fi xture is globally 
visible and not “private” to a particular user. This pattern is most commonly em-
ployed when we are using a single shared Database Sandbox (page 650) without 
using some form of Database Partitioning Scheme (see Database Sandbox). 

The tests themselves can be the same as those used for a basic Prebuilt Fix-
ture; likewise, the fi xture setup is the same as that for a Prebuilt Fixture. What’s 
different here are the kinds of problems we can encounter. Because the fi xture 
is now shared among multiple users, each of whom is running a separate Test 
Runner (page 377) on a different CPU, we may experience all sorts of multipro-
cessing-related issues. The most common problem is a Test Run War (see Erratic 
Test) where we see seemingly random results. We can avoid this possibility 
by adopting some kind of Database Partitioning Scheme or by using Distinct
Generated Values (see Generated Value on page 723) for any fi elds with unique 
key constraints. 

Implementation Notes 

The tests themselves look identical to a basic Shared Fixture. What’s different is 
how the fi xture is set up. The test reader won’t be able to fi nd any sign of it either 
within the Testcase Class (page 373) or in a Setup Decorator or Suite Fixture 
Setup method. Instead, the fi xture setup is most probably performed manually 
via some kind of database copy operation, by using a Data Loader (see Back 
Door Manipulation on page 327) or by running a database population script. In 
these examples of Back Door Setup (see Back Door Manipulation), we bypass 
the SUT and interact with its database directly. (See the sidebar “Database as 
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SUT API?” on page 336 for an example of when the back door really is a front 
door.) Another option is to use a Fixture Setup Testcase (see Chained Tests on
page 454) run from a Test Runner either manually or on a regular schedule. 

Another difference is how the Finder Methods (see Test Utility Method on
page 599) are implemented. We cannot just store the results of creating the 
objects in a class variable or an in-memory Test Fixture Registry (see Test Helper 
on page 643) because we aren’t setting the fi xture up in code within the test 
run. Two of the more commonly used options available to us are (1) to store 
the unique identifi ers generated during fi xture construction in a persistent Test 
Fixture Registry (such as a fi le) as we build the fi xture so that the Finder Meth-
ods can retrieve them later and (2) to hard-code the identifi ers in the Finder
Methods. We could search for objects/records that meet the Finder Methods’
criteria at runtime, but that approach might result in Nondeterministic Tests 
(see Erratic Test) because each test run could end up using a different object/re-
cord from the Prebuilt Fixture. This strategy may be a good idea if each test run 
modifi es the objects such that they no longer satisfy the criteria. Nevertheless, it 
may make debugging a failing test rather diffi cult, especially if the failures occur 
intermittently because some other attribute of the selected object is different. 

Motivating Example 

The following example shows the construction of a Shared Fixture using Lazy
Setup:1

   protected void setUp() throws Exception {
      if (sharedFixtureInitialized) {
         return;
      }
      facade = new FlightMgmtFacadeImpl();
      setupStandardAirportsAndFlights();
      sharedFixtureInitialized = true;
   }

   protected void tearDown() throws Exception {
      // Cannot delete any objects because we don't know
      // whether this is the last test
   }

Note the call to setupStandardAirports in the setUp method. The tests use this fi xture 
by calling Finder Methods that return objects from the fi xture that match certain 
criteria:

1 Of course, there are other ways to set up the Shared Fixture, such as Setup Decorator
and Suite Fixture Setup.
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   public void testGetFlightsByFromAirport_OneOutboundFlight()
            throws Exception {
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                           outboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
            throws Exception {
      FlightDto[] outboundFlights =
         findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                      outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

Refactoring Notes 

One way to convert a Testcase Class from a Standard Fixture (page 305) to a 
Prebuilt Fixture is to do an Extract Class [Fowler] refactoring so that the fi xture 
is set up in one class and the Test Methods (page 348) are located in another 
class. Of course, we need to provide a way for the Finder Methods to deter-
mine which objects or records exist in the structure because we won’t be able to 
guarantee that any instance or class variables will bridge the time gap between 
fi xture construction and fi xture usage. 

Example: Prebuilt Fixture Test 

Here is the resulting Testcase Class that contains the Test Methods. Note that it 
looks almost identical to the basic Shared Fixture tests.

   public void testGetFlightsByFromAirport_OneOutboundFlight()
            throws Exception {
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                           outboundFlight.getOriginAirportId());
      // Verify Outcome
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      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
            throws Exception {
      FlightDto[] outboundFlights =
         findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                      outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

What’s different is how the fi xture is set up and how the Finder Methods are 
implemented.

Example: Fixture Setup Testcase 

We may fi nd it to be convenient to set up our Prebuilt Fixture using xUnit. This is 
simple to do if we already have the appropriate Creation Methods (page 415) or 
constructors already defi ned and we have a way to easily persist the objects into 
the Database Sandbox. In the following example, we call the same method as in 
the previous example from the setUp method, except that now the method lives 
in the setUp method of a Fixture Setup Testcase that can be run whenever we want 
to regenerate the Prebuilt Fixture:

public class FlightManagementFacadeSetupTestcase
         extends AbstractFlightManagementFacadeTestCase {
   public FlightManagementFacadeSetupTestcase(String name) {
      super(name);
   }

   protected void setUp() throws Exception {
      facade = new FlightMgmtFacadeImpl();
      helper = new FlightManagementTestHelper();
      setupStandardAirportsAndFlights();
      saveFixtureInformation();
   }

   protected void tearDown() throws Exception {
      // Leave the Prebuilt Fixture for later use
   }

}
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Note that there are no Test Methods on this Testcase Class and the tearDown
method is empty. Here we want to do only the setup—nothing else. 

Once we created the objects, we saved the information to the database using 
the call to saveFixtureInformation; this method persists the objects and saves the 
various keys in a fi le so that we can reload them for use from the subsequent 
real test runs. This approach avoids the need to hard-code knowledge of the 
fi xture into Test Methods or Test Utility Methods. In the interest of space, I’ll 
spare you the details of how we fi nd the “dirty” objects and save the key infor-
mation; there is more than one way to handle this task and any of these tactics 
will suffi ce. 

Example: Prebuilt Fixture Setup Using a Data Population 
Script

There are as many ways to build a Prebuilt Fixture in a Database Sandbox as 
there are programming languages—everything from SQL scripts to Pearl and 
Ruby programs. These scripts can contain the data or they can read the data 
from a collection of fl at fi les. We can even copy the contents of a “golden” data-
base into our Database Sandbox. I’ll leave it as an exercise for you to fi gure out 
what’s most appropriate in your particular circumstance. 
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Lazy Setup

How do we cause the Shared Fixture to be built before the 
fi rst test method that needs it?

We use Lazy Initialization of the fi xture to create it in the fi rst test that needs it.

Shared Fixtures (page 317) are often used to speed up test execution by reducing 
the number of times a complex fi xture needs to be created. Unfortunately, a test 
that depends on other tests to set up the fi xture cannot be run by itself; it is a 
Lonely Test (see Erratic Test on page 228)

We can avoid this problem by having each test use Lazy Setup to set up the 
fi xture if it is not already set up. 

How It Works 

We use Lazy Initialization [SBPP] to construct the fi xture in the fi rst test that 
needs it and then store a reference to the fi xture in a class variable that every 
test can access. All subsequently run tests will discover that the fi xture is already 
created and that they can reuse it, thereby avoiding the effort of constructing 
the fi xture anew. 
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When to Use It 

We can use Lazy Setup whenever we need to create a Shared Fixture yet still 
want to be able to run each test by itself. We can also use Lazy Setup instead 
of other techniques such as Setup Decorator (page 447) and Suite Fixture Set-
up (page 441) if it is not crucial that the fi xture be torn down. For example, 
we could use Lazy Setup when we are using a fi xture that can be torn down by 
Garbage-Collected Teardown (page 500). We might also use Lazy Setup when 
we are using Distinct Generated Values (see Generated Value on page 723) for 
all database keys and aren’t worried about leaving extra records lying around 
after each test; Delta Assertions (page 485) make this approach possible. 

The major disadvantage of Lazy Setup is the fact that while it is easy to 
discover that we are running the fi rst test and need to construct the fi xture, 
it is diffi cult to determine that we are running the last test and the fi xture 
should be destroyed. Most members of the xUnit family of Test Automation 
Frameworks (page 298) do not provide any way to determine this fact other 
than by using a Setup Decorator for the entire test suite. A few members of the 
xUnit family support Suite Fixture Setup (NUnit, VbUnit, and JUnit 4.0 and 
newer, to name a few), which provides setUp/tearDown “bookends” for a Testcase 
Class (page 373). Unfortunately, this ability won’t help us if we are writing our 
tests in Ruby, Python, or PLSQL! 

Some IDEs and Test Runners (page 377) automatically reload our classes every 
time the test suite is run. This causes the original class variable to go out of scope, 
and the fi xture will be garbage-collected before the new version of the class is run. 
In these cases there may be no negative consequence of using Lazy Setup.

A Prebuilt Fixture (page 429) is another alternative to setting up the Shared
Fixture for each test run. Its use can lead to Unrepeatable Tests (see Erratic 
Test) if the fi xture is corrupted by some of the tests. 

Implementation Notes 

Because Lazy Setup makes sense only with Shared Fixtures, Lazy Setup carries 
all the same baggage that comes with Shared Fixtures.

Normally, Lazy Setup is used to build a Shared Fixture to be used by a single 
Testcase Class. The reference to the fi xture is held in a class variable. Things 
get a bit trickier if we want to share the fi xture across several Testcase Classes.
We could move both the Lazy Initialization logic and the class variable to a 
Testcase Superclass (page 638) but only if our language supports inheritance of 
class variables. The other alternative is to move the logic and variables to a Test 
Helper (page 643). 
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Of course, we could use an approach such as reference counting as a way 
to know whether all Test Methods (page 348) have run. The challenge would 
be to know how many Testcase Objects (page 382) are in the Test Suite 
Object (page 387) so that we can compare this number with the number of times 
the tearDown method has been called. I have never seen anyone do this so I won’t 
call it a pattern! Adding logic to the Test Runner to invoke a tearDown method at 
the Test Suite Object level would amount to implementing Suite Fixture Setup.

Motivating Example 

In this example, we have been building a new fi xture for each Testcase Object:

   public void testGetFlightsByFromAirport_OneOutboundFlight()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
              throws Exception {
      setupStandardAirportsAndFlights();
      FlightDto[] outboundFlights =
                 findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

Not surprisingly, these tests are slow because creating the airports and fl ights 
involves a database. We can try refactoring these tests to set up the fi xture in the 
setUp method (Implicit Setup; see page 424): 

   protected void setUp() throws Exception {
      facade = new FlightMgmtFacadeImpl();
      helper = new FlightManagementTestHelper();
      setupStandardAirportsAndFlights();
      oneOutboundFlight = findOneOutboundFlight();
   }
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   protected void tearDown() throws Exception {
      removeStandardAirportsAndFlights();
   }

   public void testGetFlightsByOriginAirport_NoFlights_td()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      try {
         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport(outboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         facade.removeAirport(outboundAirport);
      }
   }

   public void testGetFlightsByFromAirport_OneOutboundFlight()
               throws Exception {
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                     oneOutboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  oneOutboundFlight,
                                  flightsAtOrigin);
   }

   public void testGetFlightsByFromAirport_TwoOutboundFlights()
               throws Exception {
      FlightDto[] outboundFlights =
                  findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                  outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }

This doesn’t speed up our tests one bit because the Test Automation Framework
calls the setUp and tearDown methods for each Testcase Object. All we have done 
is moved the code. We need to fi nd a way to set up the fi xture only once per 
test run. 
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Refactoring Notes 

We can reduce the number of times we set up the fi xture by converting this test to 
Lazy Setup. Because the fi xture setup is already handled by the setUp method, we 
need simply insert the Lazy Initialization logic into the setUp method so that only 
the fi rst test will cause it to be run. We must not forget to remove the tearDown logic, 
because it will render the Lazy Initialization logic useless if it removes the fi xture 
after each Test Method has run! Sorry, but there is nowhere that we can move 
this logic to so that it will be run after the last Test Method has completed if our 
xUnit family member doesn’t support Suite Fixture Setup.

Example: Lazy Setup 

Here is the same test refactored to use Lazy Setup:

   protected void setUp() throws Exception {
      if (sharedFixtureInitialized) {
         return;
      }
      facade = new FlightMgmtFacadeImpl();
      setupStandardAirportsAndFlights();
      sharedFixtureInitialized = true;
   }

   protected void tearDown() throws Exception {
      // Cannot delete any objects because we don't know
      // whether this is the last test
   }

While there is a tearDown method on AirportFixture, there is no way to know when 
to call it! That’s the main consequence of using Lazy Setup. Because the variables 
are static, they will not go out of scope; hence the fi xture will not be garbage col-
lected until the class is unloaded or reloaded. 

The tests are unchanged from the Implicit Setup version: 

   public void testGetFlightsByFromAirport_OneOutboundFlight()
            throws Exception {
      FlightDto outboundFlight = findOneOutboundFlight();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                           outboundFlight.getOriginAirportId());
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  outboundFlight,
                                  flightsAtOrigin);
   }
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   public void testGetFlightsByFromAirport_TwoOutboundFlights()
            throws Exception {
      FlightDto[] outboundFlights =
         findTwoOutboundFlightsFromOneAirport();
      // Exercise System
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                      outboundFlights[0].getOriginAirportId());
      // Verify Outcome
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      outboundFlights,
                                      flightsAtOrigin);
   }
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Suite Fixture Setup

How do we cause the Shared Fixture to be built before the 
fi rst test method that needs it?

We build/destroy the shared fi xture in special methods called by the Test 
Automation Framework before/after the fi rst/last Test Method is called.

Shared Fixtures (page 317) are commonly used to reduce the amount of per-test 
overhead required to set up the fi xture. Sharing a fi xture involves extra test program-
ming effort because we must create the fi xture and have a way of discovering the 
fi xture in each test. Regardless of how the fi xture is accessed, it must be initialized 
(constructed) before it is used. 

Suite Fixture Setup is one way to initialize the fi xture if all the Test Meth-
ods (page 348) that need it are defi ned on the same Testcase Class (page 373). 

How It Works 

We implement or override a pair of methods that the Test Automation Frame-
work (page 298) calls automatically. The name or annotation of these methods 
varies between members of the xUnit family but all work the same way: The 
framework calls the Suite Fixture Setup method before it calls the setUp method 
for the fi rst Test Method; it calls the Suite Fixture Teardown method after it 
calls the tearDown method for the fi nal Test Method. (I would have preferred to 
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say, “method on the fi rst/fi nal Testcase Object” but that isn’t true: NUnit, unlike 
other members of the xUnit family, creates only a single Testcase Object. See the 
sidebar “There’s Always an Exception” on page 384 for details.) 

When to Use It 

We can use Suite Fixture Setup when we have a test fi xture we wish to share 
between all Test Methods of a single Testcase Class and our variant of xUnit sup-
ports this feature. This pattern is particularly useful if we need to tear down the 
fi xture after the last test is run. At the time of writing this book, only VbUnit, 
NUnit, and JUnit 4.0 supported Suite Fixture Setup “out of the box.” Nevertheless, 
it is not diffi cult to add this capability in most variants of xUnit. 

If we need to share the fi xture more widely, we must use either a Prebuilt
Fixture (page 429), a Setup Decorator (page 447), or Lazy Setup (page 435). 
If we don’t want to share the actual instance of the fi xture but we do want to 
share the code to set up the fi xture, we can use Implicit Setup (page 424) or 
Delegated Setup (page 411). 

The main reason for using a Shared Fixture, and hence Suite Fixture Setup,
is to overcome the problem of Slow Tests (page 253) caused by too many test 
fi xture objects being created each time every test is run. Of course, a Shared 
Fixture can lead to Interacting Tests (see Erratic Test on page 228) or even 
a Test Run War (see Erratic Test); the sidebar “Faster Tests Without Shared 
Fixtures” (page 319) describes other ways to solve this problem. 

Implementation Notes 

For Suite Fixture Setup to work properly, we must ensure that the fi xture is 
remembered between calls to the Test Methods. This criterion implies we need to 
use a class variable, Registry [PEAA], or Singleton [GOF] to hold the references 
to the fi xture (except in NUnit; see the sidebar “There’s Always an Exception” 
on page 384). The exact implementation varies from one member of the xUnit 
family to the next. Here are a few highlights: 

• In VbUnit, we implement the interface IFixtureFrame in the Testcase Class,
thereby causing the Test Automation Framework (1) to call the IFixture
Frame_Create method before the fi rst Test Method is called and (2) to call 
the IFixtureFrame_Destroy method after the last Test Method is called. 

• In NUnit, the attributes [TestFixtureSetUp] and [TestFixtureTearDown] are 
used inside a test fi xture to designate the methods to be called (1) once 

Suite
Fixture
Setup

Chapter 20  Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/


443

prior to executing any of the tests in the fi xture and (2) once after all 
tests are completed.

• In JUnit 4.0 and later, the attribute @BeforeClass is used to indicate that a 
method should be run once before the fi rst Test Method is executed. The 
method with the attribute @AfterClass is run after the last Test Method
is run. JUnit allows these methods to be inherited and overridden; the 
subclass’s methods are run between the superclass’s methods. 

Just because we use a form of Implicit Setup to invoke the construction and 
destruction of the test fi xture, it doesn’t mean that we should dump all the fi xture 
setup logic into the Suite Fixture Setup. We can call Creation Methods (page 415) 
from the Suite Fixture Setup method to move complex construction logic into 
places where it can be tested and reused more easily, such as a Testcase Super-
class (page 638) or a Test Helper (page 643). 

Motivating Example 

Suppose we have the following test: 

   [SetUp]
   protected void setUp() {
      helper.setupStandardAirportsAndFlights();
   }

   [TearDown]
   protected void tearDown()  {
      helper.removeStandardAirportsAndFlights();
   }

   [Test]
   public void testGetFlightsByOriginAirport_2OutboundFlights(){
      FlightDto[] expectedFlights =
            helper.findTwoOutboundFlightsFromOneAirport();
      long originAirportId = expectedFlights[0].OriginAirportId;
      // Exercise System
      IList flightsAtOrigin =
            facade.GetFlightsByOriginAirport(originAirportId);
      // Verify Outcome
      AssertExactly2FlightsInDtoList(
            expectedFlights[0], expectedFlights[1],
            flightsAtOrigin,    "Flights at origin");
   }

   [Test]
   public void testGetFlightsByOriginAirport_OneOutboundFlight(){
      FlightDto expectedFlight = helper.findOneOutboundFlight();
      // Exercise System
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      IList flightsAtOrigin = facade.GetFlightsByOriginAirport(
         expectedFlight.OriginAirportId);
      // Verify Outcome
      AssertOnly1FlightInDtoList( expectedFlight,
                  flightsAtOrigin, "Outbound flight at origin");
   }

Figure 20.1 is the console generated by an instrumented version of these tests. 

  --------------------
   setUp
    setupStandardAirportsAndFlights
   testGetFlightsByOriginAirport_OneOutboundFlight
   tearDown
    removeStandardAirportsAndFlights
  --------------------
   setUp
    setupStandardAirportsAndFlights
   testGetFlightsByOriginAirport_TwoOutboundFlights
   tearDown
    removeStandardAirportsAndFlights
  --------------------

Figure 20.1 The calling sequence of Implicit Setup and Test Methods. The 
setupStandardAirportsAndFlights method is called before each Test Method. The hori-
zontal lines delineate the Test Method boundaries. 

Refactoring Notes 

Suppose we want to refactor this example to a Shared Fixture. If we don’t care 
about destroying the fi xture when the test run is fi nished, we could use Lazy Setup.
Otherwise, we can convert this example to a Suite Fixture Setup strategy by simply 
moving our code from the setUp and tearDown methods to the suiteFixtureSetUp and 
suiteFixtureTearDown methods, respectively. 

In NUnit, we use the attributes [TestFixtureSetUp] and [TestFixtureTearDown] to 
indicate these methods to the Test Automation Framework. If we don’t want 
to leave anything in our setUp/tearDown methods, we can simply change the 
attributes from [Setup] and TearDown to [TestFixtureSetUp] and [TestFixtureTearDown],
respectively. 

Example: Suite Fixture Setup 

Here’s the result of our refactoring to Suite Fixture Setup:

   [TestFixtureSetUp]
   protected void suiteFixtureSetUp()
   {
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      helper.setupStandardAirportsAndFlights();
   }

   [TestFixtureTearDown]
   protected void suiteFixtureTearDown()  {
      helper.removeStandardAirportsAndFlights();
   }

   [SetUp]
   protected void setUp() {
   }

   [TearDown]
   protected void tearDown()  {
   }

   [Test]
   public void testGetFlightsByOrigin_TwoOutboundFlights(){
      FlightDto[] expectedFlights =
            helper.findTwoOutboundFlightsFromOneAirport();
      long originAirportId = expectedFlights[0].OriginAirportId;
      // Exercise System
      IList flightsAtOrigin =
            facade.GetFlightsByOriginAirport(originAirportId);
      // Verify Outcome
      AssertExactly2FlightsInDtoList(
            expectedFlights[0], expectedFlights[1],
            flightsAtOrigin,    "Flights at origin");
   }

   [Test]
   public void testGetFlightsByOrigin_OneOutboundFlight() {
      FlightDto expectedFlight = helper.findOneOutboundFlight();
      // Exercise System
      IList flightsAtOrigin = facade.GetFlightsByOriginAirport(
         expectedFlight.OriginAirportId);
      // Verify Outcome
      AssertOnly1FlightInDtoList( expectedFlight,
                  flightsAtOrigin, "Outbound flight at origin");
   }

Now when various methods of the Testcase Class are called, the console looks 
like Figure 20.2. 
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suiteFixtureSetUp
    setupStandardAirportsAndFlights
  --------------------
   setUp
   testGetFlightsByOriginAirport_OneOutboundFlight
   tearDown
  --------------------
   setUp
   testGetFlightsByOriginAirport_TwoOutboundFlights
   tearDown
  --------------------
suiteFixtureTearDown
    removeStandardAirportsAndFlights

Figure 20.2  The calling sequence of Suite Fixture Setup and Test Methods. 
The setupStandardAndAirportsAndFlights method is called once only for the Testcase 
Class rather than before each Test Method. The horizontal lines delineate the 
Test Method boundaries.

The setUp method is still called before each Test Method, along with the suite
FixtureSetUp method where we are now calling setupStandardAirportsAndFlights to 
set up our fi xture. So far, this is no different than Lazy Setup; the difference 
arises in that removeStandardAirportsAndFlights is called after the last of our Test 
Methods.

About the Name 

Naming this pattern was tough because each variant of xUnit that implements 
it has a different name for it. Complicating matters is the fact that the Microsoft 
camp uses “test fi xture” to mean more than what the Java/Pearl/Ruby/etc. camp 
means. I landed on Suite Fixture Setup by focusing on the scope of the Shared
Fixture; it is shared across the test suite for one Testcase Class that spawns a 
single Test Suite Object (page 387). The fi xture that is built for the Test Suite 
Object could be called a “SuiteFixture.” 

Further Reading 

See http://www.vbunit.com/doc/Advanced.htm for more information on Suite
Fixture Setup as implemented in VbUnit. See http://nunit.org for more informa-
tion on Suite Fixture Setup as implemented in NUnit. 
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Setup Decorator

How do we cause the Shared Fixture to be built before the 
fi rst test method that needs it?

We wrap the test suite with a Decorator that sets up the shared test fi xture 
before running the tests and tears it down after all tests are done.

If we have chosen to use a Shared Fixture (page 317), whether for reasons of 
convenience or out of necessity, and we have chosen not to use a Prebuilt Fix-
ture (page 429), we will need to ensure that the fi xture is built before each test 
run. Lazy Setup (page 435) is one strategy we could employ to create the test 
fi xture “just in time” for the fi rst test. But if it is critical to tear down the fi xture 
after the last test, how do we know that all tests have been completed? 

How It Works 

A Setup Decorator works by “bracketing” the execution of the entire test suite 
with a set of matching setUp and tearDown “bookends.” The pattern Decorator 
[GOF] is just what we need to make this happen. We construct a Setup Decora-
tor that holds a reference to the Test Suite Object (page 387) we wish to decorate 
and then pass our Decorator to the Test Runner (page 377). When it is time to 
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run the test, the Test Runner calls the run method on our Setup Decorator rather 
than the run method on the actual Test Suite Object. The Setup Decorator
performs the fi xture setup before calling the run method on the Test Suite Object
and tears down the fi xture after it returns. 

When to Use It 

We can use a Setup Decorator when it is critical that a Shared Fixture be set up 
before every test run and that the fi xture is torn down after the run is complete. 
This behavior may be critical because tests are using Hard-Coded Values (see
Literal Value on page 714) that would cause the tests to fail if they are run 
again without cleaning up after each run (Unrepeatable Tests; see Erratic Test on 
page 228). Alternatively, this behavior may be necessary to avoid the incremental 
consumption of some limited resource, such as our database slowly fi lling up 
with data from repeated test runs. 

We might also use a Setup Decorator when the tests need to change some global 
parameter before exercising the SUT and then need to change this parameter back 
when they are fi nished. Replacing the database with a Fake Database (see Fake 
Object on page 551) in an effort to avoid Slow Tests (page 253) is one common 
reason for taking this approach; setting global switches to a particular confi gura-
tion is another. Setup Decorators are installed at runtime, so nothing stops us 
from using several different decorators on the same test suite at different times (or 
even the same time). 

As an alternative to a Setup Decorator, we can use Suite Fixture Setup
(page 441) if we only want to share the fi xture across the tests in a single Testcase 
Class (page 373) and our member of the xUnit family supports this behavior. If 
it is not essential that the fi xture be torn down after every test run, we could use 
Lazy Setup instead. 

Implementation Notes 

A Setup Decorator consists of an object that sets up the fi xture, delegates test 
execution to the test suite to be run, and then executes the code to tear down the 
fi xture. To better line up with the normal xUnit calling conventions, we typically 
put the code that constructs the test fi xture into a method called setUp and the 
code that tears down the fi xture into a method called tearDown. Then our Setup
Decorator’s run logic consists of three lines of code: 

Setup
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   void run() {
      setup();
      decoratedSuite.run();
      teardown();
   }

There are several ways to build the Setup Decorator.

Variation: Abstract Setup Decorator 

Many members of the xUnit family of Test Automation Frameworks (page 298) 
provide a reusable superclass that implements a Setup Decorator. This class 
usually implements the setUp/run/tearDown sequence as a Template Method [GOF]. 
All we have to do is to subclass this class and implement the setUp and tearDown
methods as we would in a normal Testcase Class. When instantiating our Setup
Decorator class, we pass the Test Suite Object we are decorating as the construc-
tor argument. 

Variation: Hard-Coded Setup Decorator 

If we need to build our Setup Decorator from scratch, the “simplest thing that 
could possibly work” is to hard-code the name of the decorated class in the 
suite method of the Setup Decorator. This allows the Setup Decorator class 
to act as the Test Suite Factory (see Test Enumeration on page 399) for the 
decorated suite. 

Variation: Parameterized Setup Decorator 

If we want to reuse the Setup Decorator for different test suites, we can param-
eterize its constructor method with the Test Suite Object to be run. This means 
that the setup and teardown logic can be coded within the Setup Decorator,
thereby eliminating the need for a separate Test Helper (page 643) class just to 
reuse the setup logic across tests. 

Variation: Decorated Lazy Setup 

One of the main drawbacks of using a Setup Decorator is that tests cannot 
be run by themselves because they depend on the Setup Decorator to set up 
the fi xture. We can work around this requirement by augmenting the Setup
Decorator with Lazy Setup in the setUp method so that an undecorated Testcase 
Object (page 382) can construct its own fi xture. The Testcase Object can also 
remember that it built its own fi xture and destroy it in the tearDown method. This 
functionality could be implemented on a generic Testcase Superclass (page 638) 
so that it has to be built and tested just once. 
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The only other alternative is to use a Pushdown Decorator. That would negate 
any test speedup the Shared Fixture bought us, however, so this approach can 
be used only in those cases when we use the Setup Decorator for reasons other 
than setting up a Shared Fixture.

Variation: Pushdown Decorator 

One of the main drawbacks of using a Setup Decorator is that tests cannot be 
run by themselves because they depend on the Setup Decorator to set up the 
fi xture. One way we can circumvent this obstacle is to provide a means to push 
the decorator down to the level of the individual tests rather than the whole test 
suite. This step requires a few modifi cations to the TestSuite class to allow the 
Setup Decorator to be passed down to where the individual Testcase Objects
are constructed during the Test Discovery (page 393) process. As each object is 
created from the Test Method (page 348), it is wrapped in the Setup Decorator 
before it is added to the Test Suite Object’s collection of tests. 

Of course, this negates one of the major sources of the speed advantage created 
by using a Setup Decorator by forcing a new test fi xture to be built for each 
test. See the sidebar “Faster Tests Without Shared Fixtures” on page 319 for 
other ways to address the test execution speed issue.

Motivating Example 

In this example, we have a set of tests that use Lazy Setup to build the Shared
Fixture and Finder Methods (see Test Utility Method on page 599) to fi nd the 
objects in the fi xture. We have discovered that the leftover fi xture is causing 
Unrepeatable Tests, so we want to clean up properly after the last test has fi n-
ished running. 

   protected void setUp() throws Exception {
      if (sharedFixtureInitialized) {
         return;
      }
      facade = new FlightMgmtFacadeImpl();
      setupStandardAirportsAndFlights();
      sharedFixtureInitialized = true;
   }

   protected void tearDown() throws Exception {
      // Cannot delete any objects because we don't know
      // whether this is the last test
   }
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Because there is no easy way to accomplish this goal with Lazy Setup, we 
must change our fi xture setup strategy. One option is to use a Setup Decorator 
instead.

Refactoring Notes 

When creating a Setup Decorator, we can reuse the exact same fi xture setup 
logic; we just need to call it at a different time. Thus this refactoring consists 
mostly of moving the call to the fi xture setup logic from the setUp method on the 
Testcase Class to the setUp method of a Setup Decorator class. Assuming we have 
an Abstract Setup Decorator available to subclass, we can create our new sub-
class and provide concrete implementations of the setUp and tearDown methods. 

If our instance of xUnit does not support Setup Decorator directly, we can 
create our own Setup Decorator superclass by building a single-purpose Setup
Decorator and then introducing a constructor parameter and instance variable 
to hold the test suite to be run. Finally, we do an Extract Superclass [Fowler] 
refactoring to create our reusable superclass. 

Example: Hard-Coded Setup Decorator 

In this example, we have moved all of the setup logic to the setUp method of 
a Setup Decorator that inherits its basic functionality from an Abstract Setup 
Decorator. We have also written some fi xture teardown logic in the tearDown
method so that we clean up the fi xture after the entire test suite has been run. 

public class FlightManagementTestSetup extends TestSetup {
   private FlightManagementTestHelper helper;

   public FlightManagementTestSetup() {
      // Construct the Test Suite Object to be decorated and
      // pass it to our Abstract Setup Decorator superclass
      super( SafeFlightManagementFacadeTest.suite() );
      helper = new FlightManagementTestHelper();
   }

   public void setUp() throws Exception {
      helper.setupStandardAirportsAndFlights();
   }

   public void tearDown() throws Exception {
      helper.removeStandardAirportsAndFlights();
   }

 Setup Decorator
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   public static Test suite() {
      // Return an instance of this decorator class
      return new FlightManagementTestSetup();
   }
}

Because this is a Hard-Coded Setup Decorator, the call to the Test Suite Factory
that builds the actual Test Suite Object is hard-coded inside the constructor. The 
suite method just calls the constructor. 

Example: Parameterized Setup Decorator 

To make our Setup Decorator reusable with several different test suites, we need 
to do an Introduce Parameter [JBrains] refactoring on the name of the Test Suite 
Factory inside the constructor:

public class ParameterizedFlightManagementTestSetup extends TestSetup {

   private FlightManagementTestHelper helper =
         new FlightManagementTestHelper();

   public ParameterizedFlightManagementTestSetup(
                            Test testSuiteToDecorate) {
      super(testSuiteToDecorate);
   }

   public void setUp() throws Exception {
      helper.setupStandardAirportsAndFlights();
   }

   public void tearDown() throws Exception {
      helper.removeStandardAirportsAndFlights();
   }
}

To make it easy for the Test Runner to create our test suite, we also need to cre-
ate a Test Suite Factory that calls the Setup Decorator’s constructor with the Test 
Suite Object to be decorated:

public class DecoratedFlightManagementFacadeTestFactory {
   public static Test suite() {
      // Return a new Test Suite Object suitably decorated
      return new ParameterizedFlightManagementTestSetup(
                    SafeFlightManagementFacadeTest.suite());
   }
}
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We will need one of these Test Suite Factories for each test suite we want to be 
able to run by itself. Even so, this is a small price to pay for reusing the actual 
Setup Decorator.

Example: Abstract Decorator Class 

Here’s what the Abstract Decorator Class looks like: 

public class TestSetup extends TestCase {
   Test decoratedSuite;

   AbstractSetupDecorator(Test testSuiteToDecorate) {
      decoratedSuite = testSuiteToDecorate;
   }

   public void setUp() throws Exception {
      // subclass responsibility
   }
   public void tearDown() throws Exception {
      // subclass responsibility
   }

   void run() {
      setup();
      decoratedSuite.run();
      teardown();
   }
}
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Chained Tests

How do we cause the Shared Fixture to be built before the 
fi rst test method that needs it?

We let the other tests in a test suite set up the test fi xture.

Shared Fixtures (page 317) are commonly used to reduce the amount of per-
test overhead required to set up the fi xture. Sharing a fi xture involves extra test 
programming effort because we need to create the fi xture and have a way of 
discovering the fi xture in each test. Regardless of how the fi xture is accessed, it 
must be initialized (constructed) before it is used. 

Chained Tests offer a way to reuse the test fi xture left over from one test and 
the Shared Fixture of a subsequent test. 

How It Works 

Chained Tests take advantage of the objects created by the tests that run before our 
current test in the test suite. This approach is very similar to how a human tester 
tests a large number of test conditions in a single test—by building up a complex 
test fi xture through a series of actions, with the outcome of each action fi rst being 
verifi ed. We can achieve a similar result with automated tests by building a set of 
Self-Checking Tests (see page 26) that do not perform any fi xture setup but instead 
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rely on the “leftovers” of the test(s) that run before them. Unlike with the Reuse 
Test for Fixture Setup pattern (see Creation Method on page 415), we don’t actu-
ally call another Test Method (page 348) from within out test; we just assume that 
it has been run and has left behind something we can use as a test fi xture. 

When to Use It 

Chained Tests is a fi xture strategy that people either love or hate.  Those who 
hate it do so because this approach is simply the test smell Interacting Tests (see
Erratic Test on page 228) recast as a pattern. Those who love it typically do so 
because it solves a nasty problem introduced by using Shared Fixtures to deal 
with Slow Tests (page 253). Either way, it is a valid strategy for refactoring exist-
ing tests that are overly long and contain many steps that build on one another. 
Such tests will stop executing when the fi rst assertion fails. We can refactor 
such tests into a set of Chained Tests fairly quickly because this strategy doesn’t 
require determining exactly which test fi xture we need to build for each test. 
This may be the fi rst step in evolving the tests into a set of Independent Tests 
(see page 42). 

Chained Tests help prevent Fragile Tests (page 239) because they are a crude 
form of SUT API Encapsulation (see Test Utility Method on page 599). Our 
test doesn’t need to interact with the SUT to set up the fi xture because we 
let another test that was already using the same API set up the fi xture for us. 
Fragile Fixtures (see Fragile Test) may be a problem, however; if one of the 
preceding tests is modifi ed to create a different fi xture, the depending test will 
probably fail. This is also true if some of the earlier tests fail or have errors; 
they may leave the Shared Fixture in a different state from what the current 
test expects. 

One of the key problems with Chained Tests is the nondeterminism of the 
order in which xUnit executes tests in a test suite. Most members of the family 
make no guarantees about this order (TestNG is an exception). Thus tests could 
start to fail when a new version of xUnit is installed or even when one of the 
Test Methods is renamed [if the xUnit implementation happens to sort the Test-
case Objects (page 382) by method name]. 

Another problem is that Chained Tests are Lonely Tests (see Erratic Test)
because the current test depends on the tests that precede it to set up the test 
fi xture. If we run the test by itself, it will likely fail because the test fi xture 
it assumes is not set up for it. As a consequence, we cannot run just the one test 
when we are debugging failures it exposes. 

Depending on other tests to set up the test fi xture invariably results in tests 
that are more diffi cult to understand because the test fi xture is invisible to the 
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test reader—a classic case of a Mystery Guest (see Obscure Test on page 186).
This problem can be at least partially mitigated through the use of appropri-
ately named Finder Methods (see Test Utility Method) to access the objects in 
the Shared Fixture. It is less of an issue if all the Test Methods are on the same 
Testcase Class (page 373) and are listed in the same order as they are executed. 

Variation: Fixture Setup Testcase 

If we need to set up a Shared Fixture and we cannot use any of the other tech-
niques to set it up [e.g., Lazy Setup (page 435), Suite Fixture Setup (page 441), 
or Setup Decorator (page 447)], we can arrange to have a Fixture Setup Testcase 
run as the fi rst test in the test suite. This is simple to do if we are using Test Enu-
meration (page 399); we just include the appropriate addTest method call in our 
Test Suite Factory (see Test Enumeration). This variation is a degenerate form 
of the Chained Tests pattern in that we are chaining a test suite behind a single 
Fixture Setup Testcase.

Implementation Notes 

There are two key challenges in implementing Chained Tests:

• Getting tests in the test suite to run in the desired order

• Accessing the fi xture leftover by the previous test(s)

While a few members of the xUnit family provide an explicit mechanism for 
defi ning the order of tests, most members make no such guarantees about this 
order. We can probably fi gure out what order the xUnit member uses by per-
forming a few experiments. Most commonly, we will discover that it is either the 
order in which the Test Methods appear in the fi le or alphabetical order by Test 
Method name (in which case, the easiest solution is to include a test sequence 
number in the test name). In the worst-case scenario, we could always revert 
to Test Method Enumeration (see Test Enumeration) to ensure that Testcase 
Objects are added to the test suite in the correct order. 

To refer to the objects created by the previous tests, we need to use one of the 
fi xture object access patterns. If the preceding tests are Test Methods on the same 
Testcase Class, it is suffi cient for each test to store any object references that subse-
quent tests will use to access the fi xture in a fi xture holding class variable. (Fixture 
holding instance variables typically won’t work here because each test runs on a 
separate Testcase Object and, therefore, the tests don’t share instance variables. 
See the sidebar “There’s Always an Exception” on page 384 for a description of 
when instance variations do not behave this way.) 

Chained
Tests

Chapter 20  Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/


457

If our test depends on a Test Method on a different Testcase Class being run 
as a part of a Suite of Suites (see Test Suite Object on page 387), neither of these 
solutions will work. Our best bet will be to use a Test Fixture Registry (see Test 
Helper on page 643) as the means to store references to the objects used by the 
tests. A test database is a good example. 

Obviously, we don’t want the test we are depending on to clean up after 
itself—that would leave nothing for us to reuse as our test fi xture. That re-
quirement makes Chained Tests incompatible with the Fresh Fixture (page 311) 
approach.

Motivating Example 

Here’s an example of an incremental Tabular Test (see Parameterized Test on
page 607) provided by Clint Shank on his blog: 

public class TabularTest extends TestCase {
   private Order order = new Order();
   private static final double tolerance = 0.001;

   public void testGetTotal() {
      assertEquals("initial", 0.00, order.getTotal(), tolerance); 
      testAddItemAndGetTotal("first", 1, 3.00, 3.00);
      testAddItemAndGetTotal("second",3, 5.00, 18.00);
      // etc.
   }

   private void testAddItemAndGetTotal( String msg,
                                        int lineItemQuantity,
                                        double lineItemPrice,
                                        double expectedTotal) {
      // setup
      LineItem item = new LineItem(   lineItemQuantity, lineItemPrice);
      // exercise SUT
      order.addItem(item);
      // verify total
      assertEquals(msg,expectedTotal,order.getTotal(),tolerance);
   }
}

This test begins by building an empty order, verifi es the total is zero, and then 
proceeds to add several items verifying the total after each item (Figure 20.3). 
The main issue with this test is that if one of the subtests fails, all subsequent 
subtests don’t get run. For example, suppose a rounding error makes the total 
after the second item incorrect: Wouldn’t we like to see whether the fourth, fi fth, 
and six items are still correct?
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Figure 20.3  Tabular Test results. The lower pane shows the details of the fi rst 
failure inside the single Tabular Test method listed in the upper pane. Because of 
the failure, the rest of the test method is not executed.

Refactoring Notes 

We can convert this Tabular Test to a set of Chained Tests simply by breaking up 
the single Test Method into one Test Method per subtest. One way to do so is to 
use a series of Extract Method [Fowler] refactorings to create the Test Methods.
This will force us to use an Introduce Field [JetBrains] refactoring for any local 
variables before the fi rst Extract Method refactoring operation. Once we have de-
fi ned all of the new Test Methods, we simply delete the original Test Method and 
let the Test Automation Framework (page 298) call our new methods directly.2

We need to ensure the tests run in the same order. Because JUnit seems to 
sort the Testcase Objects by method name, we can force them into the right 
order by including a sequence number in the Test Method name. 

Finally, we need to convert our Fresh Fixture into a Shared Fixture. We do 
so by changing our order fi eld (instance variable) into a class variable (a static 
variable in Java) so that all of the Testcase Objects use the same Order.

2 If we don’t have a refactoring tool handy, no worries. Just end the Test Method after 
each subtest and type in the signature of the next Test Method before the next subtest. We 
then move any Shared Fixture variables out of the fi rst Test Method.

Chained
Tests 

Chapter 20  Fixture Setup Patterns

www.it-ebooks.info

http://www.it-ebooks.info/


459

Example: Chained Tests 

Here’s the simple example turned into three separate tests: 

   private static Order order = new Order();
   private static final double tolerance = 0.001;

   public void test_01_initialTotalShouldBeZero() {
      assertEquals("initial", 0.00, order.getTotal(), tolerance);
   }

   public void test_02_totalAfter1stItemShouldBeOnlyItemAmount(){ 
      testAddItemAndGetTotal( "first", 1, 3.00, 3.00);
   }

   public void test_03_totalAfter2ndItemShouldBeSumOfAmounts() {
      testAddItemAndGetTotal( "second",3, 5.00, 18.00);
   }

   private void testAddItemAndGetTotal( String msg,
                                        int lineItemQuantity,
                                        double lineItemPrice,
                                        double expectedTotal) {
      // create a line item
      LineItem item =
            new LineItem(lineItemQuantity, lineItemPrice);
      // add line item to order
      order.addItem(item);
      // verify total
      assertEquals(msg,expectedTotal,order.getTotal(),tolerance);
   }

The Test Runner (page 377) gives us a better overview of what is wrong and 
what is working (Figure 20.4).

Unfortunately, we will not be able to run any of the tests by themselves while 
we debug this problem (except for the very fi rst test) because of the interdepen-
dencies between the tests; they are Lonely Tests.
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Figure 20.4  Chained Tests result. The upper pane shows the three test methods 
with two tests passing. The lower pane shows the details of the one failing Test 
Method.
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State Verifi cation

How do we make tests self-checking when there is state to be verifi ed?

We inspect the state of the system under test after it has been exercised and 
compare it to the expected state.

A Self-Checking Test (see page 26) must verify that the expected outcome has 
occurred without manual intervention by whoever is running the test. But what 
do we mean by “expected outcome”? The SUT may or may not be “stateful”; if 
it is stateful, it may or may not have a different state after it has been exercised. 
As test automaters, it is our job to determine whether our expected outcome is a 
change of fi nal state or whether we need to be more specifi c about what occurs 
while the SUT is being exercised. 

State Verifi cation involves inspecting the state of the SUT after it has been 
exercised.

How It Works 

We exercise the SUT by invoking the methods of interest. Then, as a separate 
step, we interact with the SUT to retrieve its post-exercise state and compare it 
with the expected end state by calling Assertion Methods (page 362). 
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Normally, we can access the state of the SUT simply by calling methods or 
functions that return its state. This is especially true when we are doing test-driven 
development because the tests will have ensured that the state is easily accessible. 
When we are retrofi tting tests, however, we may fi nd it more challenging to access 
the relevant state information. In these cases, we may need to use a Test-Specifi c 
Subclass (page 579) or some other technique to expose the state without introduc-
ing Test Logic in Production (page 217). 

A related question is “Where is the state of the SUT stored?” Sometimes, the 
state is stored within the actual SUT; in other cases, the state may be stored in 
another component such as a database. In the latter case, State Verifi cation may 
involve accessing the state within the other component (essentially a layer-crossing 
test). By contrast, Behavior Verifi cation (page 468) would involve verifying the 
interactions between the SUT and the other component. 

When to Use It 

We should use State Verifi cation when we care about only the end state of the 
SUT—not how the SUT got there. Taking such a limited view helps us maintain 
encapsulation of the implementation of the SUT. 

State Verifi cation comes naturally when we are building the software inside 
out. That is, we build the innermost objects fi rst and then build the next layer 
of objects on top of them. Of course, we may need to use Test Stubs (page 529) 
to control the indirect inputs of the SUT to avoid Production Bugs (page 268) 
caused by untested code paths. Even then, we are choosing not to verify the 
indirect outputs of the SUT. 

When we do care about the side effects of exercising the SUT that are not 
visible in its end state (its indirect outputs), we can use Behavior Verifi cation to 
observe the behavior directly. We must be careful, however, not to create Fragile
Tests (page 239) by overspecifying the software. 

Implementation Notes 

There are two basic styles of implementing State Verifi cation.

Variation: Procedural State Verifi cation 

When doing Procedural State Verifi cation, we simply write a series of calls to 
Assertion Methods that pick apart the state information into pieces and com-
pare those bits of information to individual expected values. Most people who 
are new to automating tests take such a “path of least resistance.” The major 
disadvantage of this approach is that it can result in Obscure Tests (page 186) 
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owing to the number of assertions it may take to specify the expected outcome. 
When the same sequence of assertions must be carried out in many tests or many 
times within a single Test Method (page 348), we also have Test Code Duplica-
tion (page 213). 

Variation: Expected State Specifi cation 

When doing Expected State Specifi cation, we construct a specifi cation for the 
post-exercise state of the SUT in the form of one or more objects populated with 
the expected attributes. We then compare the actual state directly with these 
objects using a single call to an Equality Assertion (see Assertion Method). This 
tends to result in more concise and readable tests. We can use an Expected State 
Specifi cation whenever we need to verify several attributes and it is possible to 
construct an object that looks like the object we expect the SUT to return. The 
more attributes we have that need to be compared and the more tests that need 
to compare them, the more compelling the argument for using an Expected State 
Specifi cation. In the most extreme cases, when we have a lot of data to verify, we 
can construct an “expected table” and verify that the SUT contains it. Fit’s “row 
fi xtures” offer a good way to do this in customer tests; tools such as DbUnit are 
a good way to use Back Door Manipulation (page 327) for this purpose. 

When constructing the Expected State Specifi cation, we may prefer to use 
a Parameterized Creation Method (see Creation Method on page 415) so that 
the reader is not distracted by all the necessary but unimportant attributes of 
the Expected State Specifi cation. The Expected State Specifi cation is most often 
an instance of the same class that we expect to get back from the SUT. We may 
have diffi culty using an Expected State Specifi cation if the object doesn’t imple-
ment equality in a way that involves comparing the values of attributes (e.g., by 
comparing the object references with each other) or if our test-specifi c defi nition 
of equality differs from that implemented by the equals method. 

In these cases, we can still use an Expected State Specifi cation if we create 
a Custom Assertion (page 474) that implements test-specifi c equality. Alterna-
tively, we can build the Expected State Specifi cation from a class that imple-
ments our test-specifi c equality. This class can either be a Test-Specifi c Subclass
that overrides the equals method or a simple Data Transfer Object [CJ2EEP] that 
implements equals(TheRealObjectClass other). Both of these measures are preferable 
to modifying (or introducing) the equals method on the production class, as that 
would be a form of Equality Pollution (see Test Logic in Production). When 
the class is diffi cult to instantiate, we can defi ne a Fake Object (page 551) that 
has the necessary attributes plus an equals method that implements test-specifi c 
equality. These last few “tricks” are made possible by the fact that Equality
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Assertions usually ask the Expected State Specifi cation to compare itself to the 
actual result, rather than the reverse. 

We can build the Expected State Specifi cation either during the result verifi -
cation phase of the test immediately before it is used in the Equality Assertion
or during the fi xture setup phase of the test. The latter strategy allows us to use 
attributes of the Expected State Specifi cation as parameters passed to the SUT 
or as the base for Derived Values (page 718) when building other objects in the 
test fi xture. This makes it easier to see the cause–effect relationship between 
the fi xture and the Expected State Specifi cation, which in turn helps us achieve 
Tests as Documentation (see page 23). It is particularly useful when the Ex-
pected State Specifi cation is created out of sight of the test reader such as when 
using Creation Methods to do the construction. 

Motivating Example 

This simple1 example features a test that exercises the code that adds a line item 
to an invoice. Because it contains no assertions, it is not a Self-Checking Test.

   public void testInvoice_addOneLineItem_quantity1() {
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
   }

We have chosen to create the invoice and product in the setUp method, an approach 
called Implicit Setup (page 424). 

   public void setUp() {
      product = createAnonProduct();
      anotherProduct = createAnonProduct();
      inv = createAnonInvoice();
   }

Refactoring Notes 

The fi rst refactoring we can do is not really a refactoring at all, because we are 
changing the behavior of the tests (for the better): We introduce some assertions 
that specify the expected outcome. This results in an example of Procedural
State Verifi cation because we make this change within the Test Method as a 
series of calls to built-in Assertion Methods.

1 The natural example for this pattern is not very good at illustrating the difference 
between State Verifi cation and Behavior Verifi cation. For this purpose, refer to Behavior
Verifi cation, which provides a second example of State Verifi cation that is more directly 
comparable.
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We can further simplify the Test Method by refactoring it to use an Expected
Object. First, we build an Expected Object by constructing an object of the 
expected class, or a suitable Test Double (page 522), and initializing it with 
the values that were previously specifi ed in the assertions. Then we replace the 
series of assertions with a single Equality Assertion that compares the actual 
result with an Expected Object. We may have to use a Custom Assertion if we 
need test-specifi c equality. 

Example: Procedural State Verifi cation 

Here we have added the assertions to the Test Method to turn it into a Self-
Checking Test. Because several steps must be carried out to verify the expected 
outcome, this test suffers from a mild case of Obscure Test.

   public void testInvoice_addOneLineItem_quantity1() {
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      // Verify only item
      LineItem actual = (LineItem) lineItems.get(0);
      assertEquals(inv, actual.getInv());
      assertEquals(product, actual.getProd());
      assertEquals(QUANTITY, actual.getQuantity());
   }

Example: Expected Object 

In this simplifi ed version of the test, we use the Expected Object with a single 
Equality Assertion instead of a series of assertions on individual attributes:

   public void testInvoice_addLineItem1() {
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity( expItem.getProd(), expItem.getQuantity());
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem) lineItems.get(0);
      assertEquals("Item", expItem, actual);
   }
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Because we are also using some of the attributes as arguments of the SUT, we 
have chosen to build the Expected Object during the fi xture setup phase of the 
test and to use the attributes of the Expected Object as the SUT arguments. 
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Behavior Verifi cation

How do we make tests self-checking when there is no state to verify?

We capture the indirect outputs of the SUT as they occur and compare 
them to the expected behavior.

A Self-Checking Test (see page 26) must verify that the expected outcome has 
occurred without manual intervention by whoever is running the test. But what 
do we mean by “expected outcome”? The SUT may or may not be “stateful”; if 
it is stateful, it may or may not be expected to end up in a different state after it 
has been exercised. The SUT may also be expected to invoke methods on other 
objects or components. 

Behavior Verifi cation involves verifying the indirect outputs of the SUT as it 
is being exercised. 

How It Works 

Each test specifi es not only how the client of the SUT interacts with it during the 
exercise SUT phase of the test, but also how the SUT interacts with the compo-
nents on which it should depend. This ensures that the SUT really is behaving as 
specifi ed rather than just ending up in the correct post-exercise state. 
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Behavior Verifi cation almost always involves interacting with or replacing 
a depended-on component (DOC) with which the SUT interacts at runtime. 
The line between Behavior Verifi cation and State Verifi cation (page 462) can 
get a bit blurry when the SUT stores its state in the DOC because both forms 
of verifi cation involve layer-crossing tests. We can distinguish between the two 
cases based on whether we are verifying the post-test state in the DOC (State
Verifi cation) or whether we are verifying the method calls made by the SUT on 
the DOC (Behavior Verifi cation).

When to Use It 

Behavior Verifi cation is primarily a technique for unit tests and component tests. We 
can use Behavior Verifi cation whenever the SUT calls methods on other objects or 
components. We must use Behavior Verifi cation whenever the expected outputs of 
the SUT are transient and cannot be determined simply by looking at the post-exercise 
state of the SUT or the DOC. This forces us to monitor these indirect outputs as 
they occur. 

A common application of Behavior Verifi cation is when we are writing our 
code in an “outside-in” manner. This approach, which is often called need-driven
development, involves writing the client code before we write the DOC. It is 
a good way to fi nd out exactly what the interface provided by the DOC needs 
to be based on real, concrete examples rather than on speculation. The main 
objection to this approach is that we need to use a lot of Test Doubles (page 522) 
to write these tests. That could result in Fragile Tests (page 239) because each 
test knows so much about how the SUT is implemented. Because the tests 
specify the behavior of the SUT in terms of its interactions with the DOC, a 
change in the implementation of the SUT could break a lot of tests. This kind of 
Overspecifi ed Software (see Fragile Test) could lead to High Test Maintenance 
Cost (page 265). 

The jury is still out on whether Behavior Verifi cation is a better approach 
than State Verifi cation. In most cases, State Verifi cation is clearly necessary; in 
some cases, Behavior Verifi cation is clearly necessary. What has yet to be deter-
mined is whether Behavior Verifi cation should be used in all cases or whether 
we should use State Verifi cation most of the time and resort to Behavior Verifi -
cation only when State Verifi cation falls short of full test coverage. 

Implementation Notes 

Before we exercise the SUT by invoking the methods of interest, we must ensure 
that we have a way of observing its behavior. Sometimes the mechanisms that the 
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SUT uses to interact with the components surrounding it make such observation 
possible; when this is not the case, we must install some sort of Test Double to 
monitor the SUT’s indirect outputs. We can use a Test Double as long as we have 
a way to replace the DOC with the Test Double. This could be via Dependency
Injection (page 678) or by Dependency Lookup (page 686).

There are two fundamentally different ways to implement Behavior Verifi ca-
tion, each with its own proponents. The Mock Object (page 544) community has 
been very vocal about the use of “mocks” as an Expected Behavior Specifi cation,
so it is the more commonly used approach. Nevertheless, Mock Objects are not 
the only way of doing Behavior Verifi cation.

Variation: Procedural Behavior Verifi cation 

In Procedural Behavior Verifi cation, we capture the method calls made by the SUT 
as it executes and later get access to them from within the Test Method (page 348). 
Then we use Equality Assertions (see Assertion Method on page 362) to compare 
them with the expected results. 

The most common way of trapping the indirect outputs of the SUT is to 
install a Test Spy (page 538) in place of the DOC during the fi xture setup phase 
of the Four-Phase Test (page 358). During the result verifi cation phase of the 
test, we ask the Test Spy how it was used by the SUT during the exercise SUT 
phase. Use of a Test Spy does not require any advance knowledge of how the 
methods of the DOC will be called.

The alternative is to ask the real DOC how it was used. Although this scheme 
is not always feasible, when it is, it avoids the need to use a Test Double and 
minimizes the degree to which we have Overspecifi ed Software.

We can reduce the amount of code in the Test Method (and avoid Test Code 
Duplication; see page 213) by defi ning Expected Objects (see State Verifi cation)
for the arguments of method calls or by delegating the verifi cation of them to 
Custom Assertions (page 474). 

Variation: Expected Behavior Specifi cation 

Expected Behavior Specifi cation is a different way of doing Behavior Verifi cation.
Instead of waiting until after the fact to verify the indirect outputs of the SUT 
by using a sequence of assertions, we load the Expected Behavior Specifi cation
into a Mock Object and let it verify that the method calls are correct as they are 
received.

We can use an Expected Behavior Specifi cation when we know exactly what 
should happen ahead of time and we want to remove all Procedural Behavior 
Verifi cation from the Test Method. This pattern variation tends to make the 
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test shorter (assuming we are using a compact representation of the expected 
behavior) and can be used to cause the test to fail on the fi rst deviation from the 
expected behavior if we so choose. 

One distinct advantage of using Mock Objects is that Test Double generation 
tools are available for many members of the xUnit family. They make imple-
menting Expected Behavior Specifi cation very easy because we don’t need to 
manually build a Test Double for each set of tests. One drawback of using a 
Mock Object is that it requires that we can predict how the methods of the DOC 
will be called and what arguments will be passed to it in the method calls.

Motivating Example 

The following test is not a Self-Checking Test because it does not verify that 
the expected outcome has actually occurred; it contains no calls to Assertion
Methods, nor does it set up any expectations on a Mock Object. Because we are 
testing the logging functionality of the SUT, the state that interests us is actu-
ally stored in the logger rather than within the SUT itself. The writer of this test 
hasn’t found a way to access the state we are trying to verify. 

   public void testRemoveFlightLogging_NSC() throws Exception {
      // setup
      FlightDto expectedFlightDto = createARegisteredFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      // have not found a way to verify the outcome yet
      //  Log contains record of Flight removal
   }

To verify the outcome, whoever is running the tests must access the database 
and the log console and compare what was actually output to what should have 
been output. 

One way to make the test Self-Checking is to enhance the test with Expected
State Specifi cation (see State Verifi cation) of the SUT as follows: 

   public void testRemoveFlightLogging_ESS() throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnUnregFlight();
      FlightManagementFacadeImplTI facade =
            new FlightManagementFacadeImplTI();
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
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      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
   }

Unfortunately, this test does not verify the logging function of the SUT in any 
way. It also illustrates one reason why Behavior Verifi cation came about: Some 
functionality of the SUT is not visible within the end state of the SUT itself, but 
can be seen only if we intercept the behavior at an internal observation point 
between the SUT and the DOC or if we express the behavior in terms of state 
changes for the objects with which the SUT interacts. 

Refactoring Notes 

When we made the changes in the second code sample in the “Motivating 
Example,” we weren’t really refactoring; instead, we added verifi cation logic to 
make the tests behave differently. There are, however, several refactoring cases 
that are worth discussing. 

To refactor from State Verifi cation to Behavior Verifi cation, we must do a 
Replace Dependency with Test Double (page 522) refactoring to gain visibility 
of the indirect outputs of the SUT via a Test Spy or Mock Object.

To refactor from an Expected Behavior Specifi cation to Procedural Behavior 
Verifi cation, we install a Test Spy instead of the Mock Object. After exercising the 
SUT, we make assertions on values returned by the Test Spy and compare them 
with the expected values that were originally used as arguments when we initially 
confi gured the Mock Object (the one that we just converted into a Test Spy). 

To refactor from Procedural Behavior Verifi cation to an Expected Behavior 
Specifi cation, we confi gure a Mock Object with the expected values from the 
assertions made on values returned by the Test Spy and install the Mock Object
instead of the Test Spy.

Example: Procedural Behavior Verifi cation 

The following test verifi es the basic functionality of creating a fl ight but uses 
Procedural Behavior Verifi cation to verify the indirect outputs of the SUT. That 
is, it uses a Test Spy to capture the indirect outputs and then verifi es those out-
puts are correct by making in-line calls to the Assertion Methods.

   public void testRemoveFlightLogging_recordingTestStub()
            throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnUnregFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
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      //    Test Double setup
      AuditLogSpy logSpy = new AuditLogSpy();
      facade.setAuditLog(logSpy);
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertEquals("number of calls", 1,
                   logSpy.getNumberOfCalls());
      assertEquals("action code",
                   Helper.REMOVE_FLIGHT_ACTION_CODE,
                   logSpy.getActionCode());
      assertEquals("date", helper.getTodaysDateWithoutTime(),
                   logSpy.getDate());
      assertEquals("user", Helper.TEST_USER_NAME,
                   logSpy.getUser());
      assertEquals("detail",
                   expectedFlightDto.getFlightNumber(),
                   logSpy.getDetail());
   }

Example: Expected Behavior Specifi cation 

In this version of the test, we use the JMock framework to defi ne the expected 
behavior of the SUT. The method expects on mockLog confi gures the Mock Object
with the Expected Behavior Specifi cation (specifi cally, the expected log message). 

   public void testRemoveFlight_JMock() throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnonRegFlight();
      FlightManagementFacade facade =
            new FlightManagementFacadeImpl();
      // mock configuration
      Mock mockLog = mock(AuditLog.class);
      mockLog.expects(once()).method("logMessage")
               .with(eq(helper.getTodaysDateWithoutTime()),
                     eq(Helper.TEST_USER_NAME),
                     eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
                     eq(expectedFlightDto.getFlightNumber()));
      // mock installation
      facade.setAuditLog((AuditLog) mockLog.proxy());
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      // verify() method called automatically by JMock
   }
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Custom Assertion

How do we make tests self-checking when we have test-specifi c equality logic?
How do we reduce Test Code Duplication when the same assertion 

logic appears in many tests?
How do we avoid Conditional Test Logic?

We create a purpose-built Assertion Method that compares only those 
attributes of the object that defi ne test-specifi c equality.

Most members of the xUnit family provide a reasonably rich set of Assertion
Methods (page 362). But sooner or later, we inevitably fi nd ourselves saying, 
“This test would be so much easier to write if I just had an assertion that did . . . .” 
So why not write it ourselves? 

The reasons for writing a Custom Assertion are many, but the technique is 
pretty much the same regardless of our goal. We hide the complexity of whatever 
it takes to prove the system is behaving correctly behind an Assertion Method
with an Intent-Revealing Name [SBPP]. 

How It Works 

We encapsulate the mechanics of verifying that something is true (an assertion) 
behind an Intent-Revealing Name. To do so, we factor out all the common 
assertion code within the tests into a Custom Assertion that implements the 

Fixture
Setup

Exercise

Verify

Teardown

SUT

Custom
Assertion

Assertion
  Method

Assertion
  Method

Fixture
Setup

Exercise

Verify

Teardown

SUT

Custom
Assertion

Assertion
  Method

Assertion
  Method

Also known as: 
Bespoke 

Assertion

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/


475

verifi cation logic. A Custom Equality Assertion takes two parameters: an 
Expected Object (see State Verifi cation on page 462) and the actual object. 

A key characteristic of Custom Assertions is that they receive everything they 
need to pass or fail the test as parameters. Other than causing the test to fail, 
they have no side effects. 

Typically, we create Custom Assertions through refactoring by identifying 
common patterns of assertions in our tests. When test driving, we might just 
go ahead and call a nonexistent Custom Assertion because it makes writing our 
test easier; this tactic lets us focus on the part of the SUT that needs to be tested 
rather than the mechanics of how the test would be carried out. 

When to Use It 

We should consider creating a Custom Assertion whenever any of the following 
statements are true: 

• We fi nd ourselves writing (or cloning) the same assertion logic in test 
after test (Test Code Duplication; see page 213). 

• We fi nd ourselves writing Conditional Test Logic (page 200) in the result 
verifi cation part of our tests. That is, our calls to Assertion Methods are 
embedded in if statements or loops. 

• The result verifi cation parts of our tests suffer from Obscure Test
(page 186) because we use procedural rather than declarative result 
verifi cation in the tests. 

• We fi nd ourselves doing Frequent Debugging (page 248) whenever 
assertions fail because they do not provide enough information. 

A key reason for moving the assertion logic out of the tests and into Custom
Assertions is to Minimize Untestable Code (see page 44). Once the verifi cation 
logic has been moved into a Custom Assertion, we can write Custom Assertion 
Tests (see Custom Assertion on page 474) to prove the verifi cation logic is work-
ing properly. Another important benefi t of using Custom Assertions is that they 
help avoid Obscure Tests and make tests Communicate Intent (see page 41). 
That, in turn, will help produce robust, easily maintained tests. 

If the verifi cation logic must interact with the SUT to determine the actual 
outcome, we can use a Verifi cation Method (see Custom Assertion) instead of a 
Custom Assertion. If the setup and exercise parts of the tests are also the same 
except for the values of the actual/expected objects, we should consider using 
a Parameterized Test (page 607). The primary advantage of Custom Assertions
over both of these techniques is reusability; the same Custom Assertion can be 
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reused in many different circumstances because it is independent of its context 
(its only contact with the outside world occurs through its parameter list). 

We most commonly write Custom Assertions that are Equality Assertions 
(see Assertion Method), but there is no reason why we cannot write other kinds 
as well. 

Variation: Custom Equality Assertion 

For custom equality assertions, the Custom Assertion must be passed an Expected
Object and the actual object to be verifi ed. It should also take an Assertion Mes-
sage (page 370) to avoid playing Assertion Roulette (page 224). Such an assertion 
is essentially an equals method implemented as a Foreign Method [Fowler]. 

Variation: Object Attribute Equality Assertion 

We often run across Custom Assertions that take one actual object and several 
different Expected Objects that need to be compared with specifi c attributes of 
the actual object. (The set of attributes to be compared is implied by the name of 
the Custom Assertion.) The key difference between these Custom Assertions and 
a Verifi cation Method is that the latter interacts with the SUT while the Object
Attribute Equality Assertion looks only at the objects passed in as parameters. 

Variation: Domain Assertion 

All of the built-in Assertion Methods are domain independent. Custom Equal-
ity Assertions implement test-specifi c equality but still compare only two 
objects. Another style of Custom Assertion helps contribute to the defi nition 
of a “domain-specifi c” Higher-Level Language (see page 41)—namely, the 
Domain Assertion.

A Domain Assertion is a Stated Outcome Assertion (see Assertion Method)
that states something that should be true in domain-specifi c terms. It helps elevate 
the test into “business-speak.” 

Variation: Diagnostic Assertion 

Sometimes we fi nd ourselves doing Frequent Debugging whenever a test fails 
because the assertions tell us only that something is wrong but do not identify 
the specifi c problem (e.g., the assertions indicate these two objects are not equal 
but it isn’t clear what isn’t equal about the object). We can write a special kind of 
Custom Assertion that may look just like one of the built-in assertions but pro-
vide more information about what is different between the expected and actual 
values than a built-in assertion because it is specifi c to our types. (For example, 
it might tell us which attributes are different or where long strings differ.) 
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On one project, we were comparing string variables containing XML. 
Whenever a test failed, we had to bring up two string inspectors and scroll 
through them looking for the difference. Finally, we got smart and included 
the logic in a Custom Assertion that told us where the fi rst difference between 
the two XML strings occurred. The small amount of time we spent writing 
the diagnostic custom assertion was paid back many times over as we ran 
our tests. 

Variation: Verifi cation Method 

In customer tests, a lot of the complexity of verifying the outcome is related 
to interacting with the SUT. Verifi cation Methods are a form of Custom Asser-
tions that interact directly with the SUT, thereby relieving their callers from this 
task. This simplifi es the tests signifi cantly and leads to a more “declarative” 
style of outcome specifi cation. After the Custom Assertion has been written, we 
can write subsequent tests that result in the same outcome much more quickly. 
In some cases, it may be advantageous to incorporate even the exercise SUT 
phase of the test into the Verifi cation Method. This is one step short of a full 
Parameterized Test that incorporates all the test logic in a reusable Test Utility 
Method (page 599). 

Implementation Notes 

The Custom Assertion is typically implemented as a set of calls to the various 
built-in Assertion Methods. Depending on how we plan to use it in our tests, 
we may also want to include the standard Equality Assertion template to ensure 
correct behavior with null parameters. Because the Custom Assertion is itself an 
Assertion Method, it should not have any side effects, nor should it call the SUT. 
(If it needs to do so, it would be a Verifi cation Method.)

Variation: Custom Assertion Test 

Testing zealots would also write a Custom Assertion Test (a Self-Checking Test—
see page 26—for Custom Assertions) to verify the Custom Assertion. The benefi t 
from doing so is obvious: increased confi dence in our tests. In most cases, writing 
Custom Assertion Tests isn’t particularly diffi cult because Assertion Methods take 
all their arguments as parameters. 

We can treat the Custom Assertion as the SUT simply by calling it with various 
arguments and verifying that it fails in the right cases. Single-Outcome Assertions 
(see Assertion Method) need only a single test because they don’t take any parameters 
(other than possibly an Assertion Message). Stated Outcome Assertions need one 
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test for each possible value (or boundary value). Equality Assertions need one test 
that compares two objects deemed to be equivalent, one test that compares an 
object with itself, and one test for each attribute whose inequality should cause 
the assertion to fail. Attributes that don’t affect equality can be verifi ed in one 
additional test because the Equality Assertion should not raise an error for any of 
them. 

The Custom Assertions follow the normal Simple Success Test (see Test 
Method on page 348) and Expected Exception Test (see Test Method) tem-
plates with one minor difference: Because the Assertion Method is the SUT, the 
exercise SUT and verify outcome phases of the Four-Phase Test (page 358) are 
combined into a single phase. 

Each test consists of setting up the Expected Object and the actual object and 
then calling the Custom Assertion. If the objects should be equivalent, that’s all 
there is to it. (The Test Automation Framework described on page 298 would 
catch any assertion failures and fail the test.) For the tests where we expect the 
Custom Assertion to fail, we can write the test as an Expected Exception Test
(except that the exercise SUT and verify outcome phases of the Four-Phase Test
are combined into the single call to the Custom Assertion).

The simplest way to build the objects to be compared for a specifi c test is to 
do something similar to One Bad Attribute (see Derived Value on page 718)—
that is, build the fi rst object and make a deep copy of it. For successful tests, 
modify any of the attributes that should not be compared. For each test failure, 
modify one attribute that should be grounds for failing the assertion. 

A brief warning about a possible complication in a few members of the 
xUnit family: If all of the test failure handling does not occur in the Test Runner
(page 377), calls to fail or built-in assertions may add messages to the failure 
log even if we catch the error or exception in our Custom Assertion Test. The 
only way to circumvent this behavior is to use an “Encapsulated Test Runner” 
to run each test by itself and verify that the one test failed with the expected 
error message. 

Motivating Example 

In the following example, several test methods repeat the same series of 
assertions:

   public void testInvoice_addOneLineItem_quantity1_b() {
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
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      // Verify only item
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem.getInv(), actual.getInv());
      assertEquals(expItem.getProd(), actual.getProd());
      assertEquals(expItem.getQuantity(), actual.getQuantity());
   }

   public void testRemoveLineItemsForProduct_oneOfTwo() {
      // Setup
      Invoice inv = createAnonInvoice();
      inv.addItemQuantity(product, QUANTITY);
      inv.addItemQuantity(anotherProduct, QUANTITY);
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.removeLineItemForProduct(anotherProduct);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem.getInv(), actual.getInv());
      assertEquals(expItem.getProd(), actual.getProd());
      assertEquals(expItem.getQuantity(), actual.getQuantity());
   }

   //
   //   Adding TWO line items
   //

   public void testInvoice_addTwoLineItems_sameProduct() {
      Invoice inv = createAnonInvoice();
      LineItem expItem1 = new LineItem(inv, product, QUANTITY1);
      LineItem expItem2 = new LineItem(inv, product, QUANTITY2);
      // Exercise
      inv.addItemQuantity(product, QUANTITY1);
      inv.addItemQuantity(product, QUANTITY2);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 2);
      //   Verify first item
      LineItem actual = (LineItem)lineItems.get(0);
      assertEquals(expItem1.getInv(), actual.getInv());
      assertEquals(expItem1.getProd(), actual.getProd());
      assertEquals(expItem1.getQuantity(), actual.getQuantity());
      //   Verify second item
      actual = (LineItem)lineItems.get(1);
      assertEquals(expItem2.getInv(), actual.getInv());
      assertEquals(expItem2.getProd(), actual.getProd());
      assertEquals(expItem2.getQuantity(), actual.getQuantity());
   }
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Note that the fi rst test ends with a series of three assertions and the second test 
repeats the series of three assertions twice, once for each line item. This is clearly 
a bad case of Test Code Duplication.

Refactoring Notes 

Refactoring zealots can probably see that the solution is to do an Extract Meth-
od [Fowler] refactoring on these tests. If we pull out all the common calls to 
Assertion Methods, we will be left with only the differences in each test. The 
extracted method is our Custom Assertion. We may also need to introduce an 
Expected Object to hold all the values that were being passed to the individual 
Assertion Methods on a single object to be passed to the Custom Assertion.

Example: Custom Assertion 

In this test, we use a Custom Assertion to verify that LineItem matches the expected 
LineItem(s). For one reason or another, we have chosen to implement a test-specifi c 
equality rather than using a standard Equality Assertion.

   public void testInvoice_addOneLineItem_quantity1_() {
      Invoice inv = createAnonInvoice();
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      // Verify only item
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("LineItem", expItem, actual);
   }

   public void testAddItemQuantity_sameProduct_() {
      Invoice inv = createAnonInvoice();
      LineItem expItem1 = new LineItem(inv, product, QUANTITY1);
      LineItem expItem2 = new LineItem(inv, product, QUANTITY2);
      // Exercise
      inv.addItemQuantity(product, QUANTITY1);
      inv.addItemQuantity(product, QUANTITY2);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 2);
      // Verify first item
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("Item 1",expItem1,actual);
      // Verify second item
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      actual = (LineItem)lineItems.get(1);
      assertLineItemsEqual("Item 2",expItem2, actual);
   }

The tests have become signifi cantly smaller and more intent-revealing. We have 
also chosen to pass a string indicating which item we are examining as an argu-
ment to the Custom Assertion to avoid playing Assertion Roulette when a test 
fails.

This simplifi ed test was made possible by having the following Custom
Assertion available to us: 

   static void assertLineItemsEqual( 
                     String  msg, LineItem exp, LineItem act) {
      assertEquals(msg+" Inv",  exp.getInv(),act.getInv());
      assertEquals(msg+" Prod", exp.getProd(), act.getProd());
      assertEquals(msg+" Quan", exp.getQuantity(), act.getQuantity());
   }

This Custom Assertion compares the same attributes of the object as we were 
comparing on an in-line basis in the previous version of the test; thus the seman-
tics of the test haven’t changed. We also concatenate the name of the attribute 
being compared with the message parameter to get a unique failure message, 
which allows us to avoid playing Assertion Roulette when a test fails. 

Example: Domain Assertion 

In this next version of the test, we have further elevated the level of the asser-
tions to better communicate the expected outcome of the test scenarios: 

   public void testAddOneLineItem_quantity1() {
      Invoice inv = createAnonInvoice();
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity( product, QUANTITY);
      // Verify
      assertInvoiceContainsOnlyThisLineItem( inv, expItem);
   }

   public void testRemoveLineItemsForProduct_oneOfTwo_() {
      Invoice inv = createAnonInvoice();
      inv.addItemQuantity( product, QUANTITY);
      inv.addItemQuantity( anotherProduct, QUANTITY);
      LineItem expItem = new LineItem( inv, product, QUANTITY);
      // Exercise
      inv.removeLineItemForProduct( anotherProduct );
      // Verify
      assertInvoiceContainsOnlyThisLineItem( inv, expItem);
   }

 Custom Assertion
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This simplifi ed version of the test was made possible by extracting the following 
Domain Assertion method: 

   void assertInvoiceContainsOnlyThisLineItem(
                                     Invoice inv,
                                     LineItem expItem) {
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("item",expItem, actual);
   }

This example chose to forgo passing a message to the Domain Assertion to save 
a bit of space. In real life, we would typically include a message string in the 
parameter list and concatenate the messages of the individual assertions to one 
passed in. See Assertion Message (page 370) for more details.

Example: Verifi cation Method 

If the exercise SUT and result verifi cation phases of several tests are pretty much 
identical, we can incorporate both phases into our reusable Custom Assertion.
Because this approach changes the semantics of the Custom Assertion from being 
just a function free of side effects to an operation that changes the state of the 
SUT, we usually give it a more distinctive name starting with “verify”. 

This version of the test merely sets up the test fi xture before calling a Verifi ca-
tion Method that incorporates both the exercise SUT and verify outcome phases 
of the test. It is most easily recognized by the lack of a distinct “exercise” phase 
in the calling test and the presence of calls to methods that modify the state of 
one of the objects passed as a parameter of the Verifi cation Method.

   public void testAddOneLineItem_quantity2() {
      Invoice inv = createAnonInvoice();
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise & Verify
      verifyOneLineItemCanBeAdded(inv, product, QUANTITY, expItem);
   }

The Verifi cation Method for this example looks like this: 

   public void verifyOneLineItemCanBeAdded(
                  Invoice inv, Product product,
                  int QUANTITY, LineItem expItem) {
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      assertInvoiceContainsOnlyThisLineItem(inv, expItem);
   }
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This Verifi cation Method calls the “pure” Custom Assertion, although it could 
just as easily have included all the assertion logic if we didn’t have the other Cus-
tom Assertion to call. Note the call to addItemQuantity on the parameter inv; this is 
what changes if from a Custom Assertion to a Verifi cation Method.

Example: Custom Assertion Test 

This Custom Assertion isn’t particularly complicated, so we may feel comfort-
able without having any automated tests for it. If there is anything complex 
about it, however, we may fi nd it worthwhile to write tests like these: 

   public void testassertLineItemsEqual_equivalent() {
      Invoice inv = createAnonInvoice();
      LineItem item1 = new LineItem(inv, product, QUANTITY1);
      LineItem item2 = new LineItem(inv, product, QUANTITY1);
      // exercise/verify
      assertLineItemsEqual("This should not fail",item1, item2);
   }

   public void testassertLineItemsEqual_differentInvoice() {
      Invoice inv1 = createAnonInvoice();
      Invoice inv2 = createAnonInvoice();
      LineItem item1 = new LineItem(inv1, product, QUANTITY1);
      LineItem item2 = new LineItem(inv2, product, QUANTITY1);
      // exercise/verify
      try {
         assertLineItemsEqual("Msg",item1, item2); 
      } catch (AssertionFailedError e) {
         assertEquals("e.getMsg",
                      "Invoice-expected: <123> but was <124>",
                      e.getMessage());
         return;
      }
      fail("Should have thrown exception");
   }

   public void testassertLineItemsEqual_differentQuantity() {
      Invoice inv = createAnonInvoice();
      LineItem item1 = new LineItem(inv, product, QUANTITY1);
      LineItem item2 = new LineItem(inv, product, QUANTITY2);
      // exercise/verify
      try {
         assertLineItemsEqual("Msg",item1, item2); 
      } catch (AssertionFailedError e) {
         pass();  // to indicate that no assertion is needed
         return;
      }
      fail("Should have thrown exception");
   }

 Custom Assertion

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/


484 Chapter 21  Result Verification Patterns

This example includes a few of the Custom Assertion Tests needed for this Custom 
Assertion. Note that the code includes one “equivalent” and several “different” 
tests (one for each attribute whose difference should cause the test to fail). We have 
to use the second form of the Expected Exception Test template in those cases 
where the assertion was expected to fail, because fail throws the same exception as 
our assertion method. In one of the “different” tests, we have included sample logic 
for asserting on the exception message. (Although I’ve abridged it to save space, the 
example here should give you an idea of where to assert on the message.) 

Custom
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/


485

Delta Assertion

How do we make tests self-checking when we cannot control 
the initial contents of the fi xture?

We specify assertions based on differences between the pre- and 
post-exercise state of the SUT.

When we are using a Shared Fixture (page 317) such as a test database, it can 
be challenging to code the assertions that state what the content of the fi xture 
should be after the SUT has been exercised. This is because other tests may have 
created objects in the fi xture that our assertions may detect and that may cause 
our assertions to fail. One solution is to isolate the current test from all other 
tests by using a Database Partitioning Scheme (see Database Sandbox on page
650). But what can we do if this option is not available to us? 

Using Delta Assertions allows us to be less dependent on which data already 
exist in the Shared Fixture.

How It Works

Before exercising the SUT, we take a snapshot of relevant parts of the Shared
Fixture. After exercising the SUT, we specify our assertions relative to the saved 
snapshot. The Delta Assertions typically verify that the number of objects has 
changed by the right number and that the contents of collections of objects 
returned by the SUT in response to our queries have been augmented by the 
expected objects. 
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When to Use It 

We can use a Delta Assertion whenever we don’t have full control over the test 
fi xture and we want to avoid Interacting Tests (see Erratic Test on page 228).
Using Delta Assertions will help make our tests more resilient to changes in the 
fi xture. We can also use Delta Assertions in concert with Implicit Teardown
(page 516) to detect memory or data leaks in the code that we are testing. See 
the sidebar “Using Delta Assertions to Detect Data Leakage” on page 487 for a 
more detailed description. 

Delta Assertions work well when tests are run one after another from the 
same Test Runner (page 377). Unfortunately, they cannot prevent a Test Run 
War (see Erratic Test) because such a problem arises when tests are run at the 
same time from different processes. Delta Assertions work whenever the state 
of the SUT and the fi xture are modifi ed only by our own test. If other tests are 
running in parallel (not before or after the current test, but at the same time), a 
Delta Assertion won’t be suffi cient to avoid the Test Run War problem. 

Implementation Notes 

When saving the pre-test state of the Shared Fixture or SUT, we must make sure 
that the SUT cannot change our snapshot. For example, if our snapshot consists 
of a collection of objects returned by the SUT in response to a query, we must 
perform a deep copy; a shallow copy copies only the Collection object and not the 
objects to which it refers. Shallow copying would allow the SUT to modify the 
very objects it returned to us as we exercise it; as a consequence, we would lose 
the reference snapshot with which we are comparing the post-test state. 

We can ensure that we have the correct post-test state in several different ways. 
Assuming that our test adds any new objects it plans to modify, one approach is 
to fi rst check that the result collection (1) has the right number of items, (2) con-
tains all the pre-test items, and (3) contains the new Expected Objects (see State 
Verifi cation on page 462). Another approach is to remove all the saved items 
from the result collection and then compare what remains with the collection of 
new expected objects. Both of these approaches can be hidden behind a Custom
Assertion (page 474) or a Verifi cation Method (see Custom Assertion).
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Using Delta Assertions to Detect Data Leakage

A long time ago, on a project far away, we were experimenting with 
different ways to clean up our test fi xtures after the customer tests. Our 
tests were accessing a database and leaving objects behind. This behavior 
caused all sorts of problems with Unrepeatable Tests (see Erratic Test on
page 228) and Interacting Tests (see Erratic Test). We were also suffering 
from Slow Tests (page 253). 

Eventually we hit upon the idea of keeping track of all the objects we 
were creating in our tests by registering them with an Automated Tear-
down (page 503) mechanism. Then we found a way to stub out the data-
base with a Fake Database (see Fake Object on page 551). Next we made 
it possible to run the same test against either the fake database or the real 
one. This solved many of the interaction problems when running against 
the fake database, although those problems still occurred when we ran 
the tests against the real database—tests still left objects behind, and we 
wanted to know why. But fi rst we had to determine precisely which tests 
were at fault. 

The solution turned out to be pretty simple. In our Fake Database—which
was implemented using simple hash tables—we added a method to count 
the total number of objects. We simply saved this value in an instance 
variable in the setUp method and used it as the expected value passed to an 
Equality Assertion (see Assertion Method on page 362) called in the tear-
Down method to verify that we had cleaned up all objects properly. [This is 
an example of using Delta Assertions (page 485).] Once we implemented 
this little trick, we quickly found out which tests were suffering from the 
Data Leak (see Erratic Test). We could then focus our efforts on a much 
smaller number of tests. 

Even today, we fi nd it useful to be able to run the same test against the 
database and in memory. Similarly, we still occasionally see a test fail 
when the tearDown method inherited from our company-specifi c Testcase 
Superclass (page 638) has a Delta Assertion failure. Perhaps the same 
idea could be applied to checking for memory leaks in programming lan-
guages with manual memory management (such as C++). 
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Motivating Example 

The following test retrieves some objects from the SUT. It then compares the 
objects it actually found with the objects it expected to fi nd. 

   public void testGetFlightsByOriginAirport_OneOutboundFlight()
            throws Exception {
      FlightDto expectedFlightDto = 
         createNewFlightBetweenExistingAirports();
      // Exercise System
      facade.createFlight(
                 expectedFlightDto.getOriginAirportId(),
                 expectedFlightDto.getDestinationAirportId());
      // Verify Outcome
      List flightsAtOrigin = facade.getFlightsByOriginAirport(
                       expectedFlightDto.getOriginAirportId());
      assertOnly1FlightInDtoList( "Outbound flight at origin",
                                  expectedFlightDto,
                                  flightsAtOrigin);
   }

Unfortunately, because this test used a Shared Fixture, other tests that ran before 
it may have added objects as well. That behavior could cause the current test to 
fail if we encounter additional, unexpected objects. 

Refactoring Notes 

To convert the test to use a Delta Assertion, we must fi rst take a snapshot of 
the data (or collection of objects) we will later be asserting on. Next, we need 
to modify our assertions to focus on the difference between the pre-test data/
objects and the post-test data/objects. To avoid introducing Conditional Test 
Logic (page 200) into the Test Method (page 348), we may want to introduce 
a new Custom Assertion. Although we may be able to use existing assertions 
(custom or otherwise) as a starting point, we’ll probably have to modify them to 
take the pre-test data into account. 

Example: Delta Assertion 

In this version of the test, we use a Delta Assertion to verify the objects added 
when we exercised the SUT. Here we are verifying that we have one more object 
than before and that the collection of objects returned by the SUT includes the 
new Expected Object and all objects that it previously contained. 

   public void testCreateFlight_Delta()
            throws Exception {
      FlightDto expectedFlightDto =
         createNewFlightBetweenExistingAirports();
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      // Remember prior state
      List flightsBeforeCreate =
         facade.getFlightsByOriginAirport(
                        expectedFlightDto.getOriginAirportId());
      // Exercise system
      facade.createFlight(
                    expectedFlightDto.getOriginAirportId(),
                    expectedFlightDto.getDestinationAirportId());
      // Verify outcome relative to prior state
      List flightsAfterCreate =
         facade.getFlightsByOriginAirport(
                     expectedFlightDto.getOriginAirportId());
      assertFlightIncludedInDtoList( "new flight ",
                                     expectedFlightDto,
                                     flightsAfterCreate);
      assertAllFlightsIncludedInDtoList( "previous flights",
                                         flightsBeforeCreate,
                                         flightsAfterCreate);
      assertEquals( "Number of flights after create",
                    flightsBeforeCreate.size()+1,
                    flightsAfterCreate.size());
   }

Because the SUT returns Data Transfer Objects [CJ2EEP], we can be assured 
that the objects we saved before exercising the SUT cannot possibly change. 
We have modifi ed our Custom Assertions to ignore the pre-test objects (by not 
insisting that the Expected Object is the only one) and have written a new Cus-
tom Assertion that ensures all pre-test objects are also present. Another way to 
accomplish this task is to remove the pre-test objects from the result collection 
and then verify that only the new Expected Objects are left. 

I’ve omitted the implementation of the Custom Assertions, as it is purely 
an exercise in comparing objects and is not salient to understanding the Delta 
Assertion pattern. The “test infected” among us would, of course, write the Custom 
Assertions driven by some Custom Assertion Tests (see Custom Assertion). 

 Delta Assertion

Delta
Assertion

www.it-ebooks.info

http://www.it-ebooks.info/


490 Chapter 21  Result Verification Patterns

Guard Assertion                                                                                       

How do we avoid Conditional Test Logic?

We replace an if statement in a test with an assertion that fails the test 
if not satisfi ed.

Some verifi cation logic may fail because information returned by the SUT is not 
initialized as expected. When a test encounters an unexpected problem, it may 
produce a test error rather than a test failure. While the Test Runner (page 377) 
does its best to provide useful diagnostic information, the test automater can of-
ten do better by checking for the particular condition and reporting it explicitly. 

A Guard Assertion is a good way to do so without introducing Conditional
Test Logic (page 200). 

How It Works 

Tests either pass or fail. We fail tests by calling Assertion Methods (page 362) 
that stop the test from executing further if the assertion’s condition is not met. 
Alternatively, we can replace Conditional Test Logic that is used to avoid ex-
ecuting assertions when they would cause test errors with assertions that fail the 
test instead. This pattern also documents the fact that we expect the condition of 
the Guard Assertion to be true. A failure of the Guard Assertion makes it very 
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clear that some condition we expected to be true was not; it eliminates the effort 
needed to infer the test result from the conditional logic. 

When to Use It 

We should use a Guard Assertion whenever we want to avoid executing state-
ments in our Test Method (page 348) because they would cause an error if they 
were executed when some condition related to values returned by the SUT is not 
true. We take this step instead of putting an if then else fail code construct around 
the sensitive statements. Normally, a Guard Assertion is placed between the exer-
cise SUT and the verify outcome phases of a Four-Phase Test (page 358). 

Variation: Shared Fixture State Assertion 

When the test uses a Shared Fixture (page 317), a Guard Assertion can also be 
useful at the beginning of the test (before the exercise SUT phase) to verify that 
the Shared Fixture satisfi es the test’s needs. It also makes it clearer to the test 
reader which parts of the Shared Fixture this test actually uses; the greater clar-
ity improves the likelihood of achieving Tests as Documentation (see page 23). 

Implementation Notes 

We can use Stated Outcome Assertions (see Assertion Method) like assertNotNil and 
Equality Assertions (see Assertion Method) like assertEquals as Guard Assertions
that fail the test and prevent execution of other statements that would cause test 
errors. 

Motivating Example 

Consider the following example: 

   public void testWithConditionals() throws Exception {
      String expectedLastname = "smith";
      List foundPeople = PeopleFinder.
            findPeopleWithLastname(expectedLastname);
      if (foundPeople != null) {
         if (foundPeople.size() == 1) {
            Person solePerson = (Person) foundPeople.get(0);
            assertEquals( expectedLastname,solePerson.getName());
         } else {
            fail("list should have exactly one element");
         }
      } else {
         fail("list is null");
      }
   }
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This example includes plenty of conditional statements that the author might get 
wrong—things like writing (foundPeople == null) instead of (foundPeople != null). In 
C-based languages, one might mistakenly use = instead of ==, which would result 
in the test always passing! 

Refactoring Notes 

We can use a Replace Nested Conditional with Guard Clauses [Fowler] refactoring 
to transform this spider web of Conditional Test Logic into a nice linear sequence 
of statements. (In a test, even a single conditional statement is considered too much 
and hence “nested”!) We can use Stated Outcome Assertions to check for null 
object references and Equality Assertions to verify the number of objects in the 
collection. If each assertion is satisfi ed, the test proceeds. If they are not satisfi ed, 
the test ends in failure before it reaches the next statement. 

Example: Simple Guard Assertion 

This simplifi ed version of the test replaces all conditional statements with asser-
tions. It is shorter than the original test and much easier to read. 

   public void testWithoutConditionals() throws Exception {
      String expectedLastname = "smith";
      List foundPeople = PeopleFinder.
            findPeopleWithLastname(expectedLastname);
      assertNotNull("found people list", foundPeople);
      assertEquals( "number of people", 1, foundPeople.size() );
      Person solePerson = (Person) foundPeople.get(0);
      assertEquals( "last name",
                    expectedLastname,
                    solePerson.getName() );
   }

We now have a single linear execution path through this Test Method (page 348); 
it should improve our confi dence in the correctness of this test immensely! 

Example: Shared Fixture Guard Assertion 

Here’s an example of a test that depends on a Shared Fixture. If a previous test (or 
even this test in a previous test run) modifi es the state of the fi xture, our SUT could 
return unexpected results. It might take a fair bit of effort to determine that the 
problem lies in the test’s pre-conditions rather than being a bug in the SUT. We can 
avoid all of this trouble by making the assumptions of this test explicit through the 
use of a Guard Assertion during the fi xture lookup phase of the test. 
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   public void testAddFlightsByFromAirport_OneOutboundFlight_GA()
            throws Exception {
      // Fixture Lookup
      List flights = facade.getFlightsByOriginAirport(
                            ONE_OUTBOUND_FLIGHT_AIRPORT_ID );
      //    Guard Assertion on Fixture Contents
      assertEquals( "# flights precondition", 1, flights.size());
      FlightDto firstFlight = (FlightDto) flights.get(0);
      // Exercise System
      BigDecimal flightNum = facade.createFlight(
                               firstFlight.getOriginAirportId(),
                               firstFlight.getDestAirportId());
      // Verify Outcome
      FlightDto expFlight = (FlightDto) firstFlight.clone();
      expFlight.setFlightNumber( flightNum );
      List actual = facade.getFlightsByOriginAirport(
                               firstFlight.getOriginAirportId());
      assertExactly2FlightsInDtoList( "Flights at origin",
                                      firstFlight,
                                      expFlight,
                                      actual);
   }

We now have a way to determine that the assumptions were violated without 
extensive debugging! This is another way we achieve Defect Localization (see
page 22). This time the defect is in the tests’ assumptions on the previously run 
tests’ behavior.
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Unfi nished Test Assertion       

How do we structure our test logic to avoid leaving tests unfi nished?

We ensure that incomplete tests fail by executing an assertion 
that is guaranteed to fail. 

 void testSomething() {
    // Outline:
       // create a flight in ... state
       // call the ... method
       // verify flight is in ... state
    fail("Unfinished Test!");
 }

When we start defi ning the tests for a particular piece of code, it is useful to 
“rough in” the tests by defi ning Test Methods (page 348) on the appropriate 
Testcase Class (page 373) as we think of the test conditions. We do, however, 
want to ensure that we don’t accidentally forget to fi ll in the bodies of these tests 
if we get distracted. We want the tests to fail until we fi nish coding them. 

Including an Unfi nished Test Assertion is a good way to make sure we don’t 
forget.

How It Works 

We put a single call to fail in each Test Method as we defi ne it. The fail method is 
a Single-Outcome Assertion (see Assertion Method on page 362) that always fails. 
We include the Assertion Message (page 370) “Unfi nished Test” as a reminder of 
why the test fails when we do run the tests. 

When to Use It 

We should not deliberately write any tests that might accidentally pass. A failing 
test makes a good reminder that we still have work to do. We can remind our-
selves of this work by putting an Unfi nished Test Assertion at the end of every 
test we write and by removing it only when we are satisfi ed that the test is coded 
properly. There is no real cost to doing so, but a lot of benefi t. It is just a matter 
of getting into the habit. Some IDEs even help us out by letting us put the Unfi n-
ished Test Assertion into the code generation template for a Test Method

If we need to check in the tests before all code is working, we shouldn’t remove 
the tests or the Unfi nished Test Assertions just to get a green bar, as this could 
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result in Lost Tests (see Production Bugs on page 268). Instead, we can add an 
[Ignore] attribute to the test if our member of the xUnit family supports it, rename 
the test method if xUnit uses name-based Test Discovery (page 393), or exclude 
the entire Testcase Class from the AllTests Suite (see Named Test Suite on page
592) if we are using Test Enumeration (page 399) at the suite level. 

Implementation Notes 

Most members of the xUnit family have a fail method already defi ned. If the 
member that we are using doesn’t include it, we should avoid the temptation 
to sprinkle assertTrue(false) throughout our code. This kind of code is obtuse 
and easy to get wrong because it is counter-intuitive. Instead, we should take 
a minute to write this method ourselves as a Custom Assertion (page 474) and 
write the Custom Assertion Test (see Custom Assertion) for it fi rst to make sure 
we got it right. 

Some IDEs include the ability to customize code generation templates. Some 
even include a template for a Test Method that includes an Unfi nished Test 
Assertion.

Motivating Example 

Consider the following Testcase Class that we are roughing in: 

   public void testPull_emptyStack() {

   }

   public void testPull_oneItemOnStack () {

   }

   public void testPull_twoItemsOnStack () {
      //To do: Write this test
   }

   public void testPull_oneItemsRemainingOnStack () {
      //To do: Write this test
   }

Including the // To do: ... comments may remind us that the test still needs work 
if our IDE supports that feature—but it won’t remind us of the unfi nished work 
when we run the tests. Running this Testcase Class will result in a green bar even 
though we may not have implemented our stack at all! 
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Refactoring Notes 

To implement Unfi nished Test Assertion all we need to do is add the following 
line to each test as we rough it in: 

fail("Unfinished Test!");

The exclamation mark is optional. It might be even better to create a Custom
Assertion such as this one: 

private void unfinishedTest() {
   fail("Test not implemented!");
}

This would allow us to fi nd all the Unfi nished Test Assertions easily by using the 
“search for references” feature of our IDE. 

Example: Unfi nished Test Assertion 

Here are the tests with an Unfi nished Test Assertion added to each one: 

   public void testPull_emptyStack() {
      unfinishedTest();
   }

   public void testPull_oneItemOnStack () {
      unfinishedTest();
   }

   public void testPull_twoItemsOnStack() {
      unfinishedTest();
   }

   public void testPull_oneItemsRemainingOnStack () {
      unfinishedTest();
   }

Now we have a Testcase Class that is guaranteed to fail until we fi nish writing 
the code. The failing tests act as a “to do” list for writing the tests. 

Example: Unfi nished Test Method Generation from Template 

Eclipse (version 3.0) is an example of an IDE that includes the ability to custom-
ize templates. Its testmethod template inserts the following code into our Testcase 
Class:

public void testname() throws Exception {
   fail("ClassName::testname not implemented");
}
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The strings “ClassName” and “testname” are placeholders for the names of the 
Testcase Class and Test Method, respectively; they are fi lled in automatically 
by the IDE. As we modify the test name in the signature, the test name in the 
fail statement is adjusted automatically. All we have to do to insert a new Test 
Method into a class is to type “testmethod” and then press CTRL-SPACEBAR. 
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Chapter 22

Fixture Teardown Patterns 

Patterns in This Chapter
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 b

Garbage-Collected Teardown                                      

How do we tear down the Test Fixture?

We let the garbage collection mechanism provided by the programming 
language clean up after our test.

A large part of making tests repeatable and robust is ensuring that the test fi x-
ture is torn down after each test and a new one created for the next test run. 
This strategy is known as a Fresh Fixture (page 311). In languages that provide 
garbage collection, much of the teardown can happen automatically if we refer 
to resources via local and instance variables. 

How It Works 

Many of the objects created during the course of our test (including both fi xture 
setup and exercising the SUT) are transient objects that are kept alive only as 
long as there is a reference to them somewhere in the program that created them. 
The garbage collection mechanisms of modern languages use various algorithms 
to detect “garbage.” What is most important, though, is how they determine 
that something is not garbage: Any object that is reachable from any other live 
object or from global (i.e., static) variables will not be garbage collected. 

When running our tests, the Test Automation Framework (page 298) creates 
a Testcase Object (page 382) for each Test Method (page 348) in our Testcase 
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Class (page 373) and adds those objects to a Test Suite Object (page 387). When-
ever a new test run is started, the framework typically throws away the existing 
test suite and builds a new one (to be sure everything is fresh). When the old test 
suite is discarded, any objects referenced only by instance variables in those tests 
become candidates for garbage collection. 

When to Use It 

We should use Garbage-Collected Teardown whenever we possibly can because 
it will save us a lot of effort! 

If our programming takes place in an environment that doesn’t support garbage 
collection, or if we have resources that aren’t garbage collected automatically (e.g., 
fi les, sockets, records in a database), we’ll need to destroy or free those resources 
explicitly. If we are using a Shared Fixture (page 317), we won’t be able to use 
Garbage-Collected Teardown unless we do something fancy to hold the reference 
to the fi xture in such a way that it will go out of scope when our test suite has 
fi nished running. 

We can use In-line Teardown (page 509), Implicit Teardown (page 516), or 
Automated Teardown (page 503) to ensure that they are released properly. 

Implementation Notes 

Some members of the xUnit family and some IDEs go so far as to replace the 
classes each time the test suite is run. We may see this behavior show up as an 
option called “Reload Classes” or it may be forced upon us. We must be care-
ful if we decide to take advantage of this feature to perform Garbage-Collected
Teardown with fi xture holding class variables, as our tests may stop running 
if we change IDEs or try running our tests from the command line (e.g., from 
“Cruise Control” or a build script.) 

Motivating Example 

The following test creates some in-memory objects during fi xture setup and 
explicitly destroys them using In-line Teardown. (We could have used Implicit
Teardown in this example but that just makes it harder for readers to see what 
is going on.) 

   public void testCancel_proposed_UIT() {
      // fixture setup
      Flight proposedFlight = createAnonymousProposedFlight();
      // exercise SUT
      proposedFlight.cancel();
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      // verify outcome
      try{
         assertEquals( FlightState.CANCELLED,
                       proposedFlight.getStatus());
      } finally {
         // teardown
         proposedFlight.delete();
         proposedFlight = null;
      }
   }

Because these objects are not persistent, the code to delete the proposedFlight is 
unnecessary and just makes the test more complicated and harder to understand. 

Refactoring Notes 

To convert to Garbage-Collected Teardown, we need only remove the unneces-
sary cleanup code. If we had been using a class variable to hold the reference to 
the object, we would have had to convert it to either an instance variable or a 
local variable, both of which would have moved us from a Shared Fixture to a 
Fresh Fixture.

Example: Garbage-Collected Teardown 

In this reworked test, we let Garbage-Collected Teardown do the job for us. 

   public void testCancel_proposed_GCT() {
      // fixture setup
      Flight proposedFlight = createAnonymousProposedFlight();
      // exercise SUT
      proposedFlight.cancel();
      // verify outcome
      assertEquals( FlightState.CANCELLED,
                    proposedFlight.getStatus());
      // teardown
      //  Garbage collected when proposedFlight goes out of scope
   }

Note how much simpler the test has become! 
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Automated Teardown                                                  

How do we tear down the Test Fixture?

We keep track of all resources that are created in a test and automatically 
destroy/free them during teardown.

A large part of making tests repeatable and robust is ensuring that the test 
fi xture is torn down after each test and a new one created for the next test 
run. This strategy is known as a Fresh Fixture (page 311). Leftover objects 
and database records, as well as open fi les and connections, can at best cause 
performance degradations and at worst cause tests to fail or systems to crash. 
While some of these resources may be cleaned up automatically by garbage 
collection, others may be left hanging if they are not torn down explicitly. 

Writing teardown code that can be relied upon to clean up properly in all possible 
circumstances is challenging and time-consuming. It involves understanding what 
could be left over for each possible outcome of the test and writing code to deal with 
that scenario. This Complex Teardown (see Obscure Test on page 186) introduces 
a fair bit of Conditional Test Logic (page 200) and—worst of all—Untestable Test 
Code (see Hard-to-Test Code on page 209). 

A better solution is to let the test infrastructure track the objects created and 
clean them up auto-magically when the test is complete. 
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How It Works 

The core of the solution is a mechanism to register each persistent item (i.e., 
object, record, connection, and so on) we create in the test. We maintain a list 
(or lists) of registered objects that need some action to be taken to destroy them. 
This can be as simple as tossing each object into a collection. At the end of the 
test, we traverse the collection and destroy each object. We will want to catch 
any errors that we encounter so that one object’s cleanup error will not cause the 
rest of the cleanup to be aborted. 

When to Use It 

We can use Automated Teardown whenever we have persistent resources that 
need to be cleaned up to keep the test environment functioning. (This happens 
more often in customer tests than in unit tests.) This pattern addresses both 
Unrepeatable Tests (see Erratic Test on page 228) and Interacting Tests (see
Erratic Test) by keeping the objects created in one test from lingering into the 
execution of a subsequent test. 

Automated Teardown isn’t very diffi cult to build, and it will save us a large 
amount of grief and effort. Once we have built it for one project, we should be 
able to reuse the teardown logic on subsequent projects for very little effort. 

Implementation Notes 

Automated Teardown comes in two fl avors. The basic fl avor tears down only 
objects that were created as part of fi xture setup. The more advanced version also 
destroys any objects that were created by the SUT while it was being exercised. 

Variation: Automated Fixture Teardown 

The simplest solution is to register the objects we create in our Creation Methods
(page 415). Although this pattern will not tear down the objects created by the 
SUT, by dealing with our fi xture it reduces the effort and likelihood of errors 
signifi cantly. 

There are two key challenges with this variation: 

• Finding a generic way to clean up the registered objects 

• Ensuring that our Automated Teardown code is run for each registered 
object

Given that the latter challenge is the easier problem, let us deal with it fi rst. 
When we are tearing down a Persistent Fresh Fixture (see Fresh Fixture), the 
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simplest solution is to put the call to the Automated Teardown mechanism into 
the tearDown method on our Testcase Class (page 373). This method is called 
regardless of whether the test passes or fails as long as the setUp method succeeds. 
When we are tearing down a Shared Fixture (page 317), we want the tearDown
method to run only after all the Test Methods (page 348) have been run. In this 
case, we can use either Suite Fixture Setup (page 441), if our member of the 
xUnit family supports it, or a Setup Decorator (page 447). 

Now let’s go back to the harder problem: the generic mechanism for cleaning 
up the resources. We have at least two options here. First, we can ensure that all 
persistent (non-garbage-collected) objects implement a generic cleanup mechanism 
that we can call from within the Automated Teardown mechanism. Alternatively, 
we can wrap each object in another object that knows how to clean up the object 
in question. The latter strategy is an example of the Command [GOF] pattern. 

If we build our Automated Teardown mechanism in a completely generic 
way, we can include it in the Testcase Superclass (page 638) on which we can 
base all our Testcase Classes. Otherwise, we may need to put it onto a Test 
Helper (page 643) that is visible from all Testcase Classes that need it. A Test 
Helper that both creates fi xture objects and tears them down automatically is 
sometimes called an Object Mother (see Test Helper).

Being a nontrivial (and very critical) piece of code, the Automated Teardown
mechanism deserves its own unit tests. Because it is now outside the Test Method,
we can write Self-Checking Tests (see page 26) for it! If we want to be really 
careful (some might say paranoid), we can use Delta Assertions (page 485) to 
verify that any objects that persist after the teardown operation really existed 
before the test was performed. 

Variation: Automated Exercise Teardown 

We can make the tests even more “self-cleaning” by also cleaning up the objects 
created by the SUT. This effort involves designing the SUT using an observable 
Object Factory (see Dependency Lookup on page 686) so that we can automati-
cally register any objects created by the SUT while it is being exercised. During 
the teardown phase we can delete these objects, too. 

Motivating Example 

In this example, we create several objects using Creation Methods and need to 
tear them down when the test in complete. To do so, we introduce a try/fi nally
block to ensure that our In-line Teardown (page 509) code executes even when 
the assertions fail. 
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   public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = null;
      FlightDto expFlightDto = null;
      try {
         inboundAirport = createTestAirport("1IF");
         expFlightDto = createTestFlight(outboundAirport, inboundAirport);
         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport(inboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         try {
            facade.removeFlight(expFlightDto.getFlightNumber());
         } finally {
            try {
               facade.removeAirport(inboundAirport);
            } finally  {
               facade.removeAirport(outboundAirport);
            } 
         }
      }
   }

Note that we must use nested try/fi nally constructs within the fi nally block to 
ensure that any errors in the teardown don’t keep us from fi nishing the job. 

Refactoring Notes 

Introducing Automated Teardown involves two steps. First, we add the 
Automated Teardown mechanism to our Testcase Class. Second, we remove 
any In-line Teardown code from our tests. 

Automated Teardown can be implemented on a specifi c Testcase Class or it can 
be inherited (or mixed in) via a generic class. Either way, we need to make sure we 
register all of our newly created objects so that the mechanism knows to delete 
them when the test is fi nished. This is most easily done inside Creation Methods
that already exist. Alternatively, we can use an Extract Method [Fowler] refactoring 
to move the direct constructor calls into newly created Creation Methods and add 
the registration. 

The generic Automated Teardown mechanism should be invoked from the 
tearDown method. Although this can be done on our own Testcase Class, it is 
almost always better to put this method on a Testcase Superclass that all our 
Testcase Classes inherit from. If we don’t already have a Testcase Superclass,
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we can easily create one by doing an Extract Class [Fowler] refactoring and 
then doing a Pull Up Method [Fowler] refactoring on any methods (and fi elds) 
associated with the Automated Teardown mechanism. 

Example: Automated Teardown 

There is not much to see in this refactored test because all of the teardown code 
has been removed. 

   public void testGetFlightsByOriginAirport_OneOutboundFlight()
   throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = createTestAirport("1IF");
      FlightDto expectedFlightDto =
            createTestFlight( outboundAirport, inboundAirport);
      // Exercise System
      List flightsAtOrigin =
            facade.getFlightsByOriginAirport(outboundAirport);
      // Verify Outcome
      assertOnly1FlightInDtoList( "Flights at origin",
                                  expectedFlightDto,
                                  flightsAtOrigin);
   }

Here is where all the work gets done! The Creation Method has been modifi ed 
to register the object it just created. 

   private List allAirportIds;
   private List allFlights;

   protected void setUp() throws Exception {
      allAirportIds = new ArrayList();
      allFlights = new ArrayList();
   }

   private BigDecimal createTestAirport(String airportName)
   throws FlightBookingException {
      BigDecimal newAirportId = facade.createAirport(
                       airportName, " Airport" + airportName,
                       "City" + airportName);
      allAirportIds.add(newAirportId);
      return newAirportId;
   }

Next comes the actual Automated Teardown logic. In this example, it lives on 
our Testcase Class and is called from the tearDown method. To keep this example 
very simple, this logic has been written specifi cally to handle airports and fl ights. 
More typically, it would live in the Testcase Superclass, where it could be used 
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by all Testcase Classes, and would use a generic object destruction mechanism 
so that it would not have to care what types of objects it was deleting. 

   protected void tearDown() throws Exception {
      removeObjects(allAirportIds, "Airport");
      removeObjects(allFlights, "Flight");
   }

   public void removeObjects(List objectsToDelete, String type) {
      Iterator i = objectsToDelete.iterator();
      while (i.hasNext()) {
         try {
            BigDecimal id = (BigDecimal) i.next();
            if ("Airport"==type) {
               facade.removeAirport(id);
            } else {
               facade.removeFlight(id);
            }
         } catch (Exception e) {
            // do nothing if the remove failed
         }
      }
   }

If we were tearing down a Shared Fixture, we would annotate our tearDown method 
with the suitable annotation or attribute (e.g., @afterClass or [TestFixtureTearDown])
or move it to a Setup Decorator.

Example: Automated Exercise Teardown 

If we wanted to take the next step and automatically tear down any objects 
created within the SUT, we could modify the SUT to use an observable Object
Factory. In our test, we would add the following code: 

ResourceTracker tracker;

public void setUp() {
   tracker = new ResourceTracker();
   ObjectFactory.addObserver(tracker);
}

public void tearDown() {
   tracker.cleanup();
   ObjectFactory.removeObserver(tracker);
}

This last example assumes that the Automated Teardown logic has been moved 
into the cleanup method on the ResourceTracker.
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In-line Teardown                                                   

How do we tear down the Test Fixture?

We include teardown logic at the end of the Test Method immediately after the 
result verifi cation.

A large part of making tests repeatable and robust is ensuring that the test fi xture 
is torn down after each test and a new one created for the next test run. This 
strategy is known as a Fresh Fixture (page 311). Leftover objects and database 
records, as well as open fi les and connections, can at best cause performance 
degradations and at worst cause tests to fail or systems to crash. While some of 
these resources may be cleaned up automatically by garbage collection, others 
may be left hanging if they are not torn down explicitly. 

At a minimum, we should write In-line Teardown code that cleans up 
resources left over after our test. 

How It Works 

As we write a test, we mentally keep track of all objects the test creates that 
will not be cleaned up automatically. After writing the code to exercise the SUT 
and verify the outcome, we add logic to the end of the Test Method (page 348) 
to destroy any objects that will not be cleaned up automatically by the garbage 
collector. We use the relevant language feature to ensure that the teardown code 
is run regardless of the outcome of the test. 
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When to Use It 

We should use some form of teardown logic whenever we have resources that 
will not be freed automatically after the Test Method is run; we can use In-line 
Teardown when each test has different objects to clean up. We may discover that 
objects need to be cleaned up because we have Unrepeatable Tests (see Erratic 
Test on page 228) or Slow Tests (page 253) caused by the accumulation of detritus 
from many test runs. 

Unlike fi xture setup, the teardown logic is not important from the perspective 
of Tests as Documentation (see page 23). Use of any form of teardown logic may 
potentially contribute to High Test Maintenance Cost (page 265) and should be 
avoided if at all possible. Thus the only real benefi t of including the teardown logic 
on an in-line basis is that it may make it easier to maintain the teardown logic—a 
pretty slim benefi t, indeed. It is almost always better to strive for Automated Tear-
down (page 503) or to use Implicit Teardown (page 516) if we are using Testcase 
Class per Fixture (page 631), where all tests in a Testcase Class (page 373) have the 
same test fi xture. 

We can also use In-line Teardown as a steppingstone to Implicit Teardown,
thereby following the principle of “the simplest thing that could possibly 
work.” First, we learn how to do In-line Teardown for each Test Method; next, 
we extract the common logic from those tests into the tearDown method. We 
should not use In-line Teardown if the objects created by the test are subject 
to automated memory management. In such a case, we should use Garbage-
Collected Teardown (page 500) instead because it is much less error-prone and 
keeps the tests easier to understand and maintain. 

Implementation Notes 

The primary consideration in In-line Teardown is ensuring that the teardown 
code actually runs even when the test is failed by an Assertion Method (page 362) 
or ends in an error in either the SUT or the Test Method. A secondary consider-
ation is ensuring that the teardown code does not introduce additional errors. 

The key to doing In-line Teardown correctly is to use language-level constructs 
to ensure that the teardown code is run. Most modern languages include some 
sort of error/exception-handling construct that will attempt the execution of a 
block of code with the guarantee that a second block of code will be run regard-
less of how the fi rst block terminates. In Java, this construct takes the form of a 
try block with an associated fi nally block. 

In-line
Teardown

www.it-ebooks.info

http://www.it-ebooks.info/


511

Variation: Teardown Guard Clause 

To protect against a failure caused by trying to tear down a resource that doesn’t 
exist, we can put a “guard clause” around the logic. Its inclusion reduces the 
likelihood of a test error caused by the teardown logic. 

Variation: Delegated Teardown 

We can move much of the teardown logic out of the Test Method by calling a 
Test Utility Method (page 599). Although this strategy reduces the amount of 
teardown logic cluttering the test, we still need to place an error-handling con-
struct around at least the assertions and the exercising of the SUT to ensure that 
it gets called. Using Implicit Teardown is almost always a better solution. 

Variation: Naive In-line Teardown 

Naive In-line Teardown is what we have when we forget to put the equivalent of 
a try/fi nally block around our test logic to ensure that our teardown logic always 
executes. It leads to Resource Leakage (see Erratic Test), which in turn may lead 
to Erratic Tests.

Motivating Example 

The following test creates a persistent object (airport) as part of the fi xture. 
Because the object is stored in a database, it is not subject to Garbage-Collected 
Teardown and must be explicitly destroyed. If we do not include teardown logic in 
the test, each time the test is run it will create another object in the database. This 
may lead to Unrepeatable Tests unless the test uses Distinct Generated Values (see
Generated Value on page 723) to ensure that the created objects do not violate any 
unique key constraints. 

   public void testGetFlightsByOriginAirport_NoFlights_ntd()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      // Exercise System
      List flightsAtDestination1 =
            facade.getFlightsByOriginAirport(outboundAirport);
      // Verify Outcome
      assertEquals(0,flightsAtDestination1.size());
   }

 In-line Teardown
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Example: Naive In-line Teardown 

In this naive solution to this problem, we added a line after the assertion to 
destroy the airport created in the fi xture setup. 

   public void testGetFlightsByOriginAirport_NoFlights()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      // Exercise System
      List flightsAtDestination1 =
            facade.getFlightsByOriginAirport(outboundAirport);
      // Verify Outcome
      assertEquals(0,flightsAtDestination1.size());
      facade.removeAirport(outboundAirport);
   }

Unfortunately, this solution isn’t really adequate because the teardown logic 
won’t be exercised if the SUT encounters an error or if the assertions fail. We 
could try moving the fi xture cleanup before the assertions but this still wouldn’t 
address the issue with errors occurring inside the SUT. Clearly, we need a more 
general solution. 

Refactoring Notes 

We need either to place an error-handling construct around the exercising of the 
SUT and the assertions or to move the teardown code into the tearDown method. 
Either way, we need to ensure that all the teardown code runs, even if some parts 
of it fail. This usually involves the judicious use of try/fi nally control structures 
around each step of the teardown process. 

Example: In-line Teardown 

In this Java example, we have introduced a try/fi nally block around the exercise 
SUT and result verifi cation phases of the test to ensure that our teardown code 
is run. 

   public void testGetFlightsByOriginAirport_NoFlights_td()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      try {
         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport(outboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());

In-line
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      } finally {
         facade.removeAirport(outboundAirport);
      }
   }

Now the exercising of the SUT and the assertions both appear in the try block 
and the teardown logic is found in the fi nally block. This separation is crucial to 
making In-line Teardown work properly. We should not include a catch block 
unless we are writing an Expected Exception Test (see Test Method).

Example: Teardown Guard Clause 

Here, we’ve added a Teardown Guard Clause to the teardown code to ensure it 
isn’t run if the airport doesn’t exist: 

   public void testGetFlightsByOriginAirport_NoFlights_TDGC()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      try {
         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport(outboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         if (outboundAirport!=null) {
            facade.removeAirport(outboundAirport);
         }
      }
   }

Example: Multiresource In-line Teardown (Java) 

If multiple resources need to be cleaned up in the same test, we must ensure that 
all the teardown code runs even if some of the teardown statements contain 
errors. This goal can be accomplished by nesting each subsequent teardown step 
inside another block of guaranteed code, as in this Java example: 

   public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = null;
      FlightDto expFlightDto = null;
      try {
         inboundAirport = createTestAirport("1IF");
         expFlightDto = createTestFlight(outboundAirport, inboundAirport);

 In-line Teardown
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         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport(inboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         try {
            facade.removeFlight(expFlightDto.getFlightNumber());
         } finally {
            try {
               facade.removeAirport(inboundAirport);
            } finally  {
               facade.removeAirport(outboundAirport);
            } 
         }
      }
   }

This scheme gets very messy in a hurry if we must clean up more than a few 
resources. In such a situation, it makes more sense to organize the resources into 
an array or list and then to iterate over that array or list. At that point we are 
halfway to implementing Automated Teardown.

Example: Delegated Teardown 

We can also delegate the teardown from within the Test Method if we don’t 
believe we can come up with a completely generic way cleanup strategy that will 
work for all tests. 

   public void testGetFlightsByOrigin_NoInboundFlight_DTD()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = null;
      FlightDto expectedFlightDto = null;
      try {
         inboundAirport = createTestAirport("1IF");
         expectedFlightDto =
            createTestFlight( outboundAirport, inboundAirport);
         // Exercise System
         List flightsAtDestination1 =
            facade.getFlightsByOriginAirport(inboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         teardownFlightAndAirports( outboundAirport,
                                    inboundAirport,
                                   expectedFlightDto);
      }
   }

In-line
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   private void teardownFlightAndAirports(
                                       BigDecimal firstAirport,
                                       BigDecimal secondAirport,
                                       FlightDto flightDto)
            throws FlightBookingException {
      try {
         facade.removeFlight( flightDto.getFlightNumber() );
      } finally {
         try {
            facade.removeAirport(secondAirport);
         } finally  {
            facade.removeAirport(firstAirport);
         }
      }
   }

The optimizers among us will notice that the two fl ight numbers are actually 
available as attributes of the fl ightDto. The paranoid will counter that because the 
teardownFlightAndAirports method could be called before the fl ightDto is constructed, 
we cannot count on using it to access the Airports. Hence we must pass the 
Airports in individually. The need to think this way is why a generic Automated
Teardown is so attractive; it avoids having to think at all!
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Implicit Teardown                                                   

How do we tear down the Test Fixture?

The Test Automation Framework calls our cleanup logic in the 
tearDown method after every Test Method.

A large part of making tests repeatable and robust is ensuring that the test 
fi xture is torn down after each test and a new one created for the next test 
run. This strategy is known as a Fresh Fixture (page 311). Leftover objects 
and database records, as well as open fi les and connections, can at best cause 
performance degradations and at worst cause tests to fail or systems to crash. 

When we can’t take advantage of Garbage-Collected Teardown (page 500) 
and we have several tests with the same objects to tear down, we can put 
the teardown logic into a special tearDown method that the Test Automation 
Framework (page 298) calls after each Test Method (page 348) is run. 

How It Works 

Anything that needs to be cleaned up can be freed or destroyed in the fi nal 
phase of the Four-Phase Test (page 358)—namely, the fi xture teardown phase. 
Most members of the xUnit family of Test Automation Frameworks support 
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the concept of Implicit Teardown, wherein they call the tearDown method of each 
Testcase Object (page 382) after the Test Method has been run. 

The tearDown method is called regardless of whether the test passes or fails. 
This scheme ensures that we have the opportunity to clean up, undisturbed by 
any failed assertions. Be aware, however, that many members of the xUnit 
family do not call tearDown if the setUp method raises an error. 

When to Use It 

We can use Implicit Teardown whenever several tests with the same resources need 
to be destroyed or freed explicitly after the test has been completed and those 
resources will not be destroyed or freed automatically. We may discover this require-
ment because we have Unrepeatable Tests (see Erratic Test on page 228) or Slow 
Tests (page 253) caused by the accumulation of detritus from many test runs. 

If the objects created by the test are internal resources and subject to automated 
memory management, then Garbage-Collected Teardown may eliminate a lot of 
work for us. If each test has a completely different set of objects to tear down, 
then In-line Teardown (page 509) may be more appropriate. In many cases, we 
can completely avoid manually written teardown logic by using Automated Tear-
down (page 503). 

Implementation Notes 

The teardown logic in the tearDown method is most often created by refactoring 
from tests that had In-line Teardown. The tearDown method may need to be 
“fl exible” or “accommodating” for several reasons: 

• When a test fails or when a test error occurs, the Test Method may not 
have created all the fi xture objects. 

• If all the Test Methods in the Testcase Class (page 373) don’t use 
identical fi xtures,1 there may be different sets of objects to clean up 
for different tests. 

Variation: Teardown Guard Clause 

We can avoid arbitrarily Conditional Test Logic (page 200) if we deal with the 
case where only a subset of the objects to be torn down are actually present by 
putting a guard clause (a simple if statement) around each teardown operation 

1 That is, they augment the Implicit Teardown with some additional In-line Setup 
(page 408) or Delegated Setup (page 411).
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to guard against the resource not being present. With this technique, a suitably 
coded tearDown method can tear down various fi xture confi gurations. Contrast this 
with the setUp method, which can set up only the lowest common denominator 
fi xture for the Test Methods that share it. 

Motivating Example 

The following test creates several standard objects during fi xture setup. Because 
the objects are persisted in a database, they must be cleaned up explicitly after 
every test. Each test (only one of several is shown here) contains the same in-line 
teardown logic to delete the objects. 

   public void testGetFlightsByOrigin_NoInboundFlight_SMRTD()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = null;
      FlightDto expFlightDto = null;
      try {
         inboundAirport = createTestAirport("1IF");
         expFlightDto = createTestFlight(outboundAirport, inboundAirport);
         // Exercise System
         List flightsAtDestination1 = 
               facade.getFlightsByOriginAirport(inboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         try {
            facade.removeFlight(expFlightDto.getFlightNumber());
         } finally {
            try {
               facade.removeAirport(inboundAirport);
            } finally  {
               facade.removeAirport(outboundAirport);
            } 
         }
      }
   }

There is enough Test Code Duplication (page 213) here to warrant converting 
these tests to Implicit Teardown.

Refactoring Notes 

First, we fi nd the most representative example of teardown in all the tests. Next, 
we do an Extract Method [Fowler] refactoring on that code and call the resulting 
method tearDown. Finally, we delete the teardown logic in each of the other tests. 
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We may need to introduce Teardown Guard Clauses around any teardown logic 
that may not be needed in every test. We should also surround each teardown 
attempt with a try/fi nally block to ensure that the remaining teardown logic 
executes even if an earlier attempt fails. 

Example: Implicit Teardown 

This example shows the same tests with the teardown logic removed to the tearDown
method. Note how much smaller the tests have become. 

   BigDecimal outboundAirport;
   BigDecimal inboundAirport;
   FlightDto expFlightDto;

   public void testGetFlightsByAirport_NoInboundFlights_NIT()
            throws Exception {
      // Fixture Setup
      outboundAirport = createTestAirport("1OF");
      inboundAirport = createTestAirport("1IF");
      expFlightDto = createTestFlight( outboundAirport, inboundAirport);
      // Exercise System
      List flightsAtDestination1 =
            facade.getFlightsByOriginAirport(inboundAirport);
      // Verify Outcome
      assertEquals(0,flightsAtDestination1.size());
   }

   protected void tearDown() throws Exception {
      try {
         facade.removeFlight( expFlightDto.getFlightNumber() );
      } finally {
         try {
            facade.removeAirport(inboundAirport);
         } finally  {
            facade.removeAirport(outboundAirport);
         }
      }
   }

Note that there is no try/fi nally block around the exercising of the SUT and the 
assertions. This structure helps the test reader understand that this is not an 
Expected Exception Test (see Test Method). Also, we didn’t need to put a Guard 
Clause [SBPP] in front of each operation because the try/fi nally block ensures 
that a failure is noncatastrophic; thus there is no real harm in trying to perform 
the operation. We did have to convert our fi xture holding local variables into 
instance variables to allow the tearDown method to access the fi xture.
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Chapter 23 

Test Double Patterns 

Patterns in This Chapter
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3

Test Double

How can we verify logic independently when code it depends 
on is unusable?

How can we avoid Slow Tests?

We replace a component on which the SUT depends with a 
“test-specifi c equivalent.”

Sometimes it is just plain hard to test the SUT because it depends on other 
components that cannot be used in the test environment. Such a situation may 
arise because those components aren’t available, because they will not return 
the results needed for the test, or because executing them would have unde-
sirable side effects. In other cases, our test strategy requires us to have more 
control over or visibility of the internal behavior of the SUT. 

When we are writing a test in which we cannot (or choose not to) use a 
real depended-on component (DOC), we can replace it with a Test Double.
The Test Double doesn’t have to behave exactly like the real DOC; it merely 
has to provide the same API as the real DOC so that the SUT thinks it is the 
real one! 
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How It Works                                        

When the producers of a movie want to fi lm something that is potentially risky 
or dangerous for the leading actor to carry out, they hire a “stunt double” to 
take the place of the actor in the scene. The stunt double is a highly trained 
individual who is capable of meeting the specifi c requirements of the scene. The 
stunt double may not be able to act, but he or she knows how to fall from great 
heights, crash a car, or do whatever the scene calls for. How closely the stunt 
double needs to resemble the actor depends on the nature of the scene. Usually, 
things can be arranged such that someone who vaguely resembles the actor in 
stature can take the actor’s place. 

For testing purposes, we can replace the real DOC (not the SUT!) with our
equivalent of the “stunt double”: the Test Double. During the fi xture setup phase 
of our Four-Phase Test (page 358), we replace the real DOC with our Test Double.
Depending on the kind of test we are executing, we may hard-code the behavior 
of the Test Double or we may confi gure it during the setup phase. When the SUT 
interacts with the Test Double, it won’t be aware that it isn’t talking to the real 
McCoy, but we will have achieved our goal of making impossible tests possible. 

Regardless of which variation of Test Double we choose to use, we must keep 
in mind that we don’t need to implement the entire interface of the DOC. Instead, 
we provide only the functionality needed for our particular test. We can even 
build different Test Doubles for different tests that involve the same DOC. 

When to Use It 

We might want to use some sort of Test Double during our tests in the following 
circumstances:

• If we have an Untested Requirement (see Production Bugs on page 268)
because neither the SUT nor its DOCs provide an observation point for 
the SUT’s indirect output that we need to verify using Behavior Verifi -
cation (page 468)

• If we have Untested Code (see Production Bugs) and a DOC does not 
provide the control point to allow us to exercise the SUT with the nec-
essary indirect inputs

• If we have Slow Tests (page 253) and we want to be able to run our 
tests more quickly and hence more often

Each of these scenarios can be addressed in some way by using a Test Double.
Of course, we have to be careful when using Test Doubles because we are testing 
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the SUT in a different confi guration from the one that will be used in production. 
For this reason, we really should have at least one test that verifi es the SUT works 
without a Test Double. We need to be careful that we don’t replace the parts of 
the SUT that we are trying to verify because that practice can result in tests that 
test the wrong software! Also, excessive use of Test Doubles can result in Fragile 
Tests (page 239) as a result of Overspecifi ed Software.

Test Doubles come in several major fl avors, as summarized in Figure 23.1. 
The implementation variations of these patterns are described in more detail in 
the corresponding pattern write-ups. 

Figure 23.1  Types of Test Doubles. Dummy Objects are really an alternative 
to the value patterns. Test Stubs are used to verify indirect inputs; Test Spies 
and Mock Objects are used to verify indirect outputs. Fake objects provide an 
alternative implementation.

These variations are classifi ed based on how/why we use the Test Double. We 
will deal with variations around how we build the Test Doubles in the “Imple-
mentation” section. 

Variation: Test Stub 

We use a Test Stub (page 529) to replace a real component on which the SUT 
depends so that the test has a control point for the indirect inputs of the SUT. Its 
inclusion allows the test to force the SUT down paths it might not otherwise 
execute. We can further classify Test Stubs by the kind of indirect inputs they 
are used to inject into the SUT. A Responder (see Test Stub) injects valid values, 
while a Saboteur (see Test Stub) injects errors or exceptions.

Some people use the term “test stub” to mean a temporary implementation 
that is used only until the real object or procedure becomes available. I prefer to 
call this usage a Temporary Test Stub (see Test Stub) to avoid confusion. 
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Variation: Test Spy 

We can use a more capable version of a Test Stub, the Test Spy (page 538), as 
an observation point for the indirect outputs of the SUT. Like a Test Stub, a 
Test Spy may need to provide values to the SUT in response to method calls. 
The Test Spy, however, also captures the indirect outputs of the SUT as it is 
exercised and saves them for later verifi cation by the test. Thus, in many ways, 
the Test Spy is “just a” Test Stub with some recording capability. While a Test 
Spy is used for the same fundamental purpose as a Mock Object (page 544), 
the style of test we write using a Test Spy looks much more like a test written 
with a Test Stub.

Variation: Mock Object 

We can use a Mock Object as an observation point to verify the indirect outputs 
of the SUT as it is exercised. Typically, the Mock Object also includes the func-
tionality of a Test Stub in that it must return values to the SUT if it hasn’t already 
failed the tests but the emphasis1 is on the verifi cation of the indirect outputs. 
Therefore, a Mock Object is a lot more than just a Test Stub plus assertions: It 
is used in a fundamentally different way. 

Variation: Fake Object 

We use a Fake Object (page 551) to replace the functionality of a real DOC 
in a test for reasons other than verifi cation of indirect inputs and outputs of 
the SUT. Typically, a Fake Object implements the same functionality as the 
real DOC but in a much simpler way. While a Fake Object is typically built 
specifi cally for testing, the test does not use it as either a control point or an 
observation point. 

The most common reason for using a Fake Object is that the real DOC 
is not available yet, is too slow, or cannot be used in the test environment 
because of deleterious side effects. The sidebar “Faster Tests Without Shared 
Fixtures” (page 319) describes how we encapsulated all database access behind 
a persistence layer interface and then replaced the database with in-memory 
hash tables and made our tests run 50 times faster. Chapter 6, Test Automation 
Strategy, and Chapter 11, Using Test Doubles, provide an overview of the vari-
ous techniques available for making our SUT easier to test. 

1 My mother grew up in Hungary and has retained a part of her Hungarian accent—think 
Zsa Zsa Gabor—all her life. She says, “It is important to put the emphasis on the right 
syllable.”
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Variation: Dummy Object 

Some method signatures of the SUT may require objects as parameters. If 
neither the test nor the SUT cares about these objects, we may choose to pass 
in a Dummy Object (page 728), which may be as simple as a null object ref-
erence, an instance of the Object class, or an instance of a Pseudo-Object (see
Hard-Coded Test Double on page 568). In this sense, a Dummy Object isn’t 
really a Test Double per se but rather an alternative to the value patterns Literal
Value (page 714), Derived Value (page 718), and Generated Value (page 723). 

Variation: Procedural Test Stub 

A Test Double implemented in a procedural programming language is often 
called a “test stub,” but I prefer to call it a Procedural Test Stub (see Test Stub)
to distinguish this usage from the modern Test Stub variation of Test Doubles.
Typically, we use a Procedural Test Stub to allow testing/debugging to proceed 
while waiting for other code to become available. It is rare for these objects to 
be “swapped in” at runtime but sometimes we make the code conditional on a 
“Debugging” fl ag—a form of Test Logic in Production (page 217). 

Implementation Notes 

Several considerations must be taken into account when we are building the Test 
Double (Figure 23.2): 

• Whether the Test Double should be specifi c to a single test or reusable 
across many tests 

• Whether the Test Double should exist in code or be generated on-the-fl y

• How we tell the SUT to use the Test Double (installation) 

The fi rst and last points are addressed here. The discussion of Test Double gen-
eration is left to the section on Confi gurable Test Doubles.

Because the techniques for building Test Doubles are pretty much independent 
of their behavior (e.g., they apply to both Test Stubs and Mock Objects), I’ve 
chosen to split out the descriptions of the various ways we can build Hard-Coded 
Test Doubles and Confi gurable Test Doubles (page 558) into separate patterns. 
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Figure 23.2  Types of Test Doubles with implementation choices. Only Test 
Stubs, Test Spies, and Mock Objects need to be hard-coded or confi gured by the 
test. Dummy Objects have no implementation; Fake Objects are installed but 
not controlled by the test.

Variation: Unconfi gurable Test Doubles 

Neither Dummy Objects nor Fake Objects need to be confi gured, each for their 
own reason. Dummies should never be used by the receiver so they need no 
“real” implementation. Fake Objects, by contrast, need a “real” implementa-
tion but one that is much simpler or “lighter” than the object that they replace. 
Therefore, neither the test nor the test automater will need to confi gure “canned” 
responses or expectations; we just install the Test Double and let the SUT use it 
as if it were real. 

Variation: Hard-Coded Test Double 

When we plan to use a specifi c Test Double in only a single test, it is often sim-
plest to just hard-code the Test Double to return specifi c values (for Test Stubs)
or expect specifi c method calls (Mock Objects). Hard-Coded Test Doubles are 
typically hand-built by the test automater. They come in several forms, including 
the Self Shunt (see Hard-Coded Test Double), where the Testcase Class (page 373) 
acts as the Test Double; the Anonymous Inner Test Double (see Hard-Coded Test 
Double), where language features are used to create the Test Double inside the 
Test Method (page 348); and the Test Double implemented as separate Test 
Double Class (see Hard-Coded Test Double). Each of these options is discussed 
in more detail in Hard-Coded Test Double.
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Variation: Confi gurable Test Double 

When we want to use the same Test Double implementation in many tests, we 
will typically prefer to use a Confi gurable Test Double. Although the test auto-
mater can manually build these objects, many members of the xUnit family have 
reusable toolkits available for generating Confi gurable Test Doubles.

Installing the Test Double 

Before we can exercise the SUT, we must tell it to use the Test Double instead 
of the object that the Test Double replaces. We can use any of the substitutable
dependency patterns to install the Test Double during the fi xture setup phase of 
our Four-Phase Test. Confi gurable Test Doubles need to be confi gured before 
we exercise the SUT, and we typically perform this confi guration before we 
install them. 

Example: Test Double 

Because there are a wide variety of reasons for using the variations of Test Dou-
bles, it is diffi cult to provide a single example that characterizes the motivation 
behind each style. Please refer to the examples in each of the more detailed pat-
terns referenced earlier. 
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Test Stub

How can we verify logic independently when it depends on indirect inputs 
from other software components?

We replace a real object with a test-specifi c object that feeds the desired 
indirect inputs into the system under test.

In many circumstances, the environment or context in which the SUT operates 
very much infl uences the behavior of the SUT. To get adequate control over the 
indirect inputs of the SUT, we may have to replace some of the context with 
something we can control—namely, a Test Stub.

How It Works                                    

First, we defi ne a test-specifi c implementation of an interface on which the SUT 
depends. This implementation is confi gured to respond to calls from the SUT with 
the values (or exceptions) that will exercise the Untested Code (see Production 
Bugs on page 268) within the SUT. Before exercising the SUT, we install the Test 
Stub so that the SUT uses it instead of the real implementation. When called by 
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the SUT during test execution, the Test Stub returns the previously defi ned values. 
The test can then verify the expected outcome in the normal way. 

When to Use It 

A key indication for using a Test Stub is having Untested Code caused by our 
inability to control the indirect inputs of the SUT. We can use a Test Stub as 
a control point that allows us to control the behavior of the SUT with vari-
ous indirect inputs and we have no need to verify the indirect outputs. We 
can also use a Test Stub to inject values that allow us to get past a particular 
point in the software where the SUT calls software that is unavailable in our 
test environment. 

If we do need an observation point that allows us to verify the indirect out-
puts of the SUT, we should consider using a Mock Object (page 544) or a Test 
Spy (page 538). Of course, we must have a way of installing a Test Double (page 522) 
into the SUT to be able to use any form of Test Double.

Variation: Responder 

A Test Stub that is used to inject valid indirect inputs into the SUT so that it 
can go about its business is called a Responder. Responders are commonly used 
in “happy path” testing when the real component is uncontrollable, is not yet 
available, or is unusable in the development environment. The tests will invari-
ably be Simple Success Tests (see Test Method on page 348).

Variation: Saboteur 

A Test Stub that is used to inject invalid indirect inputs into the SUT is often 
called a Saboteur because its purpose is to derail whatever the SUT is trying 
to do so that we can see how the SUT copes under these circumstances. The 
“derailment” might be caused by returning unexpected values or objects, or 
it might result from raising an exception or causing a runtime error. Each test 
may be either a Simple Success Test or an Expected Exception Test (see Test 
Method), depending on how the SUT is expected to behave in response to the 
indirect input. 

Variation: Temporary Test Stub 

A Temporary Test Stub stands in for a DOC that is not yet available. This kind 
of Test Stub typically consists of an empty shell of a real class with hard-coded 
return statements. As soon as the real DOC is available, it replaces the Tempo-
rary Test Stub. Test-driven development often requires us to create Temporary 
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Test Stubs as we write code from the outside in; these shells evolve into the real 
classes as we add code to them. In need-driven development, we tend to use 
Mock Objects because we want to verify that the SUT calls the right methods 
on the Temporary Test Stub; in addition, we typically continue using the Mock
Object even after the real DOC becomes available. 

Variation: Procedural Test Stub 

A Procedural Test Stub is a Test Stub written in a procedural programming lan-
guage. It is particularly challenging to create in procedural programming languages 
that do not support procedure variables (also known as function pointers). In most 
cases, we must put if testing then hooks into the production code (a form of Test 
Logic in Production; see page 217). 

Variation: Entity Chain Snipping 

Entity Chain Snipping (see Test Stub on page 529) is a special case of a 
Responder that is used to replace a complex network of objects with a single 
Test Stub that pretends to be the network of objects. Its inclusion can make fi x-
ture setup go much more quickly (especially when the objects would normally 
have to be persisted into a database) and can make the tests much easier to 
understand.

Implementation Notes 

We must be careful when using Test Stubs because we are testing the SUT in a 
different confi guration from the one that will be used in production. We really 
should have at least one test that verifi es the SUT works without a Test Stub. A 
common mistake made by test automaters who are new to stubs is to replace a 
part of the SUT that they are trying to test. For this reason, it is important to be 
really clear about what is playing the role of SUT and what is playing the role of 
test fi xture. Also, note that excessive use of Test Stubs can result in Overspeci-
fi ed Software (see Fragile Test on page 239).

Test Stubs may be built in several different ways depending on our specifi c 
needs and the tools we have on hand. 

Variation: Hard-Coded Test Stub 

A Hard-Coded Test Stub has its responses hard-coded within its program logic. 
These Test Stubs tend to be purpose-built for a single test or a very small number 
of tests. See Hard-Coded Test Double (page 568) for more information. 
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Variation: Confi gurable Test Stub 

When we want to avoid building a different Hard-Coded Test Stub for each test, 
we can use a Confi gurable Test Stub (see Confi gurable Test Double on page 558). 
A test confi gures the Confi gurable Test Stub as part of its fi xture setup phase. Many 
members of the xUnit family offer tools with which to generate Confi gurable Test 
Doubles (page 558), including Confi gurable Test Stubs.

Motivating Example 

The following test verifi es the basic functionality of a component that formats 
an HTML string containing the current time. Unfortunately, it depends on the 
real system clock so it rarely ever passes! 

   public void testDisplayCurrentTime_AtMidnight() {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify direct output
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( expectedTimeString, result);
   }

We could try to address this problem by making the test calculate the expected 
results based on the current system time as follows: 

   public void testDisplayCurrentTime_whenever() {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify outcome
      Calendar time = new DefaultTimeProvider().getTime();
      StringBuffer expectedTime = new StringBuffer();
      expectedTime.append("<span class=\"tinyBoldText\">");

      if ((time.get(Calendar.HOUR_OF_DAY) == 0)
           && (time.get(Calendar.MINUTE) <= 1)) {
         expectedTime.append( "Midnight");
      } else if ((time.get(Calendar.HOUR_OF_DAY) == 12)
                  && (time.get(Calendar.MINUTE) == 0)) { // noon
         expectedTime.append("N3oon");
      } else  {
         SimpleDateFormat fr = new SimpleDateFormat("h:mm a");
         expectedTime.append(fr.format(time.getTime()));
      }
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      expectedTime.append("</span>");

      assertEquals( expectedTime, result);
   }

This Flexible Test (see Conditional Test Logic on page 200) introduces two prob-
lems. First, some test conditions are never exercised. (Do you want to come in 
to work to run the tests at midnight to prove the software works at midnight?) 
Second, the test needs to duplicate much of the logic in the SUT to calculate the 
expected results. How do we prove the logic is actually correct? 

Refactoring Notes 

We can achieve proper verifi cation of the indirect inputs by getting control of 
the time. To do so, we use the Replace Dependency with Test Double (page 522) 
refactoring to replace the real system clock (represented here by TimeProvider)
with a Virtual Clock [VCTP]. We then implement it as a Test Stub that is confi g-
ured by the test with the time we want to use as the indirect input to the SUT. 

Example: Responder (as Hand-Coded Test Stub) 

The following test verifi es one of the happy path test conditions using a Responder
to get control over the indirect inputs of the SUT. Based on the time injected into 
the SUT, the expected result can be hard-coded safely.

   public void testDisplayCurrentTime_AtMidnight()
               throws Exception {
      // Fixture setup
      //      Test Double configuration
      TimeProviderTestStub tpStub = new TimeProviderTestStub();
      tpStub.setHours(0);
      tpStub.setMinutes(0);
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //      Test Double installation
      sut.setTimeProvider(tpStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

 Test Stub
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This test makes use of the following hand-coded configurable Test Stub
implementation: 

   private Calendar myTime = new GregorianCalendar();
   /**
   * The complete constructor for the TimeProviderTestStub
   * @param hours specifies the hours using a 24-hour clock
   *    (e.g., 10 = 10 AM, 12 = noon, 22 = 10 PM, 0 = midnight)
   * @param minutes specifies the minutes after the hour
   *   (e.g., 0 = exactly on the hour, 1 = 1 min after the hour)
   */
   public TimeProviderTestStub(int hours, int minutes) {
      setTime(hours, minutes);
   }

   public void setTime(int hours, int minutes) {
      setHours(hours);
      setMinutes(minutes);
   }

   // Configuration interface
   public void setHours(int hours) {
      // 0 is midnight; 12 is noon
      myTime.set(Calendar.HOUR_OF_DAY, hours);
   }

   public void setMinutes(int minutes) {
      myTime.set(Calendar.MINUTE, minutes);
   }
   // Interface used by SUT
   public Calendar getTime() {
      // @return the last time that was set
      return myTime;
   }

Example: Responder (Dynamically Generated) 

Here’s the same test coded using the JMock Confi gurable Test Double frame-
work:

   public void testDisplayCurrentTime_AtMidnight_JM()
         throws Exception {
      // Fixture setup
      TimeDisplay sut = new TimeDisplay();
      //  Test Double configuration
      Mock tpStub = mock(TimeProvider.class);
      Calendar midnight = makeTime(0,0);
      tpStub.stubs().method("getTime").
                     withNoArguments().
                     will(returnValue(midnight));
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      //  Test Double installation
      sut.setTimeProvider((TimeProvider) tpStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

There is no Test Stub implementation to examine for this test because the 
JMock framework implements the Test Stub using refl ection. Thus we had to 
write a Test Utility Method (page 599) called makeTime that contains the logic to 
construct the Calendar object to be returned. In the hand-coded Test Stub, this 
logic appeared inside the getTime method. 

Example: Saboteur (as Anonymous Inner Class) 

The following test uses a Saboteur to inject invalid indirect inputs into the SUT 
so we can see how the SUT copes under these circumstances. 

   public void testDisplayCurrentTime_exception()
         throws Exception {
      // Fixture setup
      //   Define and instantiate Test Stub
      TimeProvider testStub = new TimeProvider()
         { // Anonymous inner Test Stub
            public Calendar getTime() throws TimeProviderEx {
               throw new TimeProviderEx("Sample");
         }
      };
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      sut.setTimeProvider(testStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify direct output
      String expectedTimeString =
            "<span class=\"error\">Invalid Time</span>";
      assertEquals("Exception", expectedTimeString, result);
   }

In this case, we used an Inner Test Double (see Hard-Coded Test Double) to 
throw an exception that we expect the SUT to handle gracefully. One interest-
ing thing about this test is that it uses the Simple Success Test method template 
rather than the Expected Exception Test template, even though we are injecting 
an exception as the indirect input. The rationale behind this choice is that we are 
expecting the SUT to catch the exception and change the string formatting; we 
are not expecting the SUT to throw an exception. 
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Example: Entity Chain Snipping 

In this example, we are testing the Invoice but require a Customer to instantiate 
the Invoice. The Customer requires an Address, which in turn requires a City. Thus 
we fi nd ourselves creating numerous additional objects just to set up the fi xture. 
Suppose the behavior of the invoice depends on some attribute of the Customer
that is calculated from the Address by calling the method get_zone on the Customer.

   public void testInvoice_addLineItem_noECS() {
      final int QUANTITY = 1;
      Product product = new Product(getUniqueNumberAsString(),
                                    getUniqueNumber());
      State state = new State("West Dakota", "WD");
      City city = new City("Centreville", state);
      Address address = new Address("123 Blake St.", city, "12345");
      Customer customer= new Customer(getUniqueNumberAsString(),
                                      getUniqueNumberAsString(),
                                      address);
      Invoice inv = new Invoice(customer);
      // Exercise 
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      assertLineItemsEqual("",expItem, actual);
   }

In this test, we want to verify only the behavior of the invoice logic that depends 
on this zone attribute—not the way this attribute is calculated from the Customer’s 
address. (There are separate Customer unit tests to verify the zone is calculated 
correctly.) All of the setup of the address, city, and other information merely 
distracts the reader. 

Here’s the same test using a Test Stub instead of the Customer. Note how much 
simpler the fi xture setup has become as a result of Entity Chain Snipping!

   public void testInvoice_addLineItem_ECS() {
      final int QUANTITY = 1;
      Product product = new Product(getUniqueNumberAsString(),
                                    getUniqueNumber());
      Mock customerStub = mock(ICustomer.class);
      customerStub.stubs().method("getZone").will(returnValue(ZONE_3));
      Invoice inv = new Invoice((ICustomer)customerStub.proxy());
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
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      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      assertLineItemsEqual("", expItem, actual);
   }

We have used JMock to stub out the Customer with a customerStub that returns 
ZONE_3 when getZone is called. This is all we need to verify the Invoice behavior, and 
we have managed to get rid of all that distracting extra object construction. It 
is also much clearer from reading this test that invoicing behavior depends only 
on the value returned by get_zone and not any other attributes of the Customer or 
Address.

Further Reading 

Almost every book on automated testing using xUnit has something to say about 
Test Stubs, so I won’t list those resources here. As you are reading other books, 
however, keep in mind that the term Test Stub is often used to refer to a Mock
Object. Mocks, Fakes, Stubs, and Dummies (in Appendix B) contains a more 
thorough comparison of the terminology used in various books and articles. 

Sven Gorts describes a number of different ways we can use a Test Stub
[UTwHCM]. I have adopted many of his names and adapted a few to better 
fi t into this pattern language. Paolo Perrotta wrote a pattern describing a com-
mon example of a Responder called Virtual Clock. He uses a Test Stub as a 
Decorator [GOF] for the real system clock that allows the time to be “frozen” 
or resumed. Of course, we could use a Hard-Coded Test Stub or a Confi gu-
rable Test Stub just as easily for most tests. 

 Test Stub

Test 
Stub

www.it-ebooks.info

http://www.it-ebooks.info/


538 Chapter 23  Test Double Patterns 

Test Spy

How do we implement Behavior Verifi cation?
How can we verify logic independently when it has indirect outputs 

to other software components?

We use a Test Double to capture the indirect output calls made to another 
component by the SUT for later verifi cation by the test.

In many circumstances, the environment or context in which the SUT operates 
very much infl uences the behavior of the SUT. To get adequate visibility of the 
indirect outputs of the SUT, we may have to replace some of the context with 
something we can use to capture these outputs of the SUT. 

Use of a Test Spy is a simple and intuitive way to implement Behavior Verifi -
cation (page 468) via an observation point that exposes the indirect outputs of 
the SUT so they can be verifi ed. 

How It Works                                    

Before we exercise the SUT, we install a Test Spy as a stand-in for a DOC 
used by the SUT. The Test Spy is designed to act as an observation point by 
recording the method calls made to it by the SUT as it is exercised. During the 
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result verifi cation phase, the test compares the actual values passed to the Test 
Spy by the SUT with the values expected by the test. 

When to Use It 

A key indication for using a Test Spy is having an Untested Requirement (see
Production Bugs on page 268) caused by an inability to observe the side effects 
of invoking methods on the SUT. Test Spies are a natural and intuitive way to 
extend the existing tests to cover these indirect outputs because the calls to the 
Assertion Methods (page 362) are invoked by the test after the SUT has been 
exercised just like in “normal” tests. The Test Spy merely acts as the observation 
point that gives the Test Method (page 348) access to the values recorded during 
the SUT execution. 

We should use a Test Spy in the following circumstances: 

• We are verifying the indirect outputs of the SUT and we cannot predict 
the values of all attributes of the interactions with the SUT ahead of 
time.

• We want the assertions to be visible in the test and we don’t think the 
way in which the Mock Object (page 544) expectations are established 
is suffi ciently intent-revealing. 

• Our test requires test-specifi c equality (so we cannot use the standard 
defi nition of equality as implemented in the SUT) and we are using 
tools that generate the Mock Object but do not give us control over the 
Assertion Methods being called. 

• A failed assertion cannot be reported effectively back to the Test Run-
ner (page 377). This might occur if the SUT is running inside a contain-
er that catches all exceptions and makes it diffi cult to report the results 
or if the logic of the SUT runs in a different thread or process from 
the test that invokes it. (Both of these cases really beg refactoring to 
allow us to test the SUT logic directly, but that is the subject of another 
chapter.) 

• We would like to have access to all the outgoing calls of the SUT before 
making any assertions on them.

If none of these criteria apply, we may want to consider using a Mock Object. If 
we are trying to address Untested Code (see Production Bugs) by controlling the 
indirect inputs of the SUT, a simple Test Stub (page 529) may be all we need. 

 Test Spy

Test 
Spy

www.it-ebooks.info

http://www.it-ebooks.info/


540 Chapter 23  Test Double Patterns 

Unlike a Mock Object, a Test Spy does not fail the test at the fi rst deviation 
from the expected behavior. Thus our tests will be able to include more detailed 
diagnostic information in the Assertion Message (page 370) based on informa-
tion gathered after a Mock Object would have failed the test. At the point of 
test failure, however, only the information within the Test Method itself is avail-
able to be used in the calls to the Assertion Methods. If we need to include 
information that is accessible only while the SUT is being exercised, either we 
must explicitly capture it within our Test Spy or we must use a Mock Object.

Of course, we won’t be able to use any Test Doubles (page 522) unless the 
SUT implements some form of substitutable dependency. 

Implementation Notes 

The Test Spy itself can be built as a Hard-Coded Test Double (page 568) or as a 
Confi gurable Test Double (page 558). Because detailed examples appear in the 
discussion of those patterns, only a quick summary is provided here. Likewise, 
we can use any of the substitutable dependency patterns to install the Test Spy
before we exercise the SUT. 

The key characteristic in how a test uses a Test Spy relates to the fact that as-
sertions are made from within the Test Method. Therefore, the test must recover 
the indirect outputs captured by the Test Spy before it can make its assertions, 
which can be done in several ways.

Variation: Retrieval Interface 

We can defi ne the Test Spy as a separate class with a Retrieval Interface that 
exposes the recorded information. The Test Method installs the Test Spy instead 
of the normal DOC as part of the fi xture setup phase of the test. After the test 
has exercised the SUT, it uses the Retrieval Interface to retrieve the actual indi-
rect outputs of the SUT from the Test Spy and then calls Assertion Methods with 
those outputs as arguments. 

Variation: Self Shunt 

We can collapse the Test Spy and the Testcase Class (page 373) into a single object 
called a Self Shunt. The Test Method installs itself, the Testcase Object (page 382), 
as the DOC into the SUT. Whenever the SUT delegates to the DOC, it is actually 
calling methods on the Testcase Object, which implements the methods by saving 
the actual values into instance variables that can be accessed by the Test Method.
The methods could also make assertions in the Test Spy methods, in which case 
the Self Shunt is a variation on a Mock Object rather than a Test Spy. In stati-
cally typed languages, the Testcase Class must implement the outgoing interface 
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(the observation point) on which the SUT depends so that the Testcase Class is
type-compatible with the variables that are used to hold the DOC. 

Variation: Inner Test Double 

A popular way to implement the Test Spy as a Hard-Coded Test Double is to 
code it as an anonymous inner class or block closure within the Test Method and 
to have this class or block save the actual values into instance or local variables 
that are accessible by the Test Method. This variation is really another way to 
implement a Self Shunt (see Hard-Coded Test Double).

Variation: Indirect Output Registry 

Yet another possibility is to have the Test Spy store the actual parameters in a 
well-known place where the Test Method can access them. For example, the Test 
Spy could save those values in a fi le or in a Registry [PEAA] object. 

Motivating Example 

The following test verifi es the basic functionality of removing a fl ight but does 
not verify the indirect outputs of the SUT—namely, the fact that the SUT is 
expected to log each time a fl ight is removed along with the date/time and user-
name of the requester. 

   public void testRemoveFlight() throws Exception {
      // setup
      FlightDto expectedFlightDto = createARegisteredFlight();
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight should not exist after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
   }

Refactoring Notes 

We can add verifi cation of indirect outputs to existing tests using a Replace 
Dependency with Test Double (page 522) refactoring. It involves adding code 
to the fi xture setup logic of the tests to create the Test Spy, confi guring the Test 
Spy with any values it needs to return, and installing it. At the end of the test, 
we add assertions comparing the expected method names and arguments of the 
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indirect outputs with the actual values retrieved from the Test Spy using the 
Retrieval Interface.

Example: Test Spy 

In this improved version of the test, logSpy is our Test Spy. The statement facade.
setAuditLog(logSpy) installs the Test Spy using the Setter Injection pattern (see
Dependency Injection on page 678). The methods getDate, getActionCode, and so 
on are the Retrieval Interface used to access the actual arguments of the call to 
the logger. 

   public void testRemoveFlightLogging_recordingTestStub()
            throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnUnregFlight();
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      //    Test Double setup
      AuditLogSpy logSpy = new AuditLogSpy();
      facade.setAuditLog(logSpy);
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                            getFlightNumber()));
      assertEquals("number of calls", 1,
                   logSpy.getNumberOfCalls());
      assertEquals("action code",
                   Helper.REMOVE_FLIGHT_ACTION_CODE,
                   logSpy.getActionCode());
      assertEquals("date", helper.getTodaysDateWithoutTime(),
                   logSpy.getDate());
      assertEquals("user", Helper.TEST_USER_NAME,
                   logSpy.getUser());
      assertEquals("detail",
                   expectedFlightDto.getFlightNumber(),
                   logSpy.getDetail());
   }

This test depends on the following defi nition of the Test Spy:

public class AuditLogSpy implements AuditLog {
   // Fields into which we record actual usage information
   private Date date;
   private String user;
   private String actionCode;
   private Object detail;
   private int numberOfCalls = 0;
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   // Recording implementation of real AuditLog interface
   public void logMessage(Date date,
                          String user,
                          String actionCode,
                          Object detail) {
      this.date = date;
      this.user = user;
      this.actionCode = actionCode;
      this.detail = detail;

      numberOfCalls++;
   }

   // Retrieval Interface
   public int getNumberOfCalls() {
      return numberOfCalls;
   }
   public Date getDate() {
      return date;
   }
   public String getUser() {
      return user;
   }
   public String getActionCode() {
      return actionCode;
   }
   public Object getDetail() {
      return detail;
   }
}

Of course, we could have implemented the Retrieval Interface by making the 
various fi elds of our spy public and thereby avoided the need for accessor 
methods. Please refer to the examples in Hard-Coded Test Double for other 
implementation options.
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Mock Object

How do we implement Behavior Verifi cation for indirect 
outputs of the SUT?

How can we verify logic independently when it depends on indirect inputs 
from other software components?

We replace an object on which the SUT depends on with a test-specifi c object 
that verifi es it is being used correctly by the SUT.

In many circumstances, the environment or context in which the SUT operates 
very much infl uences the behavior of the SUT. In other cases, we must peer 
“inside”2 the SUT to determine whether the expected behavior has occurred. 

A Mock Object is a powerful way to implement Behavior Verifi cation (page 468) 
while avoiding Test Code Duplication (page 213) between similar tests. It works 
by delegating the job of verifying the indirect outputs of the SUT entirely to a Test 
Double (page 522). 

2 Technically, the SUT is whatever software we are testing and doesn’t include anything 
it depends on; thus “inside” is somewhat of a misnomer. It is better to think of the DOC 
that is the destination of the indirect outputs as being “behind” the SUT and part of the 
fi xture.
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How It Works                                 

First, we defi ne a Mock Object that implements the same interface as an object 
on which the SUT depends. Then, during the test, we confi gure the Mock Object
with the values with which it should respond to the SUT and the method calls 
(complete with expected arguments) it should expect from the SUT. Before exer-
cising the SUT, we install the Mock Object so that the SUT uses it instead of the 
real implementation. When called during SUT execution, the Mock Object com-
pares the actual arguments received with the expected arguments using Equality
Assertions (see Assertion Method on page 362) and fails the test if they don’t 
match. The test need not make any assertions at all! 

When to Use It 

We can use a Mock Object as an observation point when we need to do Behavior 
Verifi cation to avoid having an Untested Requirement (see Production Bugs on 
page 268) caused by our inability to observe the side effects of invoking meth-
ods on the SUT. This pattern is commonly used during endoscopic testing [ET] 
or need-driven development [MRNO]. Although we don’t need to use a Mock 
Object when we are doing State Verifi cation (page 462), we might use a Test 
Stub (page 529) or Fake Object (page 551). Note that test drivers have found 
other uses for the Mock Object toolkits, but many of these are actually examples 
of using a Test Stub rather than a Mock Object.

To use a Mock Object, we must be able to predict the values of most or 
all arguments of the method calls before we exercise the SUT. We should not 
use a Mock Object if a failed assertion cannot be reported back to the Test 
Runner (page 377) effectively. This may be the case if the SUT runs inside a 
container that catches and eats all exceptions. In these circumstances, we may 
be better off using a Test Spy (page 538) instead. 

Mock Objects (especially those created using dynamic mocking tools) often 
use the equals methods of the various objects being compared. If our test-specifi c 
equality differs from how the SUT would interpret equals, we may not be able to 
use a Mock Object or we may be forced to add an equals method where we didn’t 
need one. This smell is called Equality Pollution (see Test Logic in Production on 
page 217). Some implementations of Mock Objects avoid this problem by allow-
ing us to specify the “comparator” to be used in the Equality Assertions.

Mock Objects can be either “strict” or “lenient” (sometimes called “nice”). 
A “strict” Mock Object fails the test if the calls are received in a different order 
than was specifi ed when the Mock Object was programmed. A “lenient” Mock
Object tolerates out-of-order calls. 
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Implementation Notes 

Tests written using Mock Objects look different from more traditional tests be-
cause all the expected behavior must be specifi ed before the SUT is exercised. This 
makes the tests harder to write and to understand for test automation neophytes. 
This factor may be enough to cause us to prefer writing our tests using Test Spies.

The standard Four-Phase Test (page 358) is altered somewhat when we use 
Mock Objects. In particular, the fi xture setup phase of the test is broken down 
into three specifi c activities and the result verifi cation phase more or less dis-
appears, except for the possible presence of a call to the “fi nal verifi cation” 
method at the end of the test. 

Fixture setup: 

• Test constructs Mock Object.

• Test confi gures Mock Object. This step is omitted for Hard-Coded Test 
Doubles (page 568). 

• Test installs Mock Object into SUT. 

Exercise SUT: 

• SUT calls Mock Object; Mock Object does assertions. 

Result verifi cation: 

• Test calls “fi nal verifi cation” method. 

Fixture teardown: 

• No impact.

Let’s examine these differences a bit more closely: 

Construction

As part of the fi xture setup phase of our Four-Phase Test, we must construct the 
Mock Object that we will use to replace the substitutable dependency. Depend-
ing on which tools are available in our programming language, we can either 
build the Mock Object class manually, use a code generator to create a Mock
Object class, or use a dynamically generated Mock Object.

Confi guration with Expected Values 

Because the Mock Object toolkits available in many members of the xUnit 
family typically create Confi gurable Mock Objects (page 544), we need 
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to confi gure the Mock Object with the expected method calls (and their 
parameters) as well as the values to be returned by any functions. (Some 
Mock Object frameworks allow us to disable verifi cation of the method calls 
or just their parameters.) We typically perform this confi guration before we 
install the Test Double.

This step is not needed when we are using a Hard-Coded Test Double such 
as an Inner Test Double (see Hard-Coded Test Double).

Installation

Of course, we must have a way of installing a Test Double into the SUT to be 
able to use a Mock Object. We can use whichever substitutable dependency 
pattern the SUT supports. A common approach in the test-driven development 
community is Dependency Injection (page 678); more traditional developers 
may favor Dependency Lookup (page 686). 

Usage

When the SUT calls the methods of the Mock Object, these methods compare the 
method call (method name plus arguments) with the expectations. If the method 
call is unexpected or the arguments are incorrect, the assertion fails the test im-
mediately. If the call is expected but came out of sequence, a strict Mock Object
fails the test immediately; by contrast, a lenient Mock Object notes that the call 
was received and carries on. Missed calls are detected when the fi nal verifi cation 
method is called. 

If the method call has any outgoing parameters or return values, the Mock 
Object needs to return or update something to allow the SUT to continue executing 
the test scenario. This behavior may be either hard-coded or confi gured at the same 
time as the expectations. This behavior is the same as for Test Stubs, except that we 
typically return happy path values. 

Final Verifi cation 

Most of the result verifi cation occurs inside the Mock Object as it is called by 
the SUT. The Mock Object will fail the test if the methods are called with the 
wrong arguments or if methods are called unexpectedly. But what happens if 
the expected method calls are never received by the Mock Object? The Mock
Object may have trouble detecting that the test is over and it is time to check for 
unfulfi lled expectations. Therefore, we need to ensure that the fi nal verifi cation 
method is called. Some Mock Object toolkits have found a way to invoke this 
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method automatically by including the call in the tearDown method.3 Many other 
toolkits require us to remember to call the fi nal verifi cation method ourselves. 

Motivating Example 

The following test verifi es the basic functionality of creating a fl ight. But it does 
not verify the indirect outputs of the SUT—namely, the SUT is expected to log each 
time a fl ight is created along with the date/time and username of the requester. 

   public void testRemoveFlight() throws Exception {
      // setup
      FlightDto expectedFlightDto = createARegisteredFlight();
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight should not exist after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
   }

Refactoring Notes 

Verifi cation of indirect outputs can be added to existing tests by using a Replace 
Dependency with Test Double (page 522) refactoring. This involves adding code to 
the fi xture setup logic of our test to create the Mock Object; confi guring the Mock
Object with the expected method calls, arguments, and values to be returned; and 
installing it using whatever substitutable dependency mechanism is provided by 
the SUT. At the end of the test, we add a call to the fi nal verifi cation method if our 
Mock Object framework requires one. 

Example: Mock Object (Hand-Coded) 

In this improved version of the test, mockLog is our Mock Object. The method 
setExpectedLogMessage is used to program it with the expected log message. The 
statement facade.setAuditLog(mockLog) installs the Mock Object using the Setter
Injection (see Dependency Injection) test double-installation pattern. Finally, 
the verify() method ensures that the call to logMessage() was actually made.

3 This usually requires that we subclass our testcase from a special MockObjectTestCase 
class.
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   public void testRemoveFlight_Mock() throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnonRegFlight();
      // mock configuration
      ConfigurableMockAuditLog mockLog =
         new ConfigurableMockAuditLog();
      mockLog.setExpectedLogMessage(
                           helper.getTodaysDateWithoutTime(),
                           Helper.TEST_USER_NAME,
                           Helper.REMOVE_FLIGHT_ACTION_CODE,
                           expectedFlightDto.getFlightNumber());
      mockLog.setExpectedNumberCalls(1);
      // mock installation
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      facade.setAuditLog(mockLog);
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
      mockLog.verify();
   }

This approach was made possible by use of the following Mock Object. Here we 
have chosen to use a hand-built Mock Object. In the interest of space, just the 
logMessage method is shown: 

   public void logMessage( Date actualDate,
                           String actualUser,
                           String actualActionCode,
                           Object actualDetail) {
      actualNumberCalls++;

      Assert.assertEquals("date", expectedDate, actualDate);
      Assert.assertEquals("user", expectedUser, actualUser);
      Assert.assertEquals("action code",
                          expectedActionCode,
                          actualActionCode);
      Assert.assertEquals("detail", expectedDetail,actualDetail);
   }

The Assertion Methods are called as static methods. In JUnit, this approach is 
required because the Mock Object is not a subclass of TestCase; thus it does not 
inherit the assertion methods from Assert. Other members of the xUnit family 
may provide different mechanisms to access the Assertion Methods. For exam-
ple, NUnit provides them only as static methods on the Assert class, so even Test 
Methods (page 348) need to access the Assertion Methods this way. Test::Unit, 
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the xUnit family member for the Ruby programming language, provides them as 
mixins; as a consequence, they can be called in the normal fashion.

Example: Mock Object (Dynamically Generated) 

The last example used a hand-coded Mock Object. Most members of the xUnit 
family, however, have dynamic Mock Object frameworks available. Here’s the 
same test rewritten using JMock: 

   public void testRemoveFlight_JMock() throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnonRegFlight();
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      // mock configuration
      Mock mockLog = mock(AuditLog.class);
      mockLog.expects(once()).method("logMessage")
               .with(eq(helper.getTodaysDateWithoutTime()),
                     eq(Helper.TEST_USER_NAME),
                     eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
                     eq(expectedFlightDto.getFlightNumber()));
      // mock installation
      facade.setAuditLog((AuditLog) mockLog.proxy());
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
      // verify() method called automatically by JMock
   }

Note how JMock provides a “fl uent” Confi guration Interface (see Confi gurable 
Test Double) that allows us to specify the expected method calls in a fairly readable 
fashion. JMock also allows us to specify the comparator to be used by the asser-
tions; in this case, the calls to eq cause the default equals method to be called. 

Further Reading 

Almost every book on automated testing using xUnit has something to say about 
Mock Objects, so I won’t list those resources here. As you are reading other 
books, keep in mind that the term Mock Object is often used to refer to a Test 
Stub and sometimes even to Fake Objects. Mocks, Fakes, Stubs, and Dummies
(in Appendix B) contains a more thorough comparison of the terminology used 
in various books and articles. 
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Fake Object

How can we verify logic independently when depended-on objects 
cannot be used?

How can we avoid Slow Tests?

We replace a component that the SUT depends on with a much 
lighter-weight implementation.

The SUT often depends on other components or systems. Although the inter-
actions with these other components may be necessary, the side effects of these 
interactions as implemented by the real DOC may be unnecessary or even 
detrimental. 

A Fake Object is a much simpler and lighter-weight implementation of the 
functionality provided by the DOC without the side effects we choose to do 
without.

How It Works                         

We acquire or build a very lightweight implementation of the same functionality 
as provided by a component on which the SUT depends and instruct the SUT 
to use it instead of the real DOC. This implementation need not have any of the 
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“-ilities” that the real DOC needs to have (such as scalability); it need provide 
only the equivalent services to the SUT so that the SUT remains unaware it isn’t 
using the real DOC. 

A Fake Object is a kind of Test Double (page 522) that is similar to a Test 
Stub (page 529) in many ways, including the need to install into the SUT a 
substitutable dependency. Whereas a Test Stub acts as a control point to inject 
indirect inputs into the SUT, however, the Fake Object does not: It merely 
provides a way for the interactions to occur in a self-consistent manner. These 
interactions (i.e., between the SUT and the Fake Object) will typically be 
many, and the values passed in as arguments of earlier method calls will often 
be returned as results of later method calls. Contrast this behavior with that 
of Test Stubs and Mock Objects (page 544), where the responses are either 
hard-coded or confi gured by the test.

While the test does not normally confi gure a Fake Object, complex fi xture 
setup that would typically involve initializing the state of the DOC may also be 
done with the Fake Object directly using Back Door Manipulation (page 327). 
Techniques such as Data Loader (see Back Door Manipulation) and Back Door 
Setup (see Back Door Manipulation) can be used quite successfully with less 
fear of Overspecifi ed Software (see Fragile Test on page 239) because they sim-
ply bind us to the interface between the SUT and the Fake Object; the interface 
used to confi gure the Fake Object is a test-only concern. 

When to Use It 

We should use a Fake Object whenever the SUT depends on other components that 
are unavailable or that make testing diffi cult or slow (e.g., Slow Tests; see page 253) 
and the tests need more complex sequences of behavior than are worth implement-
ing in a Test Stub or Mock Object. It must also be easier to create a lightweight 
implementation than to build and program suitable Mock Objects, at least in the 
long run, if building a Fake Object is to be worthwhile. 

Using a Fake Object helps us avoid Overspecifi ed Software because we do 
not encode the exact calling sequences expected of the DOC within the test. 
The SUT can vary how many times the methods of the DOC are called without 
causing tests to fail. 

If we need to control the indirect inputs or verify the indirect outputs of the 
SUT, we should probably use a Mock Object or Test Stub instead. 

Some specifi c situations where we replace the real component with a Fake
Object are described next. 
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Variation: Fake Database 

With the Fake Database pattern, the real database or persistence layer is replaced 
by a Fake Object that is functionally equivalent but that has much better perfor-
mance characteristics. An approach we have often used involves replacing the 
database with a set of in-memory HashTables that act as a very lightweight way of 
retrieving objects that have been “persisted” earlier in the test. 

Variation: In-Memory Database 

Another example of a Fake Object is the use of a small-footprint, diskless 
database instead of a full-featured disk-based database. This kind of In-Memory 
Database will improve the speed of tests by at least an order of magnitude while 
giving up less functionality than a Fake Database.

Variation: Fake Web Service 

When testing software that depends on other components that are accessed as 
Web services, we can build a small hard-coded or data-driven implementation 
that can be used instead of the real Web service to make our tests more robust 
and to avoid having to create a test instance of the real Web service in our 
development environment. 

Variation: Fake Service Layer 

When testing user interfaces, we can avoid Data Sensitivity (see Fragile Test) and 
Behavior Sensitivity (see Fragile Test) of the tests by replacing the component 
that implements the Service Layer [PEAA] (including the domain layer) of our 
application with a Fake Object that returns remembered or data-driven results. 
This approach allows us to focus on testing the user interface without having to 
worry about the data being returned changing over time. 

Implementation Notes 

Introducing a Fake Object involves two basic concerns: 

• Building the Fake Object implementation

• Installing the Fake Object

Building the Fake Object 

Most Fake Objects are hand-built. Often, the Fake Object is used to replace a 
real implementation that suffers from latency issues owing to real messaging 
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or disk I/O with a much lighter in-memory implementation. With the rich class 
libraries available in most object-oriented programming languages, it is usually 
possible to build a fake implementation that is suffi cient to satisfy the needs of 
the SUT, at least for the purposes of specifi c tests, with relatively little effort. 

A popular strategy is to start by building a Fake Object to support a specifi c 
set of tests where the SUT requires only a subset of the DOC’s services. If this 
proves successful, we may consider expanding the Fake Object to handle addi-
tional tests. Over time, we may fi nd that we can run all of our tests using the Fake
Object. (See the sidebar “Faster Tests Without Shared Fixtures” on page 319 for 
a description of how we faked out the entire database with hash tables and made 
our tests run 50 times faster.) 

Installing the Fake Object 

Of course, we must have a way of installing the Fake Object into the SUT to 
be able to take advantage of it. We can use whichever substitutable dependency 
pattern the SUT supports. A common approach in the test-driven development 
community is Dependency Injection (page 678); more traditional developers 
may favor Dependency Lookup (page 686). The latter technique is also more 
appropriate when we introduce a Fake Database (see Fake Object on page 551)
in an effort to speed up execution of the customer tests; Dependency Injection
doesn’t work so well with these kinds of tests. 

Motivating Example 

In this example, the SUT needs to read and write records from a database. The test 
must set up the fi xture in the database (several writes), the SUT interacts (reads 
and writes) with the database several more times, and then the test removes the 
records from the database (several deletes). All of this work takes time—several 
seconds per test. This very quickly adds up to minutes, and soon we fi nd that our 
developers aren’t running the tests quite so frequently. Here is an example of one 
of these tests: 

   public void testReadWrite() throws Exception{
      // Setup
      FlightMngtFacade facade = new FlightMgmtFacadeImpl();
      BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
      BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
      facade.createFlight(yyc, lax);
      // Exercise
      List flights = facade.getFlightsByOriginAirport(yyc);
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      // Verify
      assertEquals( "# of flights", 1, flights.size());
      Flight flight = (Flight) flights.get(0);
      assertEquals( "origin",
                    yyc, flight.getOrigin().getCode());
   }

The test calls createAirport on our Service Facade [CJ2EEP], which calls, among 
other things, our data access layer. Here is the actual implementation of several 
of the methods we are calling: 

   public BigDecimal createAirport( String airportCode,
                                    String name,
                                    String nearbyCity)
   throws FlightBookingException{
      TransactionManager.beginTransaction();
      Airport airport = dataAccess.
            createAirport(airportCode, name, nearbyCity); 
      logMessage("Wrong Action Code", airport.getCode());//bug
      TransactionManager.commitTransaction();
      return airport.getId();
   }

   public List getFlightsByOriginAirport(
                    BigDecimal originAirportId)
         throws FlightBookingException {

      if (originAirportId == null)
         throw new InvalidArgumentException(
                 "Origin Airport Id has not been provided",
                 "originAirportId", null);
      Airport origin = dataAccess.getAirportByPrimaryKey(originAirportId);
      List flights = dataAccess.getFlightsByOriginAirport(origin);

      return flights;
   }

The calls to dataAccess.createAirport, dataAccess.createFlight, and TransactionManager.
commitTransaction cause our test to slow down the most. The calls to dataAccess.
getAirportByPrimaryKey and dataAccess.getFlightsByOriginAirport are a lesser factor but 
still contribute to the slow test. 

Refactoring Notes 

The steps for introducing a Fake Object are very similar to those for adding a 
Mock Object. If one doesn’t already exist, we use a Replace Dependency with Test 
Double (page 522) refactoring to introduce a way to substitute the Fake Object for 
the DOC—usually a fi eld (attribute) to hold the reference to it. In statically typed 
languages, we may have to do an Extract Interface [Fowler] refactoring before we 
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can introduce the fake implementation. Then, we use this interface as the type of 
variable that holds the reference to the substitutable dependency. 

One notable difference is that we do not need to confi gure the Fake Object with 
expectations or return values; we merely set up the fi xture in the normal way. 

Example: Fake Database 

In this example, we’ve created a Fake Object that replaces the database—that 
is, a Fake Database implemented entirely in memory using hash tables. The test 
doesn’t change a lot, but the test execution occurs much, much faster. 

   public void testReadWrite_inMemory() throws Exception{
      // Setup
      FlightMgmtFacadeImpl facade = new FlightMgmtFacadeImpl();
      facade.setDao(new InMemoryDatabase());
      BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
      BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
      facade.createFlight(yyc, lax);
      // Exercise
      List flights = facade.getFlightsByOriginAirport(yyc);
      // Verify
      assertEquals( "# of flights", 1, flights.size());
      Flight flight = (Flight) flights.get(0);
      assertEquals( "origin",
                    yyc, flight.getOrigin().getCode());
   }

Here’s the implementation of the Fake Database:

public class InMemoryDatabase implements FlightDao{
   private List airports = new Vector();
   public Airport createAirport(String airportCode,
                                String name, String nearbyCity)
            throws DataException, InvalidArgumentException {
      assertParamtersAreValid(  airportCode, name, nearbyCity);
      assertAirportDoesntExist( airportCode); 
      Airport result = new Airport(getNextAirportId(),
            airportCode, name, createCity(nearbyCity));
      airports.add(result);
      return result;
   }
   public Airport getAirportByPrimaryKey(BigDecimal airportId)
            throws DataException, InvalidArgumentException {
      assertAirportNotNull(airportId);

      Airport result = null;
      Iterator i = airports.iterator();
      while (i.hasNext()) {
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         Airport airport = (Airport) i.next();
         if (airport.getId().equals(airportId)) {
            return airport;
         }
      }
      throw new DataException("Airport not found:"+airportId);
   }

Now all we need is the implementation of the method that installs the Fake
Database into the facade to make our developers more than happy to run all the 
tests after every code change. 

   public void setDao(FlightDao) {
      dataAccess = dao;
   }

Further Reading 

The sidebar “Faster Tests Without Shared Fixtures” on page 319 provides a 
more in-depth description of how we faked out the entire database with hash 
tables and made our tests run 50 times faster. Mocks, Fakes, Stubs, and Dum-
mies (in Appendix B) contains a more thorough comparison of the terminology 
used in various books and articles. 
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Confi gurable Test Double                         

How do we tell a Test Double what to return or expect?

We confi gure a reusable Test Double with the values to be returned 
or verifi ed during the fi xture setup phase of a test.

Some tests require unique values to be fed into the SUT as indirect inputs or to be 
verifi ed as indirect outputs of the SUT. This approach typically requires the use of 
Test Doubles (page 522) as the conduit between the test and the SUT; at the same 
time, the Test Double somehow needs to be told which values to return or verify. 

A Confi gurable Test Double is a way to reduce Test Code Duplication (page 213) 
by reusing a Test Double in many tests. The key to its use is to confi gure the Test 
Double’s values to be returned or expected at runtime. 

How It Works                                      

The Test Double is built with instance variables that hold the values to be returned 
to the SUT or to serve as the expected values of arguments to method calls. The test 
initializes these variables during the setup phase of the test by calling the appropri-
ate methods on the Test Double’s interface. When the SUT calls the methods on the 
Test Double, the Test Double uses the contents of the appropriate variable as the 
value to return or as the expected value in assertions. 
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When to Use It 

We can use a Confi gurable Test Double whenever we need similar but slightly 
different behavior in several tests that depend on Test Doubles and we want to avoid 
Test Code Duplication or Obscure Tests (page 186)—in the latter case, we need to 
see what values the Test Double is using as we read the test. If we expect only 
a single usage of a Test Double, we can consider using a Hard-Coded Test 
Double (page 568) if the extra effort and complexity of building a Confi gurable 
Test Double are not warranted. 

Implementation Notes 

A Test Double is a Confi gurable Test Double because it needs to provide a way 
for the tests to confi gure it with values to return and/or method arguments to 
expect. Confi gurable Test Stubs (page 529) and Test Spies (page 538) simply 
require a way to confi gure the responses to calls on their methods; confi gurable 
Mock Objects (page 544) also require a way to confi gure their expectations 
(which methods should be called and with which arguments). 

Confi gurable Test Doubles may be built in many ways. Deciding on a par-
ticular implementation involves making two relatively independent decisions: 
(1) how the Confi gurable Test Double will be confi gured and (2) how the 
Confi gurable Test Double will be coded. 

There are two common ways to confi gure a Confi gurable Test Double. The 
most popular approach is to provide a Confi guration Interface that is used 
only by the test to confi gure the values to be returned as indirect inputs and 
the expected values of the indirect outputs. Alternatively, we may build the 
Confi gurable Test Double with two modes. The Confi guration Mode is used 
during fi xture setup to install the indirect inputs and expected indirect out-
puts by calling the methods of the Confi gurable Test Double with the expected 
arguments. Before the Confi gurable Test Double is installed, it is put into the 
normal (“usage” or “playback”) mode. 

The obvious way to build a Confi gurable Test Double is to create a Hand-
Built Test Double. If we are lucky, however, someone will have already built 
a tool to generate a Confi gurable Test Double for us. Test Double genera-
tors come in two fl avors: code generators and tools that fabricate the object 
at runtime. Developers have built several generations of “mocking” tools, and 
several of these have been ported to other programming languages; check out 
http://xprogramming.com to see what is available in your programming language 
of choice. If the answer is “nothing,” you can hand-code the Test Double your-
self, although this does take somewhat more effort. 
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Variation: Confi guration Interface 

A Confi guration Interface comprises a separate set of methods that the 
Confi gurable Test Double provides specifi cally for use by the test to set each 
value that the Confi gurable Test Double returns or expects to receive. The 
test simply calls these methods during the fi xture setup phase of the Four-Phase 
Test (page 358). The SUT uses the “other” methods on the Confi gurable Test 
Double (the “normal” interface). It isn’t aware that the Confi guration Interface
exists on the object to which it is delegating. 

Confi guration Interfaces come in two fl avors. Early toolkits, such as Mock-
Maker, generated a distinct method for each value we needed to confi gure. The 
collection of these setter methods made up the Confi guration Interface. More 
recently introduced toolkits, such as JMock, provide a generic interface that is used 
to build an Expected Behavior Specifi cation (see Behavior Verifi cation on page
468) that the Confi gurable Test Double interprets at runtime. A well-designed 
fl uent interface can make the test much easier to read and understand. 

Variation: Confi guration Mode 

We can avoid defi ning a separate set of methods to confi gure the Test Double by 
providing a Confi guration Mode that the test uses to “teach” the Confi gurable 
Test Double what to expect. At fi rst glance, this means of confi guring the Test 
Double can be confusing: Why does the Test Method (page 348) call the methods 
of this other object before it calls the methods it is exercising on the SUT? When 
we come to grips with the fact that we are doing a form of “record and play-
back,” this technique makes a bit more sense. 

The main advantage of using a Confi guration Mode is that it avoids creating 
a separate set of methods for confi guring the Confi gurable Test Double because 
we reuse the same methods that the SUT will be calling. (We do have to pro-
vide a way to set the values to be returned by the methods, so we have at least 
one additional method to add.) On the fl ip side, each method that the SUT is 
expected to call now has two code paths through it: one for the Confi guration 
Mode and another for the “usage mode.” 

Variation: Hand-Built Test Double 

A Hand-Built Test Double is one that was defi ned by the test automater for one 
or more specifi c tests. A Hard-Coded Test Double is inherently a Hand-Built Test 
Double, while a Confi gurable Test Double can be either hand-built or gener-
ated. This book uses Hand-Built Test Doubles in a lot of the examples because 
it is easier to see what is going on when we have actual, simple, concrete code to 
look at. This is the main advantage of using a Hand-Built Test Double; indeed, 
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some people consider this benefi t to be so important that they use Hand-Built
Test Doubles exclusively. We may also use a Hand-Built Test Double when no 
third-party toolkits are available or if we are prevented from using those tools by 
project or corporate policy. 

Variation: Statically Generated Test Double 

The early third-party toolkits used code generators to create the code for Stati-
cally Generated Test Doubles. The code is then compiled and linked with our 
handwritten test code. Typically, we will store the code in a source code repository 
[SCM]. Whenever the interface of the target class changes, of course, we must 
regenerate the code for our Statically Generated Test Doubles. It may be advan-
tageous to include this step as part of the automated build script to ensure that it 
really does happen whenever the interface changes. 

Instantiating a Statically Generated Test Double is the same as instantiating 
a Hand-Built Test Double. That is, we use the name of the generated class to 
construct the Confi gurable Test Double.

An interesting problem arises during refactoring. Suppose we change the 
interface of the class we are replacing by adding an argument to one of the 
methods. Should we then refactor the generated code? Or should we regener-
ate the Statically Generated Test Double after the code it replaces has been 
refactored? With modern refactoring tools, it may seem easier to refactor the 
generated code and the tests that use it in a single step; this strategy, however, 
may leave the Statically Generated Test Double without argument verifi cation 
logic or variables for the new parameter. Therefore, we should regenerate the 
Statically Generated Test Double after the refactoring is fi nished to ensure that 
the refactored Statically Generated Test Double works properly and can be 
recreated by the code generator. 

Variation: Dynamically Generated Test Double 

Newer third-party toolkits generate Confi gurable Test Doubles at runtime by 
using the refl ection capabilities of the programming language to examine a 
class or interface and build an object that is capable of understanding all calls 
to its methods. These Confi gurable Test Doubles may interpret the behavior 
specifi cation at runtime or they may generate executable code; nevertheless, 
there is no source code for us to generate and maintain or regenerate. The 
down side is simply that there is no code to look at—but that really isn’t a 
disadvantage unless we are particularly suspicious or paranoid. 

Most of today’s tools generate Mock Objects because they are the most 
fashionable and widely used options. We can still use these objects as Test Stubs,
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however, because they do provide a way of setting the value to be returned when 
a particular method is called. If we aren’t particularly interested in verifying the 
methods being called or the arguments passed to them, most toolkits provide a 
way to specify “don’t care” arguments. Given that most toolkits generate Mock 
Objects, they typically don’t provide a Retrieval Interface (see Test Spy). 

Motivating Example 

Here’s a test that uses a Hard-Coded Test Double to give it control over the 
time:

   public void testDisplayCurrentTime_AtMidnight_HCM()
            throws Exception {
      // Fixture Setup
      //   Instantiate hard-code Test Stub:
      TimeProvider testStub = new MidnightTimeProvider();
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //   Inject Stub into SUT
      sut.setTimeProvider(testStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify Direct Output
      String expectedTimeString =
         "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

This test is hard to understand without seeing the defi nition of the Hard-Coded
Test Double. It is easy to see how this lack of clarity can lead to a Mystery Guest 
(see Obscure Test) if the defi nition is not close at hand. 

   class MidnightTimeProvider implements TimeProvider {
      public Calendar getTime() {
         Calendar myTime = new GregorianCalendar();
         myTime.set(Calendar.HOUR_OF_DAY, 0);
         myTime.set(Calendar.MINUTE, 0);
         return myTime;
      }
   }

We can solve the Obscure Test problem by using a Self Shunt (see Hard-Coded 
Test Double) to make the Hard-Coded Test Double visible within the test: 

public class SelfShuntExample extends TestCase
implements TimeProvider {
   public void testDisplayCurrentTime_AtMidnight() throws Exception {
      // Fixture Setup
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      TimeDisplay sut = new TimeDisplay();
      // Mock Setup
      sut.setTimeProvider(this); // self shunt installation
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify Direct Output
      String expectedTimeString =
         "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

   public Calendar getTime() {
      Calendar myTime = new GregorianCalendar();
      myTime.set(Calendar.MINUTE, 0);
      myTime.set(Calendar.HOUR_OF_DAY, 0);
      return myTime;
   } 
}

Unfortunately, we will need to build the Test Double behavior into each Testcase 
Class (page 373) that requires it, which results in Test Code Duplication.

Refactoring Notes 

Refactoring a test that uses a Hard-Coded Test Double to become a test that uses 
a third-party Confi gurable Test Double is relatively straightforward. We simply 
follow the directions provided with the toolkit to instantiate the Confi gurable 
Test Double and confi gure it with the same values as we used in the Hard-Coded
Test Double. We may also have to move some of the logic that was originally 
hard-coded within the Test Double into the Test Method and pass it in to the Test 
Double as part of the confi guration step. 

Converting the actual Hard-Coded Test Double into a Confi gurable Test 
Double is a bit more complicated, but not overly so if we need to capture 
only simple behavior. (For more complex behavior, we’re probably better off 
examining one of the existing toolkits and porting it to our environment if it 
is not yet available.) First we need to introduce a way to set the values to be 
returned or expected. The best choice is to start by modifying the test to see 
how we want to interact with the Confi gurable Test Double. After instantiating 
it during the fi xture setup part of the test, we then pass the test-specifi c values 
to the Confi gurable Test Double using the emerging Confi guration Interface or 
Confi guration Mode. Once we’ve seen how we want to use the Confi gurable 
Test Double, we can use an Introduce Field [JetBrains] refactoring to create the 
instance variables of the Confi gurable Test Double to hold each of the previ-
ously hard-coded values. 
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Example: Confi guration Interface Using Setters 

The following example shows how a test would use a simple hand-built 
Confi guration Interface using Setter Injection:

   public void testDisplayCurrentTime_AtMidnight()
               throws Exception {
      // Fixture setup
      //      Test Double configuration
      TimeProviderTestStub tpStub = new TimeProviderTestStub();
      tpStub.setHours(0);
      tpStub.setMinutes(0);
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //      Test Double installation
      sut.setTimeProvider(tpStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify Outcome
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

The Confi gurable Test Double is implemented as follows: 

class TimeProviderTestStub implements TimeProvider {
   // Configuration Interface
   public void setHours(int hours) {
      // 0 is midnight; 12 is noon
      myTime.set(Calendar.HOUR_OF_DAY, hours);
   }

   public void setMinutes(int minutes) {
      myTime.set(Calendar.MINUTE, minutes);
   }
   // Interface Used by SUT
   public Calendar getTime() {
      // @return the last time that was set
      return myTime;
   }
}

Example: Confi guration Interface Using Expression Builder 

Now let’s contrast the Confi guration Interface we defi ned in the previous example 
with the one provided by the JMock framework. JMock generates Mock Objects
dynamically and provides a generic fl uent interface for confi guring the Mock 
Object in an intent-revealing style. Here’s the same test converted to use JMock: 
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   public void testDisplayCurrentTime_AtMidnight_JM()
         throws Exception {
      // Fixture setup
      TimeDisplay sut = new TimeDisplay();
      //  Test Double configuration
      Mock tpStub = mock(TimeProvider.class);
      Calendar midnight = makeTime(0,0);
      tpStub.stubs().method("getTime").
                     withNoArguments().
                     will(returnValue(midnight));
      //  Test Double installation
      sut.setTimeProvider((TimeProvider) tpStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify Outcome
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

Here we have moved some of the logic to construct the time to be returned into 
the Testcase Class because there is no way to do it in the generic mocking frame-
work; we’ve used a Test Utility Method (page 599) to construct the time to be 
returned. This next example shows a confi gurable Mock Object complete with 
multiple expected parameters: 

   public void testRemoveFlight_JMock() throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnonRegFlight();
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      // mock configuration
      Mock mockLog = mock(AuditLog.class);
      mockLog.expects(once()).method("logMessage")
               .with(eq(helper.getTodaysDateWithoutTime()),
                     eq(Helper.TEST_USER_NAME),
                     eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
                     eq(expectedFlightDto.getFlightNumber()));
      // mock installation
      facade.setAuditLog((AuditLog) mockLog.proxy());
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
      // verify() method called automatically by JMock
   }

The Expected Behavior Specifi cation is built by calling expression-building 
methods such as expects, once, and method to describe how the Confi gurable 
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Test Double should be used and what it should return. JMock supports the 
specifi cation of much more sophisticated behavior (such as multiple calls to 
the same method with different arguments and return values) than does our 
hand-built Confi gurable Test Double.

Example: Confi guration Mode 

In the next example, the test has been converted to use a Mock Object with a 
Confi guration Mode:

   public void testRemoveFlight_ModalMock() throws Exception {
      // fixture setup
      FlightDto expectedFlightDto = createAnonRegFlight();
      // mock configuration (in Configuration Mode)
      ModalMockAuditLog mockLog = new ModalMockAuditLog();
      mockLog.logMessage(Helper.getTodaysDateWithoutTime(),
                         Helper.TEST_USER_NAME,
                         Helper.REMOVE_FLIGHT_ACTION_CODE,
                         expectedFlightDto.getFlightNumber());
      mockLog.enterPlaybackMode();
      // mock installation
      FlightManagementFacade facade = new FlightManagementFacadeImpl();
      facade.setAuditLog(mockLog);
      // exercise
      facade.removeFlight(expectedFlightDto.getFlightNumber());
      // verify
      assertFalse("flight still exists after being removed",
                  facade.flightExists( expectedFlightDto.
                                             getFlightNumber()));
      mockLog.verify();
   }

Here the test calls the methods on the Confi gurable Test Double during the fi xture 
setup phase. If we weren’t aware that this test uses a Confi gurable Test Double
mock, we might fi nd this structure confusing at fi rst glance. The most obvious clue 
to its intent is the call to the method enterPlaybackMode, which tells the Confi gurable 
Test Double to stop saving expected values and to start asserting on them. 

The Confi gurable Test Double used by this test is implemented like this: 

   private int mode = record;

   public void enterPlaybackMode() {
      mode = playback;
   }

   public void logMessage( Date date,
                           String user,
                           String action,
                           Object detail) {
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      if (mode == record) {
         Assert.assertEquals("Only supports 1 expected call",
                                0, expectedNumberCalls);
         expectedNumberCalls = 1;
         expectedDate = date;
         expectedUser = user;
         expectedCode = action;
         expectedDetail = detail;
      } else {
         Assert.assertEquals("Date", expectedDate, date);
         Assert.assertEquals("User", expectedUser, user);
         Assert.assertEquals("Action", expectedCode, action);
         Assert.assertEquals("Detail", expectedDetail, detail);
      }
   }

The if statement checks whether we are in record or playback mode. Because 
this simple hand-built Confi gurable Test Double allows only a single value to 
be stored, a Guard Assertion (page 490) fails the test if it tries to record more 
than one call to this method. The rest of the then clause saves the parameters 
into variables that it uses as the expected values of the Equality Assertions (see
Assertion Method on page 362) in the else clause. 
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Hard-Coded Test Double

How do we tell a Test Double what to return or expect?

We build the Test Double by hard-coding the return values and/or 
expected calls.

Test Doubles (page 522) are used for many reasons during the development of 
Fully Automated Tests (see page 26). The behavior of the Test Double may vary 
from test to test, and there are many ways to defi ne this behavior. 

When the Test Double is very simple or very specifi c to a single test, the sim-
plest solution is often to hard-code the behavior into the Test Double.

How It Works                                

The test automater hard-codes all of the Test Double’s behavior into the Test 
Double. For example, if the Test Double needs to return a value for a method 
call, the value is hard-coded into the return statement. If it needs to verify that a 
certain parameter had a specifi c value, the assertion is hard-coded with the value 
that is expected. 
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When to Use It 

We typically use a Hard-Coded Test Double when the behavior of the Test Double
is very simple or is very specifi c to a single test or Testcase Class (page 373). The 
Hard-Coded Test Double can be either a Test Stub (page 529), a Test Spy (page 538), 
or a Mock Object (page 544), depending on what we encode in the method(s) 
called by the SUT. 

Because each Hard-Coded Test Double is purpose-built by hand, its construction 
may take more effort than using a third-party Confi gurable Test Double (page 558). 
It can also result in more test code to maintain and refactor as the SUT changes. If 
different tests require that the Test Double behave in different ways and the use of 
Hard-Coded Test Doubles results in too much Test Code Duplication (page 213), 
we should consider using a Confi gurable Test Double instead. 

Implementation Notes 

Hard-Coded Test Doubles are inherently Hand-Built Test Doubles (see
Confi gurable Test Double) because there tends to be no point in generating 
Hard-Coded Test Doubles automatically. Hard-Coded Test Doubles can be 
implemented with dedicated classes, but they are most commonly used when 
the programming language supports blocks, closures, or inner classes. All of 
these language features help to avoid the fi le/class overhead associated with 
creating a Hard-Coded Test Double; they also keep the Hard-Coded Test 
Double’s behavior visible within the test that uses it. In some languages, this 
can make the tests a bit more diffi cult to read. This is especially true when 
we use anonymous inner classes, which require a lot of syntactic overhead to 
defi ne the class in-line. In languages that support blocks directly, and in which 
developers are very familiar with their usage idioms, using Hard-Coded Test 
Doubles can actually make the tests easier to read. 

There are many different ways to implement a Hard-Coded Test Double,
each of which has its own advantages and disadvantages. 

Variation: Test Double Class 

We can implement the Hard-Coded Test Double as a class distinct from either 
the Testcase Class or the SUT. This allows the Hard-Coded Test Double to be 
reused by several Testcase Classes but may result in an Obscure Test (page 186; 
caused by a Mystery Guest) because it moves important indirect inputs or indi-
rect outputs of the SUT out of the test to somewhere else, possibly out of sight of 
the test reader. Depending on how we implement the Test Double Class, it may 
also result in code proliferation and additional Test Double classes to maintain. 
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One way to ensure that the Test Double Class is type-compatible with the 
component it will replace is to make the Test Double Class a subclass of that 
component. We then override any methods whose behavior we want to change. 

Variation: Test Double Subclass 

We can also implement the Hard-Coded Test Double by subclassing the real 
DOC and overriding the behavior of the methods we expect the SUT to call as 
we exercise it. Unfortunately, this approach can have unpredictable consequences 
if the SUT calls other DOC methods that we have not overridden. It also ties our 
test code very closely to the implementation of the DOC and can result in Over-
specifi ed Software (see Fragile Test on page 239). Using a Test Double Subclass
may be a reasonable option in very specifi c circumstances (e.g., while doing a 
spike or when it is the only option available to us), but this strategy isn’t recom-
mended on a routine basis. 

Variation: Self Shunt 

We can implement the methods that we want the SUT to call on the Testcase 
Class and install the Testcase Object (page 382) into the SUT as the Test Double
to be used. This approach is called a Self Shunt.

The Self Shunt can be either a Test Stub, a Test Spy, or a Mock Object,
depending on what the method called by the SUT does. In each case, it will 
need to access instance variables of the Testcase Class to know what to do or 
expect. In statically typed languages, the Testcase Class must also implement 
the interface on which the SUT depends. 

We typically use a Self Shunt when we need a Hard-Coded Test Double that 
is very specifi c to a single Testcase Class. If only a single Test Method (page 348) 
requires the Hard-Coded Test Double, using an Inner Test Double may result in 
greater clarity if our language supports it. 

Variation: Inner Test Double 

A popular way to implement a Hard-Coded Test Double is to code it as an 
anonymous inner class or block closure within the Test Method. This strategy 
gives the Test Double access to instance variables and constants of the Testcase 
Class and even the local variables of the Test Method, which can eliminate the 
need to confi gure the Test Double.

While the name of this variation is based on the name of the Java language 
construct of which it takes advantage, many programming languages have an 
equivalent mechanism for defi ning code to be run later using blocks or closures. 
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We typically use an Inner Test Double when we are building a Hard-Coded 
Test Double that is relatively simple and is used only within a single Test Method.
Many people fi nd the use of a Hard-Coded Test Double more intuitive than using 
a Self Shunt because they can see exactly what is going on within the Test Method.
Readers who are unfamiliar with the syntax of anonymous inner classes or blocks 
may fi nd the test diffi cult to understand, however. 

Variation: Pseudo-Object 

One challenge facing writers of Hard-Coded Test Doubles is that we must 
implement all the methods in the interface that the SUT might call. In statically 
typed languages such as Java and C#, we must at least implement all methods 
declared in the interface implied by the class or type associated with however 
we access the DOC. This often “forces” us to subclass from the real DOC to 
avoid providing dummy implementations for these methods. 

One way of reducing the programming effort is to provide a default class 
that implements all the interface methods and throws a unique error. We can 
then implement a Hard-Coded Test Double by subclassing this concrete class 
and overriding just the one method we expect the SUT to call while we are 
exercising it. If the SUT calls any other methods, the Pseudo-Object throws an 
error, thereby failing the test. 

Motivating Example 

The following test verifi es the basic functionality of the component that formats 
an HTML string containing the current time. Unfortunately, it depends on the 
real system clock, so it rarely passes! 

   public void testDisplayCurrentTime_AtMidnight() {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify direct output
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( expectedTimeString, result);
   }
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Refactoring Notes 

The most common transition is from using the real component to using a 
Hard-Coded Test Double.4 To make this transition, we need to build the Test Double
itself and install it from within our Test Method. We may also need to introduce a way 
to install the Test Double using one of the Dependency Injection patterns (page 678) 
if the SUT does not already support this installation. The process for doing so is
described in the Replace Dependency with Test Double (page 522) refactoring. 

Example: Test Double Class 

Here’s the same test modifi ed to use a Hard-Coded Test Double class to allow 
control over the time: 

   public void testDisplayCurrentTime_AtMidnight_HCM()
            throws Exception {
      // Fixture setup 
      //   Instantiate hard-coded Test Stub
      TimeProvider testStub = new MidnightTimeProvider();
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //   Inject Test Stub into SUT
      sut.setTimeProvider(testStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify direct output
      String expectedTimeString =
         "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

This test is hard to understand without seeing the defi nition of the Hard-Coded 
Test Double. We can readily see how this approach might lead to an Obscure Test
caused by a Mystery Guest if the Hard-Coded Test Double is not close at hand. 

   class MidnightTimeProvider implements TimeProvider {
      public Calendar getTime() {
         Calendar myTime = new GregorianCalendar();
         myTime.set(Calendar.HOUR_OF_DAY, 0);
         myTime.set(Calendar.MINUTE, 0);
         return myTime;
      }
   }

4 We rarely move from a Confi gurable Test Double to a Hard-Coded Test Double because 
we generally seek to make the Test Double more—not less—reusable.
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Depending on the programming language, this Test Double Class can be defi ned 
in a number of different places, including within the body of the Testcase Class
(an inner class) and as a separate free-standing class either in the same fi le as the 
test or in its own fi le. Of course, the farther away the Test Double Class resides 
from the Test Method, the more of a Mystery Guest it becomes. 

Example: Self Shunt/Loopback

Here’s a test that uses a Self Shunt to allow control over the time: 

public class SelfShuntExample extends TestCase
implements TimeProvider {
   public void testDisplayCurrentTime_AtMidnight() throws Exception {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // mock setup
      sut.setTimeProvider(this); // self shunt installation
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify direct output
      String expectedTimeString =
         "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

   public Calendar getTime() {
      Calendar myTime = new GregorianCalendar();
      myTime.set(Calendar.MINUTE, 0);
      myTime.set(Calendar.HOUR_OF_DAY, 0);
      return myTime;
   } 
}

Note how both the Test Method that installs the Hard-Coded Test Double and 
the implementation of the getTime method called by the SUT are members of the 
same class. We used the Setter Injection pattern (see Dependency Injection) to 
install the Hard-Coded Test Double. Because this example is written in a statically 
typed language, we had to add the clause implements TimeProvider to the Testcase 
Class declaration so that the sut.setTimeProvider(this) statement will compile. In a 
dynamically typed language, this step is unnecessary. 

Example: Subclassed Inner Test Double 

Here’s a JUnit test that uses a Subclassed Inner Test Double using Java’s “Anon-
ymous Inner Class” syntax: 

 Hard-Coded Test Double
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   public void testDisplayCurrentTime_AtMidnight_AIM() throws Exception {
      // Fixture setup
      //    Define and instantiate Test Stub
      TimeProvider testStub = new TimeProvider() {
      // Anonymous inner stub
         public Calendar getTime() {
            Calendar myTime = new GregorianCalendar();
            myTime.set(Calendar.MINUTE, 0);
            myTime.set(Calendar.HOUR_OF_DAY, 0);
            return myTime;
         }
      };
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //   Inject Test Stub into SUT
      sut.setTimeProvider(testStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify direct output
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

Here we used the name of the real depended-on class (TimeProvider) in the call to 
new for the defi nition of the Hard-Coded Test Double. By including a defi nition 
of the method getTime within curly braces after the classname, we are actually 
creating an anonymous Subclassed Test Double inside the Test Method.

Example: Inner Test Double Subclassed from Pseudo-Class 

Suppose we have replaced one implementation of a method with another imple-
mentation that we need to leave around for backward-compatibility purposes, 
but we want to write tests to ensure that the old method is no longer called. This 
is easy to do if we already have the following Pseudo-Object defi nition: 

/**
 * Base class for hand-coded Test Stubs and Mock Objects
 */
public class PseudoTimeProvider implements ComplexTimeProvider {

   public Calendar getTime() throws TimeProviderEx {
      throw new PseudoClassException();
   }

   public Calendar getTimeDifference(Calendar baseTime,
                                     Calendar otherTime)
            throws TimeProviderEx {
      throw new PseudoClassException();
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   }

   public Calendar getTime( String timeZone ) throws TimeProviderEx {
      throw new PseudoClassException();
   }
}

We can now write a test that ensures the old version of the getTime method is not
called by subclassing and overriding the newer version of the method (the one 
we expect to be called by the SUT): 

   public void testDisplayCurrentTime_AtMidnight_PS() throws Exception {
      // Fixture setup
      //    Define and instantiate Test Stub
      TimeProvider testStub = new PseudoTimeProvider()
      { // Anonymous inner stub
         public Calendar getTime(String timeZone) {
            Calendar myTime = new GregorianCalendar();
            myTime.set(Calendar.MINUTE, 0);
            myTime.set(Calendar.HOUR_OF_DAY, 0);
            return myTime;
         }
      };
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //   Inject Test Stub into SUT:
      sut.setTimeProvider(testStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify direct output
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

If any of the other methods are called, the base class methods are invoked and 
throw an exception. Therefore, if we run this test and one of the methods we 
didn’t override is called, we will see the following output as the fi rst line of the 
JUnit stack trace for this test error: 

   com..PseudoClassEx: Unexpected call to unsupported method.
   at com..PseudoTimeProvider.getTime(PseudoTimeProvider.java:22)
   at com..TimeDisplay.getCurrentTimeAsHtmlFragment(TimeDisplay.java:64)
   at com..TimeDisplayTestSolution.
      testDisplayCurrentTime_AtMidnight_PS(
         TimeDisplayTestSolution.java:247)
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What’s in a (Pattern) Name?  

The Importance of Good Names 
Names are important because they are a key part of how we communicate. 
Names are labels we attach to concepts. Good names help us communi-
cate those concepts. This is true when we are communicating with people 
who already know the names, but especially when we are communicating 
with people who don’t. Consider the following example. 

Early in my pattern-writing days, I attended the very fi rst Pattern 
Languages of Programs (PLoP) conference (http://www.hillside.net/
conferences/plop). At the conference, the well-known author Jim Co-
plien (“Cope,” to his friends) had a pattern language of organizational 
patterns being workshopped. One of the patterns was called “Buffalo 
Mountain”; another was called “Architect Also Implements.” These 
two pattern names are at opposite ends of the spectrum as far as pat-
tern names are concerned. 

The gist of “Architect Also Implements” can be gleaned from the pattern 
name even if a person has not read the actual pattern. The name is both a 
placeholder for the pattern and meaningful in its own right. 

The name “Buffalo Mountain,” by contrast, does not readily communi-
cate its underlying meaning. To this day I can still remember the story 
behind the name—but I cannot remember the actual focus of the pattern. 
The name was based on a graph that plotted some data related to the 
pattern. An early reviewer thought it resembled the profi le of a nearby 
mountain called Buffalo Mountain. Thus, while the pattern name is mem-
orable, it is not very evocative. 

Closer to home, Self Shunt (see Hard-Coded Test Double on page 568)
is an example of a name that is less than evocative because the term 
“shunt” is not widely used except in a few specialized fi elds. Michael 
Feathers does a good job explaining the background of the name in his 
description of the pattern. Unless you’ve read that description, however, 
the name is “just a name.” A more evocative name might be something 
like “Testcase Class as Test Double” or “Loopback” but even the latter 
suffers from ambiguity because it isn’t clear what is being looped back. 
So the name Self Shunt survives because it is in common use.
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Other Naming Considerations 
People might ask why I sometimes propose alternative names for some 
patterns. The preceding story highlights one of the reasons. Another 
reason is that in a larger collection of patterns (such as this book), it is 
important that there exists a “system of names.” 

Let me illustrate this second reason with an example. Many people 
advocate the use of a setUp method to create the test fi xture. This approach 
moves the fi xture setup logic out of each individual Test Method (page 348) 
and into a single place where it can be reused. Many people might refer to 
this pattern as “Shared Setup Method.” But in this pattern language, I’ve 
chosen to call it Implicit Setup (page 424). Why? 

It comes down to the names of other patterns in the language. On the one 
hand, “Shared Setup Method” could easily be confused with the existing 
pattern Shared Fixture (page 317). (The former pattern deals with sharing 
code, whereas the latter pattern focuses on sharing the runtime objects 
in the fi xture.) On the other hand, the two major alternatives to Implicit
Setup are called In-line Setup (page 408) and Delegated Setup (page 411). 
Wouldn’t you agree that “In-line Setup, Delegated Setup, Implicit Setup” 
forms a better “system of names” than “In-line Setup, Delegated Setup, 
Shared Setup Method”? The connection between the pattern names is 
much more obvious when we consider all the major alternative patterns 
when choosing the system of names. 

Why Standardize Testing Patterns? 
The last part of this soapbox highlights why I think it is important for us 
to standardize the names of the test automation patterns, especially those 
related to Test Stubs (page 529) and Mock Objects (page 544). The key 
issue here relates to succinctness of communication. 

When someone tells you, “Put a mock in it” (pun intended!), what advice 
is that person giving you? Depending on what the person means by a 
“mock,” he or she could be suggesting that you control the indirect inputs 
of your SUT using a Test Stub or that you replace your database with a 
Fake Database (see Fake Object on page 551) that will reduce test inter-
actions and speed up your tests by a factor of 50. (Yes, 50! See the sidebar 
“Faster Tests Without Shared Fixtures” on page 319.) Or perhaps the 
person is suggesting that you verify that your SUT calls the correct meth-
ods by installing an Eager Mock Object (see Mock Object) preconfi gured 

Continued...
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with the Expected Behavior (see Behavior Verifi cation on page 468). If 
everyone used “mock” to mean a Mock Object—no more or less—then 
the advice would be pretty clear. As I write this, the advice is very murky 
because we have taken to calling just about any Test Double (page 522) a 
“mock object” (despite the objections of the authors of the original paper 
on Mock Objects [ET]). 

Further Reading 
If you want to fi nd out what “Buffalo Mountain” is really about, go to 
http://www1.bell-labs.com/user/cope/Patterns/Process/section29.html.

You can fi nd “Architect Also Implements” at http://www1.bell-labs.com/
user/cope/Patterns/Process/section16.html.

Interestingly, Alistair Cockburn wrote a similar comparison of pattern 
names in an article on his Web site (http://alistair.cockburn.us) and chose 
exactly the same two pattern names in his comparison. Coincidence or 
pattern?

In addition to failing the test, this scheme makes it very easy to see exactly which 
method was called. The bonus is that it works for calls to all unexpected methods 
with no additional effort. 

Further Reading 

Many of the “how to” books on test-driven development provide examples of Self 
Shunt, including [TDD-APG], [TDD-BE], [UTwJ], [PUT], and [JuPG]. The original 
write-up was by Michael Feathers and is accessible at http://www.objectmentor.
com/resources/articles/SelfShunPtrn.pdf 

The original “Shunt” pattern is written up at http://http://c2.com/cgi/wiki? 
ShuntPattern, along with a list of alternative names including “Loopback.” See 
the sidebar “What’s in a (Pattern) Name?” on page 576 for a discussion of how 
to select meaningful and evocative pattern names. 

The Pseudo-Object pattern is described in the paper “Pseudo-Classes: Very 
Simple and Lightweight Mock Object-like Classes for Unit-Testing” available at 
http://www.devx.com/Java/Article/22599/1954?pf=true. 
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Test-Specifi c Subclass

How can we make code testable when we need to access 
private state of the SUT?

We add methods that expose the state or behavior needed by the test 
to a subclass of the SUT.

If the SUT was not designed specifi cally to be testable, we may fi nd that the 
test cannot gain access to a state that it must initialize or verify at some point 
in the test. 

A Test-Specifi c Subclass is a simple yet very powerful way to open up the 
SUT for testing purposes without modifying the code of the SUT itself. 

How It Works                                      

We defi ne a subclass of the SUT and add methods that modify the behavior of 
the SUT just enough to make it testable by implementing control points and 
observation points. This effort typically involves exposing instance variables 
using setters and getters or perhaps adding a method to put the SUT into a 
specifi c state without moving through its entire life cycle. 
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Because the Test-Specifi c Subclass would be packaged together with the tests 
that use it, the use of a Test-Specifi c Subclass does not change how the SUT is 
seen by the rest of the application. 

When to Use It 

We should use a Test-Specifi c Subclass whenever we need to modify the SUT to 
improve its testability but doing so directly would result in Test Logic in Produc-
tion (page 217). Although we can use a Test-Specifi c Subclass for a number of 
purposes, all of those scenarios share a common goal: They improve testability 
by letting us get at the insides of the SUT more easily. A Test-Specifi c Subclass 
can be a double-edged sword, however. By breaking encapsulation, it allows us 
to tie our tests even more closely to the implementation, which can in turn result 
in Fragile Tests (page 239). 

Variation: State-Exposing Subclass 

If we are doing State Verifi cation (page 462), we can subclass the SUT (or some 
component of it) so that we can see the internal state of the SUT for use in Assertion 
Methods (page 362). Usually, this effort involves adding accessor methods for pri-
vate instance variables. We may also allow the test to set the state as a way to avoid 
Obscure Tests (page 186) caused by Obscure Setup (see Obscure Test) logic. 

Variation: Behavior-Exposing Subclass 

If we want to test the individual steps of a complex algorithm individually, we 
can subclass the SUT to expose the private methods that implement the Self-
Calls [WWW]. Because most languages do not allow for relaxing the visibility 
of a method, we often have to use a different name in the Test-Specifi c Subclass
and make a call to the superclass’s method. 

Variation: Behavior-Modifying Subclass 

If the SUT contains some behavior that we do not want to occur when testing, 
we can override whatever method implements the behavior with an empty 
method body. This technique works best when the SUT uses Self-Calls (or a 
Template Method [GOF]) to delegate the steps of an algorithm to methods on 
itself or subclasses. 

Variation: Test Double Subclass 

To ensure that a Test Double (page 522) is type-compatible with a DOC we wish 
to replace, we can make the Test Double a subclass of that component. This may 
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be the only way we can build a Test Double that the compiler will accept when 
variables are statically typed using concrete classes.5 (We should not have to 
take this step with dynamically typed languages such as Ruby, Python, Perl, and 
JavaScript.) We then override any methods whose behavior we want to change 
and add any methods we require to transform the Test Double into a Confi gu-
rable Test Double (page 558) if we so desire. 

Unlike the Behavior-Modifying Subclass, the Test Double Subclass does not 
just “tweak” the behavior of the SUT (or a part thereof) but replaces it entirely 
with canned behavior. 

Variation: Substituted Singleton 

The Substituted Singleton is a special case of Test Double Subclass. We use it 
when we want to replace a DOC with a Test Double and the SUT does not sup-
port Dependency Injection (page 678) or Dependency Lookup (page 686). 

Implementation Notes 

The use of a Test-Specifi c Subclass brings some challenges: 

• Feature granularity: ensuring that any behavior we want to override or 
expose is in its own single-purpose method. It is enabled through copi-
ous use of small methods and Self-Calls. 

• Feature visibility: ensuring that subclasses can access attributes and be-
havior of the SUT class. It is primarily an issue in statically typed lan-
guages such as Java, C#, and C++; dynamically typed languages typically 
do not enforce visibility. 

As with Test Doubles, we must be careful to ensure that we do not replace any 
of the behavior we are actually trying to test. 

In languages that support class extensions without the need for subclassing 
(e.g., Smalltalk, Ruby, JavaScript, and other dynamic languages), a Test-Specifi c 
Subclass can be implemented as a class extension in the test package. We need to 
be aware, however, whether the extensions will make it into production; doing 
so would introduce Test Logic in Production.

5 That is, by using a concrete class as the type of the variable rather than an abstract 
class or interface.

Also known as:
Subclassed
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Visibility of Features 

In languages that enforce scope (visibility) of variables and methods, we may 
need to change the visibility of the variables to allow subclasses to access them. 
While such a change affects the actual SUT code, it would typically be con-
sidered much less intrusive or misleading than changing the visibility to public
(thereby allowing any code in the application to access the variables) or adding 
the test-specifi c methods directly to the SUT. 

For example, in Java, we might change the visibility of instance variables 
from private to protected to allow the Test-Specifi c Subclass to access them. 
Similarly, we might change the visibility of methods to allow the Test-Specifi c 
Subclass to call them. 

Granularity of Features

Long methods are diffi cult to test because they often bring too many dependen-
cies into play. By comparison, short methods tend to be much simpler to test 
because they do only one thing. Self-Call offers an easy way to reduce the size 
of methods. We delegate parts of an algorithm to other methods implemented 
on the same class. This strategy allows us to test these methods independently. 
We can also confi rm that the calling method calls these methods in the right 
sequence by overriding them in a Test Double Subclass (see Test-Specifi c Subclass 
on page 579).

Self-Call is a part of good object-oriented code design in that it keeps methods 
small and focused on implementing a single responsibility of the SUT. We can use 
this pattern whenever we are doing test-driven development and have control 
over the design of the SUT. We may fi nd that we need to introduce Self-Call when 
we encounter long methods where some parts of the algorithm depend on things 
we do not want to exercise (e.g., database calls). This likelihood is especially 
high, for example, when the SUT is built using a Transaction Script [PEAA] 
architecture. Self-Call can be retrofi tted easily using the Extract Method [Fowler] 
refactoring supported by most modern IDEs. 

Motivating Example 

The test in the following example is nondeterministic because it depends on the 
time. Our SUT is an object that formats the time for display as part of a Web 
page. It gets the time by asking a Singleton called TimeProvider to retrieve the time 
from a calendar object that it gets from the container. 

   public void testDisplayCurrentTime_AtMidnight() throws Exception {
      // Set up SUT
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      TimeDisplay theTimeDisplay = new TimeDisplay();
      // Exercise SUT
      String actualTimeString =
            theTimeDisplay.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( "Midnight",
                    expectedTimeString,
                    actualTimeString);
   }

   public void testDisplayCurrentTime_AtOneMinuteAfterMidnight()
            throws Exception {
      // Set up SUT
      TimeDisplay actualTimeDisplay = new TimeDisplay();
      // Exercise SUT
      String actualTimeString =
            actualTimeDisplay.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
            "<span class=\"tinyBoldText\">12:01 AM</span>";
      assertEquals( "12:01 AM",
                    expectedTimeString,
                    actualTimeString);
   }

These tests rarely pass, and they never pass in the same test run! The code within 
the SUT looks like this: 

   public String getCurrentTimeAsHtmlFragment() {
      Calendar timeProvider;
      try {
         timeProvider = getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
         // etc.
   }

   protected Calendar getTime() {
      return TimeProvider.getInstance().getTime();
   }

The code for the Singleton follows: 

public class TimeProvider {
   protected static TimeProvider soleInstance = null;

   protected TimeProvider() {};

   public static TimeProvider getInstance() {

 Test-Specific Subclass
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      if (soleInstance==null) soleInstance = new TimeProvider();
      return soleInstance;
   }

   public Calendar getTime() {
      return Calendar.getInstance();
   }
}

Refactoring Notes 

The precise nature of the refactoring employed to introduce a Test-Specifi c Subclass
depends on why we are using one. When we are using a Test-Specifi c Subclass to 
expose “private parts” of the SUT or override undesirable parts of its behavior, 
we merely defi ne the Test-Specifi c Subclass as a subclass of the SUT and create an 
instance of the Test-Specifi c Subclass to exercise in the setup fi xture phase of our 
Four-Phase Test (page 358). 

When we are using the Test-Specifi c Subclass to replace a DOC of the SUT, 
however, we need to use a Replace Dependency with Test Double (page 522) 
refactoring to tell the SUT to use our Test-Specifi c Subclass instead of the real 
DOC.

In either case, we either override existing methods or add new methods to 
the Test-Specifi c Subclass using our language-specifi c capabilities (e.g., subclass-
ing or mixins) as required by our tests. 

Example: Behavior-Modifying Subclass (Test Stub) 

Because the SUT uses a Self-Call to the getTime method to ask the TimeProvider for 
the time, we have an opportunity to use a Subclassed Test Double to control the 
time.6 Based on this idea we can take a stab at writing our tests as follows (I have 
shown only one test here): 

   public void testDisplayCurrentTime_AtMidnight() {
      // Fixture setup
      TimeDisplayTestStubSubclass tss = new TimeDisplayTestStubSubclass();
      TimeDisplay sut = tss;
      //   Test Double configuration
      tss.setHours(0);
      tss.setMinutes(0);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();

6 This decision is enabled by the fact that getTime was defi ned to be protected; we would 
not be able to do this if it was private.
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      // Verify outcome
      String expectedTimeString =
               "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( expectedTimeString, result );
   }

Note that we have used the Test-Specifi c Subclass class for the variable that receives 
the instance of the SUT; this approach ensures that the methods of the Confi gura-
tion Interface (see Confi gurable Test Double) defi ned on the Test-Specifi c Subclass
are visible to the test.7 For documentation purposes, we have then assigned the 
Test-Specifi c Subclass to the variable sut; this is a safe cast because the Test-Specifi c 
Subclass class is a subclass of the SUT class. This technique also helps us avoid the 
Mystery Guest (see Obscure Test) problem caused by hard-coding an important 
indirect input of our SUT inside the Test Stub (page 529). 

Now that we have seen how it will be used, it is a simple matter to imple-
ment the Test-Specifi c Subclass:

public class TimeDisplayTestStubSubclass extends TimeDisplay {

   private int hours;
   private int minutes;

   // Overridden method
   protected Calendar getTime() {
      Calendar myTime = new GregorianCalendar();
      myTime.set(Calendar.HOUR_OF_DAY, this.hours);
      myTime.set(Calendar.MINUTE, this.minutes);
      return myTime;
   }
   /*
    * Configuration Interface
    */
   public void setHours(int hours) {
      this.hours = hours;
   }

   public void setMinutes(int minutes) {
      this.minutes = minutes;
   }
}

There’s no rocket science here—we just had to implement the methods used by 
the test. 

7 We could have used a Hard-Coded Test Double (page 568) subclass instead, but that 
tactic would have required a different Test-Specifi c Subclass for each time we want to test 
with. Each subclass would simply hard-code the return value of the getTime method.
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Example: Behavior-Modifying Subclass (Substituted 
Singleton)

Suppose our getTime method was declared to be private8 or static, fi nal or sealed, and so 
on.9 Such a declaration would prevent us from overriding the method’s behavior 
in our Test-Specifi c Subclass. What could we do to address our Nondeterministic
Tests (see Erratic Test on page 228)?

Because the design uses a Singleton [GOF] to provide the time, a simple 
solution is to replace the Singleton during test execution with a Test Double 
Subclass. We can do so as long as it is possible for a subclass to access its 
soleInstance variable. We use the Introduce Local Extension [Fowler] refactoring 
(specifi cally, the subclass variant of it) to create the Test-Specifi c Subclass. Writ-
ing the tests fi rst helps us understand the interface we want to implement. 

   public void testDisplayCurrentTime_AtMidnight() {
      TimeDisplay sut = new TimeDisplay();
      //   Install test Singleton
      TimeProviderTestSingleton timeProvideSingleton =
            TimeProviderTestSingleton.overrideSoleInstance();
      timeProvideSingleton.setTime(0,0);
      //   Exercise SUT
      String actualTimeString = sut.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( expectedTimeString, actualTimeString );
   }

Now that we have a test that uses the Substituted Singleton, we can proceed 
to implement it by subclassing the Singleton and defi ning the methods the 
tests will use. 

public class TimeProviderTestSingleton extends TimeProvider {
   private Calendar myTime = new GregorianCalendar();
   private TimeProviderTestSingleton() {};

   // Installation Interface
   static TimeProviderTestSingleton overrideSoleInstance() {
      // We could save the real instance first, but we won't!
      soleInstance = new TimeProviderTestSingleton();
      return (TimeProviderTestSingleton) soleInstance;
   }

   // Configuration Interface used by the test

8 A private method cannot be seen or overridden by a subclass.
9 This choice prevents a subclass from overriding the method’s behavior.

Test-Specifi c 
Subclass

www.it-ebooks.info

http://www.it-ebooks.info/


587

   public void setTime(int hours, int minutes) {
      myTime.set(Calendar.HOUR_OF_DAY, hours);
      myTime.set(Calendar.MINUTE, minutes);
   }

   // Usage Interface used by the client
   public Calendar getTime() {
      return myTime;
   }
}

Here the Test Double is a subclass of the real component and has overridden the 
instance method called by the clients of the Singleton. 

Example: Behavior-Exposing Subclass 

Suppose we wanted to test the getTime method directly. Because getTime is protected
and our test is in a different package from the TimeDisplay class, our test cannot 
call this method. We could try making our test a subclass of TimeDisplay or we 
could put it into the same package as TimeDisplay. Unfortunately, both of these 
solutions come with baggage and may not always be possible. 

A more general solution is to expose the behavior using a Behavior-Exposing 
Subclass. We can do so by defi ning a Test-Specifi c Subclass and adding a public
method that calls this method. 

public class TimeDisplayBehaviorExposingTss extends TimeDisplay {

   public Calendar callGetTime() {
      return super.getTime();
   }
}

We can now write the test using the Behavior-Exposing Subclass as follows:

   public void testGetTime_default() {
      // create SUT
      TimeDisplayBehaviorExposingTss tsSut =
               new TimeDisplayBehaviorExposingTss();
      // exercise SUT
      //  want to do
      //    Calendar time = sut.getTime();
      //  have to do
      Calendar time = tsSut.callGetTime();
      // verify outcome
      assertEquals( defaultTime, time );
   }

 Test-Specific Subclass
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Example: Defi ning Test-Specifi c Equality (Behavior-Modifying 
Subclass) 

Here is an example of a very simple test that fails because the object we pass 
to assertEquals does not implement test-specifi c equality. That is, the default 
equals method returns false even though our test considers the two objects to be 
equals.

   protected void setUp() throws Exception {
      oneOutboundFlight = findOneOutboundFlightDto();
   }

   public void testGetFlights_OneFlight() throws Exception {
      // Exercise System
      List flights = facade.getFlightsByOriginAirport(
                     oneOutboundFlight.getOriginAirportId());
      // Verify Outcome
      assertEquals("Flights at origin - number of flights: ",
                   1,
                   flights.size());
      FlightDto actualFlightDto = (FlightDto)flights.get(0);
      assertEquals("Flight DTOs at origin",
                   oneOutboundFlight,
                   actualFlightDto);
   }

One option is to write a Custom Assertion (page 474). Another option is to use 
a Test-Specifi c Subclass to add a more appropriate defi nition of equality for our 
test purposes alone. We can change our fi xture setup code slightly to create the 
Test-Specifi c Subclass as our Expected Object (see State Verifi cation).

   private FlightDtoTss oneOutboundFlight;

   private FlightDtoTss findOneOutboundFlightDto() {
      FlightDto realDto = helper.findOneOutboundFlightDto();
      return new FlightDtoTss(realDto) ;
   }

Finally, we implement the Test-Specifi c Subclass by copying and comparing only 
those fi elds that we want to use for our test-specifi c equality. 

public class FlightDtoTss extends FlightDto {
   public FlightDtoTss(FlightDto realDto) {
      this.destAirportId = realDto.getDestinationAirportId();
      this.equipmentType = realDto.getEquipmentType();
      this.flightNumber = realDto.getFlightNumber();
      this.originAirportId = realDto.getOriginAirportId();
   }

Test-Specifi c 
Subclass
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   public boolean equals(Object obj) {
      FlightDto otherDto = (FlightDto) obj;
      if (otherDto == null) return false;
      if (otherDto.getDestAirportId()!= this.destAirportId)
         return false;
      if (otherDto.getOriginAirportId()!= this.originAirportId)
         return false;
      if (otherDto.getFlightNumber()!= this.flightNumber)
         return false;
      if (otherDto.getEquipmentType() != this.equipmentType )
         return false;
      return true;
   }
}

In this case we copied the fi elds from the real DTO into our Test-Specifi c Subclass,
but we could just as easily have used the Test-Specifi c Subclass as a wrapper for the 
real DTO. There are other ways we could have created the Test-Specifi c Subclass;
the only real limit is our imagination.

This example also assumes that we have a reasonable toString implementa-
tion on our base class that prints out the values of the fi elds being compared. 
It is needed because assertEquals will use that implementation when the equals
method returns false. Otherwise, we will have no idea of why the objects are 
considered unequal. 

Example: State-Exposing Subclass 

Suppose we have the following test, which requires a Flight to be in a particular 
state:

   protected void setUp() throws Exception {
      super.setUp();
      scheduledFlight = createScheduledFlight();
   }

   Flight createScheduledFlight() throws InvalidRequestException{
      Flight newFlight = new Flight();
      newFlight.schedule();
      return newFlight;
   }

   public void testDeschedule_shouldEndUpInUnscheduleState()
                     throws Exception {
      scheduledFlight.deschedule();
      assertTrue("isUnsched", scheduledFlight.isUnscheduled());
   }

 Test-Specific Subclass
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Setting up the fi xture for this test requires us to call the method schedule on the 
fl ight:

public class Flight{
   protected FlightState currentState = new UnscheduledState();

   /**
    * Transitions the Flight from the <code>unscheduled</code> 
    * state to the <code>scheduled</code> state.
    * @throws InvalidRequestException when an invalid state
    *          transition is requested
    */
   public void schedule() throws InvalidRequestException{
      currentState.schedule();
   }
}

The Flight class uses the State [GOF] pattern and delegates handling of the schedule
method to whatever State object is currently referenced by currentState. This test 
will fail during fi xture setup if schedule does not work yet on the default content of 
currentState. We can avoid this problem by using a State-Exposing Subclass that 
provides a method to move directly into the state, thereby making this an Inde-
pendent Test (see page 42). 

public class FlightTss extends Flight {

   public void becomeScheduled() {
      currentState = new ScheduledState();
   }
}

By introducing a new method becomeScheduled on the Test-Specifi c Subclass, we 
ensure that we will not accidentally override any existing behavior of the SUT. 
Now all we have to do is instantiate the Test-Specifi c Subclass in our test instead 
of the base class by modifying our Creation Method (page 415). 

   Flight createScheduledFlight() throws InvalidRequestException{
      FlightTss newFlight = new FlightTss();
      newFlight.becomeScheduled();
      return newFlight;
   }

Note how we still declare that we are returning an instance of the Flight class 
when we are, in fact, returning an instance of the Test-Specifi c Subclass that has 
the additional method. 

Test-Specifi c 
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Named Test Suite

How do we run the tests when we have arbitrary groups of 
tests to run?

We defi ne a test suite, suitably named, that contains a set of tests 
that we wish to be able to run as a group.

When we have a large number of tests, we need to organize them in a systematic 
way. A test suite allows us to group tests that have related functionality close to 
each other. Although we want to be able to run all the tests for the entire applica-
tion or component easily, we also want to be able to run only those tests applicable 
to specifi c subsets of the functionality or subcomponents of the system. In other 
situations, we want to run only a subset of all the tests we have defi ned. 

Named Test Suites give us a way to choose which predefi ned subset of the 
tests we want to run. 

How It Works 

For each group of related tests that we would like to be able to run as a group, we 
can defi ne a special Test Suite Factory (see Test Enumeration on page 399) with 
an Intent-Revealing Name. The Factory Method [GOF] can use any of several 
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test suite construction techniques to return a Test Suite Object (page 387) 
containing only the specifi c Testcase Objects (page 382) we wish to execute. 

When to Use It 

Although we often want to run all the tests with a single command, sometimes 
we want to run only a subset of the tests. The most common reason for doing so 
is time; for this purpose, running the AllTests Suite for a specifi c context is prob-
ably our best bet. When our member of xUnit doesn’t support Test Selection
and the tests we want to run are scattered across multiple contexts and some 
contexts contain tests we defi nitely don’t want run, we can use a Subset Suite.

Variation: AllTests Suite 

We often want to run all the tests we have available. With smaller systems, it 
may be standard practice to run the AllTests Suite after checking out a new code 
base (to ensure we start at a known point) and before every check-in (to ensure 
all our code works). We typically have an AllTests Suite for each package or 
namespace of software so that we can run subsets of the tests after each code 
change as part of the “red–green–refactor” cycle. 

Variation: Subset Suite 

Developers often do not want to run tests because they are Slow Tests (page 253). 
Tests that exercise components that access a database will inevitably run much 
more slowly than tests that run entirely in memory. By defi ning one Named Test 
Suite for the database tests and another Named Test Suite for the in-memory 
tests, we can choose not to run the database tests simply by choosing to run the 
in-memory Subset Suite.

Another common reason given for not running tests is because the context 
they need to run is not available. For example, if we don’t have a Web server 
running on our development desktop, or if deploying our software to the Web 
server takes too long, we won’t want to run the tests of components that require 
the Web server to be running (they would just take extra time to run, and we 
know they will fail and spoil our chances of achieving a green bar). 

Variation: Single Test Suite 

The degenerate form of a Subset Suite is the Single Test Suite, in which we instanti-
ate a single Testcase Object so that we can run a single Test Method (page 348).
This variation is particularly useful when we don’t have a Test Tree Explorer 
(see Test Runner on page 377) available or when the Test Method requires some 
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form of Setup Decorator (page 447) to run properly. Some test automaters keep a 
“MyTest” Testcase Class (page 373) open in their workspace at all times specifi -
cally for this purpose. 

Implementation Notes 

The concept of running named sets of tests is independent of how we build the 
Named Test Suites. For example, we can use Test Enumeration to build up our 
suites of tests explicitly or we can use Test Discovery (page 393) to fi nd all tests 
in a particular place (e.g., a namespace or assembly). We can also do Test Selec-
tion (page 403) from within a suite of tests to create a smaller suite dynamically. 
Some members of the xUnit family require us to defi ne the AllTests Suites for 
each test package or subsystem manually; others, such as NUnit, automatically 
create a Test Suite Object for each namespace. 

When we are using Test Enumeration and have Named Test Suites for various 
subsets of the tests, it is better to defi ne our AllTests Suite in terms of these subsets. 
When we implement the AllTests Suite as a Suite of Suites (see Test Suite Object), we 
need to add a new Testcase Class to only a single Named Test Suite; this collection 
of tests is then rolled up into the AllTests Suite for the local context as well as the 
Named Test Suite and the next higher context. 

Refactoring Notes 

The steps to refactor existing code to a Named Test Suite are highly dependent 
on the variant of Named Test Suite we are using. For this reason, I’ll dispense 
with the motivating example and skip directly to examples of Named Test Suites.

Example: AllTests Suite 

An AllTests Suite helps us run all the tests for different subsets of the functional-
ity of our choosing. For each subcomponent or context (e.g., a Java package), 
we defi ne a special test suite (and its corresponding Test Suite Factory) called 
AllTests. In the suite Factory Method on the Test Suite Factory, we add all the 
tests in the current context and all the Named Test Suites from any nested con-
texts (such as nested Java packages). That way, when the top-level Named Test 
Suite is run, all Named Test Suites for the nested contexts will be run as well. 

The following example illustrates the kind of code that would be required to 
run all the tests in most members of the xUnit family: 

public class AllTests {

   public static Test suite() {

Named Test 
Suite
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      TestSuite suite = new TestSuite("Test for allJunitTests");
      //$JUnit-BEGIN$
      suite.addTestSuite(
             com.clrstream.camug.example.test.InvoiceTest.class);
      suite.addTest(com.clrstream.ex7.test.AllTests.suite());
      suite.addTest(com.clrstream.ex8.test.AllTests.suite());
      suite.addTestSuite(
             com.xunitpatterns.guardassertion.Example.class);
      //$JUnit-END$
      return suite;
   }
}

We had to use a mix of methods in this case because we are adding other Named
Test Suites as well as Test Suite Objects representing a single Testcase Class. In 
JUnit, we use different methods to do this. Other members of the xUnit family, 
however, may use the same method signature. 

The other notable aspect of this example is the JUnit-start and JUnit-end com-
ments. The IDE (in this case, Eclipse) helps us out by automatically regener-
ating the list between these two comments—a semi-automated form of Test 
Discovery.

Example: Special-Purpose Suite 

Suppose we have three major packages (A, B, and C) containing business logic. 
Each package contains both in-memory objects and database access classes. We 
would then have corresponding test packages for each of the three packages. 
Some tests in each package would require the database, while others could run 
purely in memory. 

We want to be able to run the following sets of tests for the entire system, 
and for each package (A, B, and C): 

• All tests 

• All database tests 

• All in-memory tests 

This implies a total of 12 named sets of tests (three named sets for each of four 
contexts). 

In each of the three packages (A, B, and C), we should defi ne the following 
Named Test Suites:

Named Test 
Suite

 Named Test Suite
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• AllDbTests, by adding all the Testcase Classes containing database tests

• AllInMemoryTests, by adding all the Testcase Classes containing in-memory 
tests

• AllTests, by combining AllDbTests and AllInMemoryTests

Then, at the top-level testing context, we defi ne Named Test Suites by the same 
names as follows: 

• AllDbTests, by composing all the AllDbTests Testcase Classes from pack-
ages A, B, and C

• AllInMemoryTests, by composing all the AllInMemoryTests Testcase Classes
from packages A, B, and C

• AllTests, by composing all the AllTests Testcase Classes from packages 
A, B, and C (This is just the normal AllTests Suite.)

If we fi nd ourselves needing to include some tests from a single Testcase Class in 
both Named Test Suites, we should split the class into one class for each context 
(e.g., database tests and in-memory tests). 

Example: Single Test Suite 

In some circumstances—especially when we are using a debugger—it is highly 
desirable to not run all the tests in a Testcase Class. One way to run only a subset of 
these tests is to use the Test Tree Explorer provided by some Graphical Test Run-
ners (see Test Runner). When this capability isn’t available, a common practice is 
to disable the tests we don’t want run by either commenting them out, copying the 
entire Testcase Class and deleting most of the tests, or changing the names or attri-
butes of the test that cause them to be included by the Test Discovery algorithm. 

public class LostTests extends TestCase {
   public LostTests(String name) {
      super(name);
   }

   public void xtestOne() throws Exception {
      fail("test not implemented");
   }

   /*
   public void testTwo() throws Exception {
       fail("test not implemented");
   }
    */

Named Test 
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   public void testSeventeen() throws Exception {
      assertTrue(true);
   }
}

All of these approaches suffer from the potential for Lost Tests (see Produc-
tion Bugs on page 268) if the means of running a single test is not reversed 
properly when the situation requiring this testing strategy has passed. A Sin-
gle Test Suite makes it possible to run the specifi c test(s) without making any
changes to the Testcase Class in question. This technique takes advantage of the 
fact that most implementations of xUnit require a one-argument constructor on 
our Testcase Class; this argument consists of the name of the method that this 
instance of the class will invoke using refl ection. The one-argument construc-
tor is called once for each Test Method on the class, and the resulting Testcase 
Object is added to the Test Suite Object. (This is an example of the Pluggable 
Behavior [SBPP] pattern.)

We can run a single test by implementing a Test Suite Factory class with a 
single method suite that creates an instance of the desired Testcase Class by call-
ing the one-argument constructor with the name of the one Test Method to be 
run. By returning a Test Suite Object containing only this one Testcase Object
from suite, we achieve the desired result (running a single test) without touching 
the target Testcase Class.

public class MyTest extends TestCase {

   public  static Test suite() {
      return new LostTests("testSeventeen");
   }
}

I like to keep a Single Test Suite class around all the time and just plug in what-
ever test I want to run by changing the import statements and the suite method. 
Often, I maintain several Single Test Suite classes so I can fl ip back and forth 
between different tests very quickly. I fi nd this technique easier to do than drill-
ing down in the Test Tree Explorer and picking the specifi c test to run manually. 
(Your mileage may vary!) 

Example: Smoke Test Suite 

We can take the idea of a Special-Purpose Suite and combine it with the imple-
mentation technique of a Single Test Suite to create a Smoke Test [SCM] suite. 
This strategy involves picking a representative test or two from each of the major 
areas of the system and including those tests in a single Test Suite Object.

Named Test 
Suite
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public class SmokeTestSuite extends TestCase {
   public static Test suite() {
      TestSuite mySuite = new TestSuite("Smoke Tests");

      mySuite.addTest( new LostTests("testSeventeen") );
      mySuite.addTest( new SampleTests("testOne")     );
      mySuite.addTest( new FlightManagementFacadeTest(
         "testGetFlightsByOriginAirports_TwoOutboundFlights"));
      // add additional tests here as needed...
      return mySuite;
   }
}

This scheme won’t test our system thoroughly, but it is a quick way to fi nd out 
whether some part of the core functionality is broken. 

Named Test 
Suite
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Test Utility Method

How do we reduce Test Code Duplication?

We encapsulate the test logic we want to reuse behind a suitably 
named utility method.

As we write tests, we will invariably fi nd ourselves needing to repeat the same 
logic in many, many tests. Initially, we will just “clone and twiddle” as we write 
additional tests that need the same logic. Sooner or later, however, we will come to 
the realization that this Test Code Duplication (page 213) is starting to cause prob-
lems. This point is a good time to think about introducing a Test Utility Method.

How It Works 

The subroutine and the function were two of the earliest ways devised to reuse 
logic in several places within a program. A Test Utility Method is just the same 
principle applied to object-oriented test code. We move any logic that appears 
in more than one test into a Test Utility Method; we can then call this method 
from various tests or even several times from within a single test. Of course, we 
will want to pass in anything that varies from usage to usage as arguments to 
the Test Utility Method.
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When to Use It 

We should use a Test Utility Method whenever test logic appears in several tests 
and we want to be able to reuse that logic. We might also use a Test Utility Method
because we want to be very sure that the logic works as expected. The best way 
to achieve that kind of certainty is to write Self-Checking Tests (unit tests—see 
page 26) for the reusable test logic. Because the Test Methods (page 348) cannot 
easily be tested, it is best to do this by moving the logic out of the test methods 
and into Test Utility Methods, where it can be more easily tested. 

The main drawback of using the Test Utility Method pattern is that it creates 
another API that the test automaters must build and understand. This extra ef-
fort can be largely mitigated through the use of Intent-Revealing Names [SBPP] 
for the Test Utility Methods and through the use of refactoring as the means for 
defi ning the Test Utility Methods.

There are as many different kinds of Test Utility Methods as there are kinds 
of logic in a Test Method. Next, we briefl y summarize some of the most popu-
lar kinds. Some of these variations are important enough to warrant their own 
pattern write-ups in the corresponding section of this book.

Variation: Creation Method 

Creation Methods (page 415) are used to create ready-to-use objects as part of 
fi xture setup. They hide the complexity of object creation and interdependencies 
from the test. Creation Method has enough variants to warrant addressing this 
pattern in its own section. 

Variation: Attachment Method 

An Attachment Method (see Creation Method) is a special form of Creation
Method used to amend already-created objects as part of fi xture setup. 

Variation: Finder Method 

We can encapsulate any logic required to retrieve objects from a Shared Fix-
ture (page 317) within a function that returns the object(s). We then give this 
function an Intent-Revealing Name so that anyone reading the test can easily 
understand the fi xture we are using in this test. 

We should use a Finder Method whenever we need to fi nd an existing Shared 
Fixture object that meets some criteria and we want to avoid a Fragile Fixture 
(see Fragile Test on page 239) and High Test Maintenance Cost (page 265). 
Finder Methods can be used in either a pure Shared Fixture strategy or a 
hybrid strategy such as Immutable Shared Fixture (see Shared Fixture). Finder 

Test Utility 
Method

www.it-ebooks.info

http://www.it-ebooks.info/


601

Methods also help prevent Obscure Tests (page 186) by encapsulating 
the mechanism of how the required objects are found and exactly which 
objects to use, thereby enabling the reader to focus on understanding why
a particular object is being used and how it relates to the expected outcome 
described in the assertions. This helps us move toward Tests as Documentation 
(see page 23). 

Although most Finder Methods return a single object reference, that object 
may be the root of a tree of objects (e.g., an invoice might refer to the customer 
and various addresses as well as containing a list of line items). In some circum-
stances, we may choose to defi ne a Finder Method that returns a collection (Array
or Hash) of objects, but the use of this type of Finder Method is less common. 
Finder Methods may also update parameters to pass additional objects back to 
the test that called them, although this approach is not as intent-revealing as use 
of a function. I do not recommend initialization of instance variables as a way of 
passing back objects because it is obscure and keeps us from moving the Finder
Method to a Test Helper (page 643) later. 

The Finder Method can fi nd objects in the Shared Fixture in several ways: 
by using direct references (instance variables or class variables initialized in the 
fi xture setup logic), by looking the objects up using known keys, or by search-
ing for the objects using specifi c criteria. Using direct references or known keys 
has the advantage of always returning exactly the same object each time the test 
is run. The main drawback is that some other test may have modifi ed the object 
such that it may no longer match the criteria implied by the Finder Method’s
name. Searching by criteria can avoid this problem, though the resulting tests 
may take longer to run and might be less deterministic if they use different 
objects each time they are run. Either way, we must modify the code in fewer 
places whenever the Shared Fixture is modifi ed (compared to when the objects 
are used directly within the Test Method).

Variation: SUT Encapsulation Method 

Another reason for using a Test Utility Method is to encapsulate unnecessary knowl-
edge of the API of the SUT. What constitutes unnecessary? Any method we call on 
the SUT that is not the method being tested creates additional coupling between 
the test and the SUT. Creation Methods and Custom Assertions (page 474) are 
common enough examples of SUT Encapsulation Methods to warrant their own 
write-ups as separate patterns. This section focuses on the less common uses of 
SUT Encapsulation Methods. For example, if the method that we are exercising 
(or that we use for verifying the outcome) has a complicated signature, we 
increase the amount of work involved to write and maintain the test code and may 
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make it harder to understand the tests (Obscure Test). We can avoid this problem 
by wrapping these calls in SUT Encapsulation Methods that are intent-revealing 
and may have simpler signatures. 

Variation: Custom Assertion 

Custom Assertions are used to specify test-specifi c equality in a way that is 
reusable across many tests. They hide the complexity of comparing the expected 
outcome with the actual outcome. Custom Assertions are typically free of side 
effects in that they do not interact with the SUT to retrieve the outcome; that 
task is left to the caller. 

Variation: Verifi cation Method 

Verifi cation Methods (see Custom Assertion) are used to verify that the expected 
outcome has occurred. They hide the complexity of verifying the outcome from 
the test. Unlike Custom Assertions, Verifi cation Methods interact with the SUT. 

Variation: Parameterized Test 

The most complete form of the Test Utility Method pattern is the Parameterized
Test (page 607). It is, in essence, an almost complete test that can be reused in 
many circumstances. We simply provide the data that varies from test to test as 
a parameter and let the Parameterized Test execute all the stages of the Four-
Phase Test (page 358) for us. 

Variation: Cleanup Method 

Cleanup Methods1 are used during the fi xture teardown phase of the test to 
clean up any resources that might still be allocated after the test ends. Refer to 
the pattern Automated Teardown (page 503) for a more detailed discussion and 
examples.

Implementation Notes 

The main objection some people have to using Test Utility Methods is that 
this pattern removes some of the logic from the test, which may make the test 
harder to read. One way we can avoid this problem when using Test Utility 
Methods is to give Intent-Revealing Names to the Test Utility Methods. In fact, 
well-chosen names can make the tests even easier to understand because they 

1 One could call this pattern a “Teardown Method,” but that name might be confused 
with the method used in Implicit Teardown (page 516).
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help prevent Obscure Tests by defi ning a Higher Level Language (see page 41) 
for defi ning tests. It is also helpful to keep the Test Utility Methods relatively 
small and self-contained. We can achieve this goal by passing all arguments to 
these methods explicitly as parameters (rather than using instance variables) 
and by returning any objects that the tests will require as explicit return values 
or updated parameters. 

To ensure that the Test Utility Methods have Intent-Revealing Names, we 
should let the tests pull the Test Utility Methods into existence rather than just 
inventing Test Utility Methods that we think may be needed later. This “out-
side-in” approach to writing code avoids “borrowing tomorrow’s trouble” and 
helps us fi nd the minimal solution. 

Writing the reusable Test Utility Method is relatively straightforward. The 
trickier question is where we would put this method. If the Test Utility Method
is needed only in Test Methods in a single Testcase Class (page 373), then we 
can put it onto that class. If we need the Test Utility Method in several classes, 
however, the solution becomes a bit more complicated. The key issue relates to 
type visibility. The client classes need to be able to see the Test Utility Method,
and the Test Utility Method needs to be able to see all the types and classes 
on which it depends. When it doesn’t depend on many types/classes or when 
everything it depends on is visible from a single place, we can put the Test Utility 
Method into a common Testcase Superclass (page 638) that we defi ne for our 
project or company. If it depends on types/classes that cannot be seen from a 
single place that all the clients can see, then we may need to put the Test Utility 
Method on a Test Helper in the appropriate test package or subsystem. In larger 
systems with many groups of domain objects, it is common practice to have one 
Test Helper for each group (package) of related domain objects. 

Variation: Test Utility Test 

One major advantage of using Test Utility Methods is that otherwise Untestable
Test Code (see Hard-to-Test Code on page 209) can now be tested with Self-
Checking Tests. The exact nature of such tests varies based on the kind of Test 
Utility Method being tested but a good example is a Custom Assertion Test (see
Custom Assertion).

Motivating Example 

The following example shows a test as many novice test automaters would fi rst 
write it:

   public void testAddItemQuantity_severalQuantity_v1(){
      Address billingAddress = null;

 Test Utility Method
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      Address shippingAddress = null;
      Customer customer = null;
      Product product = null;
      Invoice invoice = null;
      try {
         //   Fixture Setup
         billingAddress = new Address("1222 1st St SW",
                                      "Calgary", "Alberta",
                                      "T2N 2V2", "Canada");
         shippingAddress = new Address("1333 1st St SW",
                                       "Calgary", "Alberta",
                                       "T2N 2V2", "Canada");
         customer = new Customer( 99, "John", "Doe",
                                  new BigDecimal("30"),
                                  billingAddress,
                                  shippingAddress);
         product = new Product( 88, "SomeWidget",
                                new BigDecimal("19.99"));
         invoice = new Invoice( customer );
         // Exercise SUT
         invoice.addItemQuantity( product, 5 );
         // Verify Outcome
         List lineItems = invoice.getLineItems();
         if (lineItems.size() == 1) {
            LineItem actItem = (LineItem) lineItems.get(0);
            assertEquals("inv", invoice, actItem.getInv());
            assertEquals("prod", product, actItem.getProd());
            assertEquals("quant", 5, actItem.getQuantity());
            assertEquals("discount",
                         new BigDecimal("30"),
                         actItem.getPercentDiscount());
            assertEquals("unit price",
                         new BigDecimal("19.99"),
                         actItem.getUnitPrice());
            assertEquals("extended",
                         new BigDecimal("69.96"),
                         actItem.getExtendedPrice());
         } else {
            assertTrue("Invoice should have 1 item", false);
         }
      } finally {
         // Teardown
         deleteObject(invoice);
         deleteObject(product);
         deleteObject(customer);
         deleteObject(billingAddress);
         deleteObject(shippingAddress);
      }
   }

This test is diffi cult to understand because it exhibits many code smells, includ-
ing Obscure Test and Hard-Coded Test Data (see Obscure Test).
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Refactoring Notes 

We often create Test Utility Methods by mining existing tests for reusable logic 
when we are writing new tests. We can use an Extract Method [Fowler] refac-
toring to pull the code for the Test Utility Method out of one Test Method
and put it onto the Testcase Class as a Test Utility Method. From there, we 
may choose to move the Test Utility Method to a superclass by using a Pull 
Up Method [Fowler] refactoring or to another class by using a Move Method 
[Fowler] refactoring. 

Example: Test Utility Method 

Here’s the refactored version of the earlier test. Note how much simpler this test 
is to understand than the original version. And this is just one example of what 
we can achieve by using Test Utility Methods!

   public void testAddItemQuantity_severalQuantity_v13(){
      final int QUANTITY = 5;
      final BigDecimal CUSTOMER_DISCOUNT = new BigDecimal("30");
      //   Fixture Setup
      Customer customer =
         findActiveCustomerWithDiscount(CUSTOMER_DISCOUNT);
      Product product = findCurrentProductWith3DigitPrice( );
      Invoice invoice = createInvoice(customer);
      // Exercise SUT
      invoice.addItemQuantity(product, QUANTITY);
      // Verify Outcome
      final BigDecimal BASE_PRICE = product.getUnitPrice().
      multiply(new BigDecimal(QUANTITY));
      final BigDecimal EXTENDED_PRICE =
         BASE_PRICE.subtract(BASE_PRICE.multiply(
                           CUSTOMER_DISCOUNT.movePointLeft(2)));
      LineItem expected =
            createLineItem( QUANTITY, CUSTOMER_DISCOUNT,
                            EXTENDED_PRICE, product, invoice);
      assertContainsExactlyOneLineItem(invoice, expected);
   }

Let’s go through the changes step by step. First, we replaced the code to create 
the Customer and the Product with calls to Finder Methods that retrieve those objects 
from an Immutable Shared Fixture. We altered the code in this way because we 
don’t plan to change these objects. 

   protected Customer findActiveCustomerWithDiscount(
                                   BigDecimal percentDiscount) {
      return CustomerHome.findCustomerById(
                         ACTIVE_CUSTOMER_WITH_30PC_DISCOUNT_ID);
   }

 Test Utility Method
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Next, we introduced a Creation Method for the Invoice to which we plan to add 
the LineItem.

   protected Invoice createInvoice(Customer customer) {
      Invoice newInvoice = new Invoice(customer);
      registerTestObject(newInvoice);
      return newInvoice;
   }

   List testObjects;
   protected void registerTestObject(Object testObject) {
      testObjects.add(testObject);
   }

To avoid the need for In-line Teardown (page 509), we registered each of the 
objects we created with our Automated Teardown mechanism, which we call 
from the tearDown method. 

   private void deleteTestObjects() {
      Iterator i = testObjects.iterator();
      while (i.hasNext()) {
         try {
            deleteObject(i.next());
         } catch (RuntimeException e) {
            // Nothing to do; we just want to make sure
            // we continue on to the next object in the list.
         }
      }
   }

   public void tearDown() {
      deleteTestObjects();
   }

Finally, we extracted a Custom Assertion to verify that the correct LineItem has 
been added to the Invoice.

   void assertContainsExactlyOneLineItem( Invoice invoice,
                                          LineItem expected) {
      List lineItems = invoice.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actItem = (LineItem)lineItems.get(0);
      assertLineItemsEqual("",expected, actItem);
   }
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Parameterized Test

How do we reduce Test Code Duplication when the same test 
logic appears in many tests?

We pass the information needed to do fi xture setup and result verifi cation to a 
utility method that implements the entire test life cycle.

Testing can be very repetitious not only because we must run the same test over 
and over again, but also because many of the tests differ only slightly from 
one another. For example, we might want to run essentially the same test with 
slightly different system inputs and verify that the actual output varies accord-
ingly. Each of these tests would consist of the exact same steps. While having a 
large number of tests is an excellent way to ensure good code coverage, it is not 
so attractive from a test maintainability standpoint because any change made to 
the algorithm of one of the tests must be propagated to all similar tests. 

A Parameterized Test offers a way to reuse the same test logic in many Test 
Methods (page 348). 
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How It Works 

The solution, of course, is to factor out the common logic into a utility method. 
When this logic includes all four parts of the entire Four-Phase Test (page 358) 
life cycle—that is, fi xture setup, exercise SUT, result verifi cation, and fi xture 
teardown—we call the resulting utility method a Parameterized Test. This kind 
of test gives us the best coverage with the least code to maintain and makes it 
very easy to add more tests as they are needed. 

If the right utility method is available to us, we can reduce a test that would 
otherwise require a series of complex steps to a single line of code. As we detect 
similarities between our tests, we can factor out the commonalities into a Test 
Utility Method (page 599) that takes only the information that differs from test to 
test as its arguments. The Test Methods pass in as parameters any information 
that the Parameterized Test requires to run and that varies from test to test.

When to Use It 

We can use a Parameterized Test whenever Test Code Duplication (page 213)
results from several tests implementing the same test algorithm but with slightly 
different data. The data that differs becomes the arguments passed to the Param-
eterized Test, and the logic is encapsulated by the utility method. A Parameterized 
Test also helps us avoid Obscure Tests (page 186); by reducing the number of 
times the same logic is repeated, it can make the Testcase Class (page 373) much 
more compact. A Parameterized Test is also a good steppingstone to a Data-
Driven Test (page 288); the name of the Parameterized Test maps to the verb or 
“action word” of the Data-Driven Test, and the parameters are the attributes. 

If our extracted utility method doesn’t do any fi xture setup, it is called a 
Verifi cation Method (see Custom Assertion on page 474). If it also doesn’t 
exercise the SUT, it is called a Custom Assertion.

Implementation Notes 

We need to ensure that the Parameterized Test has an Intent-Revealing Name 
[SBPP] so that readers of the test will understand what it is doing. This name 
should imply that the test encompasses the whole life cycle to avoid any con-
fusion. One convention is to start or end the name in “test”; the presence of 
parameters conveys the fact that the test is parameterized. Most members of 
the xUnit family that implement Test Discovery (page 393) will create only 
Testcase Objects (page 382) for “no arg” methods that start with “test,” so this 
restriction shouldn’t prevent us from starting our Parameterized Test names 
with “test.” At least one member of the xUnit family—MbUnit—implements 
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Parameterized Tests at the Test Automation Framework (page 298) level. 
Extensions are becoming available for other members of the xUnit family, with 
DDSteps for JUnit being one of the fi rst to appear. 

Testing zealots would advocate writing a Self-Checking Test (see page 26) to 
verify the Parameterized Test. The benefi ts of doing so are obvious—including 
increased confi dence in our tests—and in most cases it isn’t that hard to do. It is
a bit harder than writing unit tests for a Custom Assertion because of the inter-
action with the SUT. We will likely need to replace the SUT2 with a Test Double
so that we can observe how it is called and control what it returns. 

Variation: Tabular Test 

Several early reviewers of this book wrote to me about a variation of Param-
eterized Test that they use regularly: the Tabular Test. The essence of this test 
is the same as that for a Parameterized Test, except that the entire table of 
values resides in a single Test Method. Unfortunately, this approach makes 
the test an Eager Test (see Assertion Roulette on page 224) because it verifi es 
many test conditions. This issue isn’t a problem when all of the tests pass, but 
it does lead to a lack of Defect Localization (see page 22) when one of the 
“rows” fails. 

Another potential problem is that “row tests” may depend on one another 
either on purpose or by accident because they are running on the same Testcase 
Object; see Incremental Tabular Test for an example of this behavior. 

Despite these potential issues, Tabular Tests can be a very effective way to 
test. At least one member of the xUnit family implements Tabular Tests at the 
framework level: MbUnit provides an attribute [RowTest] to indicate that a test is a 
Parameterized Test and another attribute [Row(x,y,...)] to specify the parameters 
to be passed to it. Perhaps it will be ported to other members of the xUnit family? 
(Hint, hint!) 

Variation: Incremental Tabular Test 

An Incremental Tabular Test is a variant of the Tabular Test pattern in which we 
deliberately build on the fi xture left over by the previous rows of the test. It is 
identical to a deliberate form of Interacting Tests (see Erratic Test on page 228)

2 The terminology of SUT becomes very confusing in this case because we cannot replace the 
SUT with a Test Double if it truly is the SUT. Strictly speaking, we are replacing the object 
that would normally be the SUT with respect to this test. Because we are actually verifying 
the behavior of the Parameterized Test, whatever normally plays the role of SUT for this test 
now becomes a DOC. (My head is starting to hurt just describing this; fortunately, it really 
isn’t very complicated and will make a lot more sense when you actually try it out.)
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called Chained Tests (page 454), except that all the tests reside within the same 
Test Method. The steps within the Test Method act somewhat like the steps of a 
“DoFixture” in Fit but without individual reporting of failed steps.3

Variation: Loop-Driven Test 

When we want to test the SUT with all the values in a particular list or range, we 
can call the Parameterized Test from within a loop that iterates over the values 
in the list or range. By nesting loops within loops, we can verify the behavior 
of the SUT with combinations of input values. The main requirement for doing 
this type of testing is that we must either enumerate the expected result for each 
input value (or combination) or use a Calculated Value (see Derived Value on
page 718) without introducing Production Logic in Test (see Conditional Test 
Logic on page 200). A Loop-Driven Test suffers from many of the same issues 
associated with a Tabular Test, however, because we are hiding many tests inside 
a single Test Method (and, therefore, Testcase Object).

Motivating Example 

The following example includes some of the runit (Ruby Unit) tests from the Web 
site publishing infrastructure I built in Ruby while writing this book. All of the 
Simple Success Tests (see Test Method) for my cross-referencing tags went through 
the same sequence of steps: defi ning the input XML, defi ning the expected HTML, 
stubbing out the output fi le, setting up the handler for the XML, extracting the 
resulting HTML, and comparing it with the expected HTML. 

   def test_extref
      # setup
      sourceXml = "<extref id='abc'/>"
      expectedHtml = "<a href='abc.html'>abc</a>"
      mockFile = MockFile.new
      @handler = setupHandler(sourceXml, mockFile)
      # execute
      @handler.printBodyContents
      # verify
      assert_equals_html( expectedHtml, mockFile.output,
                          "extref: html output")
   end

   def testTestterm_normal
      sourceXml = "<testterm id='abc'/>"
      expectedHtml = "<a href='abc.html'>abc</a>"

3 This is because most members of the xUnit terminate the Test Method on the fi rst failed 
assertion.
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      mockFile = MockFile.new
      @handler = setupHandler(sourceXml, mockFile)
      @handler.printBodyContents
      assert_equals_html( expectedHtml, mockFile.output,
                          "testterm: html output")
   end

   def testTestterm_plural
      sourceXml ="<testterms id='abc'/>"
      expectedHtml = "<a href='abc.html'>abcs</a>"
      mockFile = MockFile.new
      @handler = setupHandler(sourceXml, mockFile)
      @handler.printBodyContents
      assert_equals_html( expectedHtml, mockFile.output,
                          "testterms: html output")
   end

Even though we have already factored out much of the common logic into the 
setupHandler method, some Test Code Duplication remains. In my case, I had at 
least 20 tests that followed this same pattern (with lots more on the way), so I 
felt it was worthwhile to make these tests really easy to write. 

Refactoring Notes 

Refactoring to a Parameterized Test is a lot like refactoring to a Custom Asser-
tion. The main difference is that we include the calls to the SUT made as part of 
the exercise SUT phase of the test within the code to which we apply the Extract 
Method [Fowler] refactoring. Because these tests are virtually identical once we 
have defi ned our fi xture and expected results, the rest can be extracted into the 
Parameterized Test.

Example: Parameterized Test 

In the following tests, we have reduced each test to two steps: initializing two 
variables and calling a utility method that does all the real work. This utility 
method is a Parameterized Test.

   def test_extref
        sourceXml = "<extref id='abc' />"
        expectedHtml = "<a href='abc.html'>abc</a>"
        generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")
   end

   def test_testterm_normal
      sourceXml = "<testterm id='abc'/>"
      expectedHtml = "<a href='abc.html'>abc</a>"
      generateAndVerifyHtml(sourceXml,expectedHtml,"<testterm>")

 Parameterized Test
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   end

   def test_testterm_plural
      sourceXml = "<testterms id='abc'/>"
      expectedHtml = "<a href='abc.html'>abcs</a>"
      generateAndVerifyHtml(sourceXml,expectedHtml,"<plural>")
   end

The succinctness of these tests is made possible by defi ning the Parameterized
Test as follows: 

   def generateAndVerifyHtml( sourceXml, expectedHtml, 
                           message, &block)
      mockFile = MockFile.new
      sourceXml.delete!("\t")
      @handler = setupHandler(sourceXml, mockFile )
      block.call unless block == nil
      @handler.printBodyContents
      actual_html = mockFile.output
      assert_equal_html( expectedHtml,
                         actual_html,
                         message + "html output")
       actual_html
   end

What distinguishes this Parameterized Test from a Verifi cation Method is that 
it contains the fi rst three phases of the Four-Phase Test (from setup to verify), 
whereas the Verifi cation Method performs only the exercise SUT and verify re-
sult phases. Note that our tests did not need the teardown phase because we are 
using Garbage-Collected Teardown (page 500). 

Example: Independent Tabular Test 

Here’s an example of the same tests coded as a single Independent Tabular 
Test:

   def test_a_href_Generation
      row( "extref"   ,"abc","abc.html","abc" )
      row( "testterm" ,'abc',"abc.html","abc" )
      row( "testterms",'abc',"abc.html","abcs")
   end

   def row( tag, id, expected_href_id, expected_a_contents)
      sourceXml = "<" + tag + " id='" + id + "'/>"
      expectedHtml = "<a href='" + expected_href_id + "'>" 
                                 + expected_a_contents + "</a>"
      msg = "<" + tag + "> "
      generateAndVerifyHtml( sourceXml, expectedHtml, msg)
   end
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Isn’t this a nice, compact representation of the various test conditions? I simply 
did an In-line Temp [Fowler] refactoring on the local variables sourceXml and 
expectedHtml in the argument list of generateAndVerify and “munged” the various 
Test Methods together into one. Most of the work involved something we won’t 
have to do in real life: squeeze the table down to fi t within the page-width limit 
for this book. That constraint forced me to abridge the text in each row and 
rebuild the HTML and the expected XML within the row method. I chose the 
name row to better align this example with the MbUnit example provided later in 
this section but I could have called it something else like test_element.

Unfortunately, from the Test Runner’s (page 377) perspective, this is a single 
test, unlike the earlier examples. Because the tests all reside within the same 
Test Method, a failure in any row other than the last will cause a loss of infor-
mation. In this example, we need not worry about Interacting Tests because 
generateAndVerify builds a new test fi xture each time it is called. In the real world, 
however, we have to be aware of that possibility. 

Example: Incremental Tabular Test 

Because a Tabular Test is defi ned in a single Test Method, it will run on a single 
Testcase Object. This opens up the possibility of building up series of actions. 
Here’s an example provided by Clint Shank on his blog: 

public class TabularTest extends TestCase {
   private Order order = new Order();
   private static final double tolerance = 0.001;

   public void testGetTotal() {
      assertEquals("initial", 0.00, order.getTotal(), tolerance);
      testAddItemAndGetTotal("first", 1, 3.00, 3.00);
      testAddItemAndGetTotal("second",3, 5.00, 18.00);
      // etc.
   }

   private void testAddItemAndGetTotal( String msg,
                                        int lineItemQuantity,
                                        double lineItemPrice,
                                        double expectedTotal) {
      // setup
      LineItem item = new LineItem(   lineItemQuantity,
                                      lineItemPrice);
      // exercise SUT
      order.addItem(item);
      // verify total
      assertEquals(msg,expectedTotal,order.getTotal(),tolerance);
   }
}
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Note how each row of the Incremental Tabular Test builds on what was already 
done by the previous row. 

Example: Tabular Test with Framework Support (MbUnit) 

Here’s an example from the MbUnit documentation that shows how to use the 
[RowTest] attribute to indicate that a test is a Parameterized Test and another 
attribute [Row(x,y,...)] to specify the parameters to be passed to it. 

[RowTest()]
[Row(1,2,3)]
[Row(2,3,5)]
[Row(3,4,8)]
[Row(4,5,9)]
public void tAdd(Int32 x, Int32 y, Int32 expectedSum)
{
  Int32 Sum;
  Sum = this.Subject.Add(x,y);
  Assert.AreEqual(expectedSum, Sum);
}

Except for the syntactic sugar of the [Row(x,y,...)] attributes, this code sure looks 
similar to the previous example. It doesn’t suffer from the loss of Defect Local-
ization, however, because each row is considered a separate test. It would be a 
simple matter to convert the previous example to this format using the “fi nd and 
replace” feature in a text editor. 

Example: Loop-Driven Test (Enumerated Values) 

The following test uses a loop to exercise the SUT with various sets of input 
values:

   public void testMultipleValueSets() {
      // Set up fixture
      Calculator sut = new Calculator();
      TestValues[] testValues = {
                     new TestValues(1,2,3),
                     new TestValues(2,3,5),
                     new TestValues(3,4,8), // special case!
                     new TestValues(4,5,9)
                                };

      for (int i = 0; i < testValues.length; i++) {
         TestValues values = testValues[i];
         // Exercise SUT
         int actual = sut.calculate( values.a, values.b);
         // Verify result
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         assertEquals(message(i), values.expectedSum, actual);
      }
   }

   private String message(int i) {
      return "Row "+ String.valueOf(i);
   }

In this case we enumerated the expected value for each set of test inputs. This 
strategy avoids Production Logic in Test.

Example: Loop-Driven Test (Calculated Values) 

This next example is a bit more complex: 

   public void testCombinationsOfInputValues() {
      // Set up fixture
      Calculator sut = new Calculator();
      int expected;  // TBD inside loops

      for (int i = 0; i < 10; i++) {
         for (int j = 0; j < 10; j++) {
            // Exercise SUT
            int actual = sut.calculate( i, j );

            // Verify result
            if (i==3 & j==4)  // Special case
               expected = 8;
            else
               expected = i+j;

            assertEquals(message(i,j), expected, actual);
         }
      }
   }

   private String message(int i, int j) {
      return "Cell( " + String.valueOf(i)+ ","
                      + String.valueOf(j) + ")";
}

Unfortunately, it suffers from Production Logic in Test because of the need to 
deal with the special case. 

Further Reading 

See the documentation for MbUnit for more information on the [RowTest] and 
[Row()] attributes. Likewise, see http://www.ddsteps.org for a description of 
the DDSteps extension for JUnit; while its name suggests a tool that supports 

 Parameterized Test

Parame-
terized Test

www.it-ebooks.info

http://www.ddsteps.org
http://www.it-ebooks.info/


616 Chapter 24  Test Organization Patterns

Data-Driven Testing, the examples given are Parameterized Tests. More argu-
ments for Tabular Test can be found on Clint Shank’s blog at http://clintshank.
javadevelopersjournal.com/tabulartests.htm.
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Testcase Class per Class

How do we organize our Test Methods onto Testcase Classes?

We put all the Test Methods for one SUT class onto a single Testcase Class.

As the number of Test Methods (page 348) grows, we need to decide on which 
Testcase Class (page 373) to put each Test Method. Our choice of a test organi-
zation strategy affects how easily we can get a “big picture” view of our tests. It 
also affects our choice of a fi xture setup strategy. 

Using a Testcase Class per Class is a simple way to start off organizing our 
tests.

How It Works 

We create a separate Testcase Class for each class we wish to test. Each Testcase 
Class acts as a home to all the Test Methods that are used to verify the behavior 
of the SUT class. 
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When to Use It 

Using a Testcase Class per Class is a good starting point when we don’t have very 
many Test Methods or we are just starting to write tests for our SUT. As the number 
of tests increases and we gain a better understanding of our test fi xture require-
ments, we may want to split the Testcase Class into multiple classes. This choice 
will result in either Testcase Class per Fixture (page 631; if we have a small number 
of frequently used starting points for our tests) or Testcase Class per Feature
(page 624; if we have several distinct features to test). As Kent Beck would say, 
“Let the code tell you what to do!” 

Implementation Notes 

Choosing a name for the Testcase Class is pretty simple: Just use the SUT class-
name, possibly prefi xed or suffi xed with “Test.” The method names should try 
to capture at least the starting state (fi xture) and the feature (method) being 
exercised, along with a summary of the parameters to be passed to the SUT. Given 
these requirements, we likely won’t have “room” for the expected outcome in the 
method name, so the test reader must look at the Test Method body to determine 
the expected outcome. 

The creation of the fi xture is the primary implementation concern when using 
a Testcase Class per Class. Confl icting fi xture requirements will inevitably arise 
among the various Test Methods, which makes use of Implicit Setup (page 424) 
diffi cult and forces us to use either In-line Setup (page 408) or Delegated Set-
up (page 411). A second consideration is how to make the nature of the fi x-
ture visible within each test method so as to avoid Obscure Tests (page 186). 
Delegated Setup (using Creation Methods; see page 415) tends to lead to more 
readable tests unless the In-line Setup is very simple. 

Example: Testcase Class per Class 

Here’s an example of using the Testcase Class per Class pattern to structure 
the Test Methods for a Flight class that has three states (Unscheduled, Scheduled,
and AwaitingApproval) and four methods (schedule, requestApproval, deSchedule, and 
approve. Because the class is stateful, we need at least one test for each state for 
each method. 

public class FlightStateTest extends TestCase {

   public void testRequestApproval_FromScheduledState() throws Exception {
      Flight flight = FlightTestHelper.getAnonymousFlightInScheduledState();
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      try {
         flight.requestApproval();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "requestApproval",
                      e.getRequest());
         assertTrue("isScheduled()", flight.isScheduled());
      }
   }

   public void testRequestApproval_FromUnsheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                    getAnonymousFlightInUnscheduledState();
      flight.requestApproval();
      assertTrue("isAwaitingApproval()",
                 flight.isAwaitingApproval());
   }

   public void testRequestApproval_FromAwaitingApprovalState()
                 throws Exception {
      Flight flight = FlightTestHelper.
                getAnonymousFlightInAwaitingApprovalState();
      try {
         flight.requestApproval();
         fail("not allowed in awaitingApproval state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "requestApproval",
                      e.getRequest());
          assertTrue("isAwaitingApproval()",
                     flight.isAwaitingApproval());
      }
   }

   public void testSchedule_FromUnscheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInUnscheduledState();
      flight.schedule();
      assertTrue( "isScheduled()", flight.isScheduled());
   }

   public void testSchedule_FromScheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
      getAnonymousFlightInScheduledState();
      try {
         flight.schedule();
         fail("not allowed in scheduled state");
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      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "schedule",
                      e.getRequest());
         assertTrue("isScheduled()", flight.isScheduled());
      }
   }

   public void testSchedule_FromAwaitingApprovalState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
      try {
         flight.schedule();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                       "schedule",
                       e.getRequest());
          assertTrue( "isAwaitingApproval()",
                      flight.isAwaitingApproval());
      }
   }

   public void testDeschedule_FromScheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                    getAnonymousFlightInScheduledState();
      flight.deschedule();
      assertTrue("isUnscheduled()", flight.isUnscheduled());
   }

   public void testDeschedule_FromUnscheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                    getAnonymousFlightInUnscheduledState();
      try {
         flight.deschedule();
         fail("not allowed in unscheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                       "deschedule",
                       e.getRequest());
         assertTrue("isUnscheduled()", flight.isUnscheduled());
      }
   }

   public void testDeschedule_FromAwaitingApprovalState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
      try {
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         flight.deschedule();
         fail("not allowed in awaitingApproval state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                       "deschedule",
                       e.getRequest());
         assertTrue(  "isAwaitingApproval()",
                       flight.isAwaitingApproval());
      }
   }

   public void testApprove_FromScheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInScheduledState();
      try {
         flight.approve("Fred");
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                       "approve",
                       e.getRequest());
          assertTrue("isScheduled()", flight.isScheduled());
      }
   }

   public void testApprove_FromUnsheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInUnscheduledState();
      try {
         flight.approve("Fred");
         fail("not allowed in unscheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                         "approve",
                         e.getRequest());
         assertTrue( "isUnscheduled()", flight.isUnscheduled());
      }
   }

   public void testApprove_FromAwaitingApprovalState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
      flight.approve("Fred");
      assertTrue("isScheduled()", flight.isScheduled());
   }

   public void testApprove_NullArgument() throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
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      try {
         flight.approve(null);
         fail("Failed to catch no approver"); 
      } catch (InvalidArgumentException e) {
         assertEquals("e.getArgumentName()",
                       "approverName", e.getArgumentName());
         assertNull(  "e.getArgumentValue()",
                       e.getArgumentValue());
         assertTrue(  "isAwaitingApproval()",
                       flight.isAwaitingApproval());
      }
   }

   public void testApprove_InvalidApprover() throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
      try {
         flight.approve("John");
         fail("Failed to validate approver");
      } catch (InvalidArgumentException e) {
         assertEquals("e.getArgumentName()",
                      "approverName",
                      e.getArgumentName());
         assertEquals("e.getArgumentValue()",
                       "John",
                       e.getArgumentValue());
         assertTrue(  "isAwaitingApproval()",
                       flight.isAwaitingApproval());
      }
   }
}

This example uses Delegated Setup of a Fresh Fixture (page 311) to achieve a 
more declarative style of fi xture construction. Even so, this class is getting rather 
large and keeping track of the Test Methods is becoming a bit of a chore. Even 
the “big picture” provided by our IDE is not that illuminating; we can see the test 
conditions being exercised but cannot tell what the expected outcome should be 
without looking at the method bodies (Figure 24.1). 
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Figure 24.1  Testcase Class per Class example as seen in the Package Explorer 
of the Eclipse IDE. Note how both the starting state and event are included in 
the Test Method names.
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Testcase Class per Feature

How do we organize our Test Methods onto Testcase Classes?

We group the Test Methods onto Testcase Classes based on which testable 
feature of the SUT they exercise.

As the number of Test Methods (page 348) grows, we need to decide on which 
Testcase Class (page 373) to put each Test Method. Our choice of a test organi-
zation strategy affects how easily we can get a “big picture” view of our tests. It 
also affects our choice of a fi xture setup strategy. 

Using a Testcase Class per Feature gives us a systematic way to break up a 
large Testcase Class into several smaller ones without having to change our Test 
Methods.

How It Works 

We group our Test Methods onto Testcase Classes based on which feature of the 
Testcase Class they verify. This organizational scheme allows us to have smaller 
Testcase Classes and to see at a glance all the test conditions for a particular 
feature of the class. 
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When to Use It 

We can use a Testcase Class per Feature when we have a signifi cant number of Test 
Methods and we want to make the specifi cation of each feature of the SUT more 
obvious. Unfortunately, Testcase Class per Feature does not make each individual 
Test Method any simpler or easier to understand; only Testcase Class per Fixture
(page 631) helps on that front. Likewise, it doesn’t make much sense to use 
Testcase Class per Feature when each feature of the SUT requires only one or two 
tests; in that case, we can stick with a single Testcase Class per Class (page 617).

Note that having a large number of features on a class is a “smell” indicating 
the possibility that the class might have too many responsibilities. We typically 
use Testcase Class per Feature when we are writing customer tests for methods 
on a service Facade [GOF]. 

Variation: Testcase Class per Method 

When a class has methods that take a lot of different parameters, we may have 
many tests for the one method. We can group all of these Test Methods onto a 
single Testcase Class per Method and put the rest of the Test Methods onto one 
or more other Testcase Classes.

Variation: Testcase Class per Feature 

Although a “feature” of a class is typically a single operation or function, it may 
also be a set of related methods that operate on the same instance variable of 
the object. For example, the set and get methods of a Java Bean would be con-
sidered a single (and trivial) “feature” of the class that contains those methods. 
Similarly, a Data Access Object [CJ2EEP] would provide methods to both read 
and write objects. It is diffi cult to test these methods in isolation, so we can treat 
the reading and writing of one kind of object as a feature. 

Variation: Testcase Class per User Story 

If we are doing highly incremental development (such as we might do with eXtreme 
Programming), it can be useful to put the new Test Methods for each story into a 
different Testcase Class. This practice prevents commit-related confl icts when dif-
ferent people are working on different stories that affect the same SUT class. The 
Testcase Class per User Story pattern may or may not end up being the same as 
Testcase Class per Feature or Testcase Class per Method, depending on how we 
partition our user stories. 
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Implementation Notes 

Because each Testcase Class represents the requirements for a single feature of 
the SUT, it makes sense to name the Testcase Class based on the feature it veri-
fi es. Similarly, we can name each test method based on which test condition of 
the SUT is being verifi ed. This nomenclature allows us to see all the test condi-
tions at a glance by merely looking at the names of the Test Methods of the 
Testcase Class.

One consequence of using Testcase Class per Feature is that we end up with 
a larger number of Testcase Classes for a single production class. Because we 
still want to run all the tests for this class, we should put these Testcase Classes
into a single nested folder, package, or namespace. We can use an AllTests Suite 
(see Named Test Suite on page 592) to aggregate all of the Testcase Classes into 
a single test suite if we are using Test Enumeration (page 399). 

Motivating Example 

This example uses the Testcase Class per Class pattern to structure the Test 
Methods for a Flight class that has three states (Unscheduled, Scheduled, and Await-
ingApproval) and four methods (schedule, requestApproval, deSchedule, and approve.
Because the class is stateful, we need at least one test for each state for each 
method. (In the interest of saving trees, I’ve omitted many of the method bodies; 
please refer to Testcase Class per Class for the full listing.) 

public class FlightStateTest extends TestCase {

   public void testRequestApproval_FromScheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInScheduledState();
      try {
         flight.requestApproval();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "requestApproval",
                      e.getRequest());
         assertTrue("isScheduled()", flight.isScheduled());
      }
   }

   public void testRequestApproval_FromUnsheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInUnscheduledState();
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      flight.requestApproval();
      assertTrue("isAwaitingApproval()",
                 flight.isAwaitingApproval());
   }

   public void testRequestApproval_FromAwaitingApprovalState()
                 throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
      try {
         flight.requestApproval();
         fail("not allowed in awaitingApproval state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "requestApproval",
                      e.getRequest());
          assertTrue("isAwaitingApproval()",
                     flight.isAwaitingApproval());
      }
   }

   public void testSchedule_FromUnscheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                    getAnonymousFlightInUnscheduledState();
      flight.schedule();
      assertTrue( "isScheduled()", flight.isScheduled());
   }

   public void testSchedule_FromScheduledState()
                    throws Exception {
    // I've omitted the bodies of the rest of the tests to
    // save a few trees
   }
}

This example uses Delegated Setup (page 411) of a Fresh Fixture (page 311)
to achieve a more declarative style of fi xture construction. Even so, this class is 
getting rather large and keeping track of the Test Methods is becoming a bit of 
a chore. Because the Test Methods on this Testcase Class require four distinct 
methods, it is a good example of a test that can be improved through refactoring 
to Testcase Class per Feature.

Refactoring Notes 

We can reduce the size of each Testcase Class and make the names of the Test 
Methods more meaningful by converting them to follow the Testcase Class per 
Feature pattern. First, we determine how many classes we want to create and 
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which Test Methods should go into each one. If some Testcase Classes will end 
up being smaller than others, it makes the job easier if we start by building the 
smaller classes. Next, we do an Extract Class [Fowler] refactoring to create 
one of the new Testcase Classes and give it a name that describes the feature it 
exercises. Then, we do a Move Method [Fowler] refactoring (or a simple “cut 
and paste”) on each Test Method that belongs in this new class along with any 
instance variables it uses. 

We repeat this process until we are down to just one feature in the original 
Testcase Class; we then rename that class based on the feature it exercises. At 
this point, each of the Testcase Classes should compile and run—but we still 
aren’t completely done. To get the full benefi t of the Testcase Class per Feature
pattern, we have one fi nal step to carry out. We should do a Rename Method 
[Fowler] refactoring on each of the Test Methods to better refl ect what the Test 
Method is verifying. As part of this refactoring, we can remove any mention 
of the feature being exercised from each Test Method name—that informa-
tion should be captured in the name of the Testcase Class. This leaves us with 
“room” to include both the starting state (the fi xture) and the expected result 
in the method name. If we have multiple tests for each feature with different 
method arguments, we’ll need to fi nd a way to include those aspects of the 
test conditions in the method name, too. 

Another way to perform this refactoring is simply to make copies of the orig-
inal Testcase Class and rename them as described above. Then we simply delete 
the Test Methods that aren’t relevant for each class. We do need to be careful 
that we don’t delete all copies of a Test Method; a less critical oversight is to 
leave a copy of the same method in several Testcase Classes. We can avoid both 
of the potential errors by making one copy of the original Testcase Class for 
each of the features and rename them as described above. Then we simply de-
lete the Test Methods that aren’t relevant for each class. When we are done, we 
simply delete the original Testcase Class.

Example: Testcase Class per Feature 

In this example, we have converted the previously mentioned set of tests to use 
Testcase Class per Feature.

public class TestScheduleFlight extends TestCase {

   public void testUnscheduled_shouldEndUpInScheduled()
            throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInUnscheduledState();
      flight.schedule();
      assertTrue( "isScheduled()", flight.isScheduled());
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   }

   public void testScheduledState_shouldThrowInvalidRequestEx()
            throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInScheduledState();
      try {
         flight.schedule();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "schedule",
                      e.getRequest());
         assertTrue(  "isScheduled()", flight.isScheduled());
      }
   }

   public void testAwaitingApproval_shouldThrowInvalidRequestEx()
            throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
      try {
         flight.schedule();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "schedule",
                      e.getRequest());
         assertTrue(  "isAwaitingApproval()",
                      flight.isAwaitingApproval());
      }
   }
}

Except for their names, the Test Methods really haven’t changed here. Because the 
names include the pre-conditions (fi xture), the feature being exercised, and the 
expected outcome, they help us see the big picture when we look at the list of tests 
in our IDE’s “outline view” (see Figure 24.2). This satisfi es our need for Tests as 
Documentation (see page 23). 
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Figure 24.2  Testcase Class per Feature example as seen in the Package Explorer 
of the Eclipse IDE. Note how we do not need to include the starting state in the 
Test Method names, leaving room for the name of the method being called and 
the expected end state.
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Testcase Class per Fixture

How do we organize our Test Methods onto Testcase Classes?

We organize Test Methods into Testcase Classes based on commonality 
of the test fi xture.

As the number of Test Methods (page 348) grows, we need to decide on which 
Testcase Class (page 373) to put each Test Method. Our choice of a test organi-
zation strategy affects how easily we can get a “big picture” view of our tests. It 
also affects our choice of a fi xture setup strategy. 

Using a Testcase Class per Fixture lets us take advantage of the Implicit
Setup (page 424) mechanism provided by the Test Automation Framework
(page 298). 

How It Works 

We group our Test Methods onto Testcase Classes based on which test fi xture 
they require as a starting point. This organization allows us to use Implicit
Setup to move the entire fi xture setup logic into the setUp method, thereby allow-
ing each test method to focus on the exercise SUT and verify outcome phases of 
the Four-Phase Test (page 358). 
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When to Use It 

We can use the Testcase Class per Fixture pattern whenever we have a group of 
Test Methods that need an identical fi xture and we want to make each test method 
as simple as possible. If each test needs a unique fi xture, using Testcase Class per 
Fixture doesn’t make a lot of sense because we will end up with a large number 
of single-test classes; in such a case, it would be better to use either Testcase 
Class per Feature (page 624) or simply Testcase Class per Class (page 617). 

One benefi t of Testcase Class per Fixture is that we can easily see whether we 
are testing all the operations from each starting state. We should end up with 
the same lineup of test methods on each Testcase Class, which is very easy to see 
in an “outline view” or “method browser” of an IDE. This attribute makes the 
Testcase Class per Fixture pattern particularly useful for discovering Missing Unit 
Tests (see Production Bugs on page 268) long before we go into production. 

Testcase Class per Fixture is a key part of the behavior-driven development style 
of testing/specifi cation. It leads to very short test methods, often featuring only a 
single assertion per test method. When combined with a test method naming con-
vention that summarizes the expected outcome of the test, this pattern leads to 
Tests as Documentation (see page 23). 

Implementation Notes 

Because we set up the fi xture in a method called by the Test Automation Frame-
work (the setUp method), we must use an instance variable to hold a reference to 
the fi xture we created. In such a case, we must be careful not to use a class vari-
able, as it can lead to a Shared Fixture (page 317) and the Erratic Tests (page 228)
that often accompany this kind of fi xture. [The sidebar “There’s Always an 
Exception” on page 384 lists xUnit members that don’t guarantee Independent
Tests (see page 42) when we use instance variables.]

Because each Testcase Class represents a single test fi xture confi guration, it 
makes sense to name the Testcase Class based on the fi xture it creates. Similarly, 
we can name each test method based on the method of the SUT being exercised, 
the characteristics of any arguments passed to the SUT method, and the expected 
outcome of that method call. 

One side effect of using Testcase Class per Fixture is that we end up with 
a larger number of Testcase Classes. We may want to fi nd a way to group the 
various Testcase Classes that verify a single SUT class. One way to do so is to 
create a nested folder, package, or namespace to hold just these test classes. If 
we are using Test Enumeration (page 399), we’ll also want to create an AllTests 
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Suite (see Named Test Suite on page 592) to aggregate all the Testcase Class per 
Fixtures into a single suite. 

Another side effect is that the tests for a single feature of the SUT are spread 
across several Testcase Classes. This distribution may be a good thing if the 
features are closely related to one another because it highlights their interdepen-
dency. Conversely, if the features are somewhat unrelated, their dispersal may 
be disconcerting. In such a case, we can either refactor to use Testcase Class per 
Feature or apply an Extract Class [Fowler] refactoring on the SUT if we decide 
that this symptom indicates that the class has too many responsibilities. 

Motivating Example 

The following example uses Testcase Class per Class to structure the Test Methods
for a Flight class that has three states (Unscheduled, Scheduled, and AwaitingApproval)
and four methods (schedule, requestApproval, deSchedule, and approve). Because the 
class is stateful, we need at least one test for each state for each method. (In the 
interest of saving trees, I’ve omitted many of the method bodies; please refer to 
Testcase Class per Class for the full listing.) 

public class FlightStateTest extends TestCase {

   public void testRequestApproval_FromScheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInScheduledState();
      try {
         flight.requestApproval();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "requestApproval",
                      e.getRequest());
         assertTrue("isScheduled()", flight.isScheduled());
      }
   }

   public void testRequestApproval_FromUnsheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInUnscheduledState();
      flight.requestApproval();
      assertTrue("isAwaitingApproval()",
                 flight.isAwaitingApproval());
   }

   public void testRequestApproval_FromAwaitingApprovalState()
                 throws Exception {
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      Flight flight = FlightTestHelper.
                        getAnonymousFlightInAwaitingApprovalState();
      try {
         flight.requestApproval();
         fail("not allowed in awaitingApproval state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                      "requestApproval",
                      e.getRequest());
          assertTrue("isAwaitingApproval()",
                     flight.isAwaitingApproval());
      }
   }

   public void testSchedule_FromUnscheduledState()
                    throws Exception {
      Flight flight = FlightTestHelper.
                        getAnonymousFlightInUnscheduledState();
      flight.schedule();
      assertTrue( "isScheduled()", flight.isScheduled());
   }

   public void testSchedule_FromScheduledState()
                    throws Exception {
    // I've omitted the bodies of the rest of the tests to
    // save a few trees
   }
}

This example uses Delegated Setup (page 411) of a Fresh Fixture (page 311)
to achieve a more declarative style of fi xture construction. Even so, this class is 
getting rather large and keeping track of the Test Methods is becoming a bit of a 
chore. Because the Test Methods on this Testcase Class require three distinct test 
fi xtures (one for each state the fl ight can be in), it is a good example of a test that 
can be improved through refactoring to Testcase Class per Fixture.

Refactoring Notes 

We can remove Test Code Duplication (page 213) in the fi xture setup and make 
the Test Methods easier to understand by converting them to use the Testcase 
Class per Fixture pattern. First, we determine how many classes we want to cre-
ate and which Test Methods should go into each one. If some Testcase Classes
will end up being smaller than others, it will reduce our work if we start with 
the smaller ones. Next, we do an Extract Class refactoring to create one of the 
Testcase Classes and give it a name that describes the fi xture it requires. Then, 
we do a Move Method [Fowler] refactoring on each Test Method that belongs 
in this new class, along with any instance variables it uses. 

Testcase 
Class per 

Fixture
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We repeat this process until we are down to just one fi xture in the original 
class; we can then rename that class based on the fi xture it creates. At this point, 
each of the Testcase Classes should compile and run—but we still aren’t com-
pletely done. To get the full benefi t of the Testcase Class per Fixture pattern, 
we have two more steps to complete. First, we should factor out any common 
fi xture setup logic from each of the Test Methods into the setUp method, result-
ing in an Implicit Setup. This type of setup is made possible because the Test 
Methods on each class have the same fi xture requirements. Second, we should 
do a Rename Method [Fowler] refactoring on each of the Test Methods to bet-
ter refl ect what the Test Method is verifying. We can remove any mention of the 
starting state from each Test Method name, because that information should 
be captured in the name of the Testcase Class. This refactoring leaves us with 
“room” to include both the action (the method being called plus the nature of 
the arguments) and the expected result in the method name. 

As described in Testcase Class per Fixture, we can also refactor to this pat-
tern by making one copy of the Testcase Class (suitably named) for each fi xture, 
deleting the unnecessary Test Methods from each one, and fi nally deleting the 
old Testcase Class.

Example: Testcase Class per Fixture 

In this example, the earlier set of tests has been converted to use the Testcase 
Class per Fixture pattern. (In the interest of saving trees, I’ve shown only one of 
the resulting Testcase Classes; the others look pretty similar.) 

public class TestScheduledFlight extends TestCase {

   Flight scheduledFlight;

   protected void setUp() throws Exception {
      super.setUp();
      scheduledFlight = createScheduledFlight();
   }

   Flight createScheduledFlight() throws InvalidRequestException{
      Flight newFlight = new Flight();
      newFlight.schedule();
      return newFlight;
   }

   public void testDeschedule_shouldEndUpInUnscheduleState()
                     throws Exception {
      scheduledFlight.deschedule();
      assertTrue("isUnsched", scheduledFlight.isUnscheduled());
   }

 Testcase Class per Fixture
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   public void testRequestApproval_shouldThrowInvalidRequestEx(){ 
      try {
         scheduledFlight.requestApproval();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
               "requestApproval", e.getRequest());
         assertTrue("isScheduled()",
                   scheduledFlight.isScheduled());
      }
   }

   public void testSchedule_shouldThrowInvalidRequestEx() {
      try {
         scheduledFlight.schedule();
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                   "schedule", e.getRequest());
         assertTrue("isScheduled()",
                   scheduledFlight.isScheduled());
      }
   }

   public void testApprove_shouldThrowInvalidRequestEx()
            throws Exception {
      try {
         scheduledFlight.approve("Fred");
         fail("not allowed in scheduled state");
      } catch (InvalidRequestException e) {
         assertEquals("InvalidRequestException.getRequest()",
                   "approve", e.getRequest());
         assertTrue("isScheduled()",
                   scheduledFlight.isScheduled());
      }
   }
}

Note how much simpler each Test Method has become! Because we have used 
Intent-Revealing Names [SBPP] for each of the Test Methods, we can use the 
Tests as Documentation. By looking at the list of methods in the “outline view” 
of our IDE, we can see the starting state (fi xture), the action (method being 
called), and the expected outcome (what it returns or the post-test state)—all 
without even opening up the method body (Figure 24.3). 
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Figure 24.3  The tests for our Testcase Class per Fixture as seen in the Package 
Explorer of the Eclipse IDE. Note how we do not need to include the name of 
the method being called in the Test Method names, leaving room for the starting 
state and the expected end state.

This “big picture” view of our tests makes it clear that we are only testing 
the approve method arguments when the Flight is in the awaitingApproval state. We 
can now decide whether that limitation is a shortcoming of the tests or part of 
the specifi cation (i.e., the result of calling approve is “undefi ned” for some states 
of the Flight).

 Testcase Class per Fixture
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Testcase Superclass

Where do we put our test code when it is in reusable Test Utility Methods?

We inherit reusable test-specifi c logic from an abstract 
Testcase Super class.

As we write tests, we will invariably fi nd ourselves needing to repeat the same logic 
in many, many tests. Initially, we may just “clone and twiddle” as we write addi-
tional tests that need the same logic. Ultimately, we may introduce Test Utility Meth-
ods (page 599) to hold this logic—but where do we put the Test Utility Methods?

A Testcase Superclass is one option as a home for our Test Utility Methods.

How It Works 

We defi ne an abstract superclass to hold the reusable Test Utility Method that 
should be available to several Testcase Classes (page 373). We make the methods 
that will be reused visible to subclasses (e.g., protected in Java). We then use this 
abstract class as the superclass (base class) for any tests that wish to reuse the 
logic. The logic can be accessed simply by calling the method as though it were 
defi ned on the Testcase Class itself. 
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When to Use It 

We can use a Testcase Superclass if we wish to reuse Test Utility Methods between 
several Testcase Classes and can fi nd or defi ne a Testcase Superclass from which 
we can subclass all tests that require the logic. 

This pattern assumes that our programming language supports inheritance, 
we are not already using inheritance for some other confl icting purpose, and 
the Test Utility Method doesn’t need access to specifi c types that are not visible 
from the Testcase Superclass.

The decision between a Testcase Superclass and a Test Helper (page 643) comes 
down to type visibility. The client classes need to see the Test Utility Method, and 
the Test Utility Method needs to see the types and classes it depends on. When it 
doesn’t depend on many types/classes or when everything it depends on is visible 
from a single place, we can put the Test Utility Method into a common Testcase 
Superclass we defi ne for our project or company. If the Test Utility Method
depends on types/classes that cannot be seen from a single place that all clients 
can access, it may be necessary to put it on a Test Helper in the appropriate test 
package or subsystem. 

Variation: Test Helper Mixin 

In languages that support mixins, Test Helper Mixins give us the best of both 
worlds. As with a Test Helper, we can choose which Test Helper Mixins to in-
clude without being constrained by a single-inheritance hierarchy. As with a Test 
Helper Object (see Test Helper), we can hold a test-specifi c state in the mixin but 
we don’t have to instantiate and delegate that task to a separate object. As with a 
Testcase Superclass, we can access everything as methods and attributes on self.

Implementation Notes 

In variants of xUnit that require all Testcase Classes to be subclasses of a Test-
case Superclass provided by the Test Automation Framework (page 298), we 
defi ne that class as the superclass of our Testcase Superclass. In variants that use 
annotations or method attributes to identify the Test Method (page 348), we can 
subclass any class that we fi nd useful. 

We can implement the methods on the Testcase Superclass either as class 
methods or as instance methods. For any stateless Test Utility Methods, it is 
perfectly reasonable to use class methods. If it isn’t possible to use class meth-
ods for some reason, we can work with instance methods. Either way, because 
the methods are inherited, we can access them as though they were defi ned 
on the Testcase Class itself. If our language supports managing the visibility 
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of methods, we must ensure that we make the methods visible enough (e.g., 
protected in Java). 

Motivating Example 

The following example shows a Test Utility Method that is on the Testcase 
Class:

public class TestRefactoringExample extends TestCase {
  public void testAddOneLineItem_quantity1() {
      Invoice inv = createAnonInvoice();
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      assertInvoiceContainsOnlyThisLineItem(inv, expItem);
   }

   void assertInvoiceContainsOnlyThisLineItem(
                                     Invoice inv,
                                     LineItem expItem) {
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("",expItem, actual);
   }
}

This Test Utility Method is not reusable outside this particular class or its 
subclasses.

Refactoring Notes 

We can make the Test Utility Method more reusable by moving it to a Testcase 
Superclass by using a Pull Up Method [Fowler] refactoring. Because the method 
is inherited by our Testcase Class, we can access it as if the method were 
defi ned locally. If the Test Utility Method accesses any instance variables, we 
must perform a Pull Up Field [Fowler] refactoring to move those variables to 
a place where the Test Utility Method can see them. In languages that have 
visibility restrictions, we may need to make the fi elds visible to subclasses (e.g., 
default or protected in Java) if Test Methods on the Testcase Class need to access 
the fi elds as well. 

Testcase 
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Example: Testcase Superclass 

Because the method is inherited by our Testcase Class, we can access it as if it 
were defi ned locally. Thus the usage looks identical. 

public class TestRefactoringExample extends OurTestCase {
   public void testAddItemQuantity_severalQuantity_v12(){
      //  Fixture Setup
      Customer cust = createACustomer(new BigDecimal("30"));
      Product prod = createAProduct(new BigDecimal("19.99"));
      Invoice invoice = createInvoice(cust);
      // Exercise SUT
      invoice.addItemQuantity(prod, 5);
      // Verify Outcome
      LineItem expected = new LineItem(invoice, prod, 5,
            new BigDecimal("30"), new BigDecimal("69.96"));
      assertContainsExactlyOneLineItem(invoice, expected);
   }
}

The only difference is the class in which the method is defi ned and its visibility: 

public class OurTestCase extends TestCase {
   void assertContainsExactlyOneLineItem(Invoice invoice,
                                         LineItem expected) {
      List lineItems = invoice.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actItem = (LineItem)lineItems.get(0);
      assertLineItemsEqual("",expected, actItem);
   }
}

Example: Test Helper Mixin 

Here are some tests written in Ruby using Test::Unit: 

   def test_extref
      # setup
      sourceXml = "<extref id='abc'/>"
      expectedHtml = "<a href='abc.html'>abc</a>"
      mockFile = MockFile.new
      @handler = setupHandler(sourceXml, mockFile)
      # execute
      @handler.printBodyContents
      # verify
      assert_equals_html( expectedHtml, mockFile.output,
                          "extref: html output")
   end

   def testTestterm_normal
      sourceXml = "<testterm id='abc'/>"

 Testcase Superclass
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      expectedHtml = "<a href='abc.html'>abc</a>"
      mockFile = MockFile.new
      @handler = setupHandler(sourceXml, mockFile)
      @handler.printBodyContents
      assert_equals_html( expectedHtml, mockFile.output,
                          "testterm: html output")
   end

   def testTestterm_plural
      sourceXml ="<testterms id='abc'/>"
      expectedHtml = "<a href='abc.html'>abcs</a>"
      mockFile = MockFile.new
      @handler = setupHandler(sourceXml, mockFile)
      @handler.printBodyContents
      assert_equals_html( expectedHtml, mockFile.output,
                          "testterms: html output")
   end

These tests contain a fair bit of Test Code Duplication (page 213). We can address 
this issue by using an Extract Method [Fowler] refactoring to create a Test Utility 
Method. We can then make the Test Utility Method more reusable by moving it 
to a Test Helper Mixin using a Pull Up Method refactoring. Because the mixed-in 
functionality is considered part of our Testcase Class, we can access it as if it were 
defi ned locally. Thus the usage looks identical. 

class CrossrefHandlerTest  <  Test::Unit::TestCase
    include HandlerTest

   def test_extref
        sourceXml = "<extref id='abc' />"
        expectedHtml = "<a href='abc.html'>abc</a>"
        generateAndVerifyHtml(sourceXml,expectedHtml,"<extref>")
   end

The only difference is the location where the method is defi ned and its visibility. 
In particular, Ruby requires mixins to be defi ned in a module rather than a class.

module HandlerTest
   def generateAndVerifyHtml( sourceXml, expectedHtml, 
                           message, &block)
      mockFile = MockFile.new
      sourceXml.delete!("\t")
      @handler = setupHandler(sourceXml, mockFile )
      block.call unless block == nil
      @handler.printBodyContents
      actual_html = mockFile.output
      assert_equal_html( expectedHtml,
                         actual_html,
                         message + "html output")
       actual_html
   end

Testcase 
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Test Helper

Where do we put our test code when it is in reusable Test Utility Methods?

We defi ne a helper class to hold any Test Utility Methods we want 
to reuse in several tests.

As we write tests, we will invariably fi nd ourselves needing to repeat the same 
logic in many, many tests. Initially, we may just “clone and twiddle” as we write 
additional tests that need the same logic. Ultimately, we may introduce Test 
Utility Methods (page 599) to hold this logic—but where should we put such 
reusable logic? 

A Test Helper is one possible choice of home for reusable test logic. 

How It Works 

We defi ne a separate class to hold the reusable Test Utility Methods that should 
be available to several Testcase Classes (page 373). In each test that wishes to use 
this logic, we access the logic either using static method calls or via an instance 
created specifi cally for the purpose. 

When to Use It 

We can use a Test Helper if we wish to share logic or variables between several 
Testcase Classes and cannot (or choose not to) fi nd or defi ne a Testcase Super-
class (page 638) from which we might otherwise subclass all tests that require 
this logic. We might pursue this course in several circumstances: Perhaps our 
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programming language doesn’t support inheritance (e.g., Visual Basic 5 or 6), 
perhaps we are already using inheritance for some other confl icting purpose, 
or perhaps the Test Utility Method needs access to specifi c types that are not 
visible from the Testcase Superclass.

The decision between a Test Helper and a Testcase Superclass comes down 
to type visibility. The client classes need to see the Test Utility Method, and the 
Test Utility Method needs to see all the types and classes it depends on. When 
it doesn’t depend on many types/classes or when everything it depends on is 
visible from a single place, we can put the Test Utility Method into a common 
Testcase Superclass we defi ne for our project or company. If the Test Utility 
Method depends on types/classes that cannot be seen from a single place that all 
clients can access, it may be necessary to put it on a Test Helper in the appropri-
ate test package or subsystem. In larger systems with many groups of domain 
objects, it is common practice to have one Test Helper for each group (package) 
of related domain objects. 

Variation: Test Fixture Registry 

A Registry [PEAA] is a well-known object that can be accessed from anywhere 
in a program. We can use the Registry to store and retrieve objects from dif-
ferent parts of our program or tests. (Registry objects are often confused with 
Singletons [GOF], which are also well known but have only a single instance. 
With a Registry object, there may be one or more instances—we don’t really 
care.) A Test Fixture Registry gives the tests the ability to access the same fi xture 
as other tests in the same test run. Depending on how we implement our Test 
Helper, we may choose to provide a different instance of the Test Fixture Regis-
try for each Test Runner (page 377) in an effort to prevent a Test Run War (see
Erratic Test on page 228). A common example of a Test Fixture Registry is the 
Database Sandbox (page 650). 

A Test Fixture Registry is typically used with a Setup Decorator (page 447) or 
with Lazy Setup (page 435); it isn’t needed with Suite Fixture Setup (page 441)
because only tests on the same Testcase Class need to share the fi xture. In such 
a case, using a fi xture holding class variable works well for this purpose. 

Variation: Object Mother 

The Object Mother pattern is simply an aggregate of several other patterns, each 
of which makes a small but signifi cant contribution to making the test fi xture easier 
to manage. The Object Mother consists of one or more Test Helpers that provide 
Creation Methods (page 415) and Attachment Methods (see Creation Method),
which our tests then use to create ready-to-use test fi xture objects. Object Mothers
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often provide several Creation Methods that create instances of the same class, 
where each method results in a test object in a different starting state (a Named 
State Reaching Method; see Creation Method). The Object Mother may also have 
the ability to delete the objects it creates automatically—an example of Automated 
Teardown (page 503). 

Because there is no single, crisp defi nition of what someone means by “Object 
Mother,” it is advisable to refer to the individual patterns (such as Automated
Teardown) when referring to specifi c capabilities of the Object Mother.

Implementation Notes 

The methods on the Test Helper can be implemented as either class methods or 
instance methods depending on the degree to which we want to keep the tests 
from interacting. 

Variation: Test Helper Class 

If all of the Test Utility Methods are stateless, the simplest approach is to imple-
ment the functionality of the Test Helper as class methods and then to have the 
tests access those methods using the ClassName.methodName (or equivalent) notation. 
If we need to hold references to fi xture objects, we could place them in class 
variables. We need to be careful to avoid inadvertently creating a Shared
Fixture (page 317), however—unless, of course, that is exactly what we are 
trying to do. In such a case, we are actually building a Test Fixture Registry.

Variation: Test Helper Object 

If we can’t use class methods for some reason, we can work with instance meth-
ods instead. In this case, the client test will need to create an instance of the Test 
Helper class and store it in an instance variable; the methods can then be accessed 
via this variable. This pattern is a good approach when the Test Helper holds 
references to fi xture or SUT objects and we want to make sure that we don’t creep 
into a Shared Fixture situation. It is also useful when the Test Helper stores expec-
tations for a set of Mock Objects (page 544), because this pattern ensures that we 
can verify the calls are interleaved between the Mock Objects correctly. 

Motivating Example 

The following example shows a Test Utility Method that is on the Testcase Class:

public class TestUtilityExample extends TestCase {

   public void testAddOneLineItem_quantity1() {

 Test Helper
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      Invoice inv = createAnonInvoice();
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      assertInvoiceContainsOnlyThisLineItem(inv, expItem);
   }

   void assertInvoiceContainsOnlyThisLineItem(
                                     Invoice inv,
                                     LineItem expItem) {
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("",expItem, actual);
   }
}

This Test Utility Method is not reusable outside this particular class. 

Refactoring Notes 

We can make a Test Utility Method more reusable by moving it to a Test Helper
class. This transformation is often as simple as doing a Move Method [Fowler] 
refactoring to our Test Helper class. One potential problem arises when we have 
used instance variables to pass arguments to or return data from the Test Utility 
Method. These “global data” need to be converted to explicit arguments and 
return values before we can perform the Move Method refactoring. 

Example: Test Helper with Class Methods 

In this modifi ed version of the preceding test, we have turned the Test Utility 
Method into a class method on a Test Helper Class so we can access it via the 
classname without creating an instance: 

public class TestUtilityExample extends TestCase {
   public void testAddOneLineItem_quantity1_staticHelper() {
      Invoice inv = createAnonInvoice();
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      TestHelper.assertContainsExactlyOneLineItem(inv, expItem);
   }
}

Test Helper 
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Example: Test Helper with Instance Methods 

In this example, we have moved the Test Utility Method to a Test Helper as an 
instance method. Note that we must now access the method via an object refer-
ence (a variable that holds an instance of the Test Helper).

public class TestUtilityExample extends TestCase {
   public void testAddOneLineItem_quantity1_instanceHelper() {
      Invoice inv = createAnonInvoice();
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      TestHelper helper = new TestHelper();
      helper.assertInvContainsExactlyOneLineItem(inv, expItem);
   }
}

 Test Helper
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CHAPTER 25

Database Patterns 
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Database Sandbox

How do we develop and test software that depends on a database?

We provide a separate test database for each developer or tester.

Many applications use a database to store the persistent state of the application. 
At least some of the tests for such an application will require accessing the data-
base. Unfortunately, a database is a primary cause of Erratic Tests (page 228) due 
to the fact that data may persist between tests. A major goal in keeping tests from 
interacting is ensuring that the test fi xtures used by each test do not overlap. This 
is especially diffi cult when the development environment contains only a single 
test database and all tests run by all developers run against the same database. 

A Database Sandbox is one way to keep the tests from interacting by acciden-
tally accessing the same records in the database. 

How It Works 

We provide each user with a separate, self-consistent sandbox in which to work. 
This sandbox includes the user’s own copy of any code plus—most importantly—the 
user’s own copy of the database. Such an arrangement allows each user to modify 
the database in any way he or she sees fi t and to exercise the application with tests 
without worrying about any interactions between the user’s own tests and the tests 
conducted by other users. 

When to Use It 

We should use a Database Sandbox whenever we are building or modifying an 
application that depends on a database for a signifi cant portion of its functionality. 
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This need is especially evident if we have chosen to use a Shared Fixture (page 317). 
Using a Database Sandbox will help us avoid Test Run Wars (see Erratic Test)
between different users of the database. Depending on how we have chosen to 
implement the Database Sandbox, it may or may not allow different users to 
modify the structure of the database. A Database Sandbox will not prevent Un-
repeatable Tests (see Erratic Test) or Interacting Tests (see Erratic Test), however, 
because it merely separates different users (and their test runs) from one another; 
tests within a single test run may continue to share a test fi xture. 

Implementation Notes 

The application needs to be made confi gurable so that the database to be used 
in testing can be changed without modifying the code. Typically, this goal is 
accomplished by reading the database confi guration information from a proper-
ties fi le that is customized in each user’s environment. 

A Database Sandbox can be implemented in many different ways. Fundamentally, 
the choice comes down to whether we give each user a separate database instance or 
just simulate one. In general, giving each user a real separate database instance is the 
preferred choice. This scheme may not always be feasible, however—especially if the 
database vendor’s licensing structure makes it cost prohibitive. 

Variation: Dedicated Database Sandbox 

We give each developer, tester, or test user a separate database instance. This is 
typically accomplished by installing a lightweight database technology in each 
user’s test environment. Examples of lightweight database technologies include 
MySql and Personal Oracle. The database instance can be installed on the user’s 
own machine, on a shared test server, or on a dedicated “virtual server” running 
on shared server hardware. 

A Dedicated Database Sandbox is the preferred solution because it provides 
the greatest fl exibility. It allows a developer to modify the database schema, 
load his or her own test data, and so on. 

Variation: DB Schema per Test Runner 

With DB Schema per Test Runner, we give each developer, tester, or test user 
what appears to be a separate database instance by using built-in database sup-
port for multiple schemas. 

One considerable advantage that the DB Schema per Test Runner pattern 
enjoys relative to the Dedicated Database Sandbox pattern is that we can share 
an Immutable Shared Fixture (see Shared Fixture) defi ned in a common schema 
and put each user’s mutable fi xture in his or her own private schema. Note that 
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this scheme does not allow the user to modify the structure of the database 
(at least not to the same degree as is possible with a Dedicated Database Sandbox).
It also forces all users, including both developers and testers, to use the same 
database structure. This can create logistical issues when database structure 
upgrades need to be rolled out.

Variation: Database Partitioning Scheme 

We give each developer, tester, or test user a separate set of data within a single 
Database Sandbox. Each user can modify that data as he or she sees fi t but is not 
allowed to modify the data assigned to other users. 

This approach requires less database administration overhead but more data 
administration overhead than with the other ways to implement a Database
Sandbox. Because it does not allow developers to modify the database schema, 
a Database Partitioning Scheme is not appropriate for evolutionary database 
development. It is, however, appropriate for preventing Interacting Tests when 
applied to different tests run from the same Test Runner. That is, we give each 
test a unique key such as a CustomerNumber that it uses for all data. As a conse-
quence, other tests within the same test run use different data. This pattern can 
be combined with many of the other variations of Database Sandbox to prevent 
Interacting Tests when using a Shared Fixture. Note that this pattern does not 
prevent Unrepeatable Tests unless we also use Distinct Generated Values (see
Generated Value on page 723).

Motivating Example 

The following test uses Literal Values for the arguments to a constructor of a 
Product that is persisted into a database instance shared among several developers. 
The name of the Product must be unique:

   public void testProductPrice_HCV() {
      //    Setup
      Product product =
         new Product( 88,                       // ID
                      "Widget",                 // Name
                      new BigDecimal("19.99")); // Price
      // Exercise SUT
      //   ...
   }

Unfortunately, we may end up with a Test Run War when we run this test against a 
shared database instance regardless of how effectively we tear down the Product after 
each test. This is because we are trying to create the same Product that the same test 
run from another Test Runner might be in the process of using at the same time.
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Refactoring Notes 

There are no code changes required of our test when we create a Dedicated
Database Sandbox for each developer and tester. Therefore, tests should not 
have to do anything special to run completely independently of tests being run 
from other Test Runners (page 377). There is a small change required of the 
SUT, however, to allow the SUT to connect to different database instances based 
on confi guration data. How we make this change varies with the technology we 
use and is beyond the scope of this book.

We can convert the test to use a Database Partitioning Scheme by replacing 
the Literal Values with calls to the appropriate getUnique method passing an ID 
specifi c to the Test Runner as a seed.

Example: Database Partitioning Scheme 

Here is the same test using a Database Partitioning Scheme to ensure that each 
test uses a different set of products. For the getUniqueString method, we pass a 
string based on the MAC address of our computer. 

   public void testProductPrice_DPS() {
      // Setup
      Product product =
         new Product( getUniqueInt(),                   // ID
                      getUniqueString(getMacAddress()), // Name
                      new BigDecimal("19.99"));         // Price
      // Exercise SUT
      //   ...
   }

   static int counter = 0;

   int getUniqueInt() {
      counter++;
      return counter;
   }

   BigDecimal getUniqueBigDecimal() {
      return new BigDecimal(getUniqueInt());
   }

   String getUniqueString(String baseName) {
      return baseName.concat(String.valueOf( getUniqueInt()));
   }

This test can now be run from several different computers against the same 
shared database instance without fear of a Test Run War.
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Stored Procedure Test

How can we verify logic independently when we have stored procedures?

We write Fully Automated Tests for each stored procedure.

Many applications that use a database to store the persistent state of the appli-
cation also use stored procedures and triggers to improve performance and do 
common processing on updates. 

A Stored Procedure Test is a way to apply automated testing practices to this 
code that lives inside the database. 

How It Works 

We write unit tests for the stored procedures independent of the client application 
software. These tests may be layer-crossing tests or round-trip tests, depending 
on the nature of the store procedure(s) being tested. 

When to Use It 

We should write Stored Procedure Tests whenever we have nontrivial logic in 
stored procedures. This pattern will help us verify that the stored procedures—our 
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SUT for the purposes of these tests—are working properly independently of the 
client application. This consideration is particularly important when more than 
one application will use the stored procedures or when the stored procedures are 
being developed by a different development team. Stored Procedure Tests are 
particularly important when we cannot ensure the procedures are tested ade-
quately simply by exercising the application software (a form of Indirect Testing; 
see Obscure Test on page 186). Using Stored Procedure Tests also helps us to 
enumerate all the conditions under which the stored procedure could be called 
and what should happen in each circumstance. The very act of thinking about 
these circumstances is likely to improve the design—a common result of doing 
test-fi rst development.

Implementation Notes 

There are two fundamentally different ways to implement Stored Procedure Tests: 
(1) We can write the tests in the same programming language as the stored proce-
dure and run them in the database or (2) we can write the tests in our application 
programming language and access the stored procedure via a Remote Proxy [GOF]. 
We might even write tests both ways. For example, the stored-procedure developers 
might write unit tests in the database programming language, whereas the applica-
tion developers might prepare some acceptance tests in the application programming 
language to run as part of the application build. 

Either way, we need to decide how the test will set up the fi xture (the “before” 
state of the database) and verify the expected outcome (the “after” state of the 
database as well as any expected actions such as cascading deletes). The test may 
interact directly with the database to insert/verify the data (a form of Back Door 
Manipulation; see page 327) or it could use another stored procedure (a form of 
round-trip test). 

Variation: In-Database Stored Procedure Test 

One advantage of the xUnit approach to automated testing is that the tests are 
written in the same language as the code we are testing. This makes it easier for the 
developers to learn how to automate the tests without learning a new program-
ming language, debugger, and so on. Extending this idea to its logical conclusion, 
it makes sense to test stored procedures using tests that are written in the stored-
procedure programming language. Naturally, we will need to run these tests inside 
the database. Unfortunately, that requirement may make it hard to run them as 
part of the Integration Build [SCM]. 

This variation on the Stored Procedure Test pattern is appropriate when we 
have more experience writing code in the stored-procedure language and/or 
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environment than in the application environment and it is not essential that 
all tests be run from a single place. For example, a database or data services 
team that is writing stored procedures for use by other teams would fi nd this 
approach attractive. Another circumstance in which it would be appropriate 
to use In-Database Stored Procedure Tests arises when the procedures are 
stored in a different source code repository than the application logic. Using 
In-Database Stored Procedure Test allows us to store the tests in the same 
repository as the SUT (in this case, the stored procedures). 

In-Database Stored Procedure Tests may allow somewhat more thorough 
unit testing (and test-driven development) of the stored procedures because we 
may have better access to implementation details of the stored procedure from 
our tests. Of course, this violation of encapsulation could result in Overspecifi ed 
Software (see Fragile Test on page 239). If the client code uses a data access layer, 
we must still write unit tests for that software in the application programming 
language to ensure that we handle errors correctly (e.g., failure to connect). 

Some databases support several programming languages. In such a case, 
we can choose to use the more test-friendly programming language for our 
tests but write the stored procedures in the more traditional stored-procedure 
programming language. For example, Oracle databases support both PLSQL 
and Java, so we could use JUnit tests to verify our PLSQL stored procedures. 
Likewise, Microsoft’s SQL Server supports C#, so we could use NUnit tests 
written in C# to verify the stored procedures written in Transact-SQL. 

Variation: Remoted Stored Procedure Test 

The purpose of Remoted Stored Procedure Tests is to allow us to write the tests in 
the same language as the unit tests for the client application logic. We must access 
the stored procedure via a Remote Proxy [GOF] that hides the mechanics of inter-
acting with that procedure. This proxy can be structured as either a Service Facade 
[CJ2EEP] or a Command [GOF] (such as Java’s JdbcOdbcCallableStatement). 

Remoted Stored Procedure Tests are, in effect, component tests in that they 
treat the stored procedure as a “black box” component. Because Remoted Stored 
Procedure Tests do not run inside the database, we are more likely to write them 
as round-trip tests (calling other stored procedures to set up the fi xture, verify 
the outcome, and perform other necessary tasks) unless we have an easy way 
to insert or verify data. Some members of the xUnit family have extensions that 
are specifi cally intended to facilitate this behavior (e.g., DbUnit for Java and 
NDbUnit for .NET languages). 

This solution is more appropriate if we want to keep all our tests in a single 
programming language. The Remoted Stored Procedure Test pattern makes it 
easier to run all the tests every time we check in changes to the application code. 
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Testing Stored Procedures with JUnit   

On an early XP project, our application was mandated to use stored 
procedures being developed by another group. It seemed that every time 
we integrated our Java with those developers’ PLSQL code, we found 
serious bugs in the fundamental behavior of their stored procedures. 
We were writing automated tests using JUnit for our code. Although we 
were sure that writing unit tests for the stored procedures would clarify 
the interface contract and improve the quality of the other group’s code, 
we couldn’t force the other team to write unit tests. Nor had utPLSQL
even been invented at that point. 

We decided to try writing unit tests for the stored procedures in the xUnit 
family member we were comfortable with: JUnit. Because we had to write 
JDBC code to access the stored procedures anyway, we defi ned JUnit tests 
for each stored procedure via the JDBC PreparedStatement classes that we 
had built. The tests exercised the basic behavior of the stored behaviors 
and a few of the more obvious failure cases. Whenever we received a new 
version of the stored procedures, we would run the JUnit tests before we 
even tried to exercise the procedures from our application code. Needless 
to say, many of the tests failed. 

We sat down with the developers who were building the stored proce-
dures and showed them our tests—including how they were failing left, 
right, and center. Needless to say, the developers were a bit embarrassed 
but they agreed that our tests were correct. They went off to fi x the stored 
procedures and gave us a new version to test. The revision fared somewhat 
better but still produced some failures. Then a very important thing hap-
pened: The members of the other group asked for a copy of the tests we 
had written and instructions on how to run them for themselves. Before 
long, these developers were writing their own PLSQL unit tests in JUnit!

This capability is particularly useful if the stored procedures are being writ-
ten and/or modifi ed by the same team that is developing the client code. We 
can also use Remoted Stored Procedure Tests when another team is provid-
ing the stored procedures and we are not confi dent in those developers’ ability 
to write defect-free code (probably because they are not writing In-Database
Stored Procedure Tests for their code). In this situation, we can use the Remot-
ed Stored Procedure Tests as a form of acceptance test for their code. See the 
sidebar “Testing Stored Procedures with JUnit” for an illustration of how this 
setup worked on one project. 
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One disadvantage of using Remoted Stored Procedure Tests is that they will 
likely cause the test suite to run more slowly because the tests require the database 
to be available and populated with data. The tests for the stored procedures can 
be put into a separate Subset Suite (see Named Test Suite on page 592) so that 
they need not be run with all the in-memory tests. This can signifi cantly speed up 
test execution, thereby avoiding Slow Tests (page 253). 

Remoted Stored Procedure Tests also come in handy when logic written 
in our programming language of choice already has unit tests and we need to 
move that logic into the database. By using a Remoted Stored Procedure Test,
we can avoid rewriting the tests in a different programming language and Test 
Automation Framework (page 298), which can in turn save time and money. 
This pattern also enables us to avoid any translation errors when recoding the 
logic, so we can be sure the recoded logic really does produce the same results. 

Motivating Example 

Here is an example of a stored procedure written in PLSQL:

CREATE OR REPLACE PROCEDURE calc_secs_between (
   date1 IN DATE,
   date2 IN DATE,
   secs OUT NUMBER
)
IS
BEGIN
   secs := (date2 - date1) * 24 * 60 * 60;
END;
/

This sample was taken from the examples that come with the utPLSQL tool. In real 
life we might not bother testing this code because it is so simple (but then again, 
maybe not?) but it will work just fi ne to illustrate how we could go about testing it. 

Refactoring Notes 

This example doesn’t deal so much with refactoring as with adding a missing test. 
Let’s fi nd a way to write one. We will see what is involved by using the two main 
variants: In-Database Stored Procedure Test and Remote Stored Procedure Test.

Example: In-Database Stored Procedure Test 

This example uses utPLSQL, the xUnit family member for PLSQL, to automate 
tests that run inside the database: 
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CREATE OR REPLACE PACKAGE BODY ut_calc_secs_between
IS
   PROCEDURE ut_setup
   IS
   BEGIN
      NULL;
   END;

   PROCEDURE ut_teardown
   IS
   BEGIN
      NULL;
   END;

   -- For each program to test...
   PROCEDURE ut_CALC_SECS_BETWEEN
   IS
      secs PLS_INTEGER;
   BEGIN
      CALC_SECS_BETWEEN (
            DATE1 => SYSDATE
            '
            DATE2 => SYSDATE
            '
            SECS => secs
       );

      utAssert.eq (
         'Same dates',
         secs,
         0
         );
   END ut_CALC_SECS_BETWEEN;

END ut_calc_secs_between;
/

This test uses many of the familiar xUnit patterns. It is one of several tests we 
would normally write for this stored procedure—one test for each possible 
scenario. (This sample was taken from the examples that come with the utPLSQL 
tool. Not being a PLSQL programmer, I did not want to mess with the formatting 
in case it mattered!) 

Example: Remoted Stored Procedure Test 

To test this stored procedure in our normal programming and test execution 
environment, we must fi rst fi nd or create a Remote Proxy for it in our unit-testing 
environment of choice. Then we can write our unit tests in the usual manner. 
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The following test uses JUnit to automate tests that run outside the database and 
call our PLSQL stored procedure remotely: 

public class StoredProcedureTest extends TestCase {
   public void testCalcSecsBetween_SameTime() {
      // Setup
      TimeCalculatorProxy SUT = new TimeCalculatorProxy();
      Calendar cal = new GregorianCalendar();
      long now = cal.getTimeInMillis();
      // Exercise
      long timeDifference = SUT.calc_secs_between(now,now);
      // Verify
      assertEquals( 0, timeDifference );
   }
}

We have reduced the complexity of the original test to a simple test of a function 
by hiding the JdbcOdbcCallableStatement behind a Service Facade. Looking at this 
example, it is diffi cult to tell that we are not testing a Java method. We would prob-
ably have additional Expected Exception Tests (see Test Method on page 348)
to verify failed connections and other problems. 
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Table Truncation Teardown

How do we tear down the Test Fixture when it is in a relational database?

We truncate the tables modifi ed during the test to tear down the fi xture.

A large part of making tests repeatable and robust is ensuring that the test fi xture 
is torn down after each test. Leftover objects and database records, as well as 
open fi les and connections, can at best cause performance degradation and at 
worst cause tests to fail or systems to crash. While some of these resources may 
be cleaned up automatically by garbage collection, others may be left hanging if 
they are not torn down explicitly. 

Writing teardown code that can be relied upon to clean up properly in all pos-
sible circumstances is challenging and time-consuming. It involves understand-
ing what could be left over for each possible outcome of the test and writing 
code to deal with that possibility. This Complex Teardown (see Obscure Test on
page 186) introduces a fair bit of Conditional Test Logic (page 200) and—worst 
of all—Untestable Test Code (see Hard-to-Test Code on page 209).

When testing a system that uses a relational database, we can take advantage 
of the database’s capabilities by using the TRUNCATE command to remove all data 
from a table we have modifi ed. 

How It Works 

When we no longer need a persistent fi xture, we issue a TRUNCATE command for 
each table in the fi xture. It blasts all data out of the tables very effi ciently with 
no side effects (e.g., triggers). 
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When to Use It 

We often turn to Table Truncation Teardown when we are using a Persistent
Fresh Fixture (see Fresh Fixture on page 311) strategy with an SUT that includes 
a database. It is rarely our fi rst choice, however. That distinction goes to Transac-
tion Rollback Teardown (page 668). Nevertheless, Table Truncation Teardown 
is a better choice for use with a Shared Fixture (page 317), as this type of fi xture, 
by defi nition, outlives any one test. By contrast, using Transaction Rollback 
Teardown with a Shared Fixture would require a very long-running transaction. 
While not impossible, such a long-lived transaction is troublesome. 

Before we can use Table Truncation Teardown, we must satisfy a couple of 
criteria. The fi rst requirement is that we really want all data in the affected tables 
removed. The second requirement is that each Test Runner (page 377) has its 
own Database Sandbox (page 650). Table Truncation Teardown will not work if 
we are using a Database Partitioning Scheme (see Database Sandbox) to isolate 
users or tests from one another. It is ideally suited for use with a DB Schema per 
Test Runner (see Database Sandbox), especially when we are implementing an 
Immutable Shared Fixture (see Shared Fixture) as a separate shared schema in the 
database. This allows us to blast away all the Fresh Fixture data in our own 
Database Sandbox without affecting the Immutable Shared Fixture.

If we are not using a transactional database, the closest approximation is 
Automated Teardown (page 503), which deletes only those records that were 
created by the test. Automated Teardown does not depend on the database 
transactions to do the work for it, but it does involve more development work 
on our part. We can also avoid the need to do teardown entirely by using Delta
Assertions (page 485). 

Implementation Notes 

Besides the usual “Where do we put the teardown code?” decision, implementa-
tion of Table Truncation Teardown needs to deal with the following questions: 

• How do we actually delete the data—that is, which database commands 
do we use? 

• How do we deal with foreign key constraints and triggers? 

• How do we ensure consistency when we are using an object-relational
mapping (ORM)?

Some databases support the TRUNCATE command directly. Where this is the case, the 
obvious choice is to use this command. Oracle, for example, supports TRUNCATE.
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Otherwise, we may have to use a DELETE * FROM table-name command instead. The TRUN-
CATE or DELETE commands can be issued using In-line Teardown (page 509—called 
from within each Test Method; see page 348) or Implicit Teardown (page 516—
called from the tearDown method). Some people prefer to use this command with 
Lazy Teardown because it ensures that the tables are empty at the beginning of 
the test in cases where those tables would be affected by extraneous data. 

Database foreign key constraints can be a problem for Table Truncation 
Teardown if our database does not offer something similar to Oracle’s ON 
DELETE CASCADE option. In Oracle, if the command to truncate a table includes the 
ON DELETE CASCADE option, then rows dependent on the truncated table rows are 
deleted as well. If our database does not cascade deletes, we must ensure that 
the tables are truncated in the order required by the schema. Schema changes 
can invalidate this order, resulting in failures in the teardown code. Fortunately, 
such failures are easy to detect: A test error tells us that our teardown needs 
adjusting. Correction is fairly straightforward—typically, we just need to reor-
der the TRUNCATE commands. We could, of course, come up with a way to issue 
the TRUNCATE commands in the correct order dynamically based on the dependen-
cies between the tables. Usually, however, it is enough to encapsulate this trun-
cation logic behind a Test Utility Method (page 599). 

If we want to avoid the side effects of triggers and other complications for 
databases where TRUNCATE is not supported, we can disable the constraints and/or 
triggers for the duration of the test. We should take this step only if other tests 
exercise the SUT with the constraints and triggers in place. 

If we are using an ORM layer such as Toplink, (N)Hibernate, or EJB 3.0, 
we may need to force the ORM to clear its cache of objects already read from 
the database so that subsequent object lookups do not fi nd the recently deleted 
objects. For example, NHibernate provides the ClearAllCaches method on the 
TransactionManager for this purpose. 

Variation: Lazy Teardown 

A teardown technique that works with only a few styles of Shared Fixtures is 
Lazy Teardown. With this pattern, the fi xture must be destroyable at an arbitrary 
point in time. Thus we cannot depend on “remembering” what needs to be torn 
down; it must be obvious without any “memory.” Table Truncation Teardown 
fi ts the bill because how we perform teardown is exactly the same whenever we 
choose to do it. We simply issue the table truncation commands during fi xture 
setup before setting up the new fi xture. 
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Motivating Example 

The following test attempts to use Guaranteed In-line Teardown (see In-line 
Teardown) to remove all the records it created:

      [Test]
      public void TestGetFlightsByOrigin_NoInboundFlights()
      {
         // Fixture Setup
         long OutboundAirport = CreateTestAirport("1OF");
         long InboundAirport = CreateTestAirport("1IF");
         FlightDto ExpFlightDto = null;
         try
         {
            ExpFlightDto =
               CreateTestFlight(OutboundAirport, InboundAirport);
            // Exercise System
            IList FlightsAtDestination1 =
               Facade.GetFlightsByOriginAirport( InboundAirport);
            // Verify Outcome
            Assert.AreEqual( 0, FlightsAtDestination1.Count );
         }
         finally
         {
            Facade.RemoveFlight( ExpFlightDto.FlightNumber );
            Facade.RemoveAirport( OutboundAirport );
            Facade.RemoveAirport( InboundAirport );
         }
      }

This code is neither easy to write nor correct!1 Trying to keep track of the many 
objects the SUT has created and then tear them down one by one in a safe man-
ner is very tricky. 

Refactoring Notes 

We can avoid most of the issues with coordinating In-line Teardown of mul-
tiple resources in a safe way by using Table Truncation Teardown and blasting 
away all the airports in one fell swoop.2 Most of the refactoring work involves 
deleting the existing teardown code from the fi nally clause and inserting a call to 
cleanDatabase. We then implement this method using the truncation commands.

1 See In-line Teardown for an explanation of what is wrong here.
2 This assumes that we start with no airports and want to end with no airports. If we 
want to delete just these specifi c airports, we cannot use Table Truncation Teardown.
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Example: Table Truncation (Delegated) Teardown Test 

This is what the test looks like when we are done: 

      public void TestGetFlightsByOrigin_NoInboundFlight_TTTD()
      {
         // Fixture Setup
         long OutboundAirport = CreateTestAirport("1OF");
         long InboundAirport = 0;
         FlightDto ExpectedFlightDto = null;
         try
         {
            InboundAirport = CreateTestAirport("1IF");
            ExpectedFlightDto =
               CreateTestFlight( OutboundAirport,InboundAirport);
            // Exercise System
            IList FlightsAtDestination1 =
               Facade.GetFlightsByOriginAirport(InboundAirport);
            // Verify Outcome
            Assert.AreEqual(0,FlightsAtDestination1.Count);
         }
         finally
         {
            CleanDatabase();
         }
      }

This example uses Delegated Teardown (see In-line Teardown) to keep the 
teardown code visible. Normally, however, we would use Implicit Teardown
by putting this logic into the tearDown method. The try/catch ensures that clean-
Database is run but it does not ensure that a failure inside cleanDatabase will not 
prevent the teardown from completing. 

Example: Lazy Teardown Test 

Here is the same example converted to use Lazy Teardown:

      [Test]
      public void TestGetFlightsByOrigin_NoInboundFlight_LTD()
      {
         // Lazy Teardown
         CleanDatabase();
         // Fixture Setup
         long OutboundAirport = CreateTestAirport("1OF");
         long InboundAirport = 0;
         FlightDto ExpectedFlightDto = null;
         InboundAirport = CreateTestAirport("1IF");
         ExpectedFlightDto =
            CreateTestFlight( OutboundAirport, InboundAirport);
         // Exercise System
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         IList FlightsAtDestination1 =
            Facade.GetFlightsByOriginAirport(InboundAirport);
         // Verify Outcome
         Assert.AreEqual(0,FlightsAtDestination1.Count);
      }

By moving the call to cleanDatabase to the front of the Test Method, we ensure 
that the database is in the state we expect it. This code cleans up whatever the 
last test did, regardless of whether that test provided proper teardown. It also 
takes care of anything added to the relevant tables since the last test was run. It 
has the added benefi t of eliminating the need for the try/fi nally construct, thereby 
making the test simpler and easier to understand. 

Example: Table Truncation Teardown Using SQL 

This implementation of the cleanDatabase method uses SQL statements constructed 
within the code:

   public static void CleanDatabase() {
      string[] tablesToTruncate =
         new string[] {"Airport","City","Airline_Cd","Flight"};
         IDbConnection conn = getCurrentConnection();
      IDbTransaction txn = conn.BeginTransaction();
      try {
         foreach (string eachTableToTruncate in tablesToTruncate)
         {
            TruncateTable(txn, eachTableToTruncate);
         }
         txn.Commit();
         conn.Close();
      } catch (Exception e) {
         txn.Rollback();
      } finally {
         conn.Close();
      }
   }

   private static void TruncateTable( IDbTransaction txn, 
                                      string tableName)
   {
      const string C_DELETE_SQL = "DELETE FROM {0}";

      IDbCommand cmd = txn.Connection.CreateCommand();
      cmd.Transaction = txn;
      cmd.CommandText = string.Format(C_DELETE_SQL, tableName);

      cmd.ExecuteNonQuery();
   }
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Because we are using SQL Server as the database, we had to implement our own 
TruncateTable method that issues a Delete * from ... SQL command. We would not 
have to take this step if our database implemented TRUNCATE directly. 

Example: Table Truncation Teardown Using ORM 

Here is the implementation of the cleanDatabase method using NHibernate, an 
ORM layer: 

   public static void CleanDatabase() {
      ISession session =
               TransactionManager.Instance.CurrentSession;
      TransactionManager.Instance.BeginTransaction();
      try {
          // We need to delete only the root classes because
          // cascade rules will delete all related child entities
          session.Delete("from Airport");
          session.Delete("from City");
          session.Flush();
          TransactionManager.Instance.Commit();
      } catch (Exception e) {
          Console.Write(e);
          throw e;
      } finally {
          TransactionManager.Instance.CloseSession();
      }
   }

When using an ORM, we read, write, and delete domain objects; the tool deter-
mines which underlying tables they map to and takes the appropriate actions. 
Because we have chosen to make City and Airport “root” (parent) objects, any 
subordinate (child) objects such as the Flights are deleted automatically when 
the root is deleted. This approach further decouples us from the details of the 
table implementations. 
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Transaction Rollback Teardown

How do we tear down the Test Fixture when it is in a relational database?

We roll back the uncommitted test transaction as part of the teardown.

A large part of making tests repeatable and robust is ensuring that the test fi x-
ture is torn down after each test. Leftover objects and database records, as well 
as open fi les and connections, can at best cause performance degradation and at 
worst cause tests to fail or systems to crash. While some of these resources may 
be cleaned up automatically by garbage collection, others may be left hanging if 
they are not torn down explicitly. 

Writing teardown code that can be relied upon to clean up properly in all 
possible circumstances is challenging and time-consuming. It involves under-
standing what could be left over for each possible outcome of the test and 
writing code to deal with this case. This Complex Teardown (see Obscure Test 
on page 186) introduces a fair bit of Conditional Test Logic (page 200) and—
worst of all—Untestable Test Code (see Hard-to-Test Code on page 209).

We can avoid making any lasting changes to the database contents by not 
committing the transaction and taking advantage of the rollback capabilities of 
the database. 

How It Works 

Our test starts a new test transaction, sets up the fi xture, exercises the SUT, and 
verifi es the outcome of the test. Each of these steps may involve interacting with 
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the database. At the end of the test, the test rolls back the test transaction, which 
prevents any of the changes from becoming persistent. 

When to Use It 

We can use Transaction Rollback Teardown when we are using a Fresh Fix-
ture (page 311) approach with an SUT that includes a database that supports 
rolling back a transaction. There are, however, some prerequisites for using 
Transaction Rollback Teardown.

In particular, the SUT must expose methods that are normally called in the 
context of an existing transaction by a Humble Transaction Controller (see
Humble Object on page 695). That is, the methods should not start their own 
transaction and must never commit a transaction. If we are doing test-driven 
development, this design will come about as a result of applying the Transac-
tion Rollback Teardown pattern as we write our code. If we are retrofi tting the 
tests to existing software, we may need to refactor the code to use a Humble
Transaction Controller before we can use Transaction Rollback Teardown.

The nice thing about Transaction Rollback Teardown is that it leaves the 
database in exactly the same state as it was when we started the test, regard-
less of what changes we made to the database contents during the test. As a 
result, we do not need to determine what needs to be cleaned up and what does 
not. Changes to the database schema or contents do not affect our teardown 
logic. Clearly, this pattern is much simpler to apply than Table Truncation Tear-
down (page 661). 

The usual caveats apply to any tests that run against a real database; such 
tests will take approximately 50 (yes, 50!) times as long to run as tests that 
do not access the database. This testing approach will almost surely result in 
Slow Tests (page 253) unless we replace the real database with an In-Memory
Database (see Fake Object on page 551) for most of our tests. Because we are 
depending on the transactional properties of the database, a simple Fake Data-
base (see Fake Object) will probably not be suffi cient unless it supports ACID.

Another prerequisite with Transaction Rollback Teardown is that we cannot 
do anything that results in a commit anywhere in the tests or the code they exer-
cise. The sidebar “Transaction Rollback Pain” on page 670 describes examples 
of where commits can sneak in and cause havoc. 
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Transaction Rollback Pain   

John Hurst sent me an e-mail in which he described some of the issues his 
team had encountered using Transaction Rollback Teardown. He writes: 

We used Transaction Rollback Teardown for our database integra-
tion tests for a while, after a discussion on TheServerSide during 
which Rod Johnson advocated the approach. I gathered his main 
motivation for using it was for performance; a rollback is usually 
a lot faster than repriming the database in a new transaction for 
the next test. Indeed, we did fi nd it somewhat faster than our pre-
vious approach. We used Spring’s excellent AbstractTransactionalData-
SourceSpringContextTests base class, which supports most of what you 
need to do for this pattern out of the box. 

However, I chose to abandon this pattern after a few months. 
Here are the drawbacks I came across with this approach: 

1. You lose some test isolation. In the way we implemented this 
pattern, anyway, each test assumed the database was in a cer-
tain base starting condition, and the rollback would revert it 
to that condition. In our current model, each test is respon-
sible—usually via a base class’s setUp()—for priming the data-
base into a known state. 

2. You can’t see what’s in the database when something goes 
wrong. If your test fails, you usually want to examine the 
database to see what happened. If you’ve rolled back all the 
changes, it makes it harder to fi nd the bug. 

3. You have to be very careful not to inadvertently commit 
during your test. Yes, the code under test has declarative 
transaction management, and does nothing surprising. But 
we occasionally would need to do things in the test setup 
like drop and recreate a sequence to reset its value. This, 
being DDL, commits any outstanding transaction—and 
confused programmers. 

4. You can’t easily mix in tests that do need to commit changes. 
Lately I have added some PLSQL stored procedures and tests. 
Some of the stored procedures do explicit commits. I cannot 
mix these in the same JUnit suite with tests that assume the 
database always remains in a certain state. 

I apologize if my terminology isn’t consistent with what’s in your 
book. Also, my experience is probably a little limited; I’ve only 
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tried this approach in a Spring environment and I prefer to do most 
things in a “Spring” way. Finally, I am sure these limitations can be 
and are worked around in various ways. It’s just that, for our team, 
this pattern turned out to be more trouble than it was worth. 

Don’t get me wrong—I DO think the pattern should be included. 
I just think the consequences should be noted, and maybe it isn’t 
for everyone.

Implementation Notes 

A few members of the xUnit family support Transaction Rollback Teardown
directly; open-source extensions may be available for other members. If nothing 
is available, coding this teardown logic is not very complicated. The more signifi -
cant implementation consideration is giving the tests access to nontransactional 
methods on the SUT. Most domain model objects are nontransactional, so this 
requirement should not be a problem for unit tests of domain objects. We are 
more likely to experience a problem when we are writing Subcutaneous Tests 
(see Layer Test on page 337) against a Service Facade [CJ2EEP] because these 
methods often perform transaction control. If this is the case, we will need to 
expose a nontransactional version of the methods by refactoring to the Humble
Transaction Controller pattern. We could either use a transactional Decorator 
[GOF] as a separate object or simply have the transactional methods delegate to 
the nontransactional versions of the methods on self. This approach is called a 
Poor Man’s Humble Object (see Humble Object).

If the methods exist but are not visible to the client, we will need to expose 
them to the test. We can do so either by making the methods to be tested pub-
lic or by exposing them indirectly via a Test-Specifi c Subclass (page 579). We 
could also do an Extract Testable Component (page 735) refactoring to move 
the nontransactional versions of the methods to a different class and make them 
visible to the test from there. 

Any reading of the updated data in the database must occur within the 
context of the same transaction. This normally is not a problem except when 
we are trying to simulate or test concurrency. If we are using an ORM layer 
such as Toplink, (N)Hibernate, or EJB 3.0, we may need to force the ORM 
to write the changes made to the objects to the database so that methods that 
read the database directly (from within the same transactional context) can 
see them. For example, EJB 3.0 provides the EntityManager.fl ush static method 
for exactly this purpose. 
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Motivating Example 

The following test attempts to use Guaranteed In-line Teardown (see In-line 
Teardown on page 509) to remove all the records it created:

   public void testGetFlightsByOriginAirport_NoInboundFlights()
            throws Exception {
      // Fixture Setup
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = createTestAirport("1IF");
      FlightDto expFlightDto = null;
      try {
         expFlightDto = createTestFlight(outboundAirport, inboundAirport);
         // Exercise System
         List flightsAtDestination1 =
               facade.getFlightsByOriginAirport( inboundAirport);
         // Verify Outcome
         assertEquals( 0, flightsAtDestination1.size() );
      } finally {
         facade.removeFlight( expFlightDto.getFlightNumber() );
         facade.removeAirport( outboundAirport );
         facade.removeAirport( inboundAirport );
      }
   }

This code is neither easy to write nor correct!3 Trying to keep track of all objects 
the SUT has created and then tear them down one by one in a safe manner is 
very tricky. 

Refactoring Notes 

We can avoid most of the issues related to coordinating In-line Teardown of 
multiple resources in a safe way by using Transaction Rollback Teardown and 
blasting away all changes to the objects in one fell swoop. Most of the refactor-
ing work consists of deleting the existing teardown code from the fi nally clause 
and inserting a call to the abortTransaction method. We also need to make the call 
to beginTransaction before we do any fi xture setup, and we have to modify the 
Creation Methods (page 415) to ensure that they do not commit a transaction. 
To do so, we have them call a nontransactional version of the methods on the 
Service Facade. 

3 See In-line Teardown for an explanation of what is wrong here.
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Example: Object Transaction Rollback Teardown 

Here is what the test looks like when we are done: 

   public void testGetFlightsByOrigin_NoInboundFlight_TRBTD()
            throws Exception {
      // Fixture Setup
      TransactionManager.beginTransaction();
      BigDecimal outboundAirport = createTestAirport("1OF");
      BigDecimal inboundAirport = null;
      FlightDto expectedFlightDto = null;
      try {
         inboundAirport = createTestAirport("1IF");
         expectedFlightDto =
            createTestFlight( outboundAirport, inboundAirport);
         // Exercise System
         List flightsAtDestination1 =
            facade.getFlightsByOriginAirport(inboundAirport);
         // Verify Outcome
         assertEquals(0,flightsAtDestination1.size());
      } finally {
         TransactionManager.abortTransaction();
      }
   }

In this refactored test, we have replaced the multiple lines of teardown code 
in the fi nally clause with a single call to abortTransaction. We still need the fi nally
clause because this example is using In-line Teardown; we could easily move this 
call to the TransactionManager to the tearDown method because it is so generic. 

In this example, Transaction Rollback Teardown undoes the fi xture setup 
performed by the various Creation Methods we called earlier in the test. The 
fi xture objects have not yet been committed to the database. Because getFlights-
FromAirport is being called within the context of the transaction, however, it 
returns the newly added but not yet committed fl ights. (That is the “C” for 
“consistent” in ACID working on our behalf!) 

   private BigDecimal createTestAirport(String airportName)
            throws FlightBookingException {
      BigDecimal newAirportId =
            facade._createAirport( airportName,
                                   " Airport" + airportName,
                                   "City" + airportName);
      return newAirportId;
   }
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The creation method calls the nontransactional version of the facade method (an 
example of a Poor Man’s Humble Object):

   public BigDecimal createAirport( String airportCode,
                                    String name,
                                    String nearbyCity)
            throws FlightBookingException{
      TransactionManager.beginTransaction();
      BigDecimal airportId = _createAirport(airportCode, name, nearbyCity); 
      TransactionManager.commitTransaction();
      return airportId;
   }

   // private, nontransactional version for use by tests
   BigDecimal _createAirport( String airportCode,
                              String name,
                              String nearbyCity)
            throws DataException, InvalidArgumentException {
      Airport airport =
           dataAccess.createAirport(airportCode,name,nearbyCity);
      logMessage("CreateFlight", airport.getCode());
      return airport.getId();
   }

If the method we were exercising (e.g., getFlightsFromAirport) did modify the state 
of the SUT and did begin and end its own transaction, we would have to do a 
similar refactoring on it as well. 

Example: Database Transaction Rollback Teardown 

The fi rst example hid the database from the code behind a data access layer that 
returned or accepted objects. This is common practice when using the Domain 
Model [PEAA] pattern for organizing the business logic. Transaction Rollback 
Teardown is typically used when manipulating the database directly in our ap-
plication logic (a style known as a Transaction Script [PEAA]). The following 
example illustrates this approach using .NET row sets (or something similar):

   [TestFixture]
   public class TransactionRollbackTearDownTest
   {
      private SqlConnection _Connection;
      private SqlTransaction _Transaction;

      public TransactionRollbackTearDownTest()
      {
      }

      [SetUp]
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      public void Setup()
      {
         string dbConnectionString  = ConfigurationSettings.
                           AppSettings.Get("DbConnectionString");
         _Connection = new SqlConnection(dbConnectionString);
         _Connection.Open();
         _Transaction = _Connection.BeginTransaction();
      }

      [TearDown]
      public void TearDown()
      {
         _Transaction.Rollback();
         _Connection.Close();
         // Avoid NUnit "instance behavior" bug
         _Transaction = null;
         _Connection = null;
      }

      [Test]
      public void AnNUnitTest()
      {
         const string C_INSERT_SQL =
            "INSERT INTO Invoice(Amount, Tax, CustomerId)" +
            " VALUES({0}, {1}, {2})";
         SqlCommand cmd = _Connection.CreateCommand();
         cmd.Transaction = _Transaction;
         cmd.CommandText = string.Format(
                        C_INSERT_SQL, 
                        new object[] {"100.00", "7.00", 2001});
         // Exercise SUT
         cmd.ExecuteNonQuery();
         // Verify result
         //   etc.
      }
   }
}

This example uses Implicit Setup (page 424) to establish the connection and 
start the transaction. After the Test Method (page 348) has run, it uses Implicit
Teardown (page 516) to roll back the transaction and close the connection. We 
assign null to the instance variables because NUnit does not create a separate 
Testcase Object (page 382) for each Test Method, unlike most other members of 
xUnit. See the sidebar “There’s Always an Exception” on page 384 for details. 
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Dependency Injection

How do we design the SUT so that we can replace its 
dependencies at runtime?

The client provides the depended-on object to the SUT.

Almost every piece of code depends on some other classes, objects, modules, or 
procedures. To unit-test a piece of code properly, we would like to isolate the 
code from its dependencies. This isolation is diffi cult to achieve if those depen-
dencies are hard-coded in the form of literal classnames. 

Dependency Injection is a way to allow the normal coupling between a SUT 
and its dependencies to be broken during automated testing. 

How It Works 

We avoid hard-coding the names of classes on which we depend into our code by 
providing some other means for the client or system confi guration to tell the SUT 
which objects to use for each dependency as it is executed. As part of the design 
of the SUT, we arrange to pass the dependency in to the SUT through the “front 
door.” That is, the means to specify the dependency becomes part of the API of 
the SUT. We can include it as an argument with each method call, include it on the 
constructor, or make it a settable attribute (property). 

When to Use It 

We need to provide a means to substitute a depended-on component (DOC) 
to make it easy to use a Test Double (page 522) while testing our code. Static 
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binding—that is, specifying exact types or classes at compile time—severely limits 
our options regarding how the software is confi gured as it runs. Dynamic binding
creates much more fl exible software by deferring the decision of exactly which 
type or class to use until runtime. Dependency Injection is a good choice for com-
municating which class to use when we are designing the software from scratch. It 
offers a natural way to design the code when we are doing test-driven development 
(TDD) because many of the tests we write for dependent objects seek to replace a 
DOC with a Test Double.

When we don’t have complete control over the code we are testing, such as when 
we are retrofi tting tests to existing code,1 we may need to use some other means 
to introduce the Test Doubles. If the SUT uses Dependency Lookup (page 686) to 
fi nd the DOC, we can override the lookup mechanism to return the Test Double.
We can also use a Test-Specifi c Subclass (page 579) of the SUT to return a Test 
Double as long as access to the DOC remains encapsulated behind a method call. 

Implementation Notes 

Introducing Dependency Injection requires solving two problems. First, we must 
be able to use a Test Double wherever the real DOC is used. This constraint is 
primarily an issue in statically typed languages because we must convince the 
compiler to allow us to pass off a Test Double as the real thing. Second, we must 
provide a way to tell the SUT to use the Test Double. 

Type Compatibility 

Whichever way we choose to install the dependency into the SUT, we must also 
ensure that the Test Double we want to replace it with is “type compatible” with 
the code that uses the Test Double. This is most easily accomplished if both the 
real component and the Test Double implement the same interface (in statically 
typed languages) or have the same signature (in dynamically typed languages). 
A quick way to introduce a Test Double into existing code is to do an Extract 
Interface [Fowler] refactoring on the real DOC and then have the Test Double
implement the new interface. 

Installing the Test Double 

There are a number of different ways to tell the SUT to use the Test Double, but they 
all involve replacing a hard-coded name with a mechanism that determines the type 
of object to use at execution time. The three basic options are as follows: 

1 “If it ain’t broke, don’t change it (even to improve the testability)” is a common, albeit 
somewhat misguided, constraint in these circumstances.

Dependency 
Injection

 Dependency Injection

www.it-ebooks.info

http://www.it-ebooks.info/


680 Chapter 26  Design-for-Testability Patterns 

• Parameter Injection: We pass the dependency directly to the SUT as we 
invoke it.

• Constructor Injection: We tell the SUT which DOC to use when we 
construct it. 

• Setter Injection: We tell the SUT about the DOC sometime between 
when we construct it and when we exercise it. 

Each of these three variations of Dependency Injection can be hand-coded. Another 
option is to use an “Inversion of Control” (IoC) framework to link the various 
components together at runtime. This scheme avoids superfl uous diversity in how 
Dependency Injection is implemented across the application and can simplify the 
process of reconfi guring the application for different deployment models. 

Variation: Parameter Injection 

Parameter Injection is a form of Dependency Injection in which the SUT does not 
keep or initialize a reference to the DOC; instead, it is passed in as an argument of 
the method being called on the SUT. All clients of the SUT—whether they are tests 
or production code—supply the DOC. As a consequence, the SUT is more indepen-
dent of the context because it makes no assumptions about the dependency other 
than its usage interface. The main drawback is that Parameter Injection forces the 
client to know about the dependency, which is more appropriate in some circum-
stances than in others. Most of the other variants of Dependency Injection move 
this knowledge somewhere other than the client or at least make it optional. 

Parameter Injection is advocated by the original paper on Mock Objects (page 544) 
[ET]. It is especially effective when we are doing true TDD because that’s when we 
have the greatest control over the design. It is possible to introduce Parameter In-
jection in an optional fashion by providing an alternative signature for the method 
in question with the extra parameter; we can then have the more traditional style 
method create the instance of the dependency and call the method that takes the de-
pendency as a parameter. 

Variation: Constructor Injection 

Both Constructor Injection and Setter Injection involve storing a reference to the 
DOC as an attribute (fi eld or instance variable) of the SUT. With Dependency
Injection, the fi eld is initialized from a constructor argument. The SUT may 
optionally provide a simpler constructor that calls this constructor with the 
value normally used in production. When a test wants to replace the real DOC 
with a Test Double, it passes in the Test Double to the constructor when it 
builds the SUT. 
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This approach to introducing Dependency Injection works well when the 
code includes only one or two constructors and they have small argument 
lists. Constructor Injection is the only approach that works if the DOC is an 
active object that creates its own thread of execution during construction; 
such behavior would make for Hard-to-Test Code (page 209), and we should 
probably consider turning it into a Humble Executable (see Humble Object 
on page 695). If we have a large number of dependencies as constructor argu-
ments, we probably need to refactor the code to remove this code smell. 

Variation: Setter Injection 

As with Constructor Injection, the SUT holds a reference to the DOC as an attri-
bute (fi eld) that is initialized in the constructor. Where it differs is that the attribute 
is exposed to the client either as a public attribute or via a “setter” method. When 
a test wants to replace the real DOC with a Test Double, it assigns to the exposed 
attribute (or calls the setter with) an instance of the Test Double. This approach 
works well when constructing the real DOC has no unpleasant side effects and 
assuming that nothing can happen automatically between the constructor call and 
the point at which the test calls the setter for the property. Setter Injection cannot 
be used if the SUT performs any signifi cant processing in the constructor that relies 
on the dependency. In that case, we must use Constructor Injection. If constructing 
the real DOC has deleterious side effects, we can avoid creating it via the construc-
tor by modifying the SUT to use Lazy Initialization [SBPP] to instantiate the DOC 
the fi rst time the SUT needs to use it. 

Retrofi tting Dependency Injection 

When the SUT does not support any of these options “out of the box,” we may 
be able to retrofi t this capability via a Test-Specifi c Subclass. If the actual class 
to be used is normally retrieved from confi guration data, this retrieval should be 
done by some component other than the SUT and the class then passed to the 
SUT using Dependency Injection. Such a use of the Humble Object pattern for 
the client or confi guration decouples the SUT from the environment and ensures 
that tests do not need to set up some external dependency (the confi guration fi le) 
to introduce the Test Double.

Another possibility is to use aspect-oriented programming (AOP) to insert 
the Dependency Injection mechanism into the development environment. For 
example, we might inject the decision to use the Test Double or inject the test-
specifi c logic—the Test Double—directly into the SUT. I don’t think we have 
enough experience with using AOP to call this a pattern just yet. 
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Motivating Example 

The following test cannot be made to pass “as is”: 

   public void testDisplayCurrentTime_AtMidnight() {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify direct output
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( expectedTimeString, result);
   }

This test almost always fails because it depends on the current time being returned 
to the SUT by a DOC. The test cannot control the values being returned by that 
component, the DefaultTimeProvider. Therefore, this test will pass only when the 
system time is exactly midnight. 

   public String getCurrentTimeAsHtmlFragment() {
      Calendar currentTime;
      try {
         currentTime = new DefaultTimeProvider().getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.
   }

Because the SUT is hard-coded to use a particular class to retrieve the time, we 
cannot replace the DOC with a Test Double. That constraint makes this test 
nondeterministic and pretty much useless. We need to fi nd a way to gain control 
over the indirect inputs of the SUT. 

Refactoring Notes 

We can use a Replace Dependency with Test Double (page 522) refactoring to 
gain control over the time. Setter Injection can be introduced into existing code if 
we have control over the code and the method in question is not widely used or if 
we have refactoring tools that support the Introduce Parameter [JBrains] refactor-
ing. Failing that, we can use an Extract Method [Fowler] refactoring to create the 
new method signature that takes the Dependency Injection as an argument and 
leave the old method as an Adapter [GOF] that calls the new method. 
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Example: Parameter Injection 

Here’s the test rewritten to use Parameter Injection:

   public void testDisplayCurrentTime_AtMidnight_PI() {
      // Fixture setup
      //      Test Double instantiation
      TimeProvider tpStub = new MidnightTimeProvider();
      //      Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      // Exercise SUT using Test Double
      String result = sut.getCurrentTimeAsHtmlFragment(tpStub);
      // Verify outcome
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

In this case, only the test will use the new signature. The existing code can use 
the old signature and the method adapter instantiates the real dependency object 
before passing it in. 

   public String getCurrentTimeAsHtmlFragment(
                     TimeProvider timeProviderArg) {
      Calendar currentTime;
      try {
         currentTime = timeProviderArg.getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.
   }

Example: Constructor Injection 

Here’s the same test rewritten to use Constructor Injection:

   public void testDisplayCurrentTime_AtMidnight_CI()
               throws Exception {
      // Fixture setup
      //      Test Double instantiation
      TimeProvider tpStub = new MidnightTimeProvider();
      //   Instantiate SUT injecting Test Double
      TimeDisplay sut = new TimeDisplay(tpStub);
      // Exercise SUT
      String expectedTimeString =
            "<span class=\"tinyBoldText\">12:01 AM</span>";
      // Verify outcome

 Dependency Injection
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      assertEquals("12:01 AM",
                   expectedTimeString,
                   sut.getCurrentTimeAsHtmlFragment());
   }

To convert the SUT to use Constructor Injection, we can do an Introduce Field 
[JetBrains] refactoring to hold the DOC in a fi eld that is initialized in the existing 
constructor. We can then do an Introduce Parameter refactoring to modify all 
callers of the existing constructor so that they pass the real DOC as a parameter 
of the constructor. If we cannot or do not want to modify all existing callers of the 
constructor, we can defi ne a new constructor that takes the DOC as a parameter 
and modify the existing constructor to instantiate the real DOC and pass it in to 
our new constructor. 

public class TimeDisplay {

   private TimeProvider timeProvider;

   public TimeDisplay() {     // backwards compatible constructor
      timeProvider = new DefaultTimeProvider();
   }
   public TimeDisplay(TimeProvider timeProvider) { // new constructor
      this.timeProvider = timeProvider;
   }

Another approach is to do an Extract Method refactoring on the call to the con-
structor and then use Move Method [Fowler] refactoring to move it to an Object
Factory (see Dependency Lookup). That would result in Dependency Lookup.

Example: Setter Injection 

Here is the same test refactored to use Setter Injection:

   public void testDisplayCurrentTime_AtMidnight_SI()
               throws Exception {
      // Fixture setup
      //      Test Double instantiation
      TimeProvider tpStub = new MidnightTimeProvider();
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //      Test Double installation
      sut.setTimeProvider(tpStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }
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Note the call to setTimeProvider to install the Hard-Coded Test Double (page 568). 
If we had used a Confi gurable Test Double (page 558), its confi guration would 
occur immediately before the call to setTimeProvider.

To refactor the SUT to support Setter Injection, we can do an Introduce 
Field refactoring to hold the DOC in a variable that is initialized in the exist-
ing constructor and call the DOC via this fi eld. We can then expose the fi eld 
either directly or via a setter so that the test can override its value. Here is the 
refactored version of the SUT: 

public class TimeDisplay {

   private TimeProvider timeProvider;

   public TimeDisplay() {
      timeProvider = new DefaultTimeProvider();
   }
   public void setTimeProvider(TimeProvider provider) {
      this.timeProvider = provider;
   }
   public String getCurrentTimeAsHtmlFragment()
         throws TimeProviderEx {
      Calendar currentTime;
      try {
         currentTime = getTimeProvider().getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.

Here we chose to use a getter to retrieve the DOC. We could just as easily have 
used the timeProvider fi eld directly. 
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Dependency Lookup

How do we design the SUT so that we can replace its 
dependencies at runtime?

The SUT asks another object to return the depended-on object 
before it uses it.

Almost every piece of code depends on some other classes, objects, modules, or 
procedures. To unit-test a piece of code properly, we would like to isolate it from 
its dependencies. Such isolation is diffi cult to achieve, however, if those depen-
dencies are hard-coded within the code in the form of literal classnames. 

Dependency Lookup is a way to allow the normal coupling between a SUT 
and its dependencies to be broken during automated testing. 

How It Works 

We avoid hard-coding the names of classes on which the SUT depends into 
our code because static binding severely limits our options regarding how the 
software is confi gured as it runs. Instead, we hard-code that name of a “compo-
nent broker” that returns a ready-to-use object. The component broker provides 
some means for the client software or perhaps a system confi guration manager 
to tell the SUT in question which objects to use for each component request. 
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When to Use It 

Dependency Lookup is most appropriate when we need to retrieve DOCs 
from deep inside the system and it would be too messy to pass the Test Double
(page 522) in from the client. A good example of such a situation is when we 
want to replace the data access layer of the system with a Fake Database (see
Fake Object on page 551) or In-Memory Database (see Fake Object) to speed 
up execution of the automated customer tests. It would be too complex for each 
Subcutaneous Test (see Layer Test on page 337) to pass the Fake Database in 
through the Service Facade [CJ2EEP] and all the way down to the data access layer. 
Using Dependency Lookup allows the test or even a Setup Decorator (page 447) 
to use a “confi guration facade” to install the Fake Database, which the SUT can 
magically use without any further ado. Jeremy Miller writes: 

You cannot understate the value of using a Service Locator for automated 
testing. We routinely use alternative dependencies in testing, both to deal 
with diffi cult dependencies and for test performance. For example, in a 
functional test we’ll collapse a Web site and a backing application server 
into a single process for better performance.

Dependency Lookup tends to be a lot simpler to retrofi t onto existing legacy 
software because it affects only those places where object construction actually 
occurs; we do not need to modify every intermediate object or method, as we 
might have to do with Dependency Injection (page 678). It is also much simpler 
to retrofi t existing round-trip tests so that they use a Fake Object to speed them 
up by wrapping them in a Setup Decorator. With this scheme, we do not have 
to change each test; instead, we can create new instances of the SUT in each 
test and still have the test use the same Fake Object because the Service Locator
remembers it across tests.2

The main alternative to Dependency Lookup is to provide a substitution 
mechanism within the SUT using Dependency Injection. This approach is gen-
erally preferable for unit tests because it makes the replacement of the DOC 
more obvious and directly connected to exercising the SUT. Another option is 
to use AOP to install test-specifi c logic using the development tools rather than 
modifying the design of the software. The least preferred solution is to use a 
Test Hook (page 709) within the SUT to avoid calling the DOC or within the 
DOC so that it behaves in a test-specifi c way. 

2 We call these tests “bimodal” or “multimodal” because they can be run with both real 
and fake DOCs.
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The well-known intermediary may be called a “Service Locator,” “Object 
Factory,” “Component Broker,” or “Component Registry.” While these names 
imply different semantics (new versus existing objects), this need not be the case. 
For performance reasons, we may choose to return new objects from a “Service 
Locator” or “previously enjoyed” objects from an Object Factory. To simplify 
this discussion, the term “Component Broker” is used here. 

Implementation Notes 

A desire to use a Test Double when testing our code implies a need to make DOCs 
substitutable. This constraint rules out hard-coding the names of classes on which 
we depend into our code because static binding severely limits our options regard-
ing how the software is confi gured as it runs. One way to avoid this issue is to 
have the SUT delegate DOC fabrication to another object. Of course, this scheme 
implies we need a way to get a reference to that object. We solve this recursive 
problem by having a well-known object act as an intermediary between the test 
and the DOC. This well-known object is referenced by a hard-coded classname. 
To be useful for installing Test Doubles, this well-known object must supply a 
mechanism by which the test can specify the object to be returned. 

Dependency Lookup has the following characteristics: 

• Either a Singleton [GOF], a Registry [PEAA], or some kind of Thread-
Specifi c Storage [POSA2]

• An interface that fully encapsulates which implementation we are using

• A built-in substitution mechanism for replacing the returned object 
with a Test Double

• Access via well-known global name

The Dependency Lookup mechanism returns an object that can be used directly 
by the client. The nature of the actual object returned determines whether it is 
more appropriate to call it a “Service Locator” or an “Object Factory.” Once 
the object is retrieved, the SUT uses it directly. During testing, the test arranges 
for the Dependency Lookup mechanism to return a test-specifi c object. 

Encapsulated Implementation 

A major requirement of Dependency Lookup is the existence of a well-known 
object to which we can delegate our requests for DOCs. This well-known 
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object could be a Singleton, a Registry, or some kind of Thread-Specifi c Storage 
mechanism.3

The “Component Broker” should encapsulate its implementation from the 
client (our SUT). That is, the interface provided by the “Component Broker” 
should not expose whether it is a Singleton or a Registry or whether some type 
of Thread-Specifi c Storage mechanism is in use under the covers. In fact, the 
test environment may want to provide a different implementation specifi cally to 
avoid issues caused by Singletons in tests, such as a Substitutable Singleton (see
Test-Specifi c Subclass on page 579).

Substitution Mechanism 

When a test wants to replace the real DOC with a Test Double, it needs a way 
to tell the “Component Broker” that a Test Double should be returned instead 
of the real component. The “Component Broker” may provide a confi guration 
interface to confi gure it with the object to be returned or the test can replace the 
component Registry with a suitable Test-Specifi c Subclass. It may also need to 
provide a way to restore the original or default confi guration of the broker so 
that the confi guration used in one test does not “leak” into another test, effec-
tively changing the “Component Broker” into a Shared Fixture (page 317). 

A less desirable confi guration alternative is to have the “Component Broker” 
read the classnames to be constructed for each request from a confi guration fi le. 
This approach poses several problems, however. First, the test must write the 
fi le as part of fi xture setup unless the test offers a way to replace the fi le access 
mechanism. This is sure to result in Slow Tests (page 253). Second, this scheme 
will not work with Confi gurable Test Doubles (page 558) unless the confi gura-
tion fi le can also provide initialization data for the object. Finally, the need to 
write a fi le opens the door to Interacting Tests (see Erratic Test on page 228)
because different tests may need different confi guration information. 

If the “Component Broker” must return objects based on confi guration data, 
a better solution is to have a separate Humble Object (page 695) read the fi le 
and call a confi guration interface on the “Component Broker.” The test can 
then use this same interface to confi gure the broker on a per-test basis. 

3 The main difference is that a Singleton has only a single instance, whereas a Registry 
makes no such promise. Thread-Specifi c Storage allows objects to access “global” data 
via a well-known object, where the data accessed is specifi c to a particular thread; the 
same object might retrieve different data depending on which thread is being run.
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Motivating Example 

The following test cannot be made to pass “as is”: 

   public void testDisplayCurrentTime_AtMidnight() {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify direct output
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( expectedTimeString, result);
   }

This test almost always fails because it assumes that the current time will 
be returned to the SUT by a DOC. The test cannot control which values are 
returned by that component (the DefaultTimeProvider), however, so this test will 
pass only when the system time is exactly midnight. 

   public String getCurrentTimeAsHtmlFragment() {
      Calendar currentTime;
      try {
         currentTime = new DefaultTimeProvider().getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.
   }

Because the SUT is hard-coded to use a particular class to retrieve the time, we 
cannot replace the DOC with a Test Double. That makes this test nondeter-
ministic and pretty much useless. We need to fi nd a way to gain control over 
the indirect inputs of the SUT. 

Refactoring Notes 

The fi rst step to making this behavior testable is to replace the hard-coded 
classname with a call to a “Service Locator”: 

   public String getCurrentTimeAsHtmlFragment() {
      Calendar currentTime;
      try {
         TimeProvider timeProvider =
               (TimeProvider) ServiceLocator.getInstance().
                                             findService("Time");
         currentTime = timeProvider.getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.
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Although we could have provided a class method to avoid the chained method 
calls, that step would just move the getInstance into the class method. The next 
refactoring step depends on whether we have a confi guration interface on our 
“Service Locator.” If it makes sense to confi gure the production version of the 
“Service Locator,” we can introduce the confi guration mechanism directly into 
it (as illustrated in the next example). Otherwise, we can simply override what 
the Service Locator returns in a Test-Specifi c Subclass (as illustrated in the sec-
ond example). 

Example: Confi gurable Registry 

This version of the test has been modifi ed to use the confi guration interface on 
the “Service Locator” to install a Test Double:

   public void testDisplayCurrentTime_AtMidnight_CSL() {
      // Fixture setup
      //      Test Double configuration
      MidnightTimeProvider tpStub = new MidnightTimeProvider();
      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //      Test Double installation
      ServiceLocator.getInstance().registerServiceForName(tpStub, "Time");
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

The code in the SUT was described previously. The code for the Confi guration 
Interface (see Confi gurable Test Double) of the Confi gurable Registry follows: 

public class ServiceLocator {
   protected ServiceLocator() {};

   protected static ServiceLocator soleInstance = null;

   public static ServiceLocator getInstance() {
      if (soleInstance==null)
         soleInstance = new ServiceLocator();
      return soleInstance;
   }

   private HashMap providers = new HashMap();

   public ServiceProvider findService(String serviceName) {
      return (ServiceProvider) providers.get(serviceName);
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   }

   // configuration interface
   public void registerServiceForName( ServiceProvider provider,
                                       String serviceName) {
      providers.put( serviceName, provider);
   }
}

The interesting thing about this example is our use of a Confi guration Interface on 
a production class rather than a Test Double. In fact, the Confi gurable Registry 
avoids the need to use a Test Double by providing the test with a mechanism to 
alter the service component the Confi gurable Registry returns. 

Example: Substituted Singleton 

This version of the test deals with a nonconfi gurable Dependency Lookup 
mechanism by replacing the soleInstance of the “Service Locator” with a Sub-
stituted Singleton (see Test-Specifi c Subclass). To ensure the reusability of the 
confi guration interface of the Substituted Singleton, we pass the TimeProvider Test 
Stub (page 529) as an argument to overrideSoleInstance.

   public void testDisplayCurrentTime_AtMidnight_TSS() {
      // Fixture setup
      //      Test Double configuration
      MidnightTimeProvider tpStub = new MidnightTimeProvider();

      //   Instantiate SUT
      TimeDisplay sut = new TimeDisplay();
      //      Test Double installation
      //       Replaces the entire Service Locator with one that
      //       always returns our Test Stub
      ServiceLocatorTestSingleton.overrideSoleInstance(tpStub);
      // Exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // Verify outcome
      String expectedTimeString =
              "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals("Midnight", expectedTimeString, result);
   }

Note how the test overrides the object normally returned by getInstance with an 
instance of a Test-Specifi c Subclass. The code for the Singleton follows: 

public class ServiceLocator {
   protected ServiceLocator() {};

   protected static ServiceLocator soleInstance = null;
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   public static ServiceLocator getInstance() {
      if (soleInstance==null)
         soleInstance = new ServiceLocator();
      return soleInstance;
   }

   private HashMap providers = new HashMap();

   public ServiceProvider findService(String serviceName) {
      return (ServiceProvider) providers.get(serviceName);
   }
}

Note that we had to make the constructor and soleInstance protected rather than 
private to allow them to be overridden by the subclass. Finally, here is the code 
for the Substituted Singleton:

public class ServiceLocatorTestSingleton extends ServiceLocator {
   private ServiceProvider tpStub;

   private ServiceLocatorTestSingleton(TimeProvider newTpStub) {
      this.tpStub = newTpStub;
   };

   // Installation interface
   static ServiceLocatorTestSingleton
                     overrideSoleInstance(TimeProvider tpStub) {
      // We could save the real instance before reassigning
      // soleInstance so we could restore it later, but we'll
      // forego that complexity for this example
      soleInstance = new ServiceLocatorTestSingleton( tpStub);
      return (ServiceLocatorTestSingleton) soleInstance;
   } 

   // Overridden superclass method
   public ServiceProvider findService(String serviceName) {
      return tpStub;  // Hard-coded; ignores serviceName
   }
}

Because it cannot see the private HashMap of providers, this code simply returns 
the contents of the tpStub fi eld that it initialized in the constructor. 

About the Name 

Choosing a name for this pattern was tough. Service Locator and Component
Broker were already in widespread use. Both are good names for use in their 
particular circumstance. Unfortunately, neither name can encompass the other, 
so I had to come up with another name that unifi ed the two major variants. 
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The name Dependency Injection was already in widespread use for the alter-
nate pattern; a desire for consistency with that name led to using Dependency
Lookup. See the sidebar “What’s in a (Pattern) Name?” on page 576 for more 
on this decision-making process. 
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Humble Object

How can we make code testable when it is too closely coupled 
to its environment?

We extract the logic into a separate, easy-to-test component that is decoupled 
from its environment.

We are often faced with trying to test software that is closely coupled to 
some kind of framework. Examples include visual components (e.g., widgets, 
dialogs) and transactional component plug-ins. Testing these objects is diffi cult 
because constructing all the objects with which our SUT needs to interact may 
be expensive—or even impossible. In other cases, objects may be hard to test 
because they run asynchronously; examples include active objects (e.g., threads, 
processes, Web servers) and user interfaces. These objects’ asynchronicity intro-
duces uncertainty, a requirement for interprocess coordination, and the need 
for delays into tests. Faced with these thorny issues, developers often just give 
up on testing this kind of code. The result: Production Bugs (page 268) caused 
by Untested Code and Untested Requirements.

Humble Object is a way to bring the logic of these hard-to-instantiate objects 
under test in a cost-effective manner. 
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How It Works 

We extract all the logic from the hard-to-test component into a component that 
is testable via synchronous tests. This component implements a service interface 
consisting of methods that expose the logic of the untestable component; the 
only difference is that these methods are accessible via synchronous method 
calls. As a result, the Humble Object component becomes a very thin adapter 
layer that contains very little code. Each time the framework calls the Humble
Object, this object delegates its responsibilities to the testable component. If 
the testable component needs any information from the context, the Humble
Object is responsible for retrieving it and passing it to the testable component. 
The Humble Object code is typically so simple that we often don’t bother writing 
tests for it because it can be quite diffi cult to set up the environment needed to run 
those tests. 

When to Use It 

We can and should introduce a Humble Object whenever we have nontrivial 
logic in a component that is problematic to instantiate because it depends on a 
framework or can be accessed only asynchronously. There are lots of reasons 
for objects being hard to test; consequently, there are lots of variations in how 
we break the dependencies that are required. The following variations are the 
most common examples of Humble Object—but we shouldn’t be surprised if 
we sometimes need to invent our own variation. 

Variation: Humble Dialog 

Graphical user interface (GUI) frameworks require us to provide objects to 
represent our pages and controls. These objects provide logic to translate user 
actions into the underlying system actions and to translate the system responses 
back into user recognizable behavior. This logic may involve invoking the 
application behind the user interface and/or modifying the state of this or other 
visual objects. 

Visual objects are very diffi cult to test effi ciently because they are tightly 
coupled to the presentation framework that invokes them. To be effective, a 
test would need to simulate that environment to provide the visual object with 
all the information and facilities it requires. Further complicating the issue is 
the fact that these frameworks often run in their own thread of control, which 
means that we must use asynchronous tests. These tests are challenging to write, 
and they often result in Slow Tests (page 253) and Nondeterministic Tests (see
Erratic Test on page 228). Under these circumstances, we may benefi t by using 
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a Humble Object to move all of the controller and view-updating logic out of 
the framework-dependent object and into a testable object. 

Variation: Humble Executable 

Many programs contain active objects. Active objects have their own thread of 
execution so they can do things in parallel with other activities of the system. 
Examples of active objects include anything that runs in a separate process (e.g., 
Windows applications in .exe fi les) or thread (in Java, any object that imple-
ments Runnable). These objects may be launched directly by the client, or they 
may be started automatically, process requests from a queue, and send replies 
via a return message. Either way, we must write asynchronous tests (complete 
with interprocess coordination and/or explicit delays and Neverfail Tests; see 
Production Bugs) to verify their behavior. 

The Humble Executable pattern provides a way to bring the logic of the exe-
cutable under test without incurring the delays that might otherwise lead to Slow 
Tests and Nondeterministic Tests. We extract all the logic from the executable into 
a component that is testable via synchronous tests. This component implements 
a service interface consisting of methods that expose all logic of the executable; 
the only difference is that these methods are accessible via synchronous method 
calls. The testable component may be a Windows DLL, a Java JAR containing a 
Service Facade [CJ2EEP] class, or some other language component or class that 
exposes the services of the executable in a testable way. 

The Humble Executable component itself contains very little code. All it 
does in its thread of control is to load the testable component (if a True Hum-
ble Object) and delegate to it. As a result, the Humble Executable requires 
only one or two tests to verify that it performs this load/delegate function 
correctly. Although these tests still take seconds to execute, they have a much 
smaller impact on the overall test suite execution time because so few of them 
exist. Given that this code will not change very often, these tests can even 
be omitted from the suite of tests that developers execute before check-in to 
speed up test suite execution times. Of course, we would still prefer to run the 
Humble Executable tests as part of the automated build process. 

Variation: Humble Transaction Controller 

Many applications use databases to persist their state. Fixture setup with databases 
can be slow and complex, and leftover fi xtures can wreak havoc with subsequent 
tests and test runs. If we are using a Shared Fixture (page 317), the fi xture’s persis-
tence may lead to Erratic Tests. Humble Transaction Controller facilitates testing of 
the logic that runs within the transaction by making it possible for the test to control 

 Humble Object

Humble 
Object

www.it-ebooks.info

http://www.it-ebooks.info/


698 Chapter 26  Design-for-Testability Patterns 

the transaction. As a consequence, we can exercise the logic, verify the outcome, and 
then abort the transaction, leaving no trace of our activity in the database. 

To implement Humble Transaction Controller, we use an Extract Method 
[Fowler] refactoring to move all the logic we want to test out of the code that 
controls the transaction and into a separate method that knows nothing about 
transaction control and that can be called by the test. Because the caller con-
trols the transaction, the test can start, commit (if it so chooses), and (most 
commonly) roll back the transaction. In this case, the behavior—not the 
dependencies—causes us to bypass the Humble Object when we are testing 
the business logic. As a result, we are more likely to be able to get away with a 
Poor Man’s Humble Object.

As for the Humble Object, it contains no business logic. Thus the only behavior 
that needs to be tested is whether the Humble Object commits and rolls back the 
transaction properly based on the outcome of the methods it calls. We can write a 
test that replaces the testable component with a Test Stub (page 529) that throws 
an exception and then verify that this activity results in a rollback of the transac-
tion. If we are using a Poor Man’s Humble Object, the stub would be implemented 
as a Subclassed Test Double (see Test-Specifi c Subclass on page 579) that overrides 
the “real” methods with methods that throw exceptions. 

Many of the major application server technologies support this pattern either 
directly or indirectly by taking transaction control away from the business objects 
that we write. If we are building our software without using a transaction control 
framework, we may need to implement our own Humble Transaction Controller.
See the “Implementation Notes” section for some ideas on how we can enforce 
the separation. 

Variation: Humble Container Adapter 

Speaking of “containers,” we often have to implement specifi c interfaces to 
allow our objects to run inside an application server (e.g., the “EJB session 
bean” interface). Another variation on the Humble Object pattern is to design 
our objects to be container-independent and then have a Humble Container
Adapter adapt them to the interface required by container. This strategy makes 
our logic components easy to test outside the container, which dramatically 
reduces the time required for an “edit–compile–test” cycle. 

Implementation Notes 

We can make the logic that normally runs inside the Humble Object testable in 
several different ways. All of these techniques share one commonality: They in-
volve exposing the logic so that it can be verifi ed using synchronous tests. They 
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vary, however, in terms of how the logic is exposed. Regardless of how logic ex-
posure occurs, test-driven purists would prefer that tests verify that the Humble
Object is calling the extracted logic properly. This can be done by replacing the 
real logic methods with some kind of Test Double (page 522) implementation.

Variation: Poor Man’s Humble Object

The simplest way to isolate and expose each piece of logic we want to verify is 
to place it into a separate method. We can do so by using an Extract Method 
refactoring on in-line logic and then making the resulting method visible from 
the test. Of course, this method cannot require anything from the context. Ideally 
everything the method needs to do its work will be passed in as arguments but this 
information could also be placed in fi elds. Problems may arise if the testable com-
ponent needs to call methods to access information it needs and those methods 
are dependent on the (nonexistent/faked) context, as this dependency makes 
writing the tests more complex. 

This approach, which constitutes the “poor man’s” Humble Object, works well 
if no obstacles prevent the instantiation of the Humble Object (e.g., automatically 
starting its thread, no public constructor, unsatisfi able dependencies). Use of a Test-
Specifi c Subclass can also help break these dependencies by providing a test-friendly 
constructor and exposing private methods to the test. 

When testing a Subclassed Humble Object or a Poor Man’s Humble Object,
we can build the Test Spy (page 538) as a Subclassed Test Double of the Humble 
Object to record when the methods in question were called. We can then use 
assertions within the Test Method (page 348) to verify that the values recorded 
match the values expected. 

Variation: True Humble Object 

At the other extreme, we can put the logic we want to test into a separate class 
and have the Humble Object delegate to an instance of it. This approach, which 
was implied in the introduction to this pattern, will work in almost any circum-
stance where we have complete control over the code. 

Sometimes the host framework requires that its objects hold certain responsi-
bilities that we cannot move elsewhere. For example, a GUI framework expects 
its view objects to contain data for the controls of the GUI and the data that 
those controls display on the screen. In these cases we must either give the test-
able object a reference to the Humble Object and have it manipulate the data for 
that object or put some minimal update logic in the Humble Object and accept 
that it won’t be covered by automated tests. The former approach is almost 
always possible and is always preferable. 
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To refactor to a True Humble Object, we normally do a series of Extract 
Method refactorings to decouple the public interface of the Humble Object
from the implementation logic we plan to delegate. Then we do an Extract Class
[Fowler] refactoring to move all the methods—except the ones that defi ne the 
public interface of the Humble Object—to the new “testable” class. We introduce 
an attribute (a fi eld) to hold a reference to an instance of the new class and initial-
ize it to an instance of the new class either as part of the constructor or using 
Lazy Initialization [SBPP] in each interface method. 

When testing a True Humble Object (where the Humble Object delegates to a 
separate class), we typically use a Lazy Mock Object (see Mock Object on page
544) or Test Spy to verify that the extracted class is called correctly. By contrast, 
using the more common Active Mock Object (see Mock Object) is problematic 
in this situation because the assertions are made on a different thread from the 
Testcase Object (page 382) and failures won’t be detected unless we fi nd a way 
to channel them back to the test thread. 

To ensure that the extracted testable component is instantiated properly, we 
can use an observable Object Factory (see Dependency Lookup on page 686) to 
construct the extracted component. The test can register as a listener to verify 
the correct method is called on the factory. We can also use a regular factory
object and replace it during the test with a Mock Object or Test Stub to monitor 
which factory method was called. 

Variation: Subclassed Humble Object 

In between the extremes of the Poor Man’s Humble Object and the True Humble 
Object are approaches that involve clever use of subclassing to put the logic into 
separate classes while still allowing them to be on a single object. A number of 
different ways to do this are possible, depending on whether the Humble Object
class needs to subclass a specifi c framework class. I won’t go into a lot of detail 
here as this technique is very specifi c to the language and runtime environment. 
Nevertheless, you should recognize that the basic options are either having the 
framework-dependent class inherit the logic to be tested from a superclass 
or having the class delegate to an abstract method that is implemented by a 
subclass. 

Motivating Example (Humble Executable) 

In this example, we are testing some logic that runs in its own thread and 
processes each request as it arrives. In each test, we start up the thread, send 
it some messages, and wait long enough so that our assertions pass. Unfortu-
nately, it takes several seconds for the thread to start up, become initialized, 
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and process the fi rst request. Thus the test fails sporadically unless we include 
a two-second delay after starting the thread. 

public class RequestHandlerThreadTest extends TestCase {
   private static final int TWO_SECONDS = 3000;

   public void testWasInitialized_Async()
            throws InterruptedException {
      // Setup
      RequestHandlerThread sut = new RequestHandlerThread();
      // Exercise
      sut.start();
      //    Verify
      Thread.sleep(TWO_SECONDS);
      assertTrue(sut.initializedSuccessfully());
   }

   public void testHandleOneRequest_Async()
            throws InterruptedException {
      // Setup
      RequestHandlerThread sut = new RequestHandlerThread();
      sut.start();
      // Exercise
      enqueRequest(makeSimpleRequest());
      // Verify
      Thread.sleep(TWO_SECONDS);
      assertEquals(1, sut.getNumberOfRequestsCompleted());
      assertResponseEquals(makeSimpleResponse(), getResponse());
   }
}

Ideally, we would like to test the thread with each kind of transaction individu-
ally to achieve better Defect Localization (see page 22). Unfortunately, if we did 
so our test suite would take many minutes to run because each test includes a 
delay of several seconds. Another problem is that the tests won’t result in an error 
if our active object has an exception in its own thread. 

A two-second delay may not seem like a big deal, but consider what happens 
when we have a dozen such tests. It would take us almost half a minute to run 
these tests. Contrast this performance with that of normal tests—we can run 
several hundred of those tests each second. Testing via the executable is affecting 
our productivity negatively. For the record, here’s the code for the executable: 

public class RequestHandlerThread extends Thread {
   private boolean _initializationCompleted = false;
   private int _numberOfRequests = 0;

   public void run()  {
      initializeThread();
      processRequestsForever();
   }

 Humble Object
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   public boolean initializedSuccessfully() {
      return _initializationCompleted;
   }

   void processRequestsForever() {
      Request request = nextMessage();
      do {
         Response response = processOneRequest(request);
         if (response != null) {
            putMsgOntoOutputQueue(response);
         }
         request = nextMessage();
      } while (request != null);
   }
}

To avoid the distraction of the business logic, I have already used an Extract 
Method refactoring to move the real logic into the method processOneRequest.
Likewise, the actual initialization logic is not shown here; suffi ce it to say that 
this logic sets the variable _initializationCompleted when it fi nishes successfully. 

Refactoring Notes 

To create a Poor Man’s Humble Object, we expose the methods to make them 
visible from the test. (If the code used in-line logic, we would do an Extract 
Method refactoring fi rst.) If there were any dependencies on the context, we 
would need to do an Introduce Parameter [JBrains] refactoring or an Introduce 
Field [JetBrains] refactoring so that the processOneRequest method need not access 
anything from the context. 

To create a true Humble Object, we can do an Extract Class refactoring on the 
executable to create the testable component, leaving behind just the Humble Object
as an empty shell. This step typically involves doing the Extract Method refactoring 
described above to separate the logic we want to test (e.g., the initializeThread
method and the processOneRequest method) from the logic that interacts with the 
context of the executable. We then do an Extract Class refactoring to introduce the 
testable component class (essentially a single Strategy [GOF] object) and move all 
methods except the public interface methods over to it. The Extract Class refac-
toring includes introducing a fi eld to hold a reference to the new object and creating 
an instance. It also includes fi xing all of the public methods so that they call the 
methods that were moved to the new testable class. 
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Example: Poor Man’s Humble Executable

Here is the same set of tests rewritten as a Poor Man’s Humble Object: 

   public void testWasInitialized_Sync()
            throws InterruptedException {
      // Setup
      RequestHandlerThread sut = new RequestHandlerThread();
      // Exercise
      sut.initializeThread();
      // Verify
      assertTrue(sut.initializedSuccessfully());
   }

   public void testHandleOneRequest_Sync()
            throws InterruptedException {
      // Setup
      RequestHandlerThread sut = new RequestHandlerThread();
      // Exercise
      Response response = sut.processOneRequest(makeSimpleRequest());
      // Verify
      assertEquals(1, sut.getNumberOfRequestsCompleted());
      assertResponseEquals(makeSimpleResponse(), response);
   }

Here, we have made the methods initializeThread and processOneRequest public so 
that we can call them synchronously from the test. Note the absence of a delay in 
this test. This approach works well as long as we can instantiate the executable 
component easily. 

Example: True Humble Executable 

Here is the code for our SUT refactored to use a True Humble Executable:

public class HumbleRequestHandlerThread extends Thread
implements Runnable {
   public RequestHandler requestHandler;

   public HumbleRequestHandlerThread() {
      super();
      requestHandler = new RequestHandlerImpl();
   }

   public void run() {
      requestHandler.initializeThread();
      processRequestsForever();
   }

   public boolean initializedSuccessfully() {

 Humble Object
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      return requestHandler.initializedSuccessfully();
   }

   public void processRequestsForever() {
      Request request = nextMessage();
      do {
         Response response =
            requestHandler.processOneRequest(request);
         if (response != null) {
            putMsgOntoOutputQueue(response);
         }
         request = nextMessage();
      } while (request != null);
   }

Here, we have moved the method processOneRequest to a separate class that we 
can instantiate easily. Below is the same test rewritten to take advantage of the 
extracted component. Note the absence of a delay in this test. 

   public void testNotInitialized_Sync()
            throws InterruptedException {
      // Setup/Exercise
      RequestHandler sut = new RequestHandlerImpl();
      // Verify
      assertFalse("init", sut.initializedSuccessfully());
   }

   public void testWasInitialized_Sync()
            throws InterruptedException {
      //   Setup
      RequestHandler sut = new RequestHandlerImpl();
      //   Exercise
      sut.initializeThread();
      // Verify
      assertTrue("init", sut.initializedSuccessfully());
   }

   public void testHandleOneRequest_Sync()
            throws InterruptedException {
      // Setup
      RequestHandler sut = new RequestHandlerImpl();
      // Exercise
      Response response = sut.processOneRequest( makeSimpleRequest() );
      // Verify
      assertEquals( 1, sut.getNumberOfRequestsDone());
      assertResponseEquals( makeSimpleResponse(), response);
   }

Because we have introduced delegation to another object, we should probably 
verify that the delegation occurs properly. The next test verifi es that the Humble
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Object calls the initializeThread method and the processOneRequest method on the 
newly created testable component: 

   public void testLogicCalled_Sync()
            throws InterruptedException {
      // Setup
      RequestHandlerRecordingStub mockHandler =
            new RequestHandlerRecordingStub();
      HumbleRequestHandlerThread sut = new HumbleRequestHandlerThread();
      //    Mock Installation
      sut.setHandler( mockHandler );
      sut.start();
      // Exercise
      enqueRequest(makeSimpleRequest());
      // Verify
      Thread.sleep(TWO_SECONDS);
      assertTrue("init", mockHandler.initializedSuccessfully() );
      assertEquals( 1, mockHandler.getNumberOfRequestsDone() );
   }

Note that this test does require at least a small delay to allow the thread to 
start up. The delay is shorter, however, because we have replaced the real logic 
component with a Test Double that responds instantly and only one test now 
requires the delay. We could even move this test to a separate test suite that is 
run less frequently (e.g., only during the automated build process) to ensure that 
all tests performed before each check-in run quickly. 

The other signifi cant thing to note is that we are using a Test Spy rather 
than a Mock Object. Because the assertions done by the Mock Object would be 
raised in a different thread from the Test Method, the Test Automation Frame-
work (page 298)—in this example, JUnit—won’t catch them. As a consequence, 
the test might indicate “pass” even though assertions in the Mock Object are 
failing. By making the assertions in the Test Method, we avoid having to do 
something special to relay the exceptions thrown by the Mock Object back to 
the thread in which the Test Method is executing. 

The preceding test verifi ed that our Humble Object actually delegates to 
the Test Spy that we have installed. It would also be a good idea to verify that 
our Humble Object actually initializes the variable holding the delegate to the 
appropriate class. Here’s a simple way to do so: 

   public void testConstructor() {
      // Exercise
      HumbleRequestHandlerThread sut = new HumbleRequestHandlerThread(); 
      // Verify
      String actualDelegateClass = sut.requestHandler.getClass().getName();
      assertEquals( RequestHandlerImpl.class.getName(),
                    actualDelegateClass);
   }
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This Constructor Test (see Test Method) verifi es that a specifi c attribute has been 
initialized.

Example: Humble Dialog 

Many development environments let us build the user interface visually by 
dragging and dropping various objects (“widgets”) onto a canvas. They let us 
add behavior to these visual objects by selecting one of several possible actions 
or events specifi c to that visual object and typing logic into the code window 
presented by the IDE. This logic may involve invoking the application behind 
the user interface or it may involve modifying the state of this or some other 
visual object. 

Visual objects are very diffi cult to test effi ciently because they are tightly 
coupled to the presentation framework that invokes them. To provide the 
visual object with all the information and facilities it requires, the test would 
need to simulate that environment—quite a challenge. This makes testing very 
complicated, so much so that many development teams don’t bother testing 
the presentation logic at all. This lack of testing, not surprisingly, often leads to 
Production Bugs caused by untested code and Untested Requirements.

To create the Humble Dialog, we extract all the logic from the view com-
ponent into a nonvisual component that is testable via synchronous tests. If 
this component needs to update the view object’s (Humble Dialog’s) state, the 
Humble Dialog is passed in as an argument. When testing the nonvisual com-
ponent, we typically replace the Humble Dialog with a Mock Object that is 
confi gured with the indirect input values and the expected behavior (indirect 
outputs). In GUI frameworks that require the Humble Dialog to register itself 
with the framework for each event it wishes to see, the nonvisual component can 
register itself instead of the Humble Dialog (as long as that doesn’t introduce 
unmanageable dependencies on the context). This fl exibility makes the Humble
Dialog even simpler because the events go directly to the nonvisual component 
and require no delegation logic. 

The following code sample is taken from a VB view component (.ctl) that 
includes some nontrivial logic. It is part of a custom plug-in we built for Mercury 
Interactive’s TestDirector tool. 

 ' Interface method, TestDirector will call this method
 ' to display the results.
Public Sub ShowResultEx(TestSetKey As TdTestSetKey, _
                        TSTestKey As TdTestKey, _
                        ResultKey As TdResultKey)
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    Dim RpbFiles As OcsRpbFiles
    Set RpbFiles = getTestResultFileNames(ResultKey)
    ResultsFileName = RpbFiles.ActualResultFileName
    ShowFileInBrowser ResultsFileName
End Sub

Function getTestResultFileNames(ResultKey As Variant) As OcsRpbFiles
    On Error GoTo Error
    Dim Attachments As Collection
    Dim thisTest As Run
    Dim RpbFiles As New OcsRpbFiles

    Call EnsureConnectedToTd

    Set Attachments = testManager.GetAllAttachmentsOfRunTest(ResultKey)
    Call RpbFiles.LoadFromCollection(Attachments, "RunTest")
    Set getTestResultFileNames = RpbFiles
    Exit Function
Error:
    ' do something ...
End Function

Ideally, we would like to test the logic. Unfortunately, we cannot construct the 
objects passed in as parameters because they don’t have public constructors. 
Passing in objects of some other type isn’t possible either, because the types of 
the function parameters are hard-coded to be specifi c concrete classes. 

We can do an Extract Testable Component (page 735) refactoring on the ex-
ecutable to create the testable component, leaving behind just the Humble Dialog
as an empty shell. This approach typically involves doing several Extract Method 
refactorings (already done in the original example to make the refactoring easier 
to understand), one for each chunk of logic that we want to move. We then do 
an Extract Class refactoring to create our new testable component class. The 
Extract Class refactoring may include both Move Method [Fowler] and Move 
Field [Fowler] refactorings to move the logic and the data it requires out of the 
Humble Dialog and into the new testable component. 

Here’s the same view converted to a Humble Dialog:

 ' Interface method, TestDirector will call this method
 ' to display the results.
Public Sub ShowResultEx(TestSetKey As TdTestSetKey, _
                        TSTestKey As TdTestKey, _
                        ResultKey As TdResultKey)
    Dim RpbFiles As OcsRpbFiles
    Call EnsureImplExists
    Set RpbFiles = Implementation.getTestResultFileNames(ResultKey)
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    ResultsFileName = RpbFiles.ActualResultFileName
    ShowFileInBrowser ResultsFileName
End Sub

Private Sub EnsureImplExists()
    If Implementation Is Nothing Then
        Set Implementation = New OcsScriptViewerImpl
    End If
End Sub

Here’s the testable component OcsScriptViewerImpl that the Humble Object calls:

'  ResultViewer Implementation:
Public Function getTestResultFileNames(ResultKey As Variant) As OcsRpbFiles
    On Error GoTo Error

    Dim Attachments As Collection
    Dim thisTest As Run
    Dim RpbFiles As New OcsRpbFiles

    Call EnsureConnectedToTd

    Set Attachments = testManager.GetAllAttachmentsOfRunTest(ResultKey)
    Call RpbFiles.LoadFromCollection(Attachments, "RunTest")
    Set getTestResultFileNames = RpbFiles
    Exit Function
Error:
    ' do something ...
End Function

We could now instantiate this OcsScriptViewerImpl class easily and write VbUnit 
tests for it. I’ve omitted the tests for space reasons because they don’t really show 
anything particularly interesting. 

Example: Humble Transaction Controller 

Transaction Rollback Teardown (page 668) contains an example of writing tests 
that bypass the Humble Transaction Controller.

Further Reading 

See http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf 
for Michael Feathers’ original write-up of the Humble Dialog pattern.
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Test Hook                                             

How do we design the SUT so that we can replace its dependencies at runtime?

We modify the SUT to behave differently during the test.

Almost every piece of code depends on some other classes, objects, modules, or 
procedures. To unit-test a piece of code properly, we would like to isolate it from 
its dependencies. Such isolation is diffi cult to achieve if those dependencies are 
hard-coded within the code in the form of literal classnames. 

Test Hook is a “method of last resort” for introducing test-specifi c behavior 
during automated testing. 

How It Works 

We modify the behavior of the SUT to support testing by putting a hook directly 
into the SUT or into a DOC. This approach implies that we use some kind of 
testing fl ag that can be checked in the appropriate place. 

When to Use It 

Sometimes it is appropriate to use this “pattern of last resort” when we cannot 
use either Dependency Injection (page 678) or Dependency Lookup (page 686). 
In this situation, we use a Test Hook because we have no other way to address 
the Untested Code (see Production Bugs on page 268) caused by a Hard-Coded
Dependency (see Hard-to-Test Code on page 209).
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A Test Hook may be the only way to introduce Test Double (page 522)
behavior when we are programming in a procedural language that does not 
support objects, function pointers, or any other form of dynamic binding. 

Test Hooks can be used as a transition strategy to bring legacy code under 
the testing umbrella. We can introduce testability using the Test Hooks and then 
use those Tests as Safety Net (see page 24) while we refactor for even more test-
ability. At some point we should be able to discard the initial round of tests that 
required the Test Hooks because we have enough “modern” tests to protect us. 

Implementation Notes 

The essence of the Test Hook pattern is that we insert some code into the SUT 
that lets us test it. Regardless of how we insert this code into the SUT, the code 
itself can either 

• Divert control to a Test Double instead of the real object, or 

• Be the Test Double within the real object, or 

• Be a test-specifi c Decorator [GOF] that delegates to the real object 
when in production. 

The fl ag that indicates testing is in progress can be a compile-time constant, 
which may, for example, cause the compiler to optimize out all the testing logic. 
In languages that support preprocessors or compiler macros, such constructs 
may also be used to remove the Test Hook before the code enters the production 
phase. The value of the fl ag can also be read in from confi guration data or stored 
in a global variable that the test sets directly. 

Motivating Example 

The following test cannot be made to pass “as is”: 

   public void testDisplayCurrentTime_AtMidnight() {
      // fixture setup
      TimeDisplay sut = new TimeDisplay();
      // exercise SUT
      String result = sut.getCurrentTimeAsHtmlFragment();
      // verify direct output
      String expectedTimeString =
            "<span class=\"tinyBoldText\">Midnight</span>";
      assertEquals( expectedTimeString, result);
   }

This test almost always fails because it depends on a DOC to return the current 
time to the SUT. The test cannot control the values returned by that component, 
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the DefaultTimeProvider. As a consequence, this test will pass only when the system 
time is exactly midnight. 

   public String getCurrentTimeAsHtmlFragment() {
      Calendar currentTime;
      try {
         currentTime = new DefaultTimeProvider().getTime();
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.
   }

Because the SUT is hard-coded to use a particular class to retrieve the time, we 
cannot replace the DOC with a Test Double. As a result, this test is nondeter-
ministic and pretty much useless. We need to fi nd a way to gain control over the 
indirect inputs of the SUT. 

Refactoring Notes 

We can introduce a Test Hook by creating a fl ag that can be checked into the 
SUT. We then wrap the production code with an if/then/else control structure 
and put the test-specifi c logic into the then clause. 

Example: Test Hook in System Under Test 

Here’s the production code modifi ed to accommodate testing via a Test Hook:

   public String getCurrentTimeAsHtmlFragment() {
      Calendar theTime;
      try {
         if (TESTING) {
            theTime = new GregorianCalendar();
            theTime.set(Calendar.HOUR_OF_DAY, 0);
            theTime.set(Calendar.MINUTE, 0);}
         else {
            theTime = new DefaultTimeProvider().getTime();
         }
      } catch (Exception e) {
         return e.getMessage();
      }
      // etc.

Here we have implemented the testing fl ag as global constant, which we can 
edit as necessary. This fl exibility implies a separate build step is necessary for 
versions of the system to be tested. Such a strategy is somewhat safer than using 
a dynamic confi guration parameter or member variable because many compilers 
will optimize this hook right out of the object code. 
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Example: Test Hook in Depended-on Component 

We can also introduce a Test Hook by putting the hook into a DOC rather than 
into the SUT:

   public Calendar getTime() throws TimeProviderEx {
      Calendar theTime = new GregorianCalendar();
      if (TESTING) {
         theTime.set(Calendar.HOUR_OF_DAY, 0);
         theTime.set(Calendar.MINUTE, 0);}
      else {
         // just return the calendar
      }
      return theTime;
   };

This approach is somewhat better because we are not modifying the SUT as we 
test it. 
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Chapter 27 

Value Patterns 
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Literal Value                                 

How do we specify the values to be used in tests?

We use literal constants for object attributes and assertions. 

BigDecimal expectedTotal = new BigDecimal("99.95");

The values we use for the attributes of objects in our test fi xture and the expect-
ed outcome of our test are often related to one another in a way that is defi ned 
in the requirements. Getting these values—and, in particular, the relationship 
between the pre-conditions and the post-conditions—right is crucial because it 
drives the correct behavior into the SUT. 

Literal Values are a popular way to specify the values of attributes of objects 
in a test. 

How It Works 

We use a literal constant of the appropriate type for each attribute of an 
object or for use as an argument of a method call to the SUT or an Assertion
Method (page 362). The expected values are calculated by hand, calculator, or 
spreadsheet and hard-coded within the test as Literal Values.

When to Use It 

Using a Literal Value in-line makes it very clear which value is being used; there 
is no doubt about the value’s identity because it is right in front of our face. 
Unfortunately, using Literal Values can make it diffi cult to see the relationships 
between the values used in various places in the test, which may in turn lead to 
Obscure Tests (page 186). It certainly makes sense to use Literal Values if the 
testing requirements specify which values are to be used and we want to make it 
clear that we are, in fact, using those values. [We might sometimes consider us-
ing a Data-Driven Test (page 288) instead to avoid the effort and transcription 
errors associated with copying the data into test methods.]

One downside of using a Literal Value is that we might use the same value 
for two unrelated attributes; if the SUT happens to use the wrong one, tests 
may pass even though they should not. If the Literal Value is a fi lename or a key 
used to access a database, the meaning of the value is lost—the content of the 
fi le or record actually drives the behavior of the SUT. Using a Literal Value as 
the key does nothing to help the reader understand the test in such a case, and 
we are likely to suffer from Obscure Tests.

Also known as:
Hard-Coded

Value, Constant 
Value

Literal Value
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If the values in the expected outcome can be derived from the values in the 
fi xture setup logic, we will be more likely to use the Tests as Documentation 
(see page 23) if we use Derived Values (page 718). Conversely, if the values are 
not important to the specifi cation of the logic being tested, we should consider 
using Generated Values (page 723). 

Implementation Notes 

The most common way to use a Literal Value is with literal constants within 
the code. When the same value needs to be used in several places in the test 
(typically during fi xture setup and result verifi cation), this approach can 
obscure the relationship between the test pre-conditions and post-conditions. 
Introducing an evocatively named symbolic constant can make this relationship 
much clearer. Likewise, if we cannot use a self-describing value, we can still make 
the code easier to use by defi ning a suitably named symbolic constant and using 
it wherever we would have used the Literal Value.

Variation: Symbolic Constant 

When we need to use the same Literal Value in several places in a single Test 
Method (page 348) or within several distinct tests, it is a good practice to use a 
Symbolic Constant instead of a Literal Value. A Symbolic Constant is function-
ally equivalent to a Literal Value but reduces the likelihood of High Test Mainte-
nance Cost (page 265).

Variation: Self-Describing Value 

When several attributes of an object need the same kind of value, using different 
values provides advantages by helping us to prove that the SUT is working with 
the correct attribute. When an attribute or argument is an unconstrained string, 
it can be useful to choose a value that describes the role of the value in the test 
(a Self-Describing Value). For example, using “Not an existing customer” for 
the name of a customer might be more helpful to the reader than using “Joe 
Blow,” especially when we are debugging or when the attributes are included in 
the test failure output. 

Example: Literal Value 

Because Literal Value is usually the starting point when writing tests, I’ll dis-
pense with a motivating example and cut straight to the chase. Here’s an 
example of the Literal Value pattern in action. Note the use of Literal Values
in both the fi xture setup logic and the assertion. 

 Literal Value

Literal Value

www.it-ebooks.info

http://www.it-ebooks.info/


716 Chapter 27  Value Patterns

   public void testAddItemQuantity_1() throws Exception {
      Product product = new Product("Widget", 19.95);
      Invoice invoice = new Invoice();
      // Exercise
      invoice.addItemQuantity(product, 1);
      // Verify
      List lineItems = invoice.getLineItems();
      LineItem actualItem = (LineItem)lineItems.get(0);
      assertEquals(new BigDecimal("19.95"),
                    actualItem.getExtendedPrice());
   }

The Product constructor requires both a name and a cost. The assertion on the 
extendedCost of the lineItem requires a value for the total cost of the product for 
that line item. In this example, we included these values as hard-coded literal 
constants. In the next example, we’ll use symbolic constants instead. 

Refactoring Notes 

We can reduce the Test Code Duplication (page 213) in the form of the hard-
coded Literal Value of 19.95 by doing a Replace Magic Number with Symbolic 
Constant [Fowler] refactoring. 

Example: Symbolic Constant 

This refactored version of the original test replaces the duplicated Literal Value
of the widget’s price (19.95) with a suitably named Symbolic Constant that is 
used during fi xture setup as well as result verifi cation:

   public void testAddItemQuantity_1s() throws Exception {
      BigDecimal widgetPrice = new BigDecimal("19.95");
      Product product = new Product("Widget", widgetPrice);
      Invoice invoice = new Invoice();
      // Exercise
      invoice.addItemQuantity(product, 1);
      // Verify
      List lineItems = invoice.getLineItems();
      LineItem actualItem = (LineItem)lineItems.get(0);
      assertEquals(widgetPrice, actualItem.getExtendedPrice());
   }

Literal Value 
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Example: Self-Describing Value 

This refactored version of the test provides a Self-Describing Value for the 
mandatory name argument passed to the Product constructor. This value is 
not used by the method we are testing; it is merely stored for later access by 
another method we are not testing here. 

   public void testAddItemQuantity_1b() throws Exception {
      BigDecimal widgetPrice = new BigDecimal("19.95");
      Product product = new Product("Irrelevant product name",
                                    widgetPrice);
      Invoice invoice = new Invoice();
      // Exercise
      invoice.addItemQuantity(product, 1);
      // Verify
      List lineItems = invoice.getLineItems();
      LineItem actualItem = (LineItem)lineItems.get(0);
      assertEquals(widgetPrice, actualItem.getExtendedPrice());
   }

Example: Distinct Value 

This test needs to verify that the item’s name is taken from the product’s name. 
We’ll use a Distinct Value for the name and the SKU so we can tell them apart. 

   public void testAddItemQuantity_1c() throws Exception {
      BigDecimal widgetPrice = new BigDecimal("19.95");
      String name = "Product name";
      String sku = "Product SKU";
      Product product = new Product(name, sku, widgetPrice);
      Invoice invoice = new Invoice();
      // Exercise
      invoice.addItemQuantity(product, 1);
      // Verify
      List lineItems = invoice.getLineItems();
      LineItem actualItem = (LineItem)lineItems.get(0);
      assertEquals(name, actualItem.getName());
   }

This also happens to be an example of a self-describing value. 

 Literal Value
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Derived Value                                               

How do we specify the values to be used in tests?

We use expressions to calculate values that can be derived from 
other values. 

BigDecimal expectedTotal = itemPrice.multiply(QUANTITY);

The values we use for the attributes of objects in our test fi xtures and the result 
verifi cation parts of our tests are often related to one another in a way that is 
defi ned in the requirements. Getting these values—and, in particular, the rela-
tionship between the pre-conditions and the post-conditions—right is crucial 
because it drives the correct behavior into the SUT and helps the tests act as 
documentation of our software. 

Often, some of these values can be derived from other values in the same test. 
In these cases the benefi ts from using our Tests as Documentation (see page 23) 
are improved if we show the derivation by calculating the values using the appro-
priate expression. 

How It Works 

Computers are really good at math and string concatenation. We can avoid 
doing the math in our head (or with a calculator) by coding the math for 
expected results as arguments of the Assertion Method (page 362) calls directly 
into the tests. We can also use Derived Values as arguments for fi xture object 
creation and as method arguments when exercising the SUT. 

Derived Values, by their very nature, encourage us to use variables or symbolic 
constants to hold the values. These variables/constants can be initialized at com-
pile time (constants), during class or Testcase Object (page 382) initialization, 
during fi xture setup, or within the body of the Test Method (page 348). 

When to Use It 

We should use a Derived Value whenever we have values that can be derived in 
some deterministic way from other values in our tests. The main drawback of using 
Derived Values is that the same math error (e.g., rounding errors) could appear in 
both the SUT and the tests. To be safe, we might want to code a few of the patho-
logical test cases using Literal Values (page 714) just in case such a problem might 
be present. If the values we are using must be unique or don’t affect the logic in the 
SUT, we may be better off using Generated Values (page 723) instead. 

Also known as: 
Calculated

Value

Derived
Value 
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We can use a Derived Value either as part of fi xture setup (Derived Input
or One Bad Attribute) or when determining the expected values to be com-
pared with those generated by the SUT (Derived Expectation). These uses are 
described in a bit more detail later in this section. 

Variation: Derived Input 

Sometimes our test fi xture contains similar values that the SUT might compare 
or use to base its logic on the difference between them. For example, a Derived
Input might be calculated in the fi xture setup portion of the test by adding the 
difference to a base value. This operation makes the relationship between the 
two values explicit. We can even put the value to be added in a symbolic constant 
with an Intent-Revealing Name [SBPP] such as MAXIMUM_ALLOWABLE_TIME_DIFFERENCE.

Variation: One Bad Attribute 

A Derived Input is often employed when we need to test a method that takes a 
complex object as an argument. For example, thorough “input validation” testing 
requires that we exercise the method with each of the attributes of the object set to 
one or more possible invalid values to ensure that it handles all of these cases cor-
rectly. Because the fi rst rejected value could cause termination of the method, we 
must verify each bad attribute in a separate call to the SUT; each of these calls, in 
turn, should be done in a separate test method (each should be a Single-Condition 
Test; see page 45). We can instantiate the invalid object easily by fi rst creating a 
valid object and then replacing one of its attributes with an invalid value. It is best 
to create the valid object using a Creation Method (page 415) so as to avoid Test 
Code Duplication (page 213). 

Variation: Derived Expectation 

When some value produced by the SUT should be related to one or more of the 
values we passed in to the SUT as arguments or as values in the fi xture, we can 
often derive the expected value from the input values as the test executes rather 
than using precalculated Literal Values. We then use the result as the expected 
value in an Equality Assertion (see Assertion Method).

Motivating Example 

The following test doesn’t use Derived Values. Note the use of Literal Values in 
both the fi xture setup logic and the assertion. 

   public void testAddItemQuantity_2a() throws Exception {
      BigDecimal widgetPrice = new BigDecimal("19.99"); 

 Derived Value
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      Product product = new Product("Widget", widgetPrice);
      Invoice invoice = new Invoice();
      // Exercise
      invoice.addItemQuantity(product, 5);
      // Verify
      List lineItems = invoice.getLineItems();
      LineItem actualItem = (LineItem)lineItems.get(0);
      assertEquals(new BigDecimal("99.95"),
                   actualItem.getExtendedPrice());
   }

Test readers may have to do some math in their heads to fully appreciate the 
relationship between the values in the fi xture setup and the value in the result 
verifi cation part of the test. 

Refactoring Notes 

To make this test more readable, we can replace any Literal Values that are actu-
ally derived from other values with formulas that calculate these values. 

Example: Derived Expectation 

The original example contained only one line item for fi ve instances of the prod-
uct. We therefore calculated the expected value of the extended price attribute by 
multiplying the unit price by the quantity, which makes the relationship between 
the values explicit. 

   public void testAddItemQuantity_2b() throws Exception {
      BigDecimal widgetPrice = new BigDecimal("19.99");
      BigDecimal numberOfUnits = new BigDecimal("5");
      Product product = new Product("Widget", widgetPrice);
      Invoice invoice = new Invoice();
      // Exercise
      invoice.addItemQuantity(product, numberOfUnits);
      // Verify
      List lineItems = invoice.getLineItems();
      LineItem actualItem = (LineItem)lineItems.get(0);
      BigDecimal totalPrice = widgetPrice.multiply(numberOfUnits);
      assertEquals(totalPrice, actualItem.getExtendedPrice());
   }

Note that we have also introduced symbolic constants for the unit price and 
quantity to make the expression even more obvious and to reduce the effort of 
changing the values later. 

Derived
Value
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Example: One Bad Attribute 

Suppose we have the following Customer Factory Method [GOF], which takes 
a CustomerDto object as an argument. We want to write tests to verify what occurs 
when we pass in invalid values for each of the attributes in the CustomerDto. We 
could create the CustomerDto in-line in each Test Method with the appropriate 
attribute initialized to some invalid value. 

   public void testCreateCustomerFromDto_BadCredit() {
      // fixture setup
      CustomerDto customerDto = new CustomerDto();
      customerDto.firstName = "xxx";
      customerDto.lastName = "yyy";
      // etc.
      customerDto.address = createValidAddress();
      customerDto.creditRating = CreditRating.JUNK;
      // exercise the SUT
      try {
         sut.createCustomerFromDto(customerDto);
         fail("Expected an exception");
      } catch (InvalidInputException e) {
         assertEquals( "Field", "Credit", e.field );
      }
   }

   public void testCreateCustomerFromDto_NullAddress() {
      // fixture setup
      CustomerDto customerDto = new CustomerDto();
      customerDto.firstName = "xxx";
      customerDto.lastName = "yyy";
      // etc.
      customerDto.address = null;
      customerDto.creditRating = CreditRating.AAA;
      // exercise the SUT
      try {
         sut.createCustomerFromDto(customerDto);
         fail("Expected an exception");
      } catch (InvalidInputException e) {
         assertEquals( "Field", "Address", e.field );
      }
   }

The obvious problem with this code is that we end up with a lot of Test Code 
Duplication because we need at least one test per attribute. The problem 
becomes even worse if we are doing incremental development: We will require 
more tests for each newly added attribute, and we will have to revisit all existing 
tests to add the new attribute to the Factory Method signature. 

 Derived Value
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The solution is to defi ne a Creation Method that produces a valid instance of 
the CustomerDto (by doing an Extract Method [Fowler] refactoring on one of the 
tests) and uses it in each test to create a valid DTO. Then we simply replace one 
of the attributes with an invalid value in each of the tests. Each test now has an 
object with One Bad Attribute, with each one invalid in a slightly different way. 

   public void testCreateCustomerFromDto_BadCredit_OBA() {
      CustomerDto customerDto = createValidCustomerDto();
      customerDto.creditRating = CreditRating.JUNK;
      try {
         sut.createCustomerFromDto(customerDto);
         fail("Expected an exception");
      } catch (InvalidInputException e) {
         assertEquals( "Field", "Credit", e.field );
      }
   }

   public void testCreateCustomerFromDto_NullAddress_OBA() {
      CustomerDto customerDto = createValidCustomerDto();
      customerDto.address = null;
      try {
         sut.createCustomerFromDto(customerDto);
         fail("Expected an exception");
      } catch (InvalidInputException e) {
         assertEquals( "Field", "Address", e.field );
      }
   }

Derived
Value
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Generated Value                                  

How do we specify the values to be used in tests?

We generate a suitable value each time the test is run. 

BigDecimal uniqueCustomerNumber = getUniqueNumber();

When initializing the objects in the test fi xture, one issue that must be dealt 
with is the fact that most objects have various attributes (fi elds) that need to be 
supplied as arguments to the constructor. Sometimes the exact values to be used 
affect the outcome of the test. More often than not, however, it is important 
only that each object use a different value. When the precise values of these 
attributes are not important to the test, it is important not to have them visible 
within the test! 

Generated Values are used in conjunction with Creation Methods (page 415)
to help us remove this potentially distracting information from the test. 

How It Works 

Instead of deciding which values to use in our tests while we are coding the tests, 
we generate the values when we actually execute the tests. We can then pick values 
to satisfy specifi c criteria such as “must be unique in the database” that can be 
determined only as the test run unfolds. 

When to Use It 

We use a Generated Value whenever we cannot or do not want to specify the test 
values until the test is executing. Perhaps the value of an attribute is not expected 
to affect the outcome of the test and we don’t want to be bothered to defi ne Literal 
Values (page 714), or perhaps we need to ensure some quality of the attribute that 
can be determined only at runtime. In some cases, the SUT requires the value of an 
attribute to be unique; using a Generated Value can ensure that this criterion is 
satisfi ed and thereby prevent Unrepeatable Tests (see Erratic Test on page 228) and 
Test Run Wars (see Erratic Test) by reducing the likelihood of a test confl icting with 
its parallel incarnation in another test run. Optionally, we can use this distinct value 
for all attributes of the object; object recognition then becomes very easy when we 
inspect the object in a debugger. 

One thing to be wary of is that different values could expose different 
bugs. For example, a single-digit number may be formatted correctly, whereas 
a multidigit number might not (or vice versa). Generated Values can result 

 Generated Value
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in Nondeterministic Tests (see Erratic Test); if we encounter nondeterminism 
(sometimes the test passes and then fails during the very next run), we must 
check the SUT code to see whether differences in value could be the root cause. 

In general, we shouldn’t use a Generated Value unless the value must be 
unique because of the nondeterminism such a value may introduce. The obvi-
ous alternative is to use a Literal Value. A less obvious alternative is to use a 
Derived Value (page 718), especially when we must determine the expected 
results of a test. 

Implementation Notes 

We can generate values in a number of ways. The appropriateness of each tech-
nique depends on the circumstance. 

Variation: Distinct Generated Value 

When we need to ensure that each test or object uses a different value, we can take 
advantage of Distinct Generated Values. In such a case, we can create a set of util-
ity functions that will return unique values of various types (e.g., integers, strings, 
fl oating-point numbers). The various getUnique methods can all be built upon an 
integer sequence number generator. For numbers that must be unique within the 
scope of a shared database, we can use database sequences or a sequence table. 
For numbers that must be unique within the scope of a particular test run, we can 
use an in-memory sequence number generator (e.g., use a Java static variable that 
is incremented before usage). In-memory sequence numbers that start from the 
number 1 each time a test suite is run offer a useful quality: The values generated 
in each test are the same for each run and can simplify debugging. 

Variation: Random Generated Value 

One way to obtain good test coverage without spending a lot of time analyzing 
the behavior and generating test conditions is to use different values each time 
we run the tests. Using a Random Generated Value is one way to accomplish 
this goal. While use of such values may seem like a good idea, it makes the tests 
nondeterministic (Nondeterministic Tests) and can make debugging failed tests 
very diffi cult. Ideally, when a test fails, we want to be able to repeat that test 
failure on demand. To do so, we can log the Random Generated Value as the test 
is run and show it as part of the test failure. We then need to fi nd a way to force 
the test to use that value again while we are troubleshooting the failed test. In 
most cases, the effort required outweighs the potential benefi t. Of course, when 
we need this technique, we really need it. 

Generated
Value
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Variation: Related Generated Value 

An optional enhancement is to combine a Generated Value with a Derived Value
by using the same generated integer as the root for all attributes of a single object. 
This result can be accomplished by calling getUniqueInt once and then using that 
value to build unique strings, fl oating-point numbers, and other values. With a 
Related Generated Value, all fi elds of the object contain “related” data, which 
makes the object easier to recognize when debugging. Another option is to sepa-
rate the generation of the root from the generation of the values by calling gener-
ateNewUniqueRoot explicitly before calling getUniqueInt, getUniqueString, and so on. 

Another nice touch for strings is to pass a role-describing argument to the 
function that is combined with the unique integer key to make the code more 
intent-revealing. Although we could also pass such arguments to the other 
functions, of course we wouldn’t be able to build them into an integer value. 

Motivating Example 

The following test uses Literal Values for the arguments to a constructor:

   public void testProductPrice_HCV() {
      //    Setup
      Product product =
         new Product( 88,                       // ID
                      "Widget",                 // Name
                      new BigDecimal("19.99")); // Price
      // Exercise
      //   ...
   }

Refactoring Notes 

We can convert the test to use Distinct Generated Values by replacing the Literal
Values with calls to the appropriate getUnique method. These methods simply 
increment a counter each time they are called and use that counter value as the 
root for construction of an appropriately typed value. 

Example: Distinct Generated Value 

Here is the same test using a Distinct Generated Value. For the getUniqueString
method, we’ll pass a string describing the role (“Widget Name”). 

   public void testProductPrice_DVG() {
      // Setup
      Product product =

 Generated Value
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         new Product( getUniqueInt(),              // ID
                      getUniqueString("Widget"), // Name
                      getUniqueBigDecimal());    // Price
      // Exercise
      //   ...
   }

   static int counter = 0;

   int getUniqueInt() {
      counter++;
      return counter;
   }

   BigDecimal getUniqueBigDecimal() {
      return new BigDecimal(getUniqueInt());
   }

   String getUniqueString(String baseName) {
      return baseName.concat(String.valueOf( getUniqueInt()));
   }

This test uses a different generated value for each argument of the constructor 
call. The numbers generated in this way are consecutive but the test reader still 
needs to look at a specifi c attribute when debugging to get a consistent view. We 
probably should not generate the price value if the logic we were testing was 
related to price calculation because that would force our verifi cation logic to 
accommodate different total costs. 

Example: Related Generated Value 

We can ensure that all values used by the test are obviously related by separating 
the generation of the root value from the construction of the individual values. 
In the following example, we’ve moved the generation of the root to the setUp
method so each test method gets a new value only once. The methods that 
retrieve the various values (e.g., getUniqueString) simply use the previously gener-
ated root when deriving the Generated Values.

   public void testProductPrice_DRVG() {
      //    Setup
      Product product =
         new Product( getUniqueInt(),            // ID
                      getUniqueString("Widget"), // Name
                      getUniqueBigDecimal());    // Price
      // Exercise
      //   ...
   }

Generated
Value
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   static int counter = 0;

   public void setUp() {
      counter++;
   }

   int getUniqueInt() {
      return counter;
   }

   String getUniqueString(String baseName) {
      return baseName.concat(String.valueOf( getUniqueInt()));
   }

   BigDecimal getUniqueBigDecimal() {
      return new BigDecimal(getUniqueInt());
   }

If we looked at this object in an object inspector or database or if we dumped 
part of it to a log, we could readily tell which object we were looking at regard-
less of which fi eld we happened to see. 

 Generated Value
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Dummy Object

How do we specify the values to be used in tests when the only usage is as 
irrelevant arguments of SUT method calls?

We pass an object that has no implementation as an argument of a method 
called on the SUT. 

Invoice inv = new Invoice( new DummyCustomer() );

Getting the SUT into the right state to start a test often requires calling other 
methods of the SUT. These methods commonly take as arguments objects that 
are stored in instance variables for later use. Often, these objects (or at least 
some attributes of these objects) are never used in the code that we are actu-
ally testing. Instead, we create them solely to conform to the signature of some 
method we must call to get the SUT into the right state. Constructing these 
objects can be nontrivial and adds unnecessary complexity to the test. 

In these cases, a Dummy Object can be passed as an argument, eliminating 
the need to build a real object. 

How It Works 

We create an instance of some object that can be instantiated easily and with 
no dependencies; we then pass that instance as the argument of the method of 
the SUT. Because it won’t actually be used within the SUT, we don’t need any 
implementation for this object. If any of the methods of the Dummy Object are
invoked, the test really should throw an error. Trying to invoke a nonexistent 
method will typically produce that result. 

When to Use It 

We can use Dummy Objects whenever we need to use objects as attributes of 
other objects or arguments of methods on the SUT or other fi xture objects. Using 
Dummy Objects helps us avoid Obscure Tests (page 186) by leaving out the 
irrelevant code that would be necessary to build real objects and by making it 
clear which objects and values are not used by the SUT. 

If we need to control the indirect inputs or verify the indirect outputs of 
the SUT, we should probably use a Test Stub (page 529) or a Mock Object
(page 544) instead. If the object will be used by the SUT but we cannot provide 
the real object, we should consider providing a Fake Object (page 551) that
provides just enough behavior for the test to execute. 

Also known as: 
Dummy, 
Dummy 

Parameter, 
Dummy Value, 

Placeholder, 
Stub
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We can use one of the value patterns when the SUT really does need to 
use the object in some way. Either a Literal Value (page 714), a Generated
Value (page 723), or a Derived Value (page 718) may be appropriate, depend-
ing on the circumstance. 

Variation: Dummy Argument 

We can use a Dummy Argument whenever methods of the SUT take objects as 
arguments1 and those objects are not relevant to the test. 

Variation: Dummy Attribute 

We can use a Dummy Attribute whenever we are creating objects that will be 
used as part of the fi xture or as arguments of SUT methods, and some of the 
attributes of those objects are not relevant to the test. 

Implementation Notes 

The simplest implementation of a Dummy Object is to pass a null value as the 
argument. This approach works even in a statically typed language such as Java, 
albeit only if the method being called doesn’t check for null arguments. If the 
method complains when we pass it null, we’ll need to employ a slightly more 
sophisticated implementation. The biggest disadvantage to using null is that it is 
not very descriptive. 

In dynamically typed languages such as Ruby, Perl, and Python, the actual 
type of the object will never be checked (because it will never be used), so we 
can use any class such as String or Object. In such a case, it is useful to give the 
object a Self-Describing Value (see Literal Value) such as “Dummy Customer.” 

In statically typed languages (such as Java, C#, and C++), we must ensure that 
the Dummy Object is type compatible with the parameter it is to match. Type 
compatibility is much easier to achieve if the parameter has an abstract type 
(e.g., an Interface in Java) because we can create our own trivial implementation 
of the type or pass a suitable Pseudo-Object (see Hard-Coded Test Double on
page 568). If the parameter type is a concrete class, we may be able to create 

1 From Wikipedia: Parameters are also commonly referred to as arguments, although ar-
guments are more properly thought of as the actual values or references assigned to the 
parameter variables when the subroutine is called at runtime. When discussing code that 
is calling into a subroutine, any values or references passed into the subroutine are the 
arguments, and the place in the code where these values or references are given is the 
parameter list. When discussing the code inside the subroutine defi nition, the variables in 
the subroutine’s parameter list are the parameters, while the values of the parameters at 
runtime are the arguments.
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a trivial instance of it or we may need to create an instance of a Test-Specifi c 
Subclass (page 579) within our test. 

Some Mock Object frameworks have Test Utility Methods (page 599) that 
will generate a Dummy Object for a specifi ed class that takes a String argument 
for a Self-Describing Value.

While the Dummy Object may, in fact, be null, it is not the same as a Null 
Object [PLOPD3]. A Dummy Object is not used by the SUT, so its behavior is 
either irrelevant or it should throw an exception when executed. In contrast, a 
Null Object is used by the SUT but is designed to do nothing. That’s a small but 
very important distinction! 

Motivating Example 

In this example, we are testing the Invoice but we require a Customer to instantiate 
the invoice. The Customer requires an Address, which in turn requires a City. Thus 
we fi nd ourselves creating several additional objects just to set up the fi xture. But 
if we know that the behavior we are testing should not access the Customer at all, 
why do we need to create it and all the objects on which it depends? 

   public void testInvoice_addLineItem_noECS() {
      final int QUANTITY = 1;
      Product product = new Product(getUniqueNumberAsString(),
                                    getUniqueNumber());
      State state = new State("West Dakota", "WD");
      City city = new City("Centreville", state);
      Address address = new Address("123 Blake St.", city, "12345");
      Customer customer= new Customer(getUniqueNumberAsString(),
                                      getUniqueNumberAsString(),
                                      address);
      Invoice inv = new Invoice(customer);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      assertLineItemsEqual("",expItem, actual);
   }

This test is quite cluttered as a result of the extra object creation. How is the 
behavior we are testing related to the Address and City? From this test, we can 
only assume that there is some relation. But this misleads the test reader! 

Dummy 
Object
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Refactoring Notes 

If the objects in the fi xture are not relevant to the test, they should not be visible in 
the test. Therefore, we should try to eliminate the need to create all these objects. 
We could try passing in null for the Customer. In this case, the constructor checks for 
null and rejects it, so we have to fi nd another way. 

The solution is to replace the object that is not important to our test with a 
Dummy Object. In dynamically typed languages, we could just pass in a string. 
In statically typed languages such as Java and C#, however, we must pass in a 
type-compatible object. In this case, we have chosen to do an Extract Interface 
[Fowler] refactoring on Customer to create a new interface and then create a new 
implementation class called DummyCustomer. Of course, as part of the Extract Inter-
face refactoring, we must replace all references to Customer with the new interface 
name so that the DummyCustomer will be acceptable. A less intrusive option would 
be to use a Test-Specifi c Subclass of Customer that adds a test-friendly constructor. 

Example: Dummy Values and Dummy Objects 

Here’s the same test using a Dummy Object instead of the Product name and the 
Customer. Note how much simpler the fi xture setup has become! 

   public void testInvoice_addLineItem_DO() {
      final int QUANTITY = 1;
      Product product = new Product("Dummy Product Name",
                                    getUniqueNumber());
      Invoice inv = new Invoice( new DummyCustomer() );
      LineItem expItem = new LineItem(inv, product, QUANTITY);
      // Exercise
      inv.addItemQuantity(product, QUANTITY);
      // Verify
      List lineItems = inv.getLineItems();
      assertEquals("number of items", lineItems.size(), 1);
      LineItem actual = (LineItem)lineItems.get(0);
      assertLineItemsEqual("", expItem, actual);
   }

Using a Dummy Object for the name of the Product was simple because it is a 
string and has no uniqueness requirement. Thus we were able to use a Self-
Describing Value. We were not able to use a Dummy Object for the Product
number because it must be unique, so we left it as a Generated Value. The 
Customer was a bit trickier because the LineItem’s constructor expected a non-
null object. Because this example is written in Java, the method parameter is 
strongly typed; for this reason, we needed to create an alternative implemen-
tation of the ICustomer interface with a no-argument constructor to simplify 
in-line construction. Because the DummyCustomer is never used, we have created 

 Dummy Object
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it in-line rather than declaring a variable to hold it. This choice reduces the 
fi xture setup code by one line, and the presence of the in-line constructor call 
within the call to the Invoice constructor reinforces the message that we need 
the Dummy Object only for the constructor call and not for the rest of the test. 
Here is the code for the DummyCustomer:

public class DummyCustomer implements ICustomer {

   public DummyCustomer() {
      // Real simple; nothing to initialize!
   }

   public int getZone() {
      throw new RuntimeException("This should never be called!");
   }
}

We have implemented the DummyCustomer class with just those methods declared in 
the interface; because each method throws an exception, we know when it is hit. 
We could also have used a Pseudo-Object for the DummyCustomer. In other circum-
stances we might have been able to simply pass in null or construct a dummy 
instance of the real class. The major problem with the latter technique is that we 
won’t know for sure if the Dummy Object is actually used. 

Further Reading 

When [UTwJ] refers to a “dummy object,” these authors are referring to what 
this book terms a Test Stub. See Mocks, Fakes, Stubs, and Dummies in Appen-
dix B for a more thorough comparison of the terminology used in various books 
and articles. The JMock and NMock frameworks for testing with Mock Objects
support auto-generation of Dummy Objects.
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Appendix A 

Test Refactorings 

Extract Testable Component             

You want to be able to test the logic easily but the component is 
too closely tied to its context to allow such testing.

Extract the logic you want to test into a separate component 
that is designed for testability and is independent of the context in 

which it is run. 

Implementation Notes 

We extract the logic from the untestable component into a component that is 
testable via synchronous tests, leaving behind all the ties to the context. This 
usually means that anything required by the testable component logic from the 
context is retrieved by the untestable component and passed in to the testable 
component as arguments of the methods under test or constructor methods. 
The untestable component then contains very little code and is considered to 
be a Humble Object (page 695). It simply retrieves the information the testable 
component requires from the context, instantiates the testable component, and 
delegates to it. All interactions with the new testable component consist of 
synchronous method calls. 

The testable component may be a Windows DLL, a Java JAR containing 
a Service Facade [CJ2EEP] class, or some other language component or class 
that exposes the services of the executable in a testable way. The untestable 
code may be an executable, a dialog box or some other presentation compo-
nent, logic that is executed inside a transaction, or even a complex test method. 
Extraction of the testable component should leave behind a Humble Object that 
requires very little, if any, testing. 

Also known as:
Sprout Class 
[WEwLC]

Extract
Testable 
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Depending on the nature of the untestable component, we may choose to 
write tests for the delegation logic or we may be unable to do so because the 
logic is so closely tied to the context. If we do write tests for it, we require only 
one or two tests to verify that the instantiation and delegation occur correctly. 
Because this code will not change very often, these tests are much less critical 
than other tests and can even be omitted from the suite of tests that developers 
execute before check-in if we want to speed up test suite execution times. Of 
course, we would still prefer to run them from the automated build process. 

Further Reading 

This refactoring is similar to an Extract Interface [Fowler] refactoring and 
an Extract Implementer [Fowler] refactoring, except that Extract Testable 
Component does not require keeping the same interface. It can also be 
viewed as a special case of the Extract Class [Fowler] refactoring. 

In-line Resource

Tests that depend on an unseen external resource create 
a Mystery Guest problem.

Move the contents of an external resource into the fi xture 
setup logic of the test. 

From [RTC]: 

To remove the dependency between a test method and some external 
resource, we incorporate that resource in the test code. This is done by 
setting up a fi xture in the test code that holds the same contents as the 
resource. This fi xture is then used instead of the resource to run the test. 
A simple example of this refactoring is putting the contents of a fi le that 
is used into some string in the test code.

If the contents of the resource are large, chances are high that you are 
also suffering from Eager Tests (see Assertion Roulette on page 224).
Consider applying an Extract Method [Fowler] refactoring or a Minimize 
Data (page 738) refactoring.

In-line
Resource
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Implementation Notes 

The problem with tests that depend on an external resource is that we cannot see 
the pre-conditions of the test. The resource may be a fi le sitting in the fi le system, 
the contents of a database, or some other object created outside the test. None of 
these Prebuilt Fixtures (page 429) is visible to the test reader. The solution is to 
make them visible by including the resource in-line within the test. The simplest 
way to do so is to create the resource from within the test itself. For example, 
we could build the contents of a text fi le by writing to the fi le rather than just 
referring to a preexisting fi le. If we delete the fi le at the end of the test, this step 
also moves us from a Prebuilt Fixture approach to a Persistent Fresh Fixture 
(see Fresh Fixture on page 311) approach. As a result, our tests may execute 
somewhat more slowly. 

A more innovative way to in-line the external resource is to replace the 
actual resource with a Test Stub (page 529) that is initialized within the test. The 
contents of the resource then become visible to the test reader. When the system 
under test (SUT) executes, it uses the Test Stub instead of the real resource. 

Another option is to refactor the design of the SUT so as to improve its test-
ability. We can apply the Extract Testable Component (page 735) refactoring
to the part of the SUT that uses the contents of the resource so that it can be 
tested directly without actually accessing an external resource. That is, the test 
passes the contents of the resource to the logic that uses it. We can also test the 
Humble Object (page 695) that reads the resource independently by replacing 
the extracted component with a Test Stub or Mock Object (page 544). 

Make Resource Unique 

Several tests are accidentally creating or using the same 
resource in a Shared Fixture.

Make the name of any resources used by a test unique. 

From [RTC]:

A lot of problems originate from the use of overlapping resource names, 
either between different tests run by the same user or between simultaneous 
test runs done by different users.

Such problems can easily be prevented (or repaired) by using unique 
identifi ers for all resources that are allocated—for example, by including 
a time stamp. When you also include the name of the test responsible for 

Make
Resource 
Unique
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allocating the resource in this identifi er, you will have fewer problems 
fi nding tests that do not properly release their resources. 

Implementation Notes 

We make the name of any resources used by a test unique across all tests by using a 
Distinct Generated Value (see Generated Value on page 723) as part of the 
name. Ideally, the name should include the name of the test that “owns” the 
resource. To avoid Interacting Tests (see Erratic Test on page 228), we include a 
time stamp in the name of any resources created by the tests and use Automated
Teardown (page 503) to delete those resources at the end of the test. 

Minimize Data

The test fi xture is too large, making the test hard to understand.

We remove things from the fi xture until we have a Minimal Fixture. 

From [RTC]:

Minimize the data that is set up in fi xtures to the bare essentials. This will 
have two advantages: (1) It makes them more suitable as documentation, 
and (2) your tests will be less sensitive to changes.

Implementation Notes 

Reducing the data in our test fi xture to the bare minimum results in a Minimal Fix-
ture (page 302) that helps the tests achieve Tests as Documentation (see page 23).
How we do this depends on how our Test Methods (page 348) are organized into 
Testcase Classes (page 373).

When our Test Methods are organized via the Testcase Class per Fixture pat-
tern (page 631) and we believe we have a General Fixture (see Obscure Test on
page 186), we can remove the fi xture setup logic for any parts of the fi xture that 
we suspect are not used by the tests. It is best to remove this logic incrementally 
so that if a test fails, we can undo our most recent change and try again. 

When our Test Methods are organized as a Testcase Class per Feature (page 624) 
or a Testcase Class per Class (page 617), Minimize Data may also involve copying 
fi xture setup logic from the setUp method of a Testcase Class or Setup Decora-
tor (page 447) into each test that needs the fi xture. Assuming the collection of 

Also known as: 
Reduce Data

Minimize 
Data
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objects in the Shared Fixture (page 317) is overkill for any one test, we can 
use a series of Extract Method [Fowler] refactorings to create a set of Creation
Methods (page 415), which we then call from the tests. Next, we remove the 
calls to the Creation Methods from the setUp method and put them into only 
those Test Methods that require that part of the original fi xture. The fi nal step 
would be to convert any fi xture-holding instance variables into local variables. 

Replace Dependency with Test Double 

The dependencies of an object being tested get in the way of running tests.

Break the dependency by replacing a depended-on component 
with a Test Double. 

Implementation Notes 

The fi rst step is to choose the form of dependency substitution. Dependency 
Injection (page 678) is the best option for unit tests, whereas Dependency Look-
up (page 686) often works better for customer tests. We then refactor the SUT 
to support this choice or design the capability into the SUT as we do test-driven 
development. The next decision is whether to use a Fake Object (page 551), a 
Test Stub (page 529), a Test Spy (page 538), or a Mock Object (page 544) based 
on how the Test Double will be used by the test. This decision is described in 
Chapter 11, Using Test Doubles.

If we are using a Test Stub or Mock Object, we must decide whether we 
want to use a Hard-Coded Test Double (page 568) or a Confi gurable Test 
Double (page 558). The trade-offs are discussed in Chapter 11 and in the 
detailed descriptions of the patterns. That decision then dictates the shape of 
our test—for example, Tests that use Mock Objects are more “front-loaded” 
by the construction of the Mock Object.

Finally, we modify our test to construct, optionally confi gure, and then install 
the Mock Object. We may also have to add a call to the verifi cation method for 
some kinds of Mock Objects. In statically typed languages, we may have to do 
an Extract Interface [Fowler] refactoring before we can introduce the fake imple-
mentation. We then use this interface as the type of the variable that holds the 
reference to the substitutable dependency. 

 Replace Dependency with Test Double
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Setup External Resource 

The SUT depends on the contents of an external resource that is 
acting as a Mystery Guest in our test.

Create an external resource within the fi xture setup logic of 
the test rather than using a predefi ned resource. 

From [RTC]:

If it is necessary for a test to rely on external resources, such as directories, 
databases, or fi les, make sure the test that uses them explicitly creates 
or allocates these resources before testing, and releases them when done 
(take precautions to ensure the resource is also released when tests fail). 

Implementation Notes 

When our SUT must use an external resource such as a fi le and we absolutely, 
positively cannot replace the access mechanism with a Test Stub (page 529) or Fake
Object (page 551), we may need to live with the fact that we have to use an external 
resource. The problems with external resources are obvious: The test reader can-
not tell what they contain; those resources may disappear unexpectedly, causing 
tests to fail because of Resource Optimism (see Erratic Test on page 228); and the 
resources may result in Interacting Tests (see Erratic Test) and Test Run Wars (see
Erratic Test). Setup External Resource does not help us with the last problem but 
it does avoid the problems of a Mystery Guest (see Obscure Test on page 186) and 
Resource Optimism.

To implement the Setup External Resource refactoring, we simply pull the 
contents of the external resource into our Test Method (page 348), setUp method, 
or a Test Utility Method (page 599) called by them. Using the contents we con-
struct the external resource within our test code, thereby making it evident to the 
test reader exactly what the test depends on. This approach also guarantees that 
the resource exists because we create it in every test run. 

Setup
External

Resource
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Appendix B 

xUnit Terminology 

Mocks, Fakes, Stubs, and Dummies 

Are you confused about what someone means when that individual says “test 
stub” or “mock object”? Do you sometimes feel that the person you are talking 
to is using a very different defi nition? Well, you are not alone! 

The terminology for the various kinds of Test Doubles (page 522) is confusing 
and inconsistent. Different authors use different terms to mean the same thing. 
And sometimes they mean different things even when they use the same term! 
Ouch! (See the sidebar “What’s in a (Pattern) Name?” on page 576 for why I 
think names are important.) 

Part of my reason for writing this book was to try to establish some consistency 
in the terminology, thereby giving people a set of names with clear defi nitions of 
what they mean. In this appendix, I provide a list of the current sources and cross-
reference the terminology they use with the terminology used in this book.

Role Descriptions 

The table on page 742 is a summary of what I mean by each of the major Test 
Double pattern names.

Mocks, 
Fakes, Stubs, 
and 
Dummies
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Pattern Purpose Has Behavior Injects Indirect  Handles Indirect  Values Provided  Examples
   Inputs into SUT Outputs of SUT by Test(er)

Test Double Generic name 
(page 522) for family     

Dummy Object  Attribute or  No No, never  No, never  No Null,  
(page 728) method parameter  called called  “Ignored String,” 
      new Object()

Test Stub Verify indirect  Yes Yes Ignores them Inputs 
(page 529) inputs of SUT

Test Spy Verify indirect  Yes Optional Captures them  Inputs (optional)
(page 538) outputs of SUT   for later
    verifi cation

Mock Object Verify indirect  Yes Optional Verifi es  Inputs (optional) 
(page 544) outputs of SUT   correctness and expected
    against outputs.
    expectations

Fake Object Run  Yes No Uses them None In-memory
(page 551) (unrunnable)     database
 tests (faster)     emulator

Temporary Stand in for Yes No Uses them None In-memory
Test Stub  procedural code     database
(see Test Stub) not yet written     emulator 
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Terminology Cross-Reference 

The following table lists some sources of confl icting defi nitions just to make it 
clear what the mapping is to the pattern names used in this book. 

• Unit Testing with Java [UTwJ] uses the term “Dummy Object” to refer 
to what this book calls a “Fake Object.” 

• Pragmatic Unit Testing [PUT] describes a “Stub” as an empty imple-
mentation of a method. This is a common interpretation in the proce-
dural world; in the object world, however, it is typically called a Null 
Object [PLOPD3]. 

• Some of the early Mock Objects literature could be interpreted to equate 
a “Stub” with a “Mock Object.” The distinction between the two has since 
been clarifi ed in [MRNO] and [MAS].

 Sources and Names Used in Them

Pattern Astels Beck Feathers Fowler jMock UTWJ OMG Pragmatic Recipes

Test        Double or 
Double        stand-in 

Dummy Stub    Dummy    Stub
Object          

Test Fake  Fake Stub Stub Dummy  Mock Fake
Stub

Test Spy      Dummy   Spy

Mock Mock  Mock Mock Mock Mock  Mock Mock
Object

Fake      Dummy    
Object

Tempo-      Stub    
rary
Test
Stub

OMG’s        Stub 
CORBA
Stub

 Terminology Cross-Reference

Terminology 
Cross-
Reference
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• The CORBA standard1 and other remote-procedure call specifi cations 
use the terms “stubs” and “skeletons” to refer to the automatically 
generated code for the near- and far-end implementations of a remote 
interface defi ned in IDL. (I’ve included this information here because it 
is another use of a term that is commonly used in the TDD and auto-
mated developer testing community.) 

The sources quoted in the preceding table are provided here: 

Source Description Citation Publisher

Astels Book: Test-Driven Development [TDD-APG] Prentice Hall

Beck Book: Test-Driven Development [TDD-BE] Addison-Wesley

Feathers Book: Working Effectively with [WEwLC] Prentice Hall
Legacy Code

Fowler Blog: Mocks Aren’t Stubs [MAS] martinfowler.com

jMock Paper: Mock Roles, Not Objects  [MRNO] ACM (OOPSLA)

UTWJ Book: Unit Testing in Java [UTwJ] Morgan   
  Kaufmann

OMG Object Management Group’s   OMG
CORBA specifi cations  

Pragmatic Book: Pragmatic Unit Testing  [PUT] Pragmatic Pro-
with NUnit   grammers

Recipes Book: JUnit Recipes  Manning

xUnit Terminology Cross-Reference 

The following table maps the terminology used in this book to the terminology 
used by specifi c members of the xUnit family. This list is not intended to be 
exhaustive but rather is meant to illustrate the adaptations of the standard xUnit 
terminology to the idioms and culture of each language and community.

1 CORBA is an acronym for Common Object Request Broker Architecture. This 
standard is defined by the Object Management Group.

xUnit
Terminology 

Cross-
Reference

Appendix B xUnit Terminology

www.it-ebooks.info

http://www.it-ebooks.info/


745
 

xU
n

it T
erm

in
o

lo
g

y C
ro

ss-R
eferen

ce

xU
n

it
Term

in
o

lo
g

y 
C

ro
ss-

R
eferen

ce

Continued...

Tool Book Term

Language xUnit  Testcase  Test Suite Test  Fixture  Fixture  Suite  Suite  Expected
 Member  Class Factory  Method setup teardown Fixture Fixture Exception
       Setup Teardown Test

Java 1.4 JUnit 3.8.2 Subclass of  static suite() testXxx() setUp() tearDown() Not  Not  Subclass of
  TestCase     applicable applicable Expected 
         Exception Test

Java 5 JUnit 4.0+ import org. static suite() @Test @Before @After @Before @After @Exception
  junit.Test     Class Class

.NET CsUnit [TestFixture] [Suite] [Test] [SetUp] [TearDown] Not  Not [Expected
       applicable applicable Exception()]

.NET NUnit 2.0 [TestFixture] [Suite] [Test] [SetUp] [TearDown] Not  Not [Expected
       applicable applicable Exception()]

.NET NUnit 2.1+ [TestFixture] [Suite] [Test] [SetUp] [TearDown] [Test [TestFixture [Expected
       Fixture TearDown] Exception()]
       SetUp]

.NET MbUnit 2.0 [TestFixture] [Suite] [Test] [SetUp] [TearDown] [Fixture  [Fixture [Expected
       Setup] Teardown] Exception()]

.NET MSTest [TestClass] Not [Test [Test [Test [Class [Class [Expected
   applicable Method] Initialize] Cleanup] Initialize] Cleanup] Exception()]

PHP PHPUnit Subclass of  static suite() testXxx() setUp() tearDown() Not  Not  Subclass of
  TestCase     applicable applicable Expected 
         Exception Test
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Tool Book Term

Language xUnit  Testcase  Test Suite Test  Fixture  Fixture  Suite  Suite  Expected
 Member  Class Factory  Method Setup Teardown Fixture Fixture Exception
        Teardown Test

 Python PyUnit Subclass of Test  testXxx  setUp tearDown Not  Not  assert raise
  unittest. Loader()     applicable applicable
  TestCase

Ruby Test::Unit Subclass of  Classname. testXxx() setup() teardown Not  Not  assert_raise
  Test::Unit:: suite()     applicable applicable 
  TestCase

Smalltalk SUnit Superclass:  TestSuite  testXxx setUp tearDown To be  To be  should:raise:
  TestCase named:     determined determined 

VB 6 VbUnit Implements  Implements  TestXxx() IFixture_ IFixture_ IFixture IFixture on error...
  IFixture ISuite  Setup() TearDown Frame_ Frame_ 
         Create() Destroy

SAP ABAP ABAP Unit FOR  Automatic Any setup teardown class_setup class_ To be
  TESTING       teardown determined
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Appendix C 

xUnit Family Members 

This (incomplete) list of members of the xUnit family of test automation 
frameworks is included here to illustrate the diversity of the family and the 
extent to which automated unit testing is supported in various programming 
languages. This appendix also includes comments about specifi c capabilities of 
some members of the family. A much more complete and up-to-date list can be 
found at http://xprogramming.com/software.htm.

ABAP Object Unit 

The member of the xUnit family for SAP’s ABAP programming language. ABAP
Object Unit is more or less a direct port of JUnit to ABAP except for the fact that 
it cannot catch exceptions encountered within the system under test (SUT). 

ABAP Object Unit is available for download at http://www.abapunittests.
com, along with articles about unit testing in ABAP. See ABAP Unit for versions 
of SAP/ABAP starting with 6.40. 

ABAP Unit 

The member of the xUnit family for versions of SAP’s ABAP programming lan-
guage starting with Basis version 6.40 (NetWeaver 2004s). The most notable 
aspect of ABAP Unit is its special support that allows tests to be stripped from 
the code as the code is “transported” from the acceptance test environment to 
the production environment. 

ABAP Unit is available directly from SAP AG as part of the NetWeaver 2004s
development tools. More information on unit testing in ABAP is available in 
the SAP documentation and from http://www.abapunittests.com. See ABAP
Object Unit for versions of SAP/ABAP prior to Basis version 6.40 (NetWeaver 
2004s).

xUnit Family 
Members
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CppUnit

The member of the xUnit family for the C++ programming language. It is 
available for download from http://cppunit.sourceforge.net. Another option 
for some .NET programmers is NUnit. 

CsUnit

The member of the xUnit family for the C# programming language. It is available 
from http://www.csunit.org. Another option for .NET programmers is NUnit. 

CUnit

The member of the xUnit family for the C programming language. Details can 
be found at http://cunit.sourceforge.net/doc/index.html. 

DbUnit

An extension of the JUnit framework intended to simplify testing of databases. 
It can be downloaded from http://www.dbunit.org/. 

IeUnit

The member of the xUnit family for testing Web pages rendered in Microsoft’s 
Internet Explorer browser using JavaScript and DHTML. It can be downloaded 
from http://ieunit.sourceforge.net/. 

JBehave

One of the fi rst of a new generation of xUnit members designed to make tests 
written as part of TDD more useful Tests as Specifi cation. The main difference 
between JBehave and more traditional members of the xUnit family is that 
JBehave eschews the “test” terminology and replaces it with terms more appro-
priate for specifi cation—that is, “fi xture” becomes “context,” “assert” becomes 
“should,” and so on. JBehave is available at http://jbehave.codehaus.org. RSpec 
is the Ruby equivalent. 

JUnit

The member of the xUnit family for the Java programming language. JUnit was 
rewritten in late 2005 to take advantage of the annotations introduced in Java 
1.5. It can be downloaded from http://www.junit.org. 
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MbUnit

The xUnit family member for the C# programming language. MbUnit’s main
claim to fame is its direct support for Parameterized Tests. It is available from 
http://www.nunit.orgmbunit.com. Other options for .NET programmers include 
NUnit, CsUnit, and MSTest. 

MSTest 

Microsoft’s member of xUnit family does not seem to have a formal name 
other than its namespace Microsoft.VisualStudio.TestTools.UnitTesting but most 
people refer to it as MSTest. Technically, it is just the name of the Command-
Line Test Runner mstest.exe. MSTest’s main claim to fame is that it ships with 
Visual Studio 2005 Team System. It does not appear to be available in the less 
expensive versions of Visual Studio or for free download. MSTest includes a 
number of innovative features, such as direct support for Data-Driven Tests.
Information is available on MSDN at http://msdn.microsoft.com/en-us/library/
ms182516.aspx. Other (and cheaper) options for .NET programmers include 
NUnit, CsUnit, and MbUnit. 

NUnit

The member of the xUnit family for the .NET programming languages. It is 
available from http://www.nunit.org. Other options for C# programmers in-
clude CsUnit, MbUnit, and MSTest. 

PHPUnit

The member of the xUnit family for the PHP programming language. Accord-
ing to Sebastian Bergmann, “PHPUnit is a complete port of JUnit 3.8. On top 
of this original feature set it adds out-of-the-box support for Mock Objects, 
Code Coverage, Agile Documentation, and Incomplete and Skipped Tests.” More 
information about PHPUnit can be found at http://www.phpunit.de, including the 
free book on PHPUnit.

PyUnit

The member of the xUnit family written to support Python programmers. It is a full 
port of JUnit. More information can be found at http://pyunit.sourceforge.net/. 
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RSpec

One of the fi rst of a new generation of xUnit members designed to make tests 
written as part of TDD more useful Tests as Specifi cation. The main differ-
ence between RSpec and more traditional members of the xUnit family is that 
RSpec eschews the “test” terminology and replaces it with terms more appropri-
ate for specifi cation—for example, “fi xture” becomes “context,” Test Methods
becomes “specify,” “assert” becomes “should,” and so on. RSpec is available at 
http://rspec.rubyforge.org. JBehave is the Java equivalent. 

runit

One member of the xUnit family for the Ruby programming language. It is 
a wrapper on Test::Unit that adds additional functionality. It is available at 
www.rubypeople.org.

SUnit

The self-proclaimed “mother of all unit-testing frameworks.” SUnit is the mem-
ber of the xUnit family for the Smalltalk programming language. It is available 
for download at http://sunit.sourceforge.net. 

Test::Unit 

The member of the xUnit family for the Ruby programming language. It is 
available for download from http://www.rubypeople.org and comes as part of 
the “Ruby Development Tools” feature for the Eclipse IDE framework. 

TestNG 

A member of the xUnit family for Java that behaves a bit differently from 
JUnit. TestNG specifi cally supports dependencies between tests and the shar-
ing of the test fi xture between Test Methods. More information is available at 
http://testng.org.

utPLSQL

The member of the xUnit family for the PLSQL database programming lan-
guage. You can get more information and download the source for this tool 
at http://utplsql.sourceforge.net/. A plug-in that integrates utPLSQL into the 
Oracle toolset is available at http://www.ounit.com. 
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VB Lite Unit 
Another member of the xUnit family written to support Visual Basic and VBA 
(Visual Basic for Applications). “VB Lite Unit is a reliable, lightweight unit-testing 
tool for Visual Basic and VBA written by Steve Jorgensen. The driving principle 
behind VB Lite Unit was to create the simplest, most reliable unit-testing tool 
possible that would still do everything that usually matters for doing test-driven
development in VB 6 or VBA. Things that don’t work or don’t work reliably 
in VB and VBA are avoided, such as attempts at introspection to identify the 
test methods.” Another option for VB and VBA programmers is VbUnit. For 
VB.NET programmers, options include NUnit, CsUnit, and MbUnit. 

VbUnit
The member of the xUnit family written to support Visual Basic 6.0. It was the 
fi rst member of the xUnit family to support Suite Fixture Setup and introduced 
the concept of calling a Testcase Class “test fi xture.” 

One major quirk of VbUnit is that when an Assertion Method fails the test, 
it writes the messages into the failure log immediately rather than just raising 
an error that is then caught by the Test Runner. The practical implication of 
this behavior is that it becomes diffi cult to test Custom Assertions because the 
messages in the logs are not prevented by the normal Expected Exception Test
construct. The work-around is to run the Custom Assertion Tests inside an 
“Encapsulated Test Runner.” 

Another quirk is that VbUnit is one of the few members of the xUnit family that is 
not free (as in beer). It is available from http://www.vbunit.org. There used to 
be a free version available—who knows, it may reappear some day. Another 
option for VB and VBA programmers is VB Lite Unit. For VB.NET program-
mers, options include NUnit, CsUnit, and MbUnit. 

xUnit
The generic name for any Test Automation Framework for unit testing that is 
patterned on JUnit or SUnit. The xUnit test framework for most languages can 
be found at http://xprogramming.com or http://en.wikipedia.org/wiki/XUnit. 
Another place to look for both unit test and customer test tools is http://www.
opensourcetesting.org.
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Appendix D 

Tools 

The following tools are mentioned at some point within this book. This section 
describes their purpose and how they relate to xUnit test automation in just a 
wee bit more detail.

Ant

A build automation tool used in the Java community. NAnt is the equivalent for 
.NET projects. 

AntHill

A continuous integration tool used in the Java community. 

BPT

A commercial Scripted Test tool that allows less technically advanced users to 
compose tests from reusable test components that are the result of Refactored
Recorded Tests. It can also be used to specify reusable test components to be 
built by more technically oriented test automaters. More information can be 
found on Mercury Interactive’s Web site. As this book went to press, Mercury 
Interactive was in the process of being acquired by Hewlett-Packard, so the URL 
may have changed. 

Canoo WebTest 

A framework for preparing Scripted Tests written in XML. Conceptually, Canoo
WebTest is similar to Fit in that it allows us to defi ne our own domain-specifi c 
testing language for defi ning customer tests. More information can be found at 
http://webtest.canoo.com and http://webtest-community.canoo.com. 
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Cruise Control 

A continuous integration tool used in the Java community. Cruise Control.net is 
the equivalent for .NET projects. 

DDSteps

A Data-Driven Test extension for JUnit. “DDSteps is a JUnit extension for 
building data driven test cases. In a nutshell, DDSteps lets you parameterize 
your test cases, and run them more than once using different data.” See http://
www.ddsteps.org for more information. 

EasyMock

A static Mock Object generation toolkit for Java tests. Because EasyMock uses a 
Confi guration Mode for specifying the expectations, the tests look a bit strange 
and may take a bit of getting used to. More information can be found at http://
www.easymock.org. 

eCATT 

The Recorded Test tool that comes with SAP’s development tools. More infor-
mation can be found at http://www.sap.com and at http://www.sdn.sap.com. 

Eclipse

A Java integrated development environment (IDE) and platform for rich client 
applications. Eclipse was originally created by IBM and is now managed by the 
Eclipse Foundation. Several of the language-specifi c plug-ins are integrated with 
the corresponding xUnit family member. For example, the Java IDE includes JUnit 
and the Ruby Development Tools IDE includes Test::Unit. Eclipse is available for 
download from http://www.eclipse.org. 

Fit

The framework conceived by Ward Cunningham that made it possible for cus-
tomers to write automated tests. Fit separates the work of defi ning the tests using 
tables in Web pages or spreadsheets from the programming work of exercising the 
SUT. While Fit was once a particular tool, it is now a specifi cation for a fam-
ily of tools implemented in a variety of languages, including Java, .NET, Ruby, 
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and Python. Some members of the family are simply test execution frameworks; 
others, such as Fitnesse, include test authoring and versioning capabilities. All 
should implement the same set of standard fi xtures. More information can be 
found at Ward’s Web site (http://fi t.c2.com) or in the book [FitB] he co-wrote 
with Rick Mudgridge. 

FitNesse

A Fit test authoring tool conceived by (Uncle) Bob Martin of Object Mentor. 
FitNesse provides a wiki-like test authoring system with a set of predefi ned Fit 
fi xtures that makes it possible for customers to write and run automated tests. 
More information can be found at http://www.fi tnesse.org. 

HttpUnit

A front end that layers on top of JUnit to allow tests to exercise a Web applica-
tion via the HTTP protocol. HttpUnit bypasses the browser, so it is not suitable 
for use with applications that make extensive use of on-page scripting (e.g., 
AJAX). See http://httpunit.sourceforge.net for more information. 

Idea

A Java IDE that offers rich support for refactoring. The Idea Web site [JBrains] 
contains fairly detailed descriptions of many of the refactorings. The same group 
also offers a very popular refactoring plug-in for Visual Studio, called ReSharper. 

JFCUnit

A JUnit front end that layers on top of HttpUnit to allow tests to exercise a 
Web application via the HTTP protocol. JFCUnit provides a number of Test 
Utility Methods that form a Higher-Level Language for expressing tests of Web 
applications. Because it is a layer on top of HttpUnit, it bypasses the browser. 
Thus JFCUnit is not suitable for use with applications that make extensive use 
of on-page scripting (e.g., AJAX). See http://jfcunit.sourceforge.net for more 
information.

JMock

A widely used dynamic Mock Object framework for Java tests. The fl uent 
Confi guration Interface used for specifying the expectations makes the tests 
highly readable. More information can be found at http://www.jmock.org. 
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NMock

A widely used dynamic Mock Object framework for .NET tests. The fl uent 
Confi guration Interface used for specifying the expectations makes the tests 
highly readable. More information can be found at http://nmock.org. 

QTP (QuickTest Professional)

A commercial Recorded Test tool that allows less technically advanced users to 
record tests as they use an application. In conjunction with the “Expert View” of 
the Recorded Tests, QTP can also be used to refactor the tests into reusable test 
components that are appropriate for use by less technically adept test automa-
ters. More information can be found on Mercury Interactive’s Web site. As this 
book went to press, Mercury Interactive was in the process of being acquired by 
Hewlett-Packard, so the URL has probably changed. 

ReSharper

A refactoring plug-in for Visual Studio by JetBrains, the makers of the Idea IDE. 
Their Web site [JBrains] contains fairly detailed descriptions of many of the 
refactorings.

Visual Studio 

Microsoft’s integrated development environment intended for developing .NET 
applications software. Visual Studio comes in several versions (at various price 
points), some of which include MSTest and code/test refactoring support. Third-
party plug-ins are also available for both refactoring (see [JBrains]) and xUnit 
(see CsUnit, MbUnit, and NUnit). 

Watir 

“Web Application Testing in Ruby.” This set of components allows us to drive 
Internet Explorer from Scripted Tests written in the Ruby programming language. 
More information can be found at http://wtr.rubyforge.org/. 
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Appendix E 

Goals and Principles 

Name Page Relation Base Name Chapter

Bug Repellent 22  Bug Repellent Chapter 3, Goals of
    Test Automation

Communicate  41  Communicate  Chapter 5, Principles
Intent   Intent of Test Automation

Defect 22  Defect Chapter 3, Goals of
Localization   Localization Test Automation

Design for 40  Design for Chapter 5, Principles
Testability   Testability of Test Automation

Do No Harm 24  Do No Harm Chapter 3, Goals of
    Test Automation

Don’t Modify 41  Don’t Modify Chapter 5, Principles
the SUT   the SUT of Test Automation

Ensure Commen- 47  Ensure Commen- Chapter 5, Principles
surate Effort and   surate Effort and of Test Automation
Responsibility   Responsibility

Executable 22 Alias Tests as Chapter 3, Goals of
Specifi cation   Specifi cation Test Automation

Expressive Tests 28  Expressive Tests Chapter 3, Goals of
    Test Automation

Front Door First 40 Alias Use the Front  Chapter 5, Principles
   Door First of Test Automation

Fully Automated 26  Fully Automated Chapter 3, Goals of
Test   Test Test Automation

Higher Level 41 Alias Communicate Chapter 5, Principles of
Language   Intent Test Automation

Continued...
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Name Page Relation Base Name Chapter

Independent Test 42 Alias Keep Tests  Chapter 5, Principles
   Independent of Test Automation

Isolate the SUT 43  Isolate the SUT Chapter 5, Principles
    of Test Automation

Keep Test Logic 45  Keep Test Logic  Chapter 5, Principles of
Out of Production   Out of Production Test Automation
Code   Code

Keep Tests 42  Keep Tests  Chapter 5, Principles of
Independent   Independent Test Automation

Minimize Test 44  Minimize Test Chapter 5, Principles of
Overlap   Overlap Test Automation

Minimize 44  Minimize Chapter 5, Principles of
Untestable Code   Untestable Code Test Automation

No Test Logic in 45  Keep Test Logic Out Chapter 5, Principles of
Production Code   of Production Code Test Automation

No Test Risk 21 Alias Do No Harm Chapter 5, Principles of
    Test Automation

Repeatable Test 26  Repeatable Test Chapter 3, Goals of
    Test Automation

Robust Test 29  Robust Test Chapter 3, Goals of
    Test Automation

Safety Net 24 Alias Tests as Safety Net Chapter 3, Goals of
    Test Automation

Self-Checking 26  Self-Checking Chapter 3, Goals of
Test    Test Test Automation

Separation of 28  Separation of Chapter 3, Goals of
Concerns   Concerns  Test Automation

Simple Tests 28  Simple Tests Chapter 3, Goals of 
    Test Automation

Single Condition  45 Alias Verify One Chapter 5, Principles of
Test   Condition per Test of Test Automation

Single Glance 41 Alias Communicate Chapter 5, Principles of
Readable    Intent Test Automation

Test Concerns 47  Test Concerns Chapter 5, Principles of
Separately   Separately Test Automation

Test-Driven 40 Alias Write the Tests Chapter 5, Principles of
Development   First Test Automation
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Name Page Relation Base Name Chapter

Test First 40 Alias Write the Tests Chapter 5, Principles of
Development   First Test Automation

Tests as 23  Tests as Chapter 3, Goals of
Documentation   Documentation Test Automation

Tests as Safety 24  Tests as Safety Chapter 3, Goals of
Net   Net Test Automation

Tests as 22  Tests as Chapter 3, Goals of
Specifi cation   Specifi cation Test Automation

Use the Front 40  Use the Front Chapter 5, Principles of
Door First   Door First Test Automation

Verify One 45  Verify One Chapter 5, Principles of
Condition per   Condition per Test Automation
Test   Test

Write the Tests 40  Write the Tests Chapter 5, Principles of
First   First Test Automation

 Goals and Principles

Goals and 
Principles

www.it-ebooks.info

http://www.it-ebooks.info/


This page intentionally left blank 

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix F

Smells, Aliases, and Causes

Name Page Relationship Base Name Chapter

Assertion 224  Assertion Chapter 16, Behavior
Roulette    Roulette Smells

Asynchronous 210 Cause of Hard-to-Test Chapter 15, Code
Code   Code Smells

Asynchronous 255 Cause of Slow Tests Chapter 16, Behavior
Test    Smells

Behavior 242 Cause of Fragile Test Chapter 16, Behavior
Sensitivity    Smells

Buggy Tests 260  Buggy Tests Chapter 17, Project
    Smells

Complex 206 Cause of Conditional Test Chapter 15, Code
Teardown   Logic Smells

Complex Test 186 Alias Obscure Test Chapter 15, Code
    Smells

Conditional Test 200  Conditional Test Chapter 15, Code
Logic   Logic Smells

Conditional 203 Cause of Conditional Test Chapter 15, Code
Verifi cation Logic   Logic Smells

Context 245 Cause of Fragile Test Chapter 16, Behavior
Sensitivity    Smells

Cut-and-Paste 214 Cause of Test Code Chapter 15, Code
Code Reuse   Duplication Smells

Data Sensitivity 243 Cause of Fragile Test Chapter 16, Behavior
    Smells

Developers Not  263  Developers Not  Chapter 17, Project
Writing Tests   Writing Tests  Smells
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Name Page Relationship Base Name Chapter

Eager Test 224 Cause of Assertion Roulette Chapter 16, Behavior
    Smells

Equality  221 Cause of Test Logic in  Chapter 15, Code
Pollution    Production  Smells

Erratic Test 228  Erratic Test Chapter 16, Behavior
    Smells

Flexible Test 202 Cause of Conditional Test  Chapter 15, Code
   Logic  Smells

For Tests Only 219 Cause of Test Logic in  Chapter 15, Code
   Production  Smells

Fragile Fixture 246 Cause of Fragile Test Chapter 16, Behavior
    Smells

Fragile Test 239  Fragile Test Chapter 16, Behavior
    Smells

Frequent  248  Frequent  Chapter 16, Behavior
Debugging    Debugging  Smells

General Fixture 190 Cause of Obscure Test Chapter 15, Code
    Smells

Hard-to-Test 209  Hard-to-Test Chapter 15, Code
Code   Code Smells

Hard-Coded 210 Alias Hard-to-Test Chapter 15, Code
Dependency   Code Smells

Hard-Coded 194 Cause of Obscure Test Chapter 15, Code
Test Data    Smells

High Test  265  High Test  Chapter 17, Project
Maintenance Cost    Maintenance  Smells
   Cost

Highly Coupled  210 Cause of Hard-to-Test  Chapter 15, Code
Code   Code  Smells

Indented Test  200 Alias Conditional Test  Chapter 15, Code
Code   Logic  Smells

Indirect Testing 196 Cause of Obscure Test Chapter 15, Code
    Smells

Infrequently  268 Cause of Production Bugs Chapter 17, Project
Run Tests     Smells
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Name Page Relationship Base Name Chapter

Interacting  231 Cause of Erratic Test Chapter 16, Behavior
Test Suites     Smells

Interacting Tests 229 Cause of Erratic Test Chapter 16, Behavior
    Smells

Interface  241 Cause of Fragile Test Chapter 16, Behavior
Sensitivity     Smells

Irrelevant  192 Cause of Obscure Test Chapter 15, Code
Information     Smells

Lonely Test 232 Cause of Erratic Test Chapter 16, Behavior
    Smells

Long Test 186 Alias Obscure Test Chapter 15, Code
    Smells

Lost Test 269 Cause of Production Bugs Chapter 17, Project
    Smells

Manual  248 Alias Frequent  Chapter 16, Behavior
Debugging    Debugging  Smells

Manual Event  281 Cause of Manual  Chapter 16, Behavior
Injection   Intervention  Smells

Manual Fixture  250 Cause of Manual  Chapter 16, Behavior
Setup   Intervention  Smells

Manual  250  Manual  Chapter 16, Behavior
Intervention    Intervention  Smells

Manual Result  251 Cause of Manual  Chapter 16, Behavior
Verifi cation   Intervention  Smells

Missing Assertion  226 Cause of Assertion  Chapter 16, Behavior
Message   Roulette Smells

Missing Unit  271 Cause of Production Bugs Chapter 17, Project
Test     Smells

Multiple Test  207 Cause of Conditional Test  Chapter 15, Code
Conditions   Logic  Smells

Mystery Guest 188 Cause of Obscure Test Chapter 15, Code
    Smells

Neverfail Test 274 Cause of Production Bugs Chapter 17, Project
    Smells

Nondeterministic 237 Cause of Erratic Test Chapter 16, Behavior
Test     Smells
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Name Page Relationship Base Name Chapter

Not Enough  263 Cause of Developers Not  Chapter 17, Project
Time   Writing Tests  Smells

Obscure Test 186  Obscure Test Chapter 15, Code   
   Smells

Overcoupled  246 Alias Fragile Test Chapter 16, Behavior
Test     Smells

Overspecifi ed  246 Cause of Fragile Test Chapter 16, Behavior
Software     Smells

Production  268  Production Bugs Chapter 17, Project
Bugs     Smells

Production  204 Cause of Conditional  Chapter 15, Code
Logic in Test   Test Logic  Smells

Reinventing the 215 Cause of Test Code  Chapter 15, Code
Wheel   Duplication  Smells

Resource  233 Cause of Erratic Test Chapter 16, Behavior
Leakage     Smells

Resource  233 Cause of Erratic Test Chapter 16, Behavior
Optimism     Smells

Sensitive  246 Cause of Fragile Test Chapter 16, Behavior
Equality     Smells

Slow Component 254 Cause of Slow Tests Chapter 16, Behavior
Usage    Smells

Slow Tests 253  Slow Tests Chapter 16, Behavior
    Smells

Test Code 213  Test Code Chapter 15, Code
Duplication   Duplication Smells

Test Dependency 220 Cause of Test Logic in  Chapter 15, Code
in Production   Production  Smells

Test Logic in  217  Test Logic in  Chapter 15, Code
Production    Production  Smells

Test Run War 235 Cause of Erratic Test Chapter 16, Behavior
    Smells

Too Many Tests 256 Cause of Slow Tests Chapter 16, Behavior
    Smells

Unrepeatable  234 Cause of Erratic Test Chapter 16, Behavior
Test     Smells

Untestable  211 Cause of Hard-to-Test  Chapter 15, Code
Test Code    Code Smells
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Name Page Relationship Base Name Chapter

Untested Code 271 Cause of Production Bugs Chapter 17, Project
    Smells

Untested  272 Cause of Production Bugs Chapter 17, Project
Requirement     Smells

Verbose Test 186 Alias Obscure Test Chapter 15, Code   
    Smells

Wrong Test  264 Cause of Developers Not  Chapter 17, Project
Automation   Writing Tests  Smells
Strategy
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Appendix G 

Patterns, Aliases, and 
Variations

Name Page Relationship Base Name Chapter

Abstract Setup  449 Variation Setup Decorator Chapter 20, Fixture
Decorator     Setup Patterns

Abstract Test  638 Alias Testcase  Chapter 24, Test 
Fixture    Superclass Organization
    Patterns

Abstract  638 Alias Testcase  Chapter 24, Test 
Testcase   Superclass Organization
    Patterns

AllTests Suite 593 Variation Named Test Suite Chapter 24, Test   
    Organization
    Patterns

Anonymous  417 Variation Creation Method Chapter 20, Fixture
Creation Method     Setup Patterns

Argument- 371 Variation Assertion Message Chapter 19, xUnit
Describing     Basics Patterns
Message

Assertion- 371 Variation Assertion Message Chapter 19, xUnit
Identifying     Basics Patterns
Message

Assertion  370  Assertion Message Chapter 19, xUnit
Message     Basics Patterns

Assertion  362  Assertion Method Chapter 19, xUnit
Method     Basics Patterns

Attachment  418 Variation Creation Method Chapter 20, Fixture
Method     Setup Patterns

Continued...
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Name Page Relationship Base Name Chapter

Automated  505 Variation Automated  Chapter 22, Fixture
Exercise    Teardown  Teardown Patterns
Teardown

Automated  504 Variation Automated  Chapter 22, Fixture
Fixture Teardown   Teardown Teardown Patterns

Automated  503  Automated  Chapter 22, Fixture
Teardown    Teardown  Teardown Patterns

Automated  285 Alias Scripted Test Chapter 18, Test
Unit Test     Strategy Patterns

Back Door  327  Back Door  Chapter 18, Test
Manipulation    Manipulation  Strategy Patterns

Back Door  329 Variation Back Door  Chapter 18, Test
Setup   Manipulation  Strategy Patterns

Back Door  330 Variation Back Door  Chapter 18, Test
Teardown   Manipulation  Strategy Patterns

Back Door  329 Variation Back Door  Chapter 18, Test
Verifi cation   Manipulation  Strategy Patterns

Behavior- 580 Variation Test-Specifi c  Chapter 23, Test
Exposing   Subclass Double Patterns
Subclass

Behavior- 580 Variation Test-Specifi c  Chapter 23, Test
Modifying   Subclass  Double Patterns
Subclass

Behavior  468  Behavior  Chapter 21, Result
Verifi cation   Verifi cation Verifi cation Patterns

Bespoke  474 Alias Custom Assertion Chapter 21, Result
Assertion    Verifi cation Patterns

Built-in Test  281 Variation Recorded Test Chapter 18, Test
Recording     Strategy Patterns

Calculated  718 Alias Derived Value Chapter 27, Value
Values     Patterns

Capture/ 278 Alias Recorded Test Chapter 18, Test
Playback Test     Strategy Patterns

Chained Tests 454  Chained Tests Chapter 20, Fixture 
    Setup Patterns

Cleanup Method 602 Variation Test Utility  Chapter 24, Test   
   Method  Organization
    Patterns

Patterns, 
Aliases, and 

Variations

Appendix G Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/


769

Name Page Relationship Base Name Chapter

Command-Line 379 Variation Test Runner Chapter 19, xUnit
Test Runner    Basics Patterns

Component  686 Alias Dependency  Chapter 26, Design-
Broker   Lookup  for-Testability
    Patterns

Component  686 Alias Dependency  Chapter 26, Design-
Registry   Lookup  for-Testability
    Patterns

Component Test 340 Variation Layer Test Chapter 18, Test 
    Strategy Patterns

Confi gurable  558 Alias Confi gurable  Chapter 23, Test
Mock Object   Test Double  Double Patterns

Confi gurable  558  Confi gurable  Chapter 23, Test
Test Double   Test Double Double Patterns

Confi gurable  558 Alias Confi gurable  Chapter 23, Test
Test Spy   Test Double  Double Patterns

Confi gurable  558 Alias Confi gurable  Chapter 23, Test
Test Stub   Test Double  Double Patterns

Confi guration  560 Variation Confi gurable  Chapter 23, Test
Interface   Test Double  Double Patterns

Confi guration  560 Variation Confi gurable  Chapter 23, Test
Mode   Test Double  Double Patterns

Constant Value 714 Alias Literal Value Chapter 27, Value
    Patterns

Constructor  680 Variation Dependency  Chapter 26, Design-
Injection    Injection  for-Testability 
    Patterns

Constructor Test 351 Variation Test Method Chapter 19, xUnit
    Basics Patterns

Creation Method 415  Creation Method Chapter 20, Fixture
    Setup Patterns

Custom  474  Custom Assertion Chapter 21, Result
Assertion    Verifi cation Patterns

Custom  477 Variation Custom Assertion Chapter 21, Result
Assertion Test     Verifi cation Patterns

Custom Equality  476 Variation Custom Assertion Chapter 21, Result
Assertion     Verifi cation Patterns
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Name Page Relationship Base Name Chapter

DB Schema per  651 Variation Database Sandbox Chapter 25, Database
Test-Runner     Patterns

Data Loader 330 Variation Back Door  Chapter 18, Test
   Manipulation Strategy Patterns

Data Retriever 331 Variation Back Door  Chapter 18, Test 
   Manipulation Strategy Patterns

Data-Driven Test 288  Data-Driven Test Chapter 18, Test   
    Strategy Patterns

Data-Driven Test  290 Variation Data-Driven Test Chapter 18, Test
Framework (Fit)     Strategy Patterns

Data-Driven Test  300 Variation Test Automation  Chapter 18, Test
Frameworks   Framework Strategy Patterns

Database  331 Variation Back Door  Chapter 18, Test
Extraction Script   Manipulation  Strategy Patterns

Database  652 Variation Database Sandbox Chapter 25, Database
Partitioning     Patterns
Scheme

Database  330 Variation Back Door  Chapter 18, Test
Population Script   Manipulation  Strategy Patterns

Database  650  Database Sandbox Chapter 25, Database
Sandbox     Patterns

Decorated  449 Variation Setup Decorator Chapter 20, Fixture
Lazy Setup     Setup Patterns

Dedicated  651 Variation Database Sandbox Chapter 25, Database
Database Sandbox     Patterns

Delegated Setup 411  Delegated Setup Chapter 20, Fixture
    Setup Patterns

Delegated  511 Variation In-line Teardown Chapter 22, Fixture
Teardown     Teardown Patterns

Delta Assertion 485  Delta Assertion Chapter 21, Result
    Verifi cation Patterns

Dependency  352 Variation Test Method Chapter 19, xUnit
Initialization Test     Basics Patterns

Dependency  678  Dependency  Chapter 26, Design-
Injection    Injection  for-Testability 
    Patterns
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Name Page Relationship Base Name Chapter

Dependency  686  Dependency  Chapter 26, Design-
Lookup    Lookup  for-Testability
    Patterns

Derived  719 Variation Derived Value Chapter 27, Value 
Expectation     Patterns

Derived Input 719 Variation Derived Value Chapter 27, Value 
    Patterns

Derived Value 718  Derived Value Chapter 27, Value
    Patterns

Diagnostic  476 Variation Custom Assertion Chapter 21, Result
Assertion     Verifi cation Patterns

Direct Test  401 Variation Test Enumeration Chapter 19, xUnit
Method     Basics Patterns
Invocation

Distinct  724 Variation Generated Value Chapter 27, Value
Generated Value     Patterns

Domain  476 Variation Custom Assertion Chapter 21, Result
Assertion     Verifi cation Patterns

Dummy 728 Alias Dummy Object Chapter 27, Value 
    Patterns

Dummy  729 Variation Dummy Object Chapter 27, Value
Argument     Patterns

Dummy  729 Variation Dummy Object Chapter 27, Value 
Attribute    Patterns

Dummy Object 728  Dummy Object Chapter 27, Value
    Patterns

Dummy  728 Alias Dummy Object Chapter 27, Value
Parameter     Patterns

Dummy Value 728 Alias Dummy Object Chapter 27, Value
    Patterns

Dynamically  561 Variation Confi gurable  Chapter 23, Test
Generated   Test Double  Double Patterns
Test Double

Entity Chain  531 Variation Test Stub Chapter 23, Test
Snipping     Double Patterns

Equality  365 Variation Assertion Method Chapter 19, xUnit
Assertion     Basics Patterns
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Name Page Relationship Base Name Chapter

Expectation- 371 Variation Assertion Message Chapter 19, xUnit
Describing     Basics Patterns
Message

Expected  470 Alias Behavior  Chapter 21, Result
Behavior   Verifi cation Verifi cation Patterns

Expected  470 Variation Behavior  Chapter 21, Result
Behavior   Verifi cation Verifi cation Patterns
Specifi cation    

Expected  366 Variation Assertion Method Chapter 19, xUnit
Exception     Basics Patterns
Assertion

Expected  350 Variation Test Method Chapter 19, xUnit
Exception Test     Basics Patterns

Expected Object 464 Alias State Verifi cation Chapter 21, Result
    Verifi cation Patterns

Expected State  464 Variation State Verifi cation Chapter 21, Result
Specifi cation     Verifi cation Patterns

External Test  280 Variation Recorded Test Chapter 18, Test
Recording     Strategy Patterns

Fake Database 553 Variation Fake Object Chapter 23, Test
    Double Patterns

Fake Object 551  Fake Object Chapter 23, Test 
    Double Patterns

Fake Service  553 Variation Fake Object Chapter 23, Test
Layer     Double Patterns

Fake Web  553 Variation Fake Object Chapter 23, Test
Service    Double Patterns

File System  380 Variation Test Runner Chapter 19, xUnit
Test Runner     Basics Patterns

Finder Method 600 Variation Test Utility  Chapter 24, Test
   Method  Organization
    Patterns

Fixture Setup  456 Variation Chained Tests Chapter 20, Fixture
Testcase     Setup Patterns

Four-Phase Test 358  Four-Phase Test Chapter 19, xUnit 
    Basics Patterns

Framework- 424 Alias Implicit Setup Chapter 20, Fixture
Invoked Setup     Setup Patterns
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Framework- 516 Alias Implicit Teardown Chapter 22, Fixture
Invoked     Teardown Patterns
Teardown

Fresh Context 311 Alias Fresh Fixture Chapter 18, Test
    Strategy Patterns

Fresh Fixture 311  Fresh Fixture Chapter 18, Test
    Strategy Patterns

Fuzzy Equality  365 Variation Assertion Method Chapter 19, xUnit
Assertion     Basics Patterns

Garbage- 500  Garbage- Chapter 22, Fixture
Collected    Collected Teardown Patterns
Teardown   Teardown 

Generated Value 723  Generated Value Chapter 27, Value 
    Patterns

Global Fixture 430 Variation Prebuilt Fixture Chapter 20, Fixture
    Setup Patterns

Graphical  378 Variation Test Runner Chapter 19, xUnit
Test Runner     Basics Patterns

Guard Assertion 490  Guard Assertion Chapter 21, Result
    Verifi cation Patterns

Hand-Built  560 Variation Confi gurable  Chapter 23, Test 
Test Double   Test Double  Double Patterns

Hand-Scripted  285 Alias Scripted Test Chapter 18, Test
Test     Strategy Patterns

Hand-Written  285 Alias Scripted Test Chapter 18, Test
Test     Strategy Patterns

Hard-Coded  568 Alias Hard-Coded  Chapter 23, Test
Mock Object   Test Double  Double Patterns

Hard-Coded  449 Variation Setup Decorator Chapter 20, Fixture
Setup Decorator     Setup Patterns

Hard-Coded  568  Hard-Coded  Chapter 23, Test
Test Double    Test Double  Double Patterns

Hard-Coded  568 Alias Hard-Coded  Chapter 23, Test
Test Stub   Test Double  Double Patterns

Hard-Coded  714 Alias Literal Value Chapter 27, Value
Value     Patterns
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Hooked Setup 424 Alias Implicit Setup Chapter 20, Fixture
    Setup Patterns

Hooked  516 Alias Implicit Teardown Chapter 22, Fixture
Teardown     Teardown Patterns

Humble  698 Variation Humble Object Chapter 26, Design-
Container     for-Testability
Adapter    Patterns

Humble Dialog 696 Variation Humble Object Chapter 26, Design-
    for-Testability
    Patterns

Humble  697 Variation Humble Object Chapter 26, Design-
Executable     for-Testability
    Patterns

Humble Object 695  Humble Object Chapter 26, Design-
    for-Testability
    Patterns

Humble  697 Variation Humble Object Chapter 26, Design-
Transaction     for-Testability
Controller    Patterns

Immutable  323 Variation Shared Fixture Chapter 18, Test
Shared Fixture     Strategy Patterns

Implicit Setup 424  Implicit Setup Chapter 20, Fixture
    Setup Patterns

Implicit  516  Implicit Teardown Chapter 22, Fixture
Teardown     Teardown Patterns

Imposter 522 Alias Test Double Chapter 23, Test
    Double Patterns

In-Database  655 Variation Stored Procedure  Chapter 25, Database
Stored Procedure   Test  Patterns
Test

In-Memory  553 Variation Fake Object Chapter 23, Test
Database     Double Patterns

Incremental  609 Variation Parameterized Test Chapter 24, Result
Tabular Test     Verifi cation Patterns

Incremental Tests 322 Variation Shared Fixture Chapter 18, Test
    Strategy Patterns

Indirect Output  541 Variation Test Spy Chapter 23, Test
Registry     Double Patterns
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Name Page Relationship Base Name Chapter

In-line Setup 408  In-line Setup Chapter 20, Fixture
    Setup Patterns

In-line Teardown 509  In-line Teardown Chapter 22, Fixture
    Teardown Patterns

Inner Test  570 Variation Hard-Coded  Chapter 23, Test 
Double   Test Double  Double Patterns

Interaction  468 Alias Behavior  Chapter 21, Result
Testing   Verifi cation Verifi cation Patterns

Layer Test 337  Layer Test Chapter 18, Test 
    Strategy Patterns

Layer-Crossing  327 Alias Back Door  Chapter 18, Test
Test   Manipulation  Strategy Patterns

Layered Test 337 Alias Layer Test Chapter 18, Test 
    Strategy Patterns

Lazy Setup 435  Lazy Setup Chapter 20, Fixture
    Setup Patterns

Lazy Teardown 663 Variation Table Truncation  Chapter 25, Database
   Teardown  Patterns

Leftover Fixture 317 Alias Shared Fixture Chapter 18, Test
    Strategy Patterns

Literal Value 714  Literal Value Chapter 27, Value 
    Patterns

Loop-Driven  610 Variation Parameterized  Chapter 24, Result
Test   Test Verifi cation Patterns

Minimal Fixture 302  Minimal Fixture Chapter 18, Test
    Strategy Patterns

Minimal  302 Alias Minimal Fixture Chapter 18, Test
Context     Strategy Patterns

Mock Object 544  Mock Object Chapter 23, Test
    Double Patterns

Naive In-line  511 Variation In-line Teardown Chapter 22, Fixture
Teardown     Teardown Patterns

Naive xUnit  292 Variation Data-Driven Test Chapter 18, Test 
Test Interpreter     Strategy Patterns

Named State  417 Variation Creation Method Chapter 20, Fixture
Reaching Method     Setup Patterns

Continued...

Patterns, 
Aliases, and 
Variations

 Patterns, Aliases, and Variations

www.it-ebooks.info

http://www.it-ebooks.info/


776

Name Page Relationship Base Name Chapter

Named Test Suite 592  Named Test Suite Chapter 24, Test
    Organization 
    Patterns

Object Attribute  476 Variation Custom Assertion Chapter 21, Result
Equality Assertion    Verifi cation Patterns

Object Factory 686 Alias Dependency  Chapter 26, Design-
   Lookup  for-Testability
    Patterns

Object Mother 644 Variation Test Helper Chapter 24, Test 
    Organization 
    Patterns

One Bad  719 Variation Derived Value Chapter 27, Value
Attribute    Patterns

Parameter  680 Variation Dependency  Chapter 26, Design-
Injection    Injection  for-Testability 
    Patterns

Parameterized  417 Variation Creation Method Chapter 20, Fixture
Anonymous     Setup Patterns
Creation Method

Parameterized  417 Variation Creation Method Chapter 20, Fixture
Creation     Setup Patterns
Method

Parameterized  449 Variation Setup Decorator Chapter 20, Fixture
Setup Decorator     Setup Patterns

Parameterized  607  Parameterized Test Chapter 21, Result
Test     Verifi cation Patterns

Per-Run Fixture 323 Variation Shared Fixture Chapter 18, Test 
    Strategy Patterns

Persistence Layer  339 Variation Layer Test Chapter 18, Test
Test     Strategy Patterns

Persistent Fresh  314 Variation Fresh Fixture Chapter 18, Test
Fixture     Strategy Patterns

Placeholder 728 Alias Dummy Object Chapter 27, Value 
    Patterns

Poor Man’s  699 Variation Humble Object Chapter 26, Design-
Humble Object     for-Testability 
    Patterns
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Prebuilt Context 429 Alias Prebuilt Fixture Chapter 20, Fixture
    Setup Patterns

Prebuilt Fixture 429  Prebuilt Fixture Chapter 20, Fixture
    Setup Patterns

Presentation  338 Variation Layer Test Chapter 18, Test 
Layer Test     Strategy Patterns

Private Fixture 311 Alias Fresh Fixture Chapter 18, Test
    Strategy Patterns

Procedural  470 Variation Behavior  Chapter 21, Result
Behavior   Verifi cation Verifi cation Patterns
Verifi cation

Procedural State  463 Variation State Verifi cation Chapter 21, Result
Verifi cation     Verifi cation Patterns

Procedural  526 Variation Test Stub Chapter 23, Test
Test Stub     Double Patterns

Programmatic  285 Alias Scripted Test Chapter 18, Test
Test     Strategy Patterns

Pseudo-Object 571 Variation Hard-Coded  Chapter 23, Test
   Test Double  Double Patterns

Pushdown  450 Variation Setup Decorator Chapter 20, Fixture
Decorator     Setup Patterns

Random  724 Variation Generated Value Chapter 27, Value
Generated Value     Patterns

Record and  278 Alias Recorded Test Chapter 18, Test 
Playback Test     Strategy Patterns

Recorded Test 278  Recorded Test Chapter 18, Test
    Strategy Patterns

Refactored  280 Variation Recorded Test Chapter 18, Test
Recorded Test     Strategy Patterns

Related  725 Variation Generated Value Chapter 27, Value
Generated Value     Patterns

Remoted Stored  656 Variation Stored Procedure  Chapter 25, Database
Procedure Test    Test Patterns

Responder 530 Variation Test Stub Chapter 23, Test
    Double Patterns

Retrieval  540 Variation Test Spy Chapter 23, Test
Interface     Double Patterns
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Name Page Relationship Base Name Chapter

Reuse Test for  418 Variation Creation Method Chapter 20, Fixture
Fixture Setup    Setup Patterns

Reused Fixture 317 Alias Shared Fixture Chapter 18, Test
    Strategy Patterns

Robot User Test 278 Alias Recorded Test Chapter 18, Test
    Strategy Patterns

Robot User  299 Variation Test Automation  Chapter 18, Test 
Test Framework   Framework  Strategy Patterns

Row Test 609 Alias Parameterized Test  Chapter 24, Test
Organization Patterns 

SUT API  601 Alias Test Utility  Chapter 24, Test
Encapsulation   Method  Organization 
    Patterns

SUT  601 Variation Test Utility  Chapter 24, Test
Encapsulation   Method  Organization 
Method    Patterns

Saboteur 530 Variation Test Stub Chapter 23, Test
    Double Patterns

Scripted Test 285  Scripted Test Chapter 18, Test
    Strategy Patterns

Self Shunt 540 Variation Hard-Coded  Chapter 23, Test
   Test Double  Double Patterns

Self-Describing  715 Variation Literal Value Chapter 27, Value
Value     Patterns

Service Layer  339 Variation Layer Test Chapter 18, Test 
Test    Strategy Patterns

Service Locator 686 Alias Dependency  Chapter 26, Design-
   Lookup for-Testability 
    Patterns

Setter Injection 681 Variation Dependency  Chapter 26, Design-
   Injection  for-Testability
    Patterns

Setup Decorator 447  Setup Decorator Chapter 20, Fixture
    Setup Patterns

Shared Context 317 Alias Shared Fixture Chapter 18, Test
    Strategy Patterns

Shared Fixture 317  Shared Fixture Chapter 18, Test
    Strategy Patterns
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Shared Fixture  491 Variation Guard Assertion Chapter 21, Result
State Assertion     Verifi cation Patterns

Shared Setup  424 Alias Implicit Setup Chapter 20, Fixture
Method     Setup Patterns

Simple Success  349 Variation Test Method Chapter 19, xUnit
Test     Basics Patterns

Single-Layer Test 337 Alias Layer Test Chapter 18, Test
    Strategy Patterns

Single-Outcome  366 Variation Assertion Method Chapter 19, xUnit
Assertion     Basics Patterns

Single Test Suite 593 Variation Named Test Suite Chapter 24, Test
    Organization 
    Patterns

Slow Tests 318 Variation Shared Fixture Chapter 18, Test
    Strategy Patterns

Spy 538 Alias Test Spy Chapter 23, Test
    Double Patterns

Stale Fixture 317 Alias Shared Fixture Chapter 18, Test
    Strategy Patterns

Standard Context 305 Alias Standard Fixture Chapter 18, Test
    Strategy Patterns

Standard Fixture 305  Standard Fixture Chapter 18, Test
    Strategy Patterns

State-Exposing  580 Variation Test-Specifi c  Chapter 23, Test 
Subclass    Subclass  Double Patterns

State Verifi cation 462  State Verifi cation Chapter 21, Result
    Verifi cation Patterns

State-Based  462 Alias State Verifi cation Chapter 21, Result
Testing     Verifi cation Patterns

Stated Outcome  366 Variation Assertion Method Chapter 19, xUnit 
Assertion     Basics Patterns

Statically  561 Variation Confi gurable  Chapter 23, Test
Generated Test   Test Double  Double Patterns
Double

Stored Procedure  654  Stored Procedure  Chapter 25, Database
Test    Test  Patterns

Stub 529 Alias Test Stub Chapter 23, Test
    Double Patterns

Continued...

 Patterns, Aliases, and Variations

Patterns, 
Aliases, and 
Variations

www.it-ebooks.info

http://www.it-ebooks.info/


780

Name Page Relationship Base Name Chapter

Stub 728  Alias Dummy Object Chapter 27, Value
    Patterns

Subclassed  700 Variation Humble Object Chapter 26, Design-
Humble Object     for-Testability
    Patterns

Subclassed  581 Alias Test-Specifi c  Chapter 23, Test
Singleton   Subclass  Double Patterns

Subclassed  581 Alias Test-Specifi c  Chapter 23, Test
Test Double   Subclass  Double Patterns

Subcutaneous  340 Variation Layer Test Chapter 18, Test 
Test     Strategy Patterns

Subset Suite 593 Variation Named Test Suite Chapter 24, Test
    Organization 
    Patterns

Substitutable  581 Alias Test-Specifi c  Chapter 23, Test
Singleton   Subclass  Double Patterns

Substituted  581 Variation Test-Specifi c  Chapter 23, Test
Singleton   Subclass  Double Patterns

Suite of Suites 388 Variation Test Suite Object Chapter 19, xUnit
    Basics Patterns

Suite Fixture  441  Suite Fixture  Chapter 20, Fixture
Setup    Setup  Setup Patterns

Symbolic  715 Variation Literal Value Chapter 27, Value
Constant     Patterns

Table Truncation  661  Table Truncation  Chapter 25, Database
Teardown    Teardown  Patterns

Tabular Test 609 Variation Parameterized  Chapter 24, Test
   Test Organization
    Patterns

Teardown  511 Variation In-line Teardown Chapter 22, Fixture
Guard Clause     Teardown Patterns

Temporary  530 Variation Test Stub Chapter 23, Test
Test Stub     Double Patterns

Test Automation  298  Test Automation  Chapter 18, Test 
Framework    Framework  Strategy Patterns

Test Bed 429 Alias Prebuilt Fixture Chapter 20, Fixture 
    Setup Patterns
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Test Discovery 393  Test Discovery Chapter 19, xUnit
    Basics Patterns

Test Double 522  Test Double Chapter 23, Test
    Double Patterns

Test Double  569 Variation Hard-Coded  Chapter 23, Test
Class   Test Double  Double Patterns

Test Double  580 Variation Test-Specifi c  Chapter 23, Test
Subclass    Subclass  Double Patterns

Test Double as 332 Variation Back Door  Chapter 18, Test 
Back Door   Manipulation  Strategy Patterns

Test Enumeration 399  Test Enumeration Chapter 19, xUnit
    Basics Patterns

Test Fixture 373 Alias Testcase Class Chapter 19, xUnit
    Basics Patterns

Test Fixture  644 Variation Test Helper Chapter 24, Test
Registry    Organization 
    Patterns

Test Helper 643  Test Helper Chapter 24, Test
    Organization 
    Patterns

Test Helper 645 Variation Test Helper Chapter 24, Test
Class    Organization 
    Patterns

Test Helper  639 Variation Testcase  Chapter 24, Test
Mixin    Superclass Organization 
    Patterns

Test Helper  645 Variation Test Helper Chapter 24, Test
Object     Organization 
    Patterns

Test Hook 709  Test Hook Chapter 26, Design-
    for-Testability
    Patterns

Test Method 348  Test Method Chapter 19, xUnit
    Basics Patterns

Test Method  394 Variation Test Discovery Chapter 19, xUnit
Discovery     Basics Patterns

Test Method  401 Variation Test Enumeration Chapter 19, xUnit
Enumeration     Basics Patterns
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Test Method  404 Variation Test Selection Chapter 19, xUnit
Selection     Basics Patterns

Test Object  503 Alias Automated  Chapter 22, Fixture 
Registry   Teardown  Teardown Patterns

Test Runner 377  Test Runner Chapter 19, xUnit 
    Basics Patterns

Test Selection 403  Test Selection Chapter 19, xUnit 
    Basics Patterns

Test Spy 538  Test Spy Chapter 23, Test 
    Double Patterns

Test Spy 568 Alias Hard-Coded Chapter 23, Test
   Test Double Double Patterns

Test Stub 529  Test Stub Chapter 23, Test
    Double Patterns

Test Suite  400 Variation Test Enumeration Chapter 19, xUnit
Enumeration     Basics Patterns

Test Suite  399 Alias Test Enumeration Chapter 19, xUnit
Factory    Basics Patterns

Test Suite Object 387  Test Suite Object Chapter 19, xUnit
    Basics Patterns

Test Suite Object  293 Variation Data-Driven Test Chapter 18, Test 
Generator     Strategy Patterns

Test Suite Object  293 Variation Data-Driven Test Chapter 18, Test
Simulator     Strategy Patterns

Test Suite  388 Variation Test Suite Object Chapter 19, xUnit
Procedure     Basics Patterns

Test Tree  380 Variation Test Runner Chapter 19, xUnit
Explorer     Basics Patterns

Test Utility  599  Test Utility  Chapter 24, Test
Method    Method  Organization 
    Patterns

Test Utility Test 603 Variation Test Utility  Chapter 24, Test 
   Method  Organization 
    Patterns

Test-Specifi c  579 Alias Test-Specifi c  Chapter 23, Test
Extension   Subclass  Double Patterns

Test-Specifi c  579  Test-Specifi c  Chapter 23, Test
Subclass    Subclass  Double Patterns
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Testcase Class 373  Testcase Class Chapter 19, xUnit
    Basics Patterns

Testcase Class  394 Variation Test Discovery Chapter 19, xUnit
Discovery     Basics Patterns

Testcase Class  625 Variation Testcase Class  Chapter 24, Test
per Method   per Feature  Organization 
    Patterns

Testcase Class  625 Variation Testcase Class  Chapter 24, Test
per User Story   per Feature  Organization 
    Patterns

Testcase Class  404 Variation Test Selection Chapter 19, xUnit
Selection     Basics Patterns

Testcase Class  388 Variation Test Suite Object Chapter 19, xUnit
Suite     Basics Patterns

Testcase Class  617  Testcase Class  Chapter 24, Test
per Class    per Class  Organization 
    Patterns

Testcase Class  624  Testcase Class  Chapter 24, Test 
per Feature    per Feature  Organization 
    Patterns

Testcase Class  631  Testcase Class  Chapter 24, Test
per Fixture    per Fixture  Organization 
    Patterns

Testcase Object 382  Testcase Object Chapter 19, xUnit
    Basics Patterns

Testcase  638  Testcase  Chapter 24, Test
Superclass    Superclass  Organization 
    Patterns

Testing by  337 Alias Layer Test Chapter 18, Test 
Layers     Strategy Patterns

The xUnit  300 Variation Test Automation  Chapter 18, Test
Family   Framework Strategy Patterns

Transaction  668  Transaction  Chapter 25, Database
Rollback    Rollback  Patterns
Teardown   Teardown

Transient  314 Variation Fresh Fixture Chapter 18, Test
Fresh Fixture     Strategy Patterns
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True Humble  699 Variation Humble Object Chapter 26, Design-
Object     for-Testability 
    Patterns

Unfi nished  494  Unfi nished  Chapter 21, Result
Test Assertion    Test Assertion  Verifi cation Patterns

Verifi cation  477 Variation Custom Assertion Chapter 21, Result
Method     Verifi cation Patterns
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Glossary

This glossary contains the author’s defi nitions of the terms used throughout this 
book.

acceptance test 

A customer test that the customer of the software plans to run to help the customer 
decide whether he or she will accept the software system. Acceptance tests are usually 
run manually after all automated customer tests have passed. They exercise all 
layers of the system—from the user interface back to the database—and should 
include any integration with other systems on which the application depends. 

accessor

A method that provides access to an instance variable of an object either by 
returning its value or by providing a way to set its value. 

ACID

The four qualities of transactions that modern databases ensure: 

• Atomic: A transaction is all or nothing.

• Consistent: All operations within a transaction see the same view of the 
world.

• Independent: Transactions are independent of one another (no cross-
transaction leakage of changes).

• Durable: Once committed, the changes made within a transaction are 
permanent (they don’t just vanish for no reason!).

agile method 

A method of executing projects (typically, but not always, restricted to software) 
that reduces the cost of change and allows customers of the software to have 
more control over how much they spend and what they get for their money. Agile 

Also known as:
user
acceptance
test (UAT)
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methods include eXtreme Programming, SCRUM, Feature-Driven Development 
(FDD), and Dynamic Systems Development Method (DSDM), among many 
others. A core practice of most agile methods is the use of automated unit tests.

annotation

A way of indicating something about something. JUnit version 4.0 uses annota-
tions to indicate which classes are Testcase Classes and which methods are Test 
Methods; NUnit uses .NET attributes for this purpose. 

anonymous inner class 

An inner class in Java that is defi ned without a unique name. Anonymous inner 
classes are often used when defi ning Hard-Coded Test Doubles.

anti-pattern

A pattern that shouldn’t be used because it is known to produce less than optimal 
results. Code smells, or their underlying causes, are a kind of anti-pattern. 

application programming interface (API) 

The means by which other software can invoke some piece of functionality. In 
object-oriented software, an API consists of the classes and their publicly acces-
sible methods. In procedural software, it consists of the module or package name 
plus the publicly accessible procedures. 

aspect-oriented programming 

An advanced software modularization technique that allows improved separa-
tion of concerns by “weaving” cross-cutting concerns into code after the affected 
software has been built but before it is executed. 

assertion

A statement that something should be true. In xUnit-style Test Automation 
Frameworks, an assertion takes the form of an Assertion Method that fails when 
the actual outcome passed to it does not match the expected outcome. 
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asynchronous test 

A test that runs in a separate thread of control from the system under test (SUT)
and interacts with it using asynchronous (i.e., “real”) messages. An asynchro-
nous test must coordinate its steps with those of the SUT because this interac-
tion is not managed automatically by the runtime system. An asynchronous 
test may have to include delays to give the SUT enough time to fi nish execution 
before inspecting the outcome. Contrast this with a synchronous test, which
interacts with the SUT via simple method calls. 

attribute

A characteristic of something. The members of the xUnit family for the .NET 
languages use class and method attributes to indicate which classes are Testcase 
Classes and which methods are Test Methods. The term attribute is also a syn-
onym for “instance variable” in some circles. 

back door 

An alternative interface to a system under test (SUT) that test software can use 
to inject indirect inputs into the SUT. A database is a common example of a 
back door, but it could also be any component that can be either manipulated to 
return test-specifi c values or replaced by a Test Double. Contrast this with the 
front door: the application programming interface (API).

BDUF

“Big design up front” is the classic “waterfall” approach to software design. 
In BDUF, all requirements must be understood early in the project, and the 
software is designed to support those requirements in a single design “phase.” 
Contrast this with the emergent design favored by agile projects. 

behavior-driven development 

A variation on the test-driven development process wherein the focus of the 
tests is to clearly describe the expected behavior of the system under test (SUT).
The emphasis is on Tests as Documentation rather than merely using tests for 
verifi cation. 

Behavior-driven development can be done using traditional members of the 
xUnit family. New “members” of the family, however, have been built specifi -
cally to emphasize the change in focus. They include changes in terminology 
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(e.g., “test” becomes “spec”; “fi xture” becomes “context”) and more explicit 
framework support for clarity of the specifi cation. 

behavior smell 

A test smell we encounter while compiling or running tests. We don’t have to be 
particularly observant to notice behavior smells, as they will present themselves 
to us via compile errors or test failures. See also: code smell, project smell.

black box 

A piece of software that we treat as an opaque object whose internal workings 
cannot be seen. Tests written for the black box can verify only externally visible 
behavior and are independent of the implementation inside the system under 
test (SUT).

block

A block of code that can be run. Many programming languages (most notably, 
Smalltalk and Ruby) use blocks (also known as “block closures”) as a way of 
passing a chunk of code to a method, which can then run the code in its own 
context. Java’s anonymous inner classes are a way to achieve the same thing 
without direct support for blocks. C# uses delegates for the same purpose. 

block closure 

See block.

boundary value 

An input value for a system under test (SUT) that is immediately adjacent to the 
boundary between two equivalence classes. Tests using two adjacent boundary 
values help us verify that the behavior changes with exactly the right input and 
that we don’t have “off by one” problems. 

built-in self-test 

A means of organizing test code in which the tests live inside the same module 
or class as the production code and are run automatically when the system is 
initialized.
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business logic 

The core logic related to the domain model of a business system. Because busi-
ness logic usually refl ects the results of many independent business decisions, it 
often seems anything but logical! 

class attribute 

An attribute that is placed on a class in the source code to tell the compiler or 
runtime system that this class is “special.” In some variants of xUnit, class at-
tributes are used to indicate that a class is a Testcase Class.

class method 

A method that is associated with a class rather than an object. Class methods can be 
invoked using a classname.methodname notation [e.g., Assert.assertEquals(message, 
expected, actual);] and do not require an instance of the class to be invoked. Class 
methods cannot access instance methods or instance variables of objects; that is, 
they do not have access to self or this. In Java, a class method is called a static
method. Other languages may use different names or keywords. 

class variable 

A variable that is associated with a class rather than an instance of the class and 
is typically used to access information that all instances need to share. In some 
languages, class variables can be accessed using the syntax classname.variable-
name (e.g., TestHelper.lineFeedCharacter;). That is, they do not need to be accessed 
via self or this. In Java, a class variable is called a static variable. Other lan-
guages may use different names or keywords. 

closure

See block.

code smell 

The “classic” bad smell, as fi rst described by Martin Fowler in [Ref]. Test au-
tomaters must recognize code smells that arise as they maintain test code. Code 
smells typically affect maintenance cost of tests but may also be early warning 
signs of behavior smells to follow. 

See also: test smell, behavior smell, project smell.
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component

A larger part of the overall system that is often separately deployable. Component-
based development involves decomposing the overall functionality into a series 
of individual components that can be built and deployed separately. This allows 
sharing of the components between applications that need the same functionality. 
Each component is a consequence of one or more design decisions, although its 
behavior may also be traced back to some aspect of the requirements. 

Components can take many forms, depending on the technology being 
employed. The Windows platform uses dynamic linked libraries (DLLs) or 
assemblies as components. The Java platform uses Java Archives (JARs). A 
service-oriented architecture (SOA) uses Web Services as its large-grained 
components. The components may implement front-end logic (e.g., a “File 
Open Dialog”) or back-end logic (e.g., a “Customer Persistence” component). 
A component can and should be verifi ed using component tests before the 
overall application is tested using customer tests.

component test 

A test that verifi es the behavior of some component of the overall system. The 
component is a consequence of one or more design decisions, although its be-
havior may also be traced back to some aspect of the requirements. There is 
no need for component tests to be readable, recognizable, or verifi able by the 
customer or business domain expert. Contrast this with a customer test, which 
is derived almost entirely from the requirements and should be verifi able by 
the customer, and with a unit test, which verifi es a much smaller component. A 
component test lies somewhere in between these two extremes. 

During test-driven development, component tests are written after the cus-
tomer tests are written and the overall design is solidifi ed. They are written as
the architectural decisions are made but before the individual units are designed 
or coded. They are usually automated using a member of the xUnit family. 

constructor

A special method used in some object-oriented programming languages to con-
struct a brand-new object. It often has the same name as the class and is typically 
called automatically by the runtime system whenever the special operation new is 
invoked. A Complete Constructor Method [SBPP] returns a ready-to-use object 
that requires no additional tweaking; this usually implies arguments must be 
passed to the constructor. 
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continuous integration 

The agile software development practice of integrating software changes continu-
ously. In practice, developers typically integrate their changes every few hours to 
days. Continuous integration often includes the practice of an automated build 
that is triggered by each check-in. The build process typically runs all automated 
tests and may even run tests that aren’t run before check-in because they take 
too long. The build is considered to have “failed” if any tests fail. When the 
build fails, teams typically consider getting the build working again to be the top 
priority; only code changes aimed at fi xing the build are allowed until a successful 
build has occurred. 

control point 

How the test asks the system under test (SUT) to do something for it. A control 
point could be created for the purpose of setting up or tearing down the fi xture 
or it could be used during the exercise SUT phase of the test. It is a kind of in-
teraction point. Some control points are provided strictly for testing purposes; 
they should not be used by the production code because they bypass input 
validation or short-circuit the normal life cycle of the SUT or some object on 
which it depends. 

customer test 

A test that verifi es the behavior of a slice of the visible functionality of the over-
all system. The system under test (SUT) may consist of the entire system or a 
fully functional top-to-bottom slice (“module”) of the system. A customer test 
should be independent of the design decisions made while building the SUT.
That is, we should require the same set of customer tests regardless of how we 
choose to build the SUT. (Of course, how the customer tests interact with the 
SUT may be affected by high-level software architecture decisions.) 

data access layer 

A way of keeping data access logic from permeating the application code by put-
ting it into a separate component that encapsulates the database. 

depended-on component (DOC) 

An individual class or a large-grained component on which the system under 
test (SUT) depends. The dependency is usually one of delegation via method 

Also known as:
data access 
object (DAO), 
data abstraction 
layer (DAL)
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calls. In test automation, the DOC is primarily of interest in that we need to be 
able to observe and control its interactions with the SUT to get complete test 
coverage.

design pattern 

A pattern that we can use to solve a particular software design problem. Most 
design patterns are programming language independent; the language-specifi c 
ones are typically called “coding idioms.” Design patterns were fi rst popularized 
by the book Design Patterns [GOF]. 

design for testability 

A way of ensuring that code is easily tested by making sure that testing require-
ments are considered as the code is designed. When doing test-driven develop-
ment, design for testability occurs as a natural side effect of development 

developer test 

Another name for an automated unit test that is prepared by someone playing 
the developer role on an eXtreme Programming project. 

DfT

See design for testability.

direct input 

A test may interact with the system under test (SUT) directly via its “front door” 
or public application programming interface (API) or indirectly via its “back 
door.” The stimuli injected by the test into the SUT via its front door are direct 
inputs of the SUT. Direct inputs may consist of method or function calls to an-
other component or messages sent on a message channel (e.g., MQ or JMS) and 
the arguments or contents thereof. 

direct output 

A test may interact with the system under test (SUT) directly via its “front door” 
or public application programming interface (API) or indirectly via its “back 
door.” The responses received by the test from the SUT via its front door are 

Also known as:
DfT
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direct outputs of the SUT. Direct outputs may consist of the return values of 
method or function calls, updated arguments passed by reference, exceptions 
raised by the SUT, or messages received on a message channel (e.g., MQ or JMS) 
from the SUT. 

document-driven development 

A development process that focuses on producing documents that describe 
how the code will be structured and then coding from those documents. Docu-
ment-driven development is normally associated with “big design up front” 
(BDUF, also known as “waterfall”) software development. Contrast this with 
test-driven development, which focuses on producing working code one test 
at a time. 

domain layer 

The layer of a Layered Architecture [DDD, PEAA, WWW] that corresponds to 
the domain model. See Eric Evans’ book, Domain-Driven Design [DDD]. 

domain model 

A model of the problem domain that may form the basis of the object model 
in the business domain layer of a software application. See Eric Evans’ book, 
Domain-Driven Design [DDD]. 

DTO

Short for the Data Transfer Object [CJ2EEP] design pattern. 

dynamic binding 

Deferring the decision about which piece of software to transfer control to until 
execution time. The same method name can be used to invoke different behavior 
(method bodies) based on the class of the object on which it is invoked; the latter 
class is determined only at execution time. Dynamic binding is the opposite of 
static binding; it is also called polymorphism (from the Latin, meaning “taking 
on many shapes”). 

EDD

See example-driven development.
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emergent design 

The opposite of BDUF (big design up front). Emergent design involves letting 
the right design be discovered as the software slowly evolves to pass one test at 
a time during test-driven development.

endoscopic testing 

A testing technique pioneered by the authors of the original Mock Object paper 
[ET], which involves testing software from the inside. 

entity object 

An object that represents an entity concept from a domain. Entity objects typi-
cally have a life cycle that is represented as their state. Contrast this with a 
service object, which has no single state. EJB Entity Beans are one example of 
an entity object. 

equivalence class 

A test condition identifi cation technique that reduces the number of tests 
required by grouping together inputs that should result in the same output or 
that should exercise the same logic in the system. This organization allows 
us to focus our tests on key boundary values at which the expected output 
changes. 

example-driven development (EDD)

A reframing of the test-driven development process to focus on the “executable 
specifi cation” aspect of the tests. The act of providing examples is more intuitive 
to many people; it doesn’t carry the baggage of “testing” software that doesn’t 
yet exist. 

exercise SUT 

After the fi xture setup phase of testing, the test stimulates the system under 
test (SUT) logic that is to be tested. This phase of the testing process is called 
exercise SUT. 

Also known as: 
domain object
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expectation

What a test expects the system under test (SUT) to have done. When we are 
using Mock Objects to verify the indirect outputs of the SUT, we load each 
Mock Object with the expected method calls (including the expected argu-
ments); these are called the expectations. 

expected outcome 

The outcome that we verify after exercising the system under test (SUT).
A Self-Checking Test verifi es the expected outcome using calls to Assertion 
Methods.

exploratory testing 

Interactive testing of an application without a specifi c script in hand. The tester 
“explores” the system, making up theories about how it should behave based 
on what the application has already done and then testing those theories to see 
if they hold up. While there is no rigid plan, exploratory testing is a disciplined 
activity that is more likely to fi nd real bugs than rigidly scripted tests. 

eXtreme Programming 

An agile software development methodology that showcases pair programming, 
automated unit testing, and short iterations. 

factory

A method, object, or class that exists to build other objects. 

false negative 

A situation in which a test passes even though the system under test (SUT) is 
not working properly. Such a test is said to give a false-negative indication or a 
“false pass.” 

See also: false positive.

false positive 

A situation in which a test fails even though the system under test (SUT) is 
working properly. Such a test is said to give a false-positive indication or a 
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“false failure.” The terminology comes from statistical science and relates to 
our attempt to calculate the probability of some observation error occurring. 
For example, in medicine we run tests to fi nd out if a medical condition is pres-
ent; if it is, the test is “positive.” It is useful to know the probability that a test 
might indicate that a condition (such as diabetes) is present when it is not—that 
is, a false “positive.” If we think of software tests as a way of determining 
whether a condition (a particular defect or bug) is present, a test that reports a 
defect (a test failure or error) when it is not, in fact, present is giving us a false 
positive.

See also: false negative. Wikipedia [Wp] has an extensive description under 
the topic “Type I and type II errors.” 

fault insertion test 

A kind of test in which a deliberate fault is introduced in one part of the sys-
tem to verify that another part reacts to the error appropriately. Initially, the 
faults were related to hardware but the same concept is now applied to software 
faults as well. Replacing a depended-on component (DOC) with a Saboteur that 
throws an exception is an example of a software fault insertion test. 

feature

A testable unit of functionality that can be built onto the evolving software sys-
tem. In eXtreme Programming, a user story corresponds roughly to a feature. 

Fit test 

A test that uses the Fit testing framework; most commonly a customer test.

fi xture 

See test fi xture (disambiguation).

fi xture (Fit) 

In Fit, the Adapter [GOF] that interprets the Fit table and invokes methods on 
the system under test (SUT), thereby implementing a Data-Driven Test. For 
meanings in other contexts, see test fi xture (disambiguation), test fi xture (in 
xUnit), and test fi xture (in NUnit).

Glossary796

www.it-ebooks.info

http://www.it-ebooks.info/


fi xture holding class variable 

A class variable of a Testcase Class that is used to hold a reference to the test
fi xture. It typically holds a reference to a Shared Fixture.

fi xture holding instance variable 

An instance variable of a Testcase Object that is used to hold a reference to the 
test fi xture. It typically holds a reference to a Fresh Fixture that is set up using 
Implicit Setup.

fi xture holding local variable 

A local variable of a Test Method that is used to hold a reference to the test fi x-
ture. It typically holds a reference to a Fresh Fixture that is set up within the test 
method using In-line Setup or returned from Delegated Setup.

fi xture setup 

Before the desired logic of the system under test (SUT) can be exercised, the pre-
conditions of the test need to be set up. Collectively, all objects (and their states) 
are called the test fi xture (or test context), and the phase of the test that sets up 
the test fi xture is called fi xture setup. 

fi xture teardown 

After a test is run, the test fi xture that was built by the test should be destroyed. 
This phase of the test is called fi xture teardown. 

fl uent interface 

A style of object constructor API that results in easy-to-understand statements. 
The Confi guration Interface provided by the Mock Object toolkit JMock is an 
example of a fl uent interface. 

front door 

The public application programming interface (API) of a piece of software. Con-
trast this with the back door.
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function pointer 

From Wikipedia [Wp]: “A function pointer is a type of pointer in C, C++, D, and 
other C-like programming languages. When dereferenced, a function pointer in-
vokes a function, passing it zero or more arguments like a normal function.”

functional test (common usage) 

A black-box test of the end-user functionality of an application. The agile com-
munity is trying to avoid this usage of “functional test” because of the potential for 
confusion when talking about verifying functional (as opposed to nonfunctional or 
extra-functional properties) properties of a unit or component. This book uses the 
terms “customer test” and “acceptance test” for a functional test of the entire appli-
cation and “unit test” for a functional test of an individual unit of the application. 

functional test (contrast with extra-functional test) 

A test that verifi es the functionality implemented by a piece of software. De-
pending on the scope of the software, a functional test may be a customer test,
a unit test, or a component test.

In some circles a functional test is a customer test. This usage becomes con-
fusing, however, when we talk about testing nonfunctional or extra-functional 
properties of the system under test (SUT). This book uses the terms “customer
test” and “acceptance test” for a functional test of the entire application and 
“unit test” for a functional test of an individual unit of the application. 

garbage collection 

A mechanism that automatically recovers the memory used by any objects that 
are no longer accessible. Many modern object-oriented programming environ-
ments provide garbage collection.

global variable 

A variable that is global to a whole program. A global variable is accessible 
from anywhere within the program and never goes out of scope, although the 
memory to which it refers can be deallocated explicitly. 

green bar 

Many Graphical Test Runners portray the progress of the test run using a prog-
ress bar. As long as all tests have passed, the bar stays green. When any tests fail, 
the indicator changes to a red bar.

Also known as:
procedure

variable, 
delegate in

.NET languages
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GUI

Graphical user interface. 

happy path 

The “normal” path of execution through a use case or through the software that 
implements it; also known as the “sunny day” scenario. Nothing goes wrong, 
nothing out of the ordinary happens, and we swiftly and directly achieve the 
user’s or caller’s goal. 

Hollywood principle 

What directors in Hollywood tell aspiring actors at mass-casting calls: “Don’t 
call us; we’ll call you (if we want you).” In software, this concept is often called 
inversion of control (IOC).

IDE

Integrated development environment. An environment that provides tools to edit, 
compile, execute, and (typically) test code within a single development tool. 

incremental delivery 

A method of building and deploying a software system in stages and releasing 
the software as each stage, called an “increment,” is completed. This approach 
results in earlier delivery to the user of a working system, where the capabilities 
of the system increase over time. In agile methods, the increment of functionality 
is the feature or user story. Incremental delivery goes beyond iterative develop-
ment and incremental development, however, by actually putting the functional-
ity into production on a regular basis. This idea is summarized by the following 
mantra: “Deliver early, deliver often.” 

incremental development 

A method of building a software system in stages such that the functionality built 
to date can be tested before the next stage is started. This approach allows for 
the earlier delivery to the user of a working system, where the capabilities of the 
system increase over time (see incremental delivery). In agile methods, the incre-
ment of functionality is the feature or user story. Incremental development goes 
beyond iterative development, however, in that it promises to produce working, 
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testable, and potentially deployable software with every iteration. With incre-
mental delivery, we also promise to “Deliver early, deliver often.” 

indirect input 

When the behavior of the system under test (SUT) is affected by the values returned 
by another component whose services it uses, we call those values the indirect in-
puts of the SUT. Indirect inputs may consist of actual return values of functions, 
updated (out) parameters of procedures or subroutines, and any errors or excep-
tions raised by the depended-on component (DOC). Testing of the SUT behavior 
with indirect inputs requires the appropriate control point on the “back side” of 
the SUT. We often use a Test Stub to inject the indirect inputs into the SUT.

indirect output 

When the behavior of the system under test (SUT) includes actions that cannot 
be observed through the public application programming interface (API) of the 
SUT but that are seen or experienced by other systems or application compo-
nents, we call those actions the indirect outputs of the SUT. Indirect outputs 
may consist of method or function calls to another component, messages sent 
on a message channel (e.g., MQ or JMS), and records inserted into a database or 
written to a fi le. Verifi cation of the indirect output behaviors of the SUT requires 
the use of appropriate observation points on the “back side” of the SUT. Mock
Objects are often used to implement the observation point by intercepting the 
indirect outputs of the SUT and comparing them to the expected values. 

See also: outgoing interface.

inner class 

A class in Java that is defi ned inside another class. Anonymous inner classes are 
defi ned inside a method, whereas inner classes are defi ned outside a method. In-
ner classes are often used when defi ning Hard-Coded Test Doubles.

instance method 

A method that is associated with an object rather than the class of the object. An 
instance method is accessible only from within or via an instance of the class. 
It is typically used to access information that is expected to differ from one 
instance to another. 

Also known as: 
outgoing
interface
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The exact syntax used to access an instance method varies from language to 
language. The most common syntax is objectReference.methodName(). When 
referenced from within other methods on the object, some languages require an 
explicit reference to the object (e.g., this.methodName() or self methodName); 
other languages simply assume that any unqualifi ed references to methods are 
references to instance methods.

instance variable 

A variable that is associated with an object rather than the class of object. An instance 
variable is accessible only from within or via an instance of the class. It is typically 
used to access information that is expected to differ from one instance to another. 

interaction point 

A point at which a test interacts with the system under test (SUT). An interac-
tion point can be either a control point or an observation point.

interface

In general, a fully abstract class that defi nes only the public methods that all im-
plementers of the interface must provide. In Java, an interface is a type defi nition 
that does not provide any implementation. In most single-inheritance languages, 
a class may implement any number of interfaces, even though it can extend 
(subclass) only one other class. 

inversion of control (IOC)

A control paradigm that distinguishes software frameworks from “toolkits” or 
components. The framework calls the software plug-in (rather than the reverse). 
In the real world, inversion of control is often called the Hollywood principle.
With the advent of automated unit testing, a class of framework known as an 
inversion of control framework has sprung up specifi cally to simplify the re-
placement of depended-on components (DOCs) with Test Doubles.

IOC

See inversion of control.

Also known as:
member
function
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iterative development 

A method of building a software system using time-boxed “iterations.” Each 
iteration is planned and then executed. At the end of the “time box,” the status 
of all the work is reviewed and the next iteration is planned. The strict time-
boxing prevents “runaway development,” where the state of the system is never 
assessed because nothing is ever fi nished. Unlike incremental development, itera-
tive development does not require working software to be delivered at the end 
of each iteration. 

layer-crossing test 

A test that either sets up the fi xture or verifi es the outcome using Back Door 
Manipulation, which involves using a “back door” of the system under test 
(SUT) such as a database. Contrast this with a round-trip test.

legacy software 

In the test-driven development community, any software that does not have a 
Safety Net of Fully Automated Tests.

liveware

The people who use our software. They are usually assumed to be much more 
intelligent than either the software or the hardware but they can also be rather 
unpredictable.

local variable 

A variable that is associated with a block of code rather than an object or class. 
A local variable is accessible only from within the code block; it goes out of 
scope when the block of code returns to its caller. 

manual test 

A test that is executed by a person interacting with the system under test (SUT).
The user may be following some sort of “test script” (not to be confused with a 
Scripted Test) or doing ad hoc or exploratory testing. 

Also known as: 
wetware, 

mushware
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meta object 

An object that holds data that controls the behavior of another object. A meta 
object protocol is the interface by which the meta object is constructed or con-
fi gured. 

metatest

A test that verifi es the behavior of one or more tests. Such a test is mostly used 
during test-driven development, when we are writing tests as examples or course 
material and we want to ensure that tests are, indeed, failing to illustrate a par-
ticular problem. 

method attribute 

An attribute that is placed on a method in the source code to tell the compiler 
or runtime system that this method is “special.” In some xUnit family members, 
method attributes are used to indicate that a method is a Test Method.

mixin

Functionality intended to be inherited by another class as part of that class’s 
implementation without implying specialization (“kind of” relationship) of the 
providing class. 

“The term mixin comes from an ice cream store in Somerville, Massachu-
setts, where candies and cakes were mixed into the basic ice cream fl avors. This 
seemed like a good metaphor to some of the object-oriented programmers who 
used to take a summer break there, especially while working with the object-
oriented programming language SCOOPS” (SAMS Teach Yourself C++ in 21 
Days, 4th ed., p. 458). 

module

In legacy programming environments (and probably a few current ones, too): 
An independently compilable unit of source code (e.g., the “fi le I/O module”) 
that is later linked into the fi nal executable. Unlike a component, this kind of 
module is typically not independently deployable. It may or may not have a cor-
responding set of unit tests or component tests.

When describing the functionality of a software system or application: A 
complete vertical chunk of the application that provides a particular piece of 
functionality (e.g., the “Customer Management Module”) that can be used 
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somewhat independently of the other modules. It would have a corresponding 
set of acceptance tests and may be the unit of incremental delivery.

need-driven development 

A variation on the test-driven development process where code is written from the 
outside in and all depended-on code is replaced by Mock Objects that verify the 
expected indirect outputs of the code being written. This approach ensures that 
the responsibilities of each software unit are well understood before they are 
coded, by virtue of having unit tests inspired by examples of real usage. The 
outermost layer of software is written using storytest-driven development. It
should have examples of usage by real clients (e.g., a user interface driving the 
Service Facade [CJ2EEP]) in addition to the customer tests.

object-relational mapping (ORM)

A middleware component that translates between the object-oriented domain
model of an application and the table-oriented view presented by a relational 
database management system. 

observation point 

The means by which the test observes the behavior of the system under test 
(SUT). This kind of interaction point can be used to inspect the post-exercise 
state of the SUT or to monitor interactions between the SUT and its depended-
on components. Some observation points are provided strictly for the tests; they 
should not be used by the production code because they may expose private 
implementation details of the SUT that cannot be depended on not to change. 

ORM

See object-relational mapping.

outgoing interface 

A component (e.g., a class or a collection of classes) often depends on other 
components to implement its behavior. The interfaces it uses to access these 
components are known as outgoing interfaces, and the inputs and outputs trans-
mitted via test interfaces are called indirect inputs and indirect outputs. Outgoing 
interfaces may consist of method or function calls to another component, mes-
sages sent on a message channel (e.g., MQ or JMS), or records inserted into a 
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database or written to a fi le. Testing the behavior of the system under test (SUT)
with outgoing interfaces requires special techniques such as Mock Objects to 
intercept and verify the usage of outgoing interfaces. 

pattern

A solution to a recurring problem. A pattern has a context in which it is typically 
applied and forces that help you choose one pattern over another based on that 
context. Design patterns are a particular kind of pattern. Organizational pat-
terns are not discussed in this book. 

pattern language 

A collection of patterns that work together to lead the reader from a very high-
level problem to a very detailed solution customized for his or her particular 
context. When a pattern language achieves this goal, it is said to be “genera-
tive”; this characteristic differentiates a pattern language from a simple collec-
tion of patterns. Refer to “A Pattern Language for Pattern Writing” [APLfPW] 
to learn more about how to write a pattern language. 

polymorphism

Dynamic binding. The word is derived from the Latin, meaning “taking on 
many shapes.” 

presentation layer 

The part of a Layered Architecture [DDD, PEAA, WWW] that contains the 
presentation logic.

presentation logic 

The logic embedded in the presentation layer of a business system. It decides 
which screen to show, which items to put on menus, which items or buttons to 
enable or disable, and so on. 

procedure variable 

A variable that refers to a procedure or function rather than a piece of data. 
It allows the code to be called to be determined at runtime (dynamic binding) 
rather than at compile time. The actual procedure to be invoked is assigned to 

Also known as: 
function pointer, 
delegate
(in .NET 
languages)
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the variable either during program initialization or during execution. Procedure 
variables were a precursor to true object-oriented programming languages 
(OOPLs). Early OOPLs such as C++ were built by using tables (arrays) of data 
structures containing procedure variables to implement the method (member 
function) dispatch tables for classes. 

production

In IT shops, the environment in which applications being used by real users run. 
This environment is distinguished from the various testing environments, such 
as “acceptance,” “integration,” “development,” and “qual” (short for “quality 
assessment or assurance”). 

production code 

In IT shops, the environment in which applications run is often called produc-
tion. Production code is the code that we are writing for eventual deployment 
to this environment, whether the code is to be shipped in a product or deployed 
into “production.” Compare to “test code.”

programmer test 

A developer test.

project smell 

A symptom that something has gone wrong on the project. Its underlying root 
cause is likely to be one or more code smells or behavior smells. Because project 
managers rarely run or write tests, project smells are likely the fi rst hint they 
have that something may be less than perfect in test automation land. 

pull

A concept from lean manufacturing that states that things should be produced 
only once a real demand for them exists. In a “pull system,” upstream (i.e., 
subcomponent) assembly lines produce only enough products to replace the 
items withdrawn from the pool that buffers them from the downstream assem-
bly lines. In software development, this idea can be translated as follows: “We 
should only write methods that have already been called by other software and 
only handle those cases that the other software actually needs.” This approach 
avoids speculation and the writing of unnecessary software, which is one of 

Also known as: 
pull system
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software development’s key forms of inventory (which is considered waste in 
lean systems). 

red bar 

Many Graphical Test Runners portray the progress of the test run using a prog-
ress bar that starts off green in color. When any tests fail, this indicator changes 
to a red bar. 

refactoring

Changing the structure of existing code without changing its behavior. Refactor-
ing is used to improve the design of existing code, often as a fi rst step before add-
ing new functionality. The authoritative source for information on refactoring is 
Martin Fowler’s book [Ref]. 

refl ection 

The ability of a software program to examine its own structure as it is executing. 
Refl ection is often used in software development tools to facilitate adding new 
capabilities.

regression test 

A test that verifi es that the behavior of a system under test (SUT) has not 
changed. Most regression tests are originally written as either unit tests or ac-
ceptance tests, but are subsequently included in the regression test suite to keep 
that functionality from being accidentally changed. 

result verifi cation 

After the exercise SUT phase of the Four-Phase Test, the test verifi es that the 
expected (correct) outcome has actually occurred. This phase of the test is called 
result verifi cation. 

retrospective

A process whereby a team reviews its processes and performance for the pur-
pose of identifying better ways of working. Retrospectives are often conducted 
at the end of a project (called a project retrospective) to collect data and make 
recommendations for future projects. They have more impact if they are done 

Also known as:
postmortem, 
postpartum
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regularly during a project. Agile projects tend to do retrospectives after at least 
every release (called a release retrospective) and often after every iteration 
(called an iteration retrospective.) 

root cause analysis 

A process wherein the cause of a failure or bug is traced back to all possible 
contributing factors. A root cause analysis helps us avoid treating symptoms by 
identifying the true sources of our problems. A number of techniques for doing 
root cause analysis exist, including Toyota’s “fi ve why’s” [TPS]. 

round-trip test 

A test that interacts only via the “front door” (public interface) of the system
under test (SUT). Compare with layer-crossing test.

service object 

An object that provides a service to other objects. Service objects typically do 
not have a life cycle of their own; any state they do contain tends to be an aggre-
gate of the states of the entity objects that they vend. The interface of a service 
object is often defi ned via a Service Facade [CJ2EEP] class. EJB Session Beans 
are one example of a service object. 

setter

A method provided by an object specifi cally to set the value of one of its attri-
butes. By convention, it either has the same name as the attribute or its name 
includes the prefi x “set” (e.g., setName).

smell

A symptom of a problem. A smell doesn’t necessarily tell us what is wrong, be-
cause it may have several possible causes. A smell must pass the “sniffability 
test”—that is, it must grab us by the nose and say, “Something is wrong here.” To 
fi gure out exactly what the smell means, we must perform root cause analysis.

We classify smells based on where we fi nd them. The most common kinds 
are (production) code smells, test smells, and project smells. Test smells may be 
either (test) code smells or behavior smells.

Also known as:
service 

component
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spike

In agile methods such as eXtreme Programming, a time-boxed experiment used 
to obtain enough information to estimate the effort required to implement a new 
kind of functionality. 

stateless

An object that does not maintain any state between invocations of its opera-
tions. That is, each request is self-contained and does not require that the same 
server object be used for a series of requests. 

static binding 

Resolving exactly which piece of software we will transfer control to at compile 
time. Static binding is the opposite of dynamic binding.

static method 

In Java, a method that the compiler resolves at compile time (rather than at run-
time using dynamic binding). This behavior is the opposite of dynamic (or virtual
in C++). A static method is also a class method because only class methods can 
be resolved at compile time in Java. A static method is not necessarily a class 
method in all languages, however.  For example:

Assert.assertEquals(message, expected, actual);

static variable 

In Java, a variable (fi eld) that the compiler resolves at compile time rather than 
at runtime using dynamic binding. A static variable is also a class variable be-
cause only class variables can be resolved at compile time in Java. Being static 
(i.e., not dynamic) does not necessarily imply that something is associated with 
a class (rather than an instance) in all languages. 

STDD

See storytest-driven development.

story

See user story.
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storytest

A customer test that is the “confi rmation” part of the user story “trilogy”: card, 
conversation, confi rmation [XPC]. When the storytests are written before any 
software is developed, we call the process storytest-driven development.

storytest-driven development (STDD)

A variation of the test-driven development process that entails writing (and 
usually automating) customer tests before the development of the correspond-
ing functionality begins. This approach ensures that integration of the various 
software units verifi ed by the unit tests results in a usable whole. The term 
“storytest-driven development” was fi rst coined by Joshua Kerievsky as part of 
his methodology “Industrial XP” [IXP]. 

STTCPW

“The simplest thing that could possibly work.” This approach is commonly 
used on XP projects when someone is over-engineering the software by trying to 
anticipate future requirements. 

substitutable dependency 

A software component may depend on any number of other components. If we are 
to test this component by itself, we must be able to replace the other components 
with Test Doubles—that is, each component must be a substitutable dependency. 
We can turn something into a substitutable dependency in several ways, including 
Dependency Injection, Dependency Lookup, and Test-Specifi c Subclass.

synchronous test 

A test that interacts with the system under test (SUT) using normal (synchronous) 
method calls that return the results that the test will make assertions against. A 
synchronous test does not need to coordinate its steps with those of the SUT; this
activity is managed automatically by the runtime system. Contrast this with an 
asynchronous test, which runs in a separate thread of control from the SUT.

system under test (SUT) 

Whatever thing we are testing. The SUT is always defi ned from the perspective of 
the test. When we are writing unit tests, the SUT is whatever class (also known 

Also known as: 
AUT, CUT, 
MUT, OUT
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as CUT), object (also known as OUT), or method (also known as MUT) we are 
testing; when we are writing customer tests, the SUT is probably the entire appli-
cation (also known as AUT) or at least a major subsystem of it. The parts of the 
application that we are not verifying in this particular test may still be involved 
as a depended-on component (DOC).

task

The unit of work assignment (or volunteering) in eXtreme Programming. One 
or more tasks may be involved in delivering a user story (a feature).

TDD

See test-driven development.

test

A procedure, whether manually executed or automated, that can be used to 
verify that the system under test (SUT) is behaving as expected. Often called a 
test case.

test automater 

The person or project role that is responsible for building the tests. Sometimes 
a “subject matter expert” may be responsible for coming up with the tests to be 
automated by the test automater. 

test case 

Usually a synonym for “test.” In xUnit, it may also refer to a Testcase Class,
which is actually a Test Suite Factory as well as a place to put a set of related 
Test Methods.

test code 

Code written specifi cally to test other code (either production or other test code). 

test condition 

A particular behavior of the system under test (SUT) that we need to verify. It 
can be described as the following collection of points: 

 Glossary 811

www.it-ebooks.info

http://www.it-ebooks.info/


• If the SUT is in some state S1, and

• We exercise the SUT in some way X, then

• The SUT should respond with R and

• The SUT should be in state S2. 

test context 

Everything a system under test (SUT) needs to have in place so that we can ex-
ercise the SUT for the purpose of verifying its behavior. For this reason, RSpec
calls the test fi xture (as used in xUnit) a “context.” 

Context: a set fruits with 
   contents = {apple, orange, pear}
Exercise: remove orange from the fruits set
Verify: fruits set contents = {apple, pear}

In this example, the fi xture consists of a single set and is created directly in the 
test. How we choose to construct the fi xture has very far-reaching ramifi cations 
for all aspects of test writing and maintenance. 

test database 

A database instance that is used primarily for the execution of tests. It should 
not be the same database as is used in production!

test debt 

I fi rst became aware of the concept of various kinds of debts via the Industrial 
XP mailing list on the Internet. The concept of “debt” is a metaphor for “not 
doing enough of” something. To get out of debt, we must put extra effort into 
the something we were not doing enough of. Test debt arises when we do not 
write all of the necessary tests. As a result, we have “unprotected code” in that 
the code could break without causing any tests to fail. 

test-driven bug fi xing 

A way of fi xing bugs that entails writing and automating unit tests that reproduce 
each bug before we begin debugging the code and fi xing the bug; the bug-fi xing 
extension of test-driven development.
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test-driven development (TDD)

A development process that entails writing and automating unit tests before the 
development of the corresponding units begins. TDD ensures that the responsi-
bilities of each software unit are well understood before they are coded. Unlike 
test-fi rst development, test-driven development is typically meant to imply that 
the production code is made to work one test at a time (a characteristic called 
emergent design).

See also: storytest-driven development.

test driver 

A person doing test-driven development.

test driving 

The act of doing test-driven development.

test error 

When a test is run, an error that keeps the test from running to completion. The 
error may be explicitly raised or thrown by the system under test (SUT) or by 
the test itself, or it may be thrown by the runtime system (e.g., operating system, 
virtual machine). In general, it is much easier to debug a test error than a test
failure because the cause of the problem tends to be much more local to where 
the test error occurs. Compare with test failure and test success.

test failure 

When a test is run and the actual outcome does not match the expected out-
come. Compare with test error and test success.

test-fi rst development 

A development process that entails writing and automating unit tests before the 
development of the corresponding units begins. Test-fi rst development ensures 
that the responsibilities of each software unit are well understood before that 
unit is coded. Unlike test-driven development, test-fi rst development merely says 
that the tests are written before the production code; it does not imply that the 
production code is made to work one test at a time (emergent design). Test-fi rst 

 Glossary 813

www.it-ebooks.info

http://www.it-ebooks.info/


development may be applied at the unit test or customer test level, depending on 
which tests we have chosen to automate. 

test fi xture (disambiguation) 

In generic xUnit: All the things we need to have in place to run a test and expect 
a particular outcome. The test fi xture comprises the pre-conditions of the test; 
that is, it is the “before” picture of the SUT and its context. See also: test fi xture 
(in xUnit) and test context.

In NUnit and VbUnit: The Testcase Class. See also: test fi xture (in NUnit).
In Fit: The adapter that interprets the Fit table and invokes methods on the 

system under test (SUT), thereby implementing a Data-Driven Test.
See also: fi xture (Fit).

test fi xture (in NUnit) 

In NUnit (and in VbUnit and most .NET implementations of xUnit): The Test-
case Class on which the Test Methods are implemented. We add the attribute 
[TestFixture] to the class that hosts the Test Methods.

Some members of the xUnit family assume that an instance of the Testcase 
Class “is a” test context; NUnit is a good example. This interpretation assumes 
we are using the Testcase Class per Fixture approach to organizing the tests. 
When we choose to use a different way of organizing the tests, such as Testcase 
Class per Class or Testcase Class per Feature, this merging of the concepts of 
test context and Testcase Class can be confusing. This book uses “test fi xture”
to mean “the pre-conditions of the test” (also known as the test context) and 
Testcase Class to mean “the class that contains the Test Methods and any code 
needed to set up the test context.”

test fi xture (in xUnit) 

In xUnit: All the things we need to have in place to run a test and expect a par-
ticular outcome (i.e., the test context). Some variants of xUnit keep the concept 
of the test context separate from the Testcase Class that creates it; JUnit and its 
direct ports fall into this camp. Setting up the test fi xture is the fi rst phase of the 
Four-Phase Test. For meanings of the term “test fi xture” in other contexts, see 
test fi xture (disambiguation).
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test-last development 

A development process that entails executing unit tests after the development of 
the corresponding units is fi nished. Unlike test-fi rst development, test-last devel-
opment merely says that testing should be done before the code goes into pro-
duction; it does not imply that the tests are automated. Traditional QA (quality 
assurance) testing is inherently test-last development unless the tests are pre-
pared as part of the requirements phase of the project and are shared with the 
development team. 

test maintainer 

The person or project role responsible for maintaining the tests as the system 
or application evolves. Most commonly, this person is enhancing the system 
with new functionality or fi xing bugs. The test maintainer could also be who-
ever is called in when the automated tests fail for whatever reason. If the test 
maintainer is doing the enhancements by writing tests fi rst, he or she is also a 
test driver.

test package 

In languages that provide packages or namespaces, a package or name that 
exists for the purpose of hosting Testcase Classes.

test reader 

Anyone who has reason to read tests, including a test maintainer or test driver.
This individual may be reading the tests primarily for the purpose of under-
standing what the system under test (SUT) is supposed to do (Tests as Docu-
mentation) or as part of a test maintenance or software development activity. 

test result 

A test or test suite can be run many times, each time yielding a different test 
result.

test run 

A test or test suite can be run many times, each time yielding a different test
result. Some commercial test automation tools record the results of each test run 
for prosperity.
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test smell 

A symptom of a problem in test code. A smell doesn’t necessarily tell us what is 
wrong because it may have several possible causes. Like all smells, a test smell 
must pass the “sniffability test”—that is, it must grab us by the nose and say, 
“Something is wrong here.”

test-specifi c equality 

Tests and the system under test (SUT) may have different ideas about what con-
stitutes equality of two objects. In fact, this understanding may differ from one 
test to another. It is not advisable to modify the defi nition of equality within the 
SUT to match the tests’ expectations, as this practice leads to Equality Pollution.
Making individual Equality Assertions on many attributes of an object is not the 
answer either, as it can result in Obscure Tests and Test Code Duplication. In-
stead, build one or more Custom Assertions that meets your tests’ needs. 

test stripper 

A step or program in the build process that removes all the test code from the 
compiled and linked executable. 

test success 

A situation in which a test is run and all actual outcomes match the expected 
outcomes. Compare with test failure and test error.

test suite 

A way to name a collection of tests that we want to run together. 

Unifi ed Modeling Language (UML) 

From Wikipedia [Wp]: “[A] nonproprietary specifi cation language for object 
modeling. UML is a general-purpose modeling language that includes a stan-
dardized graphical notation used to create an abstract model of a system, 
referred to as a UML model.” 
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unit test 

A test that verifi es the behavior of some small part of the overall system. What 
turns a test into a unit test is that the system under test (SUT) is a very small subset 
of the overall system and may be unrecognizable to someone who is not involved 
in building the software. The actual SUT may be as small as a single object or 
method that is a consequence of one or more design decisions, although its behav-
ior may also be traced back to some aspect of the functional requirements. Unit 
tests need not be readable, recognizable, or verifi able by the customer or business 
domain expert. Contrast this with a customer test, which is derived almost entirely 
from the requirements and which should be verifi able by the customer. In eXtreme 
Programming, unit tests are also called developer tests or programmer tests.

use case 

A way of describing the functionality of a system in terms of what its users are 
trying to achieve and what the system needs to do to achieve their goals. Unlike 
user stories, use cases may cover many different scenarios yet are often not test-
able independently. 

user acceptance test (UAT)

See acceptance test.

user story 

The unit of incremental development in eXtreme Programming. We must INVEST 
in good user stories—that is, each user story must be Independent, Negotiable, 
Valuable, Estimatable, Small, and Testable [XP123]. A user story corresponds 
roughly to a “feature” in non-eXtreme Programming terminology and is typically 
decomposed into one or more tasks to be carried out by project team members. 

verify outcome 

After the exercise SUT phase of the test, the test compares the actual outcome—
including returned values, indirect outputs, and the post-test state of the system
under test (SUT)—with the expected outcome. This phase of the test is called 
the verify outcome phase. 

Also known as: 
story, feature
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By: Deepak Alur, Dan Malks, and John Crupi 

This book catalogs the core patterns of usage of Enterprise Java Beans 
(EJB), which are a key part of the Java 2 Enterprise Edition. Examples 
include Session Facade [CJ2EEP]. 

[DDD]
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Published by: Addison-Wesley (2004)
ISBN: 0-321-12521-5
By: Eric Evans 

This book is a good introduction to the process of using a domain model 
as the heart of a software system. 

Readers learn how to use a domain model to make complex 
development effort more focused and dynamic. A core of best 
practices and standard patterns provides a common language for 
the development team.
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[ET]
Endo-Testing 

http://www.connextra.com/aboutUs/mockobjects.pdf
By: Tim Mackinnon, Steve Freeman, and Philip Craig 

This paper, which was presented at XP 2000 in Sardinia, describes the use 
of Mock Objects (page 544) to facilitate testing of the behavior of an object 
by monitoring its behavior while it is executing. 

Unit testing is a fundamental practice in eXtreme Programming, 
but most nontrivial code is diffi cult to test in isolation. It is hard 
to avoid writing test suites that are complex, incomplete, and 
diffi cult to maintain and interpret. Using Mock Objects for 
unit testing improves both domain code and test suites. These 
objects allow unit tests to be written for everything, simplify 
test structure, and avoid polluting domain code with testing 
infrastructure.

[FaT]
Frameworks and Testing 

In: Proceedings of XP2002
http://www.agilealliance.org/articles/roockstefanframeworks/fi le 
By: Stefan Roock 

This paper is mandatory reading for framework builders. It describes four 
kinds of automated testing that should accompany a framework, including 
the ability to test a plug-in’s compliance with the framework’s protocol and 
a testing framework that makes it easier to test applications built on the 
framework.
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[FitB]
Fit for Developing Software

Published by: Addison-Wesley (2005)
ISBN: 0-321-26934-9
By: Rick Mugridge and Ward Cunningham 

This book is a great introduction to the use of Data-Driven Tests (page 288) 
for preparing customer tests, whether as part of agile or traditional projects. 
This is what I wrote for inclusion as “advance praise”: 

Wow! This is the book I wish I had on my desk when I did 
my fi rst storytest-driven development project. It explains the 
philosophy behind the Fit framework and a process for using it 
to interact with the customers to help defi ne the requirements of 
the project. It makes Fit so easy and approachable that I wrote 
my fi rst FitNesse tests before I even I fi nished the book. 

Further Reading 

More information on Fit can be found at Ward’s Web site, http://fi t.c2.com. 

[GOF]
Design Patterns: Elements of Reusable Object-Oriented Software

Published by: Addison-Wesley (1995)
ISBN: 0-201-63361-2
By: Erich Gamma, Richard Helm, Ralph Johnson, and John M.Vlissides 

This book started the patterns movement. In it, the “Gang of Four” describe 
23 recurring patterns in object-oriented software systems. Examples include 
Composite [GOF], Factory Method [GOF], and Facade [GOF].
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[HoN]
Hierarchy of Needs 

From Wikipedia [Wp]: 

Maslow’s hierarchy of needs is a theory in psychology that Abraham 
Maslow proposed in his 1943 paper “A Theory of Human Motivation,” 
which he subsequently extended. His theory contends that as humans meet 
“basic needs,” they seek to satisfy successively “higher needs” that occupy 
a set hierarchy. . . . 

Maslow’s hierarchy of needs is often depicted as a pyramid consisting of 
fi ve levels: The four lower levels are grouped together as defi ciency needs 
associated with physiological needs, while the top level is termed growth 
needs associated with psychological needs. While our defi ciency needs must 
be met, our being needs are continually shaping our behavior. The basic 
concept is that the higher needs in this hierarchy only come into focus once 
all the needs that are lower down in the pyramid are mainly or entirely 
satisfi ed. Growth forces create upward movement in the hierarchy, whereas 
regressive forces push prepotent needs farther down the hierarchy. 

[IEAT] 
Improving the Effectiveness of Automated Tests 

http://FasterTestsPaper.gerardmeszaros.com. 
By: Gerard Meszaros, Shaun Smith, and Jennitta Andrea 

This paper was presented at XP2001 in Sardinia, Italy. It describes a number 
of issues that reduce the speed and effectiveness of automated unit tests and 
suggests ways to address them.

[IXP]
Industrial XP 

http://ixp.industriallogic.com.

Industrial XP is a “branded” variant of eXtreme Programming created 
by Joshua Kerievsky of Industrial Logic. It includes a number of practices 
required to scale eXtreme Programming to work in larger enterprises, such 
as “Project Chartering.” 
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[JBrains]
JetBrains

http://www.jetbrains.com.

JetBrains builds software development tools that automate (among other 
things) refactoring. Its Web site contains a list of all refactorings that the 
company’s various tools support, including some that are not described in 
[Ref].

[JNI]
JUnit New Instance 

http://www.martinfowler.com/bliki/JunitNewInstance.html 

This article by Martin Fowler provides the background for why it makes 
sense for JUnit and many of its ports to create a new instance of the Testcase 
Class (page 373) for each Test Method (page 348). 

[JuPG]
JUnit Pocket Guide 

Published by: O’Reilly
ISBN: 0-596-00743-4
By: Kent Beck 

This 80-page, small-format book is an excellent summary of key features 
of JUnit and best practices for writing tests. Being small enough to fi t in a 
pocket, it doesn’t go into much detail, but it does give us an idea of what is 
possible and where to look for details. 

[LSD]
Lean Software Development : An Agile Toolkit

Published by: Addison-Wesley (2003)
ISBN: 0-321-15078-3
By: Mary Poppendieck and Tom Poppendieck

This excellent book describes 22 “thinking tools” that are used to work 
quickly and effectively in many domains. The authors describe how to 
apply these tools to software development. If you want to understand why
agile development methods work, this book is a must read!
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[MAS]
Mocks Aren’t Stubs

http://www.martinfowler.com/articles/mocksArentStubs.html 
By: Martin Fowler

This article clarifi es the difference between Mock Objects (page 544) and 
Test Stubs (page 529). It goes on to describe the two fundamentally differ-
ent approaches to test-driven development engendered by these differences: 
“classical TDD” versus “mockist TDD.” 

[MRNO]
Mock Roles, Not Objects 

Paper presented at OOPSLA 2004 in Vancouver, British Columbia, Canada.
By: Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes 

This paper describes the use of Mock Objects (page 544) to help the developer 
discover the signatures of the objects on which the class being designed and 
tested depends. This approach allows the design of the supporting classes to 
be deferred until after the client classes have been coded and tested. Members 
can obtain this paper at the ACM portal http://portal.acm.org/ft_gateway.
cfm?id=1028765&type=pdf; nonmembers of the ACM can fi nd it at http://
joe.truemesh.com/MockRoles.pdf. 

[PEAA]
Patterns of Enterprise Application Architecture

Published by: Addison-Wesley (2003)
ISBN: 0-321-12742-0
By: Martin Fowler 

This book is an indispensable handbook of architectural patterns that 
are applicable to any enterprise application platform. It is a great way 
to understand how the various approaches to developing large business 
systems differ. 
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[PiJV1]
Patterns in Java, Volume 1: A Catalog of Reusable Design Patterns Illustrated 
with UML 

Published by: Wiley Publishing (2002)
ISBN: 0-471-22729-3
By: Mark Grand 

A catalog of design patterns commonly used in Java. 

Further Reading 
http://www.markgrand.com/id1.html 

[PLoPD3]
Pattern Languages of Program Design 3

Published by: Addison-Wesley (1998)
ISBN: 0-201-31011-2
Edited by: Robert C. Martin, Dirk Riehle, and Frank Buschmann 

A collection of patterns originally workshopped at the Pattern Languages 
of Programs (PLoP) conferences.

[POSA2]
Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent 
and Networked Objects 

Published by: Wiley & Sons (2000)
ISBN: 0-471-60695-2
By: Douglas Schmidt, Michael Stal, Hans Robert, and Frank Buschmann 

This book is the second volume in the highly acclaimed Pattern-Oriented
Software Architecture (POSA) series. POSA1 was published in 1996; 
hence this book is referred to as POSA2. It presents 17 interrelated pat-
terns that cover core elements of building concurrent and networked sys-
tems: service access and confi guration, event handling, synchronization, 
and concurrency. 
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[PUT]
Pragmatic Unit Testing

Published by: Pragmatic Bookshelf
ISBN: 0-9745140-2-0 (In C# with NUnit)
ISBN: 0-9745140-1-2 (In Java with JUnit)
By: Andy Hunt and Dave Thomas 

This book by the “pragmatic programmers” introduces the concept of 
automated unit testing in a very approachable way. Both versions lower 
the entry barriers by focusing on the essentials without belaboring the 
fi ner points. They also include a very good section on how to determine 
which tests you need to write for a particular class or method. 

[RDb]
Refactoring Databases: Evolutionary Database Design 

Published by: Addison-Wesley (2006)
ISBN: 0-321-29353-3
By: Pramodkumar J. Sadalage and Scott W. Ambler 

This book is a good introduction to techniques for applying agile principles 
to development of database-dependent software. It describes techniques 
for eliminating the need to do “big design up front” on the database. It 
deserves to be on the bookshelf of every agile developer who needs to work 
with a database. A summary of the contents can be found at http://www.
ambysoft.com/books/refactoringDatabases.html.

[Ref]
Refactoring: Improving the Design of Existing Code 

Published by: Addison-Wesley (1999)
ISBN: 0-201-48567-2
By: Martin Fowler et al. 

This book offers a good introduction to the process of refactoring software. 
It introduces a number of “code smells” and suggests ways to refactor the 
code to eliminate those smells. 
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[RTC] 
Refactoring Test Code 

Paper presented at XP2001 in Sardinia, Italy 
By: Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok 

This paper was the fi rst to apply the concept of “code smells” to test code. 
It described a collection of 12 “test smells” and proposed a set of refac-
torings that could be used to improve the code. The original paper can be 
found at http://homepages.cwi.nl/~leon/papers/xp2001/xp2001.pdf. 

[RtP]
Refactoring to Patterns

Published by: Addison-Wesley (2005)
ISBN: 0-321-21335-1
By: Joshua Kerievsky 

This book deals with the marriage of refactoring (the process of improving 
the design of existing code) with patterns (the classic solutions to recurring 
design problems). Refactoring to Patterns suggests that using patterns to 
improve an existing design is a better approach than using patterns early in 
a new design, whether the code is years old or minutes old. We can improve 
designs with patterns by applying sequences of low-level design transfor-
mations, known as refactorings. 

[SBPP]
Smalltalk Best Practice Patterns

Published by: Prentice Hall (1997)
ISBN: 0-13-476904-X
By: Kent Beck 

This book describes low-level programming patterns that are used in good 
object-oriented software. On the back cover, Martin Fowler wrote: 

Kent’s Smalltalk style is the standard I aim to emulate in my 
work. This book does not just set that standard, but also explains 
why it is the standard. Every Smalltalk developer should have it 
close at hand.

While Smalltalk is no longer the dominant object-oriented development 
language, many of the patterns established by Smalltalk programmers have 
been adopted as the standard way of doing things in the mainstream object-
oriented development languages. The patterns in this book remain highly 
relevant even if the examples are in Smalltalk. 
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[SCMP]
Software Confi guration Management Patterns: Effective Teamwork, Practical 
Integration

Published by: Addison-Wesley (2003)
ISBN: 0-201-74117-1
By: Steve Berczuk (with Brad Appleton) 

This book describes, in pattern form, the how’s and why’s of using a source 
code confi guration management system to synchronize the activities of 
multiple developers on a project. The practices described here are equally 
applicable to agile and traditional projects. 

Further Reading 

http://www.scmpatterns.com 

http://www.scmpatterns.com/book/pattern-summary.html 

[SoC]
Secrets of Consulting: A Guide to Giving and Getting Advice Successfully

Published by: Dorset House (1985)
ISBN: 0-932633-01-3
By: Gerald M. Weinberg 

Full of Gerry’s laws and rules, such as “The Law of Raspberry Jam: The 
farther you spread it, the thinner it gets.” 

[TAM] 
Test Automation Manifesto 

http://TestAutomationManifesto.gerardmeszaros.com
By: Shaun Smith and Gerard Meszaros 

This paper was presented at the August 2003 XP/Agile Universe meeting in 
New Orleans, Louisiana. It describes a number of principles that should be 
followed to make automated testing using xUnit cost-effective. 
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[TDD-APG]
Test-Driven Development: A Practical Guide

Published by: Prentice Hall (2004)
ISBN: 0-13-101649-0
By: David Astels 

This book provides a good introduction to the process of driving software 
development with unit tests. Part III of the book is an end-to-end example of 
using tests to drive a small Java project. 

[TDD-BE]
Test-Driven Development: By Example

Published by: Addison-Wesley (2003)
ISBN: 0-321-14653-0
By: Kent Beck 

This book provides a good introduction to the process of driving software 
development with unit tests. In the second part of the book, Kent illustrates 
TDD by building a Test Automation Framework (page 298) in Python. In an 
approach he likens to “doing brain surgery on yourself,” he uses the emerg-
ing framework to run the tests he writes for each new capability. It is a very 
good example of both TDD and bootstrapping. 

[TDD.Net]
Test-Driven Development in Microsoft .NET

Published by: Microsoft Press (2004)
ISBN: 0-735-61948-4
By: James W. Newkirk and Alexei A. Vorontsov 

This book is a good introduction to the test-driven development process 
and the tools used to do it in Microsoft’s. Net development environment. 

[TI]
Test Infected 

http://junit.sourceforge.net/doc/testinfected/testing.htm
By: Eric Gamma and Kent Beck 

This article was fi rst published in the Java Report issue called “Test Infected—
Programmers Love Writing Tests.” It has been credited by some as being what 
led to the meteoric rise in JUnit’s popularity. This article is an excellent intro-
duction to the how’s and why’s of test automation using xUnit. 
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[TPS]
Toyota Production System: Beyond Large-Scale Production 

Published by: Productivity Press (1995)
ISBN: 0-915-2991-4-3
By: Taiichi Ohno 

This book, which was written by the father of just-in-time manufacturing, 
describes how Toyota came up with the system driven by its need to pro-
duce a small number of cars while realizing economies of scale. Among the 
techniques described here are “kanban” and the “fi ve why’s.” 

[UTF]
Unit Test Frameworks: Tools for High-Quality Software Development

Published by: O’Reilly (2004)
ISBN: 0-596-00689-6
By: Paul Hamill 

This book is a brief introduction to the most popular implementations of 
xUnit.

[UTwHCM] 
Unit Testing with Hand-Crafted Mocks 

http://refactoring.be/articles/mocks/mocks.html
By: Sven Gorts 

This paper summarizes and names a number of idioms related to Hand-Built
Test Doubles (see Confi gurable Test Double on page 522)—specifi cally, Test 
Stubs (page 529) and Mock Objects (page 544). Sven Gorts writes: 

Many of the unit tests I wrote over the last couple of years use 
mock objects in order to test the behavior of a component in 
isolation of the rest of the system. So far, despite the availability 
of various mocking frameworks, each of the mock classes I’ve 
used has been handwritten. In this article I do some retrospection 
and try to wrap up the mocking idioms I’ve found most useful.
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[UTwJ] 
Unit Testing in Java: How Tests Drive the Code 

Published by: Morgan Kaufmann 
ISBN: 1-55860-868-0
By: Johannes Link, with contributions by Peter Fröhlich 

This book does a very nice job of introducing many of the concepts and 
techniques of unit testing. It uses intertwined narratives and examples to 
introduce a wide range of techniques. Unfortunately, due to the format, it 
can be diffi cult to fi nd something at a later time. 

[VCTP]
The Virtual Clock Test Pattern 

http://www.nusco.org/docs/virtual_clock.pdf
By: Paolo Perrotta 

This paper describes a common example of a Responder called Virtual Clock 
[VCTP]. The author uses the Virtual Clock Test Pattern as a Decorator [GOF] 
for the real system clock, which allows the time to be “frozen” or resumed. 
One could use a Hard-Coded Test Stub or a Confi gurable Test Stub just as 
easily for most tests. Paolo Perrotta summarizes the thrust of his article: 

We can have a hard time unit-testing code that depends on 
the system clock. This paper describes both the problem and a 
common, reusable solution.

[WEwLC]
Working Effectively with Legacy Code

Published by: Prentice Hall (2005)
ISBN: 0-13-117705-2
By: Michael Feathers 

This book describes how to get your legacy software system back under 
control by retrofi tting automated unit tests. A key contribution is a set 
of “dependency-breaking techniques”—mostly refactorings—that can help 
you isolate the software for the purpose of automated testing. 
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[Wp]
Wikipedia 

From Wikipedia [Wp]: “Wikipedia is a multilingual, Web-based free con-
tent encyclopedia project. The name Wikipedia is a blend of the words 
‘wiki’ and ‘encyclopedia.’ Wikipedia is written collaboratively by volun-
teers, allowing most articles to be changed by almost anyone with access 
to the Web site.” 

[WWW]
World Wide Web 

A reference annotation of [WWW] indicates that the information was 
found on the World Wide Web. You can use your favorite search engine to 
fi nd a copy by searching for it by the title. 

[XP123]
XP123

http://xp123.com
Web site hosted by: William Wake 

A Web site hosting various resources for teams doing eXtreme Program-
ming.

[XPC]
XProgramming.com

http://xprogramming.com
Web site hosted by: Ron Jeffries 

A Web site hosting various resources for teams doing eXtreme Program-
ming. One of the better places to look for links to software downloads for 
unit test automation tools including members of the xUnit family.
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[XPE]
eXtreme Programming Explained, Second Edition: Embrace Change 

Published by: Addison-Wesley (2005)
ISBN: 0-321-27865-8
By: Kent Beck 

This book kick-started the eXtreme Programming movement. The fi rst edi-
tion (0-201-61641-6) described a recipe consisting of 12 practices backed 
by principles and values. The second edition focuses more on the values 
and principles. It breaks the practices into a primary set and a corollary set; 
the latter set should be attempted only after the primary practices are mas-
tered. Among the practices both editions describe are pair programming 
and test-driven development.
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A

ABAP Object Unit, 747
ABAP Unit, 747
Abstract Setup Decorator

defi ned, 449
example, 453

acceptance tests. See also
customer tests

defi ned, 785
why test?, 19

accessor methods, 785
ACID, 785
acknowledgements, xxvii–xxviii
action components, 280
agile method

defi ned, 785–786
property tests, 52

AllTests Suite
example, 594–595
introduction, 13
when to use, 593

annotation
defi ned, 786
Test Methods, 351

Anonymous Creation Method
defi ned, 417
example, 420

Hard-Coded Test Data 
solution, 196

preface, xxi
anonymous inner class

defi ned, 786
Test Stub examples, 535–536

Ant, 753
AntHill, 753
anti-pattern (AP)

defi ned, 786
test smells, xxxv

AOP (aspect-oriented programming)
defi ned, 786
Dependency Injection, 681
retrofi tting testability, 148

API (application programming inter-
face)

Creation Methods, 416
database as SUT, 336
defi ned, 786
Test Utility Method, 600

architecture, design for testability. 
See design-for-testability

arguments
messages describing, 371–372
as parameters (Dummy 

Arguments), 729
role-describing, 725
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Arguments, Dummy, 729
Ariane 5 rocket, 218
aspect-oriented programming (AOP)

defi ned, 786
Dependency Injection, 681
retrofi tting testability, 148

Assertion Message
of Assertion Method, 364
pattern description, 370–372

Assertion Method
Assertion Messages, 364
calling built-in, 363–364
choosing right, 364–365
Equality Assertions, 365
examples, 368–369
Expected Exception 

Assertions, 366
Fuzzy Equality Assertions, 

365–366
implementation, 363
as macros, 364
motivating example, 367–368
overview, 362–363
refactoring, 368
Single-Outcome Assertions, 

366–367
Stated Outcome Assertions, 366

Assertion Roulette
Eager Tests, 224–226
impact, 224
introduction, 14
Missing Assertion Message, 

226–227
symptoms, 224

assertions
Built-in, 110–111
custom. See Custom Assertion
defi ned, 786
diagramming notation, xlii
Domain Assertions, 476, 

481–482

improperly coded in Neverfail 
Tests, 274

introduction, 77
Missing Assertion Messages, 

226–227
reducing Test Code Duplication, 

114–119
refactoring, xlvi–xlix
Self-Checking Tests, 107–108
unit testing, 6
Verify One Condition per Test, 

46–47
assumptions, xxxix–xl
Astels, Dave, 110
asynchronous tests

defi ned, 787
Hard-To-Test Code, 210–211
Humble Object, 696–697
Slow Tests, 255–256
testability, 70–71

Attachment Method
defi ned, 418
example, 421

attributes
defi ned, 787
dummy, 729
hiding unnecessary, 303–304
One Bad Attribute. See One 

Bad Attribute
parameters as, 608
Suite Fixture Setup, 442–443
Test Discovery using, 397
Test Selection, 403–405

Automated Exercise Teardown
defi ned, 505
example, 508

Automated Fixture Teardown, 
504–505

Automated Teardown
ensuring Repeatable Tests, 27
examples, 507–508
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implementation, 504–505
Interacting Test Suites, 232
Interacting Tests solution, 231
motivating example, 505–506
overview, 503–504
of persistent fi xtures, 99–100
refactoring, 506–507
resource leakage solution, 233
when to use, 504

automated unit testing
author’s motivation, xxiv–xxv
fragile test problem, xxxi–xxxii
introduction, xxx–xxxii

B

back door, defi ned, 787
Back Door Manipulation

control/observation points, 66–67
database as SUT API, 336
Expected State Specifi cation, 464
fi xture setup, 333–335
implementation, 330–332
motivating example, 332
overview, 327–328
refactoring, 333
setup, 329
teardown, 330
verifi cation, 329–330
verifi cation using Test Spy, 333
when to use, 328

Back Door Setup
controlling indirect inputs, 128
fi xture design, 59
Prebuilt Fixtures, 430–431
transient fi xtures, 86

Back Door Verifi cation, 130–133
BDUF (big design upfront)

defi ned, 787
design for testability, 65
test automation strategy, 49

Beck, Kent, xxii
sniff test, xxxviii
Test Automation Frameworks, 

301
test smells, 9
Testcase Class per Class, 618
xUnit, 57

Behavior Sensitivity
cause of Fragile Tests, 242–243
caused by Overspecifi ed 

Software, 246
defi ned, xxxi
smells, 14

behavior smells, 223–247
Assertion Roulette. See

Assertion Roulette
defi ned, 10–11, 788
Erratic Tests. See Erratic Test
Fragile Tests. See Fragile Test
Frequent Debugging. See

Frequent Debugging
Manual Intervention. See

Manual Intervention
overview, 13–15
Slow Tests. See Slow Tests

Behavior Verifi cation
approach to Self-Checking 

Tests, 108
examples, 472–473
implementation, 469–471
indirect outputs, 179–180
motivating example, 471–472
overview, 468–469
refactoring, 472
vs. state, 36
test results, 112–114
using Mock Objects. See

Mock Object
using Test Spies. See Test Spy
using Use the Front Door 

First, 40
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verifying indirect outputs, 
130–133

when to use, 469
behavior-driven development

defi ned, 787–788
Testcase Class per Fixture 

usage, 632
Behavior-Exposing Subclass

Test-Specifi c Subclass 
example, 587

when to use, 580
Behavior-Modifying Subclass

Defi ning Test-Specifi c Equality, 
588–589

Substituted Singleton, 
586–587

Test Stub, 584–585
when to use, 580

Bespoke Assertion. See Custom 
Assertion

bimodal tests, 687
binding, static

defi ned, 809
Dependency Injection, 678–679

black box
defi ned, 788
Remoted Stored Procedure 

Tests, 656
block closures

defi ned, 788
Expected Exception Tests, 

354–355
blocks

cleaning up fi xture teardown 
logic, l–liv

defi ned, 788
try/fi nally. See try/fi nally block

boundary values
defi ned, 788
erratic tests, 238
Minimal Fixtures, 303
result verifi cation patterns, 478

BPT (Business Process Testing)
defi ned, 753
Recorded Tests, 280
Test Automation 

Frameworks, 301
Bug Repellent, 22
Buggy Test

introduction, 12–13
reducing risk, 181
symptoms, 260–262

Built-in Assertion
calling, 363–364
introduction, 110–111

built-in self-tests
defi ned, 788
test fi le organization, 164

built-in test recording
defi ned, 281
example, 281–282

business logic
defi ned, 789
developer testing, xxx
development process, 4–5
Layer Tests example, 344–345
testing without databases, 

169–171
Business Process Testing (BPT). 

See BPT (Business Process Testing)

C

Calculated Value. See also Derived 
Value

Loop-Driven Tests, 615
Production Logic in Test 

solution, 205
Canoo WebTest

defi ned, 753
Scripted Tests, 286
Test Automation 

Frameworks, 301
test automation tools, 53
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capacity tests, 52
Capture/Playback Test. 

See Recorded Test
Chained Test

customer testing, 6
examples, 459–460
implementation, 456–457
motivating example, 457–458
overview, 454–455
refactoring, 458
Shared Fixture strategies, 64–65
Shared Fixtures, 104–105, 322
when to use, 455–456
xUnit introduction, 57

class attributes
defi ned, 789
Test Discovery using, 397
Testcase Class Selection using, 

404–405
class methods

defi ned, 789
with Test Helper, 645, 646

class variables
defi ned, 789
Suite Fixture Setup, 442

classes
diagramming notation, xlii
as fi xtures, 59
Test Double, 569–570, 572–573
Testcase. See Testcase Class

class-instance duality, 374
Cleanup Method, 602
closure, block

defi ned, 788
Expected Exception Tests, 

354–355
Cockburn, Alistair

pattern naming, 578
service layer tests, 339

code
inside-out development, 34–36
organization. See test 

organization

samples, xli–xlii
writing tests, 27–29

code smells
Conditional Test Logic. See

Conditional Test Logic
defi ned, 10–11, 789
Hard-To-Test Code. See

Hard-To-Test Code
obscure tests. See Obscure Test
Test Code Duplication. See Test 

Code Duplication
Test Logic in Production. See

Test Logic in Production
types of, 16–17

coding idioms
defi ned, xxxv
design patterns, 792

collisions
Interacting Tests, 229–231
Shared Fixtures, 318

Command object
introduction, 82
Testcase Object as, 382

Command-Line Test Runner
Assertion Message, 371
defi ned, 379–380
introduction, 79
Missing Assertion Message, 

226–227
commercial recorded tests

refactored, 283–284
tools, 282–283

common location, Test Discovery, 
397–398

Communicate Intent
defi ned, 41
refactoring Recorded Tests to, 

283–284
compiler macro, Test Method 

Discovery, 395–396
Complex Teardown, 206–207
Complex Test. See Dependency 

Lookup

www.it-ebooks.info

http://www.it-ebooks.info/


840 Index

Component Broker. See Dependency 
Lookup

Component Registry, 688
component tests

defi ned, 790
layer-crossing tests, 69
per-functionality, 52
test automation philosophies, 

34–36
test strategy patterns, 340

components
defi ned, 790
depended-on component. See

DOC (depended-on 
component)

Composite object, defi ned, 82
Concerns, Separation of, 28–29
concrete classes, 581
Condition Verifi cation Logic, 203–204
Conditional Test Logic

vs. Assertion Method, 363
avoidance, 119–121
avoiding via Custom 

Assertion, 475
avoiding via Guard Assertion, 

490–493
causes, 201–202
Complex Teardown, 206–207
Condition Verifi cation Logic, 

203–204
Flexible Tests, 202–203
impact, 201
introduction, 16
Multiple Test Conditions, 

207–208
Production Logic in Test, 

204–205
symptoms, 200
Test Methods, 155

Confi gurable Mock Object, 546–547. 
See also Confi gurable Test Double

Confi gurable Registry, 691–692

Confi gurable Test Double
examples, 564–567
implementation, 559–562
installing, 141–142
as kind of Test Double, 528
motivating example, 562–563
overview, 558
refactoring, 563
when to use, 559

Confi gurable Test Stub. See also
Confi gurable Test Double

implementation, 532
indirect input control, 179

Confi guration Interface
examples, 564–566
implementation, 560

Confi guration Mode
example, 566–567
implementation, 560

Constant Value. See Literal Value
constants in Derived Value, 

718–722
constructing Mock Object, 546
Constructor Injection

example, 683–684
implementation, 680–681
installing Test Doubles, 144

Constructor Test
defi ned, 351
example, 355–357
introduction, 77

constructors
defi ned, 790
problems with, 419

containers, Humble Container 
Adapter, 698

Context Sensitivity
avoiding via Isolate the SUT, 

43–44
defi ned, 245–246
introduction, xxxii, 14

continuous design, xxxiii

www.it-ebooks.info

http://www.it-ebooks.info/


841 Index

continuous integration
avoiding Lost Tests, 270
defi ned, 791
impact of Data-Driven Tests, 290
steps, 14

control points
defi ned, 791
testability, 66–67

Coplien, Jim, 576
CORBA standards, 744
cost effectiveness, Self-Checking 

Tests, 107–108
costs, test automation, 20–21
Covey, Stephen, 121
CppUnit

defi ned, 748
Test Automation Frameworks, 

300
Test Method enumeration, 401

Creation Method
Delegated Setup, 89–91, 

411–414
eliminating unnecessary 

objects/attributes, 303–304
examples, 420–423
as Hard-Coded Test Data 

solution, 196
hybrid setup, 93
implementation, 418–419
motivating example, 419
overview, 415–416
persistent fi xtures 

teardown, 100
preface, xxiii
refactoring, 420
as Test Utility Method, 600
when to use, 416–418
writing simple tests, 28

cross-functional tests, 52–53
cross-thread failure assertion, 274
Cruise Control, 754
CsUnit, 748

CSV fi les, xUnit Data-Driven 
Test, 296

CUnit, 748
Cunningham, Ward, xxv, 290
Custom Assertion

as Conditional Verifi cation 
Logic solution, 204

examples, 480–484
implementation, 477–478
Indirect Testing solution, 

198–199
Irrelevant Information 

solution, 193
motivating example, 478–480
overview, 474–475
reducing Test Code Duplication, 

116–117
refactoring, 480
Test Utility Methods, 602
when to use, 475–477
writing simple tests, 28

Custom Assertion test
example, 483–484
implementation, 477–478

Custom Equality Assertion, 476
customer tests

defi ned, 791
Eager Tests cause, 225
Missing Unit Test, 271
overview, 5–6
per-functionality, 51
as Scripted Test, 285–287

Cut and Paste code reuse, 
214–215

D

data access layer
database testing, 172–173
defi ned, 791
Slow Tests with Shared 

Fixtures, 319
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data leaks
avoiding with Delta Assertions, 

486–487
Complex Teardown, 206

Data Loader, Back Door 
Manipulation, 330–331

data minimization, 738–739
data population script, 434
Data Retriever, 331
Data Sensitivity

defi ned, 243–245
introduction, xxxii, 14

Data Transfer Object (DTO)
defi ned, 793
result verifi cation, 116

Database Extraction Script, 331
Database Partitioning Scheme

Data Sensitivity solution, 
244–245

developer independence, 173
example, 653
Global Fixtures, 430
implementation, 652

database patterns, 649–675
Database Sandbox, 

650–653
Stored Procedure Test, 

654–660
Table Truncation Teardown, 

661–667
Transaction Rollback 

Teardown, 668–675
Database Population Script, 330
Database Sandbox

database testing, 168
design for testability, 7
pattern description, 650–653
as Test Run Wars solution, 

236–237
Unrepeatable Tests cause, 235
when to use, 650

database testing, 167–174
overview, 167–169
persistent fi xtures, 313
testing without databases, 

169–171
types of, 171–174

Database Transaction Rollback Tear-
down, 674–675

databases
fake. See Fake Database
as SUT API, 336
teardown, 100

Data-Driven Test
customer testing, 5
Fit framework example, 

296–297
frameworks, 300
implementation, 290
implemented as Recorded 

Test, 281
introduction, 83
motivating example, 293–294
overview, 288–289
principles, 48
reducing Test Code Duplication, 

118–119
refactoring notes, 294
Test Suite Object Simulator, 293
using Fit framework, 

290–292
via Naive xUnit Test Interpreter, 

292–293
via Test Suite Object 

Generator, 293
when to use, 289–290
xUnit with CSV input fi le, 296
xUnit with XML data fi le, 

294–295
DB Schema per Test Runner

developer independence, 173
implementation, 651–652
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DbUnit
Back Door Manipulation, 335
defi ned, 748
Expected State Specifi cation, 464

DDSteps, 754
Decorated Lazy Setup, 449–450
Decorator

Abstract Setup Decorator, 
449, 453

Parameterized Setup Decorator, 
452–453

Pushdown Decorator, 450
Setup. See Setup Decorator
Test Hook as, 710

Dedicated Database Sandbox, 651
Defect Localization

customer testing, 5
defi ned, 22–23
Frequent Debugging, 248
Keep Tests Independent Tests, 43
right-sizing Test Methods, 154
test automation philosophies, 34
unit testing, 6
Verify One Condition per Test, 45

defi ning tests
introduction, 76–78
suites of, 78–79

delays. See Slow Tests
Delegated Setup

example, 413–414
introduction, 77
matching with teardown code, 

98–99
overview, 411–414
of transient fi xtures, 89–91
when to use, 412

Delegated Teardown
example, 514–515
overview, 511
of persistent fi xtures, 98–99
Table Truncation Teardown, 665

Delta Assertion
avoiding fi xture collisions, 101
as Data Sensitivity solution, 245
detecting data leakage with, 487
examples, 488–489
introduction, 111
pattern description, 485–486

depended-on component (DOC). See
DOC (depended-on component)

dependencies
Interacting Tests, 230–231
replacement with Test 

Doubles, 739
replacing using Test Hooks, 

709–712
retrofi tting testability, 148
test automation philosophies, 34
Test Dependency in Production, 

220–221
test fi le organization, 165

Dependency Initialization Test, 352
Dependency Injection

design for testability, 7
examples, 683–685
implementation, 679–681
installing Test Doubles via, 

143–144
Isolate the SUT, 44
motivating example, 682
overview, 678
Persistent Fresh Fixtures 

avoidance, 62–63
refactoring, 682
testability improvement, 70
when database testing, 171
when to use, 678–679

Dependency Lookup
design for testability, 7
examples, 691–693
implementation, 688–689
installing Test Doubles, 144–145
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Isolate the SUT, 44
motivating example, 690
names, 693–694
overview, 686
Persistent Fresh Fixtures, 

62–63
refactoring, 690–691
when database testing, 171
when to use, 687–688

Derived Expectation
example, 720
when to use, 719

Derived Input, 719
Derived Value

examples, 719–722
overview, 718
when to use, 718–719

design patterns, xxxv, 792
design-for-testability

control points and observation 
points, 66–67

defi ned, 792
divide and test, 71–72
ensuring testability, 65
interaction styles and testability 

patterns, 67–71
overview, 7
Separation of Concerns, 28–29
test automation philosophies. 

See test automation 
philosophies

test automation principles, 40
test-driven testability, 66

design-for-testability patterns, 
677–712

Dependency Injection. See
Dependency Injection

Dependency Lookup. See
Dependency Lookup

Humble Object. See Humble 
Object

Test Hooks, 709–712

deterministic values, 238
developer independence, 173
developer testing

defi ned, 792
introduction, xxx

Developers Not Writing Tests, 13
development

agile, 239
behavior driven, 632, 787–788
document-driven, 793
EDD. See EDD (example-driven 

development)
incremental, 33–34, 799–800
inside-out, 463
inside-out vs. outside in, 34–36
need-driven. See need-driven 

development
outside-in, 469
process, 4–5
TDD. See TDD (test-driven 

development)
test-fi rst. See test-fi rst 

development
test-last. See test-last development

Diagnostic Assertion, 476–477
diagramming notation, xlii
Dialog, Humble. See Humble Dialog
direct output

defi ned, 792–793
verifi cation, 178

Direct Test Method Invocation, 401
disambiguation, test fi xtures, 814
Discovery, Test. See Test Discovery
Distinct Generated Values

Anonymous Creation 
Methods, 417

Delegated Setup, 90
example, 725–726
Hard-Coded Test Data 

solution, 196
implementation, 724
Unrepeatable Tests solution, 235
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Distinct Values, 717
Do No Harm, 24–25
DOC (depended-on component)

Behavior Verifi cation, 469
control points and observation 

points, 66–67
defi ned, 791–792
outside-in development, 35
replacing with Test Double. 

See Test Double
retrieving. See Dependency 

Lookup
terminology, xl–xli
Test Hook in, 712

Documentation, Tests as. 
See Tests as Documentation

document-driven development, 
793

Domain Assertion
defi ned, 476
example, 481–482

domain layer
defi ned, 793
test strategy patterns, 337

domain model, 793
Don’t Modify the SUT, 41–42
drivers, test

defi ned, 813
lack of Assertion Messages, 

370
DRY (don’t repeat yourself), 28
DTO (Data Transfer Object)

defi ned, 793
result verifi cation, 116

Dummy Argument, 729
Dummy Attribute, 729
Dummy Object

confi guring, 141–142
defi ned, 133
as Test Double, 134–135, 526
as value pattern, 728–732
xUnit terminology, 741–744

dynamic binding
defi ned, 793
use in Dependency Injection, 679

Dynamically Generated Mock 
Object, 550

Dynamically Generated Test Double
implementation, 561–562
providing, 140–141

Dynamically Generated Test Stub, 
534–535

E

Eager Test
Assertion Roulette, 224–226
Fragile Tests, 240
Obscure Tests, 187–188
right-sizing Test Methods, 154

EasyMock
defi ned, 754
Test Doubles, 140

eCATT
defi ned, 754
Test Automation Frameworks, 

301
Eclipse

Debugger, 110
defi ned, 754

economics of test automation, 20–21
EDD (example-driven development)

defi ned, 794
tests as examples, 33

effi ciency, 11
emergent design

vs. BDUF, 65
defi ned, xxxiii, 794

encapsulation
Creation Method. See Creation 

Method
Dependency Lookup 

implementation, 688–689
indirect outputs and, 126
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Indirect Testing solution, 198
SUT API. See SUT API 

Encapsulation
using Test Utility Methods. 

See Test Utility Method
endoscopic testing (ET)

defi ned, 794
Mock Objects, 545
Test Doubles, 149

Ensure Commensurate Effort and 
Responsibility, 47–48

Entity Chain Snipping
example, 536–537
testing with doubles, 149
when to use, 531

entity object, 794
enumeration

customer testing, 5
Suite of Suites built using, 389–391
test conditions in Loop-Driven 

Tests, 614–615
Test Enumeration, 399–402
Test Suite Object built using, 388
xUnit organization 

mechanisms, 153
Equality, Sensitivity

Fragile Tests, 246
test-fi rst development, 32

Equality Assertion
Assertion Methods, 365
Custom, 476
example, 368
Guard Assertion as, 491
introduction, 110
reducing Test Code 

Duplication, 115
unit testing, 6

Equality Pollution, 221–222
equals method

Equality Pollution, 221–222
Expected State Specifi cation, 464
reducing Test Code Duplication, 

115–116

equivalence class
Behavior Smells, 238
defi ned, 794
Untested Code, 272

Erratic Test
Automated Teardown and, 27
customer testing, 5
database testing, 168–169
impact, 228
Interacting Test Suites, 231–232
Interacting Tests, 229–231
introduction, 14–16
Lonely Tests, 232
Nondeterministic Tests, 

237–238
Resource Leakage, 233
Resource Optimism, 233–234
symptoms, 228
Test Run Wars, 235–237
troubleshooting, 228–229
Unrepeatable Tests, 234–235

essential but irrelevant fi xture 
setup, 425

ET (endoscopic testing)
defi ned, 794
Mock Object use for, 149, 545

example-driven development (EDD)
defi ned, 794
tests as examples, 33

examples, tests as, 33
exclamation marks, xlii
Executable, Humble. See Humble 

Executable
Executable Specifi cation, 51
execution optimization, 180–181
exercise SUT

defi ned, 794
test phases, 359

expectations
defi ned, 795
Derived Expectations, 719, 720
messages describing, 371–372
naming conventions, 159
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Expected Behavior Specifi cation
defi ned, 470–471
example, 473

Expected Behavior Verifi cation
defi ned, 112
indirect outputs, 131–132

Expected Exception Assertion
defi ned as Assertion Method, 

365–366
example, 369

Expected Exception Test
Conditional Verifi cation Logic 

solution, 204
introduction, 77
as Test Method, 350–351
using block closure, 354–355
using method attributes, 354
using try/catch, 353–354

Expected Object
reducing Test Code Duplication, 

115–116
refactoring tests, xlv–xlviii
State Verifi cations, 109, 466–467
unit testing, 6

expected outcome, 795
Expected State Specifi cation, 

464–465
expected values, 546–547
exploratory testing

cross-functionality, 53
defi ned, 795
Scripted Tests, 287

Expression Builders, 564–566
expressiveness gaps, 27–28
external resource setup, 740
external result verifi cation, 111–112
external test recording, 280
Extract Method

Creation Methods, 418
Custom Assertions, 117
Delegated Setup, 89
as Eager Tests solution, 225
example, xlvii

in persistent fi xture teardown, 98
refactoring Recorded Tests, 283

Extract Testable Component, 197, 
735–736

eXtreme Programming
defi ned, 795
projects affected by Slow Tests, 

319–321
eXtreme Programming Explained

(Beck), xxii

F

factories
defi ned, 795
Factory Method, 592–593
Object Factories, 145, 688

failed tests
due to Unfi nished Test 

Assertions, 494–497
implementation, 80

“Fail-Pass-Pass”, 234–235
failure messages

Assertion Messages, 370–372
Built-in Assertions, 110–111
removing “if” statements, 120
Single-Outcome Assertions, 

366–367
Fake Database

avoiding persistence, 101
database testing, 170
example, 556–557
Slow Component Usage 

solution, 254
Slow Tests with Shared 

Fixtures, 319
when to use, 553

Fake Object
confi guring, 141–142
customer testing, 6
defi ned, 134
examples, 556–557
implementation, 553–554
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motivating example, 554–555
optimizing test execution, 180
overview, 551–552
refactoring, 555–556
as Test Double, 139, 525
when to use, 552–553
xUnit terminology, 741–744

Fake Service Layer, 553
Fake Web Services, 553
false negative, 795
false positive, 795–796
fault insertion tests

defi ned, 796
per-functionality, 52

Feathers, Michael, 40
Highly Coupled Code 

solution, 210
Humble Object, 708
pattern naming, 576
retrofi tting testability, 148
Self Shunt, 578
test automation roadmap, 176
Unit Test Rulz, 307

features
defi ned, 796
right-sizing Test Methods, 

156–157
Testcase Class per. See Testcase 

Class per Feature
visibility/granularity in 

Test-Specifi c Subclass, 
581–582

feedback in test automation, xxix
fi le contention. See Test Run War
File System Test Runner, 380
Finder Method

accessing Shared Fixtures, 
103–104

Mystery Guests solution, 190
when to use, 600–601

fi ne-grained testing, 33–34

Fit
Data-Driven Test example, 

296–297
Data-Driven Test 

implementation, 290–292
defi ned, 754–755, 796
Expected State Specifi cation, 464
fi xture defi nition, 59, 86
fi xture vs. Testcase Class, 376
Scripted Tests 

implementation, 286
Test Automation 

Framework, 301
test automation tools, 54
tests as examples, 33
vs. xUnit, 57

Fitnesse
Data-Driven Test 

implementation, 290
defi ned, 755
Scripted Test 

implementation, 286
“Five Whys”, 11
fi xture design

upfront or test-by-test, 36
Verify One Condition per 

Test, 46
xUnit sweet spot, 58

fi xture holding class variables, 797
fi xture holding instance 

variables, 797
fi xture setup

Back Door Manipulation, 329, 
333–335

cleaning up, liv–lvii
defi ned, 797
Delegated Setup, 89–91
external resources, 740
Four-Phase Test, 358–361
Fresh Fixtures, 313–314
hybrid setup, 93
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Implicit Setup, 91–93
In-Line Setup, 88–89
introduction, 77
matching with teardown code, 

98–99
Shared Fixtures, 104–105
speeding up with doubles, 

149–150
strategies, 60

fi xture setup patterns, 407–459
Chained Test. See Chained Test
Creation Method. See Creation 

Method
Delegated Setup, 411–414
Implicit Setup, 424–428. See also

Implicit Setup
In-line Setup, 408–410. See also

In-line Setup
Lazy Setup. See Lazy Setup
Prebuilt Fixture. See Prebuilt 

Fixture
Setup Decorator. See Setup 

Decorator
Suite Fixture Setup. See Suite 

Fixture Setup
Fixture Setup Testcase, 456
fi xture strategies

overview, 58–61
persistent fresh fi xtures, 62–63
shared fi xture strategies, 63–65

fi xture teardown
avoiding in persistent fi xtures, 

100–101
Back Door Manipulation, 330
cleaning up, l–liv
Complex Teardown, 206–207
data access layer testing, 173
defi ned, 797
fi xture strategies, 60
Four-Phase Test, 358–361
Implicit Setup, 426

introduction, 77
Lazy Setup problems, 439
persistent fi xtures, 97–100
Persistent Fresh Fixtures, 314
refactoring, l–liv
Shared Fixtures, 105
transient fi xtures, 93–94
Verify One Condition per 

Test, 46
fi xture teardown patterns, 499–519

Automated Teardown, 
503–508

Garbage-Collected Teardown, 
500–502

Implicit Teardown, 516–519. 
See also Implicit Teardown

In-line Teardown, 509–515. 
See also In-line Teardown

Table Truncation Teardown, 
661–667

Transaction Rollback 
Teardown. See Transaction 
Rollback Teardown

fi xtures
collisions, 100–101
database testing, 168–169
defi ned, 796, 814
Four-Phase Test, 358–361
fresh. See Fresh Fixture
introduction, 78
Minimal. See Minimal Fixture
right-sizing Test Methods, 

156–157
Shared. See Shared Fixture
speeding up setup with doubles, 

149–150
Standard. See Standard Fixture
Testcase Class as, 376
Testcase Class per Fixture. 

See Testcase Class per Fixture
transient. See transient fi xtures
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Flexible Test, 202–203
fl uent interface, 797
For Tests Only, 219–220
foreign-key constraints, 663
forms, pattern, xxxiv–xxxv
Four-Phase Test

Custom Assertions, 478
fi xture design, 59
introduction, 76–78
Mock Object patterns, 546
pattern description, 358–361
unit testing, 6
Verify One Condition per Test, 46

Fowler, Martin, xxvi
code smells, 16
Creation Methods, 418
Custom Assertions, 117
Cut and Paste code reuse, 215
Delegated Setup, 89, 413
Eager Tests solution, 225
Multiple Test Conditions 

solution, 208
pattern forms, xxxvi
refactoring, xxxix
refactoring Recorded Tests, 283
reusable test logic, 123
self-testing code, xxi
Standard Fixtures, 306
state vs. behavior 

verifi cation, 36
test smells, 9
Testcase Object exception, 385

Fragile Fixture
defi ned, 246–247
introduction, 14, 16
setUp method misuse, 93

Fragile Test
Behavior Sensitivity, 242–243
Buggy Tests, 260
causes, 240–241
Context Sensitivity, 245–246

Data Sensitivity, 243–245
Fragile Fixture, 246–247
High Test Maintenance 

Cost, 266
impact, 239
Interface Sensitivity, 241–242
introduction, xxiii, xxxi–xxxii, 

13–14
Overspecifi ed Software, 246
Sensitivity Equality, 246
symptoms, 239
troubleshooting, 239–240

frameworks
Fit. See Fit
Test Automation Framework, 75, 

298–301
Frequent Debugging

avoidance with Custom 
Assertion, 475

causes, 248–249
impact, 249
introduction, 15
solution patterns, 249
symptoms, 248

Fresh Fixture
Creation Method. See Creation 

Method
Data Sensitivity solution, 

244–245
Delegated Setup, 411–414
example, 316
fi xture strategies, 60–61
implementation, 312
Implicit Setup, 424–428
Interacting Tests solution, 231
motivating example, 315
Mystery Guests solution, 190
overview, 311
persistent, 62–63, 313–314. 

See also persistent fi xtures
refactoring, 315
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setup, 313–314
test automation philosophies, 36
Test Run Wars solution, 236–237
transient, 61–62. See also

transient fi xtures
Transient Fresh Fixture, 314
when to use, 312

front door, 797
Front Door First

defi ned, 40–41
Overspecifi ed Software 

avoidance, 246
Fully Automated Test

behavior smells and, 15
Communicate Intent and, 41
Manual Fixture Setup 

solution, 251
minimizing untested code, 44–45
running, 25–26
unit testing, 6

functional tests
defi ned, 798
per-functionality, 50–52

Fuzzy Equality Assertion
defi ned, 365–366
example, 368–369
external result verifi cation, 

111–112
introduction, 110

G

Gamma, Erich, 57
garbage collection, 798
Garbage-Collected Teardown

design-for-testability, 7
pattern description, 500–502
persistent fi xtures, 97
transient fi xtures, 87–88

General Fixture
database testing, 169
defi ned, 187

misuse of setUp method, 
92–93

Obscure Tests, 190–192
Slow Tests, 255

Generated Value, 723–727
Geras, Adam, 280
Global Fixture, 430
global variables

defi ned, 798
instance variables as, 92

goals, test automation. 
See test automation goals

Gorts, Sven, 537
granularity

test automation tools and, 
53–54

Test-Specifi c Subclass, 
581–582

Graphical Test Runner
clicking through to test code, 

226–227
defi ned, 378–379
green bar, 26
introduction, 79, 300

graphical user interface (GUI). 
See GUI (graphical user interface)

green bar, defi ned, 798
Guaranteed In-Line Teardown, 

233
Guard Assertion

Conditional Verifi cation Logic 
solution, 203–204

introduction, 80
pattern description, 490–493
removing “if” statements in 

Test Method, 120
GUI (graphical user interface)

defi ned, 799
design for testability, 7
Interface Sensitivity, xxxii
testing with Humble 

Dialogs, 696
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H

Hand-Built Test Double. See also
Hard-Coded Test Double

Confi gurable Test Double, 
560–561

providing, 140–141
Hand-Coded Mock Object, 548–550
hand-coded teardown, 97–98
Hand-Coded Test Stub, 533–534
Hand-Scripted Test. See also

Scripted Test
introduction, 75
tools for automating, 53–54

Hand-Written Test. See Scripted Test
happy path

defi ned, 799
Responder use, 530
Simple Success Tests, 349–350
test automation roadmap, 

177–178
Hard-Coded Mock Object. See Hard-

Coded Test Double
Hard-Coded Setup Decorator

defi ned, 449
example, 451–452

Hard-Coded Test Data
causing Obscure Tests, 194–196
defi ned, 187
introduction, lv–lvii, 16

Hard-Coded Test Double
confi guring, 141–142
implementation, 527, 569–571
motivating example, 571
naming patterns, 576–578
overview, 568
refactoring, 572
Self Shunt/Loopback, 573
Subclassed Inner Test Double, 

573–575, 578
Test Double Class, 572–573

testing with, 140–142
when to use, 569

Hard-Coded Test Spy. See
Hard-Coded Test Double

Hard-Coded Test Stub. See also
Hard-Coded Test Double

implementation, 531–532
indirect input control, 179

Hard-Coded Value, 103
Hard-To-Test Code

Asynchronous Code, 210–211
Buggy Tests, 261
code smells, 16
Developers Not Writing 

Tests, 264
divide and test, 71–72
High Test Maintenance Cost, 

266–267
Highly Coupled Code, 210
impact, 209
solution patterns, 209
symptoms, 209
Untestable Test Code, 211–212

hierarchy of test automation needs, 
176–177

High Test Maintenance Cost
Conditional Test Logic, 200
In-Line Setup, 89
introduction, 12–13
smell description, 265–267

Higher Level Language
Custom Assertion, 117
Interface Sensitivity solution, 241
xUnit sweet spot, 58

Highly Coupled Code, 210
historical patterns and smells, xxxviii
Hollywood principle

defi ned, 56, 799
test results, 79

Hook, Test. See Test Hook
HTML user interface sensitivity, xxxii
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HttpUnit, 755
Humble Container Adapter, 698
Humble Dialog

design-for-testability, 7
example, 706–708
Hard-To-Test Code, 72
minimizing untested code, 45
when to use, 696–697

Humble Executable
asynchronous tests, 70–71
minimizing untested code, 44
motivating example, 700–702
Neverfail Test solution, 274
when to use, 697

Humble Object
Asynchronous Code solution, 211
Humble Dialog, 706–708
Humble Transaction 

Controller, 708
implementation, 698–700
motivating example, 700–702
overview, 695–696
Poor Manís Humble 

Executable, 703
refactoring, 702
True Humble Executable, 

703–706
when to use, 696–698

Humble Transaction Controller
data access layer testing, 173
example, 708
when to use, 697–698

Hurst, John, 670–671
hybrid setup, 93

I

IDE (integrated development 
environment)

defi ned, 799
introduction, 78
refactoring, xxxix

Idea, 755
IeUnit

defi ned, 748
Graphical Test Runner, 378

“if” statements
Conditional Test Logic, 201
Guard Assertions, 490–491
removing, 120

IFixtureFrame, 442
ignoring tests, 270
Immutable Shared Fixture

defi ned, 323
example, 326
Interacting Tests solution, 231
introduction, 61, 65
vs. Irrelevant Information, 192
Test Run Wars solution, 237

impact
Assertion Roulette, 224
Asynchronous Code, 211
Buggy Tests, 260
Conditional Test Logic, 201
Developers Not Writing 

Tests, 263
Equality Pollution, 221
Erratic Tests, 228
Flexible Tests, 203
Fragile Tests, 239
Frequent Debugging, 249
General Fixtures, 191–192
Hard-Coded Test Data, 195
Hard-To-Test Code, 209
High Test Maintenance 

Cost, 265
Highly Coupled Code, 210
Indirect Testing, 197
Irrelevant Information, 193
Manual Intervention, 250
Mystery Guests, 189
Neverfail Tests, 274
Nondeterministic Tests, 237
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Obscure Tests, 186
Production Bugs, 268
Slow Tests, 253
Test Code Duplication, 214
Test Dependency in 

Production, 221
Test Hooks, 218–219
Test Logic in Production, 217
Test Run Wars, 236
For Tests Only, 220
Untestable Test Code, 211
Untested Requirements, 273

Implicit Setup
vs. Four-Phase Test, 360–361
introduction, 7, 77
matching with teardown code, 

98–99
pattern description, 424–428
pattern naming, 577
reusing test code with, 162
transient fi xtures, 91–93

Implicit Teardown
Complex Teardown solution, 

206–207
database, 100
vs. Four-Phase Test, 360–361
pattern description, 516–519
persistent fi xtures, 98–99
Self-Checking Tests with, 108

Imposter. See Test Double
incremental delivery

agile development, 239
defi ned, 799

incremental development
defi ned, 799–800
test automation philosophies, 

33–34
Incremental Tabular Test

implementation, 609–610
Parameterized Test patterns, 

613–614

incremental tests, 322
In-Database Stored Procedure Test

database testing, 172
example, 658–659
implementation, 655–656

Independent Tabular Test, 612–613
independent testing. See Keep Tests 

Independent
indirect input

alternative path verifi cation, 179
controlling, 128–129
controlling in Layer Tests, 341
defi ned, 800
importance of, 126
Test Doubles, 125–126

indirect output
Behavior Verifi cation. 

See Behavior Verifi cation
defi ned, 800
importance of, 126–127
registries, 541
Test Doubles, 125–126
verifi cation, 130–133, 178–180
verifying in Layer Tests, 341

Indirect Testing
defi ned, 187
Fragile Tests cause, 240
Obscure Tests cause, 196–199
testability, 70–71

Infrequently Run Test
Frequent Debugging cause, 

248–249
Production Bugs cause, 268–269

inheritance
reusing test code, 164
reusing test fi xtures, 62

injected values, Test Stub. 
See Test Stub

Injection, Parameter. See Parameter 
Injection

in-line Four Phase Test, 360
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in-line resources, 736–737
In-line Setup

introduction, 77
matching with teardown code, 

98–99
Mystery Guest solution, 190
pattern description, 408–410
transient fi xtures, 88–89

In-line Teardown
examples, 512–515
implementation, 510–511
motivating example, 511
Naive In-Line Teardown, 512
overview, 509
of persistent fi xtures, 98–99
refactoring, 512
when to use, 510

In-Memory Database, 553
inner class

anonymous, 535–536, 786
defi ned, 800

Inner Test Double
example, 573–574
Hard-Coded Test Double 

implementation, 570–571
Subclassed from Pseudo-Class, 

574–575, 578
Test Spy implementation, 541

input
derived, 719
indirect. See indirect input
naming conventions, 158–159

inside-out development
vs. outside-in development, 34–36
State Verifi cation, 463

installing Test Doubles, 528
Dependency Injection, 143–144, 

679–680
Dependency Lookup, 144–145
Fake Object, 554
introduction, 143

Mock Object, 547
retrofi tting testability, 

146–148
instance methods

defi ned, 800–801
with Test Helper, 645, 647

instance variables
converting for Implicit Setup, 427
Data-Driven Tests using Fit 

Framework, 297
defi ned, 801
Fresh Fixtures, 313
as global variables, 92
Reuse Tests for Fixture Setup, 

418–419
with Test Specifi c Subclass, 558
Testcase Class per Fixture, 632

instances
reusing, 63
Testcase Object exception, 

384–385
integrated development environment 

(IDE). See IDE (integrated 
development environment)

Integration Build, 4
Intent-Revealing Name

Custom Assertion, 474–475
Implicit Setup, 92
Parameterized Test, 608
Test Utility Method, 602–603

Interacting Test Suites, 
231–232

Interacting Tests
avoiding with Database 

Sandbox, 650–653
avoiding with Delta Assertion, 

111, 486
caused by Shared Fixture, 63
Chained Tests, 455
customer testing, 5–6
database testing, 169
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Erratic Test cause, 229–231
introduction, 15
Keep Tests Independent, 43

interaction point, 801
interaction styles, 67–71
Interaction Testing. See Behavior 

Verifi cation
Interface Sensitivity

defi ned, 241–242
introduction, xxxii, 13

interfaces
Confi guration Interface, 560
defi ned, 801
GUI. See GUI (graphical user 

interface)
outgoing interface, 804–805
standard test, 378
Test Runner. See Test Runner
Use the Front Door First, 40–41

internal recording tools, 56
interpreters in Data-Driven Tests. 

See Data-Driven Test
Intervention, Manual. See Manual 

Intervention
Introduce Explaining Variable 

refactoring, lvii–lviii
IoC (inversion of control) framework

defi ned, 801
for Dependency Injection, 680

irrelevant information
defi ned, 187
Obscure Test, 192–194

Isolate the SUT, 43–44
iterative development, 802

J

Java
language-specifi c xUnit 

terminology, xl
test code packaging, 165

JBehave
defi ned, 748
tests as examples, 33

JFCUnit, 755
JMock

Confi guration Interface, 560
defi ned, 755
Test Double implementation, 

140
Johnson, Rod, 670
JUnit

defi ned, 748
Expected Exception Test 

expression, 351
fi xture design, 59
language-specifi c terminology, xl
Suite Fixture Setup support, 

442–443
Test Automation 

Framework, 300
test automation tools, 55
Testcase Object exception, 

384–385
testing stored procedures, 657

K

Keep Test Logic Out of Production 
Code

minimizing risk, 24
principle, 45
test code organization, 164–165

Keep Tests Independent
running, 26
test automation principles, 

42–43
using Fake Object. See Fake 

Object
Kerievsky, Joshua, xxxix
keys, Literal Values as, 714
King, Joseph, 319–321
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L

languages
terminology, xl–xli
variations in Built-in Assertions, 

110–111
xUnit implementations, 76

language-specifi c xUnit terminology, 
xl–xli

“Law of Raspberry Jam”, xxv
Layer Test

Business Layer Tests, 344–345
database testing, 169–171
implementation, 340–341
motivating example, 341–342
overview, 337–338
Presentation Layer Tests, 343
refactoring, 342
Subcutaneous Tests, 343–344
when to use, 338–340

layer-crossing tests
defi ned, 802
testability, 67–69

Layered Architecture
design-for-testability, 7
layer-crossing tests, 67–69

Lazy Initialization, 435
Lazy Setup

Decorated, 449–450
examples, 439–440
implementation, 436–437
Interacting Tests solution, 231
motivating example, 437–438
overview, 435
vs. Prebuilt Fixtures, 431–432
refactoring, 439
Shared Fixture, 64, 105
when to use, 436

Lazy Teardown
example, 665–666
implementation, 663–664

leakage, resource
Erratic Tests, 233
persistent fi xtures, 99

learning styles, xxxix–xl
legacy software

Buggy Tests, 261–262
defi ned, 802
tests as safety net, 24

lenient Mock Object
defi ned, 138
when to use, 545

lightweight implementation using 
Fake Object. See Fake Object

Literal Value
Hard-Coded Test Data, 195
pattern description, 714–717

local variables
converting in Implicit 

Setup, 427
defi ned, 802
Fresh Fixtures, 313

Lonely Test
caused by Chained Test. See

Chained Test
Erratic Tests, 232
Interacting Tests. 

See Interacting Tests
Long Tests. See Obscure Test
Loopback. See Self Shunt
Loop-Driven Test

implementation, 610
Parameterized Test, 614–615

loops
as Conditional Test Logic, 201
eliminating, 121
Production Logic in Test cause, 

204–205
Lost Tests

avoiding, 597
Production Bugs cause, 

269–271
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M

Mackinnon, Tim, 149
macros, Assertion Methods as, 364
maintenance

High Test Maintenance Cost. See
High Test Maintenance Cost

optimizing, 180–181
test automation goals, 27–29

Manual Event Injection, 251–252
Manual Fixture Setup, 250–251
Manual Intervention

impact, 250
introduction, 15
Manual Event Injection, 

251–252
Manual Fixture Setup, 250–251
Manual Result Verifi cation, 251
symptoms, 250

Manual Result Verifi cation, 251
manual testing

defi ned, 802
right-sizing Test Methods, 154

Marrick, Brian
purpose of tests, 51
right-sizing Test Methods, 155
tests as examples, 33

Maslow, 176
MbUnit

defi ned, 749
Parameterized Test 

implementation, 608–609
Tabular Test with framework 

support, 614
Message, Assertion. See Assertion 

Message
messages, failure. See failure 

messages
meta objects

Data-Driven Tests, 290
defi ned, 803

metatests, 803
method attributes

defi ned, 803
Expected Exception Tests, 354
Test Discovery using, 397
Test Method Selection 

using, 405
method names

language-specifi c xUnit 
terminology, xl–xli

Test Method Discovery, 395–396
methods

diagramming notation, xlii
instance. See instance methods
setUp. See setUp method
static, 809
suite, 399
tearDown. See tearDown method
Template Method, 164
test commands, 82
verifi cation. See result 

verifi cation
Miller, Jeremy, 687
Minimal Fixture

external result verifi cation, 112
General Fixtures solution, 192
minimizing data, 738–739
misuse of setUp method, 93
pattern description, 302–304
strategy, 62–63
test automation philosophies, 36

Minimize Test Overlap, 44
Minimize Untestable Code, 44–45
Missing Assertion Message, 226–227
Missing Unit Test

Defect Localization, 23
Production Bugs, 271

mixins
defi ned, 803
Test Helper Mixins, 639, 

641–642
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Mock Object
Confi gurable. See Confi gurable 

Test Double
confi guring, 141–142
defi ned, 133
examples, 548–550
Expected Behavior Specifi cation, 

470–471
implementation, 546–548
motivating example, 548
Overspecifi ed Software 

cause, 246
overview, 544–545
refactoring, 548
Test Double patterns, 525
Test Doubles, 137–139
unit testing, 6
vs. Use the Front Door First, 40
verifying indirect output, 

131–133
when to use, 545
xUnit terminology, 741–744

MockMaker, 560
modules, 803–804
Move Method, 413
MSTest, 749
Mugridge, Rick, xxiv
multimodal tests, 687
multiple-condition tests

Conditional Test Logic, 
207–208

defi ned, 45–47
Multiresource In-line Teardown, 

513–514
MySql, 651
Mystery Guest

defi ned, 187
Obscure Test cause, 188–190

N

Naive In-line Teardown
defi ned, 511
example, 512
of persistent fi xtures, 97

Naive xUnit Test Interpreter, 
292–293

Named State Reaching Method, 
417–418

Named Test Suite
examples, 594–598
implementation, 594
introduction, 160–161
overview, 592–593
refactoring, 594
Test Enumeration, 400
when to use, 593–594

names
Dependency Lookup, 693–694
intent-revealing. See

Intent-Revealing Name
referring to patterns and smells, 

xxxviii
Scripted Test, 287
Suite Fixture Setup, 446

naming conventions
assertion-identifying

messages, 371
making resources unique, 

737–738
patterns, 576–578
vs. test code organization, 

158–159
Test Method Discovery, 

395–396
Testcase Class per Class, 618
Testcase Class per Feature, 626
Testcase Class per Fixture, 632
For Tests Only solution, 220
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need-driven development
Behavior Verifi cation, 469
defi ned, 804
testing with doubles, 149
using Mock Objects, 545

Neverfail Test, 274
New River Gorge bridge, xxvi
Newkirk, James, 384–385
NMock, 756
No Test Risk, 24–25
Nondeterministic Test

dangers of, 26–27
Erratic Test, 237–238
Generated Values cause, 723–724

notation, diagramming, xlii
Null Object vs. Dummy Object, 730
null values in Dummy Objects, 

729–732
NUnit

defi ned, 749
Expected Exception Test 

expression, 351
fi xture design, 59
Interacting Test Suites, 232
Suite Fixture Setup support, 

442–443
Test Automation Frameworks, 

300
test automation ways and 

means, 55
test fi xtures, 814
Testcase Classes, 376
Testcase Object exception, 

384–385

O

Object Attribute Equality Assertion, 
476

Object Factory
Dependency Lookup, 688
installing Test Double, 145

Object Mother
in Delegated Setup, 90–91
when to use, 644–645

object technology, xxxix–xl
Object Transaction Rollback 

Teardown, 673–674
object-oriented programming 

language (OOPL), 76
object-relational mapping (ORM). 

See ORM (object-relational 
mapping)

objects
Creation Method. See Creation 

Method
determining necessary, 

303–304
diagramming notation, xlii
fake. See Fake Object
Test Suite Objects. See Test Suite 

Object
Testcase. See Testcase Object

Obscure Test
avoiding with Custom Assertion, 

475
avoiding with Separation of Con-

cerns, 28–29
Buggy Test, 261
causes, 186–187
vs. Communicate Intent, 41
customer testing, 5
database testing, 169
Eager Test, 187–188
General Fixture, 190–192
Hard-Coded Test Data, 

194–196
High Test Maintenance Cost, 

266
impact, 186
Indirect Testing, 196–199
introduction, xlvi, 12–13, 16
Irrelevant Information, 192–194
Mystery Guests, 188–190
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optimizing test execution/
maintenance, 180

smells, 10
solution patterns, 199
symptoms, 186

observation points
defi ned, 804
test automation strategy, 66–67

O’Grady, Ted, 319–321
One Bad Attribute

example, 721–722
introduction, xxiii, 90
Minimal Fixtures, 304
when to use, 719

OOPL (object-oriented 
programming language), 76

optimism, resource, 189, 233–234
order of tests, 456
organization, test. See test 

organization; test organization 
patterns

ORM (object-relational mapping)
defi ned, 804
Table Truncation Teardown, 663
Table Truncation Teardown 

using, 667
Transaction Rollback 

Teardown, 671
Outcome Assertions, Stated. See

Stated Outcome Assertion
outcome verifi cation patterns. See

result verifi cation patterns
outcome-describing Verifi cation 

Method, 117
outgoing interface, 804–805
out-of-order calls, 138
output, indirect. See indirect output
outside-in development

Behavior Verifi cation, 469
vs. inside-out development, 

34–36
Overcoupled Software, 40

overlapping tests
minimizing, 44
Too Many Tests, 256–257

Overspecifi ed Software
avoiding with Fake Objects, 

552
Fragile Tests, 246
testing with doubles, 150
Use the Front Door First, 40

P

Parameter Injection
example, 683
implementation, 680
installing Test Doubles, 144

Parameterized Anonymous Creation 
Method, 417

Parameterized Creation Method
defi ned, 417
Delegated Setup, 90
example, xxiii, 420–421
Irrelevant Information 

solution, 193
Parameterized Setup Decorator

defi ned, 449
example, 452–453

Parameterized Test
example, 611–612
extracting. See Data-Driven Test
further reading, 615–616
implementation, 608–610
Incremental Tabular Test, 

613–614
Independent Tabular Test, 

612–613
Loop-Driven Tests, 614–615
motivating example, 610–611
overview, 607–608
reducing Test Code Duplication, 

118–119
refactoring, 611
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Tabular Test with framework 
support, 614

Test Utility Method, 602
when to use, 608

parameters, arguments as, 729
“Pass-Fail-Fail”, 234–235
pattern language

defi ned, xxxv–xxxvi, 805
pattern naming, 577

Pattern Languages of Programming 
(PLoP), 576

patterns
aliases and variations, 767–784
database. See database patterns
defi ned, 805
design-for-testability. See

design-for-testability patterns
fi xture setup. See fi xture setup 

patterns
result verifi cation. See result 

verifi cation patterns
test automation introduction, 

xxxiv–xxxviii
Test Double. See Test Double
test organization. See test 

organization patterns
test strategy. See test strategy 

patterns
testability, 67–71
value. See value patterns
xUnit basics. See xUnit basics 

patterns
peeling the onion, 11
per-functionality test, 50–52
Perrotta, Paolo, 537
Per-Run Fixtures, 323
persistence layer, 339–340
persistence resources, 504
persistent fi xtures, 95–106

database testing, 168–169
issues caused by, 96

managing, 103–105
overview, 95–96
Slow Tests cause, 102
Table Truncation Teardown. See

Table Truncation Teardown
teardown avoidance, 100–101
tearing down, 97–100
test strategy patterns, 313–314
what’s next, 106

Persistent Fresh Fixture
building, 88
defi ned, 60–61
strategies, 62–63

Personal Oracle, 651
philosophy, test automation. See test 

automation philosophies
PHPUnit, 749
PLoP (Pattern Languages of 

Programming), 576
Pluggable Behavior

in Named Test Suites, 597
Testcase Object 

implementation, 383
pollution

Equality Pollution, 221–222
Shared Fixture, 326

polymorphism, 805
Poor Manís Humble 

Executable, 703
Poor Man’s Humble Object

implementation, 699
Transaction Rollback 

Teardown, 671
Poppendieck, Mary, 51
Pragmatic Unit Testing, 743
Prebuilt Fixture

examples, 432–434
implementation, 430–431
motivating example, 

431–432
overview, 429–430
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refactoring, 432
Shared Fixture strategies, 64
Shared Fixtures, 104–105
Unrepeatable Tests cause, 235

presentation layer
defi ned, 805
Layer Tests example, 343
testing, 338–339

presentation logic, 805
Preserve Whole Object refactoring, 

xlviii–xlix
principles

list of, 757–759
patterns vs., xxxv–xxxvi
test automation. See test 

automation principles
Private Fixture. See Fresh Fixture
private methods, 586
problem statements, xxxvi–xxxvii
Procedural Behavior Verifi cation

defi ned, 470
example, 472–473
indirect outputs, 131
introduction, 112–113
Test Spy usage, 137

Procedural State Verifi cation
defi ned, 463–464
example, 466
introduction, 109

Procedural Test Stub
defi ned, 526
introduction, 135–136
when to use, 531

Procedure Test, Stored. See Stored 
Procedure Test

procedure variables, 805–806
production, 806
Production Bugs

Infrequently Run Tests, 268–269
introduction, 12–13
Lost Tests, 269–271

Missing Unit Tests, 271
Neverfail Tests, 274
overview, 268
reducing risk, 181
Untested Code, 271–272
Untested Requirements, 272–274

production code
defi ned, 806
keeping test logic out of, 45

Production Logic in Test, 204–205
profi ling tools, 254
Programmatic Test. See Scripted Test
programmer tests, 806
project smells, 259–274

Buggy Tests, 260–262
defi ned, 806
Developers Not Writing Tests, 

263–264
High Test Maintenance Cost, 

265–267
overview, 12–13
Production Bugs. See Production 

Bugs
property tests, 52
Pseudo-Object

Hard-Coded Test Double 
implementation, 570–571

Inner Test Double Subclassed 
from Pseudo-Class, 574–575, 
578

testing with doubles, 140–141
pull system, 806–807
Pull-Up Method refactoring

Delegated Setup, 413
moving reusable test logic, 123
Testcase Superclass, 640

Pushdown Decorator, 450
PyUnit

defi ned, 749
Test Automation Framework, 

300
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Q

QA (quality assurance), 22–23
QaRun, 244
QTP (QuickTest Professional)

Data-Driven Tests, 290
defi ned, 756
record and playback tools, 282
Test Automation 

Framework, 301
quality assurance (QA), 22–23
QuickTest Professional (QTP). 

See QTP (QuickTest Professional)

R

random values
Nondeterministic Tests, 238
Random Generated Values, 724

Record and Playback Test, 13
record and playback tools

introduction, xxxi
Recorded Tests, 282–283
xUnit sweet spot, 58

Recorded Test
built-in test recording, 

281–282
commercial record and 

playback tool, 282–283
customer testing, 5
Data-Driven Tests and, 289
implementation, 280–281
Interface Sensitivity, 241
overview, 278–279
refactored commercial recorded 

tests, 283–284
vs. Scripted Tests, 286
smells, 10
tools, 56
tools for automating, 53–54
when to use, 279–280

Recording Test Stub. See Test Spy

red bar, 807
Refactored Recorded Tests

commercial, 283–284
overview, 280

refactoring. See also test refactorings
Assertion Message, 372
Assertion Method, 368
Automated Teardown, 

506–507
Back Door Manipulation, 333
Chained Test, 458
Confi gurable Test Double, 463
Creation Method, 420
Custom Assertion, 480
Database Sandbox, 653
Data-Driven Test, 294
defi ned, 807
Delegated Setup, 413
Delta Assertion, 488
Dependency Injection, 682
Dependency Lookup, 690–691
Derived Value, 720
Dummy Object, 731
Fake Object, 555–556
Fresh Fixture, 315–316
Garbage-Collected

Teardown, 502
Generated Value, 725
Guard Assertion, 492
Hard-Coded Test Double, 572
Humble Object, 702
Implicit Setup, 427
Implicit Teardown, 518–519
In-line Setup, 410
In-line Teardown, 512
Layer Test, 342
Lazy Setup, 439
Literal Value, 716
Mock Object, 548
Named Test Suite, 594
Parameterized Test, 611
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Prebuilt Fixture, 432
Setup Decorator, 451
Shared Fixture, 324
Standard Fixture, 309–310
State Verifi cation, 465–466
Stored Procedure Test, 658
Suite Fixture Setup, 444
Table Truncation Teardown, 

664–665
Test Discovery, 395
Test Helper, 646
Test Spy, 541–542
Test Stub, 533
Test Utility Method, 605
Testcase Class per Feature, 

627–628
Testcase Class per Fixture, 

634–635
Testcase Superclass, 640
Test-Specifi c Subclass, 584
Transaction Rollback 

Teardown, 672
Unfi nished Test Assertion, 496

Refactoring: Improving the 
Design of Existing Code (Fowler),
9, 16

references, 819–832
refl ection

defi ned, 807
Test Discovery, 393
Testcase Object 

implementation, 383
Registry

confi gurable, 691–692
in Dependency Lookup, 688–689
Interacting Tests, 230
Test Fixture, 644

regression tests
defi ned, 807
Recorded Tests. See Recorded 

Test
Scripted Tests, 285–287

Related Generated Values
example, 726–727
implementation, 725

Remoted Stored Procedure Test
example, 659–660
implementation, 656–658
introduction, 172

Repeatable Test
defi ned, 26–27
indirect inputs control, 179

Replace Dependency with Test 
Double refactoring

Behavior Verifi cation, 472
defi ned, 739

Repository
Data-Driven Test fi les, 290
persistent objects, 90
source code, 24, 79, 234, 

561, 656
test code, 164, 561

Requirement, Untested. 
See Untested Requirement

ReSharper, 756
Resource Leakage

Erratic Tests, 233
persistent fi xtures, 99

Resource Optimism, 189, 233–234
resources

external, 740
in-line, 736–737
unique, 737–738

Responder
defi ned, 524
examples, 533–535
indirect input control, 179
introduction, 135
when to use, 530

response time tests, 52
result verifi cation, 107–123

Behavior Verifi cation, 112–114
Conditional Test Logic 

avoidance, 119–121
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Data Sensitivity, 243–245
defi ned, 807
Four-Phase Test, 358–361
Mock Object, 547–548
other techniques, 121–122
reducing Test Code Duplication, 

114–119
reusable test logic, 123
Self-Checking Tests, 107–108
State Verifi cation, 109–112

result verifi cation patterns, 461–497
Behavior Verifi cation. See

Behavior Verifi cation
Custom Assertion. See Custom 

Assertion
Delta Assertion, 485–489
Guard Assertion, 490–493
State Verifi cation. See State Veri-

fi cation
Unfi nished Test Assertion, 

494–497
results, test

defi ned, 815
introduction, 79–80

Retrieval Interface, 137, 540
retrospective, 807–808
reusable test logic

Creation Method, 418–419
fi xture setup patterns, 422–423
organization, 162–164
result verifi cation, 123
Test Code Duplication, 214–215
Test Utility Method. See Test 

Utility Method
Reuse Tests for Fixture Setup, 90
Robot User Test. See Recorded Test
robot user tools

defi ned, 55–56
introduction, xxxi
Test Automation Framework, 

299

Robust Tests
defi ned, 29
indirect inputs control, 179

role-describing arguments, 725
root cause analysis

defi ned, 808
smells, 11

round-trip tests
defi ned, 808
introduction, 67–69
Layer Tests, 340–341

row tests. See Tabular Test
RSpec

defi ned, 750
fi xture design, 59
tests as examples, 33

runit
defi ned, 750
Test Automation 

Frameworks, 300
running tests

introduction, 79
structure, 81
test automation goals, 25–27

runtime refl ection, 393

S

Saboteur
defi ned, 135
example, 535–536
inside-out development, 35
Test Double patterns, 524
when to use, 530

Safety Net
Buggy Tests, 260
tests as, 24

sample code, xli–xlii
screen scraping, 241
Scripted Test

Communicate Intent, 41
customer testing, 5
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Data-Driven Tests and, 289
introduction, 75
pattern description, 285–287
vs. Recorded Tests, 279
smells, 10
UI, 55
Verify One Condition per 

Test, 46
Self Shunt

Behavior Verifi cations, 113
example, 573
Hard-Coded Test Double 

implementation, 570
pattern naming, 576
Test Spy implementation, 

540–541
Self-Call, 582
Self-Checking Test

Assertion Method usage, 362
Conditional Test Logic 

solution, 201
defi ned, 80
happy path code, 178
introduction, 107–108
running, 26

Self-Describing Value
example, 717
Literal Value patterns, 715

self-testing code, xxi
self-tests, built-in

defi ned, 788
test fi le organization, 164

Sensitive Equality
Fragile Tests, 246
test-fi rst development, 32

sensitivities
automated unit testing, 

xxxi–xxxii
behavior. See Behavior Sensitivity
Buggy Tests cause, 260
context. See Context Sensitivity

data. See Data Sensitivity
interface. See Interface 

Sensitivity
Separation of Concerns, 28–29
Service Facade, 71–72
service layers

fake, 553
tests, 7, 339

Service Locator
in Dependency Lookup. 

See Dependency Lookup
installing Test Doubles, 145

service objects, 808
Setter Injection

Confi guration Interface 
using, 564

example, 684–685
implementation, 681
installing Test Doubles, 143

setters, 808
setup, fi xtures. See fi xture setup
Setup Decorator

examples, 451–453
implementation, 448–450
Implicit Setup, 426
motivating example, 450–451
overview, 447–448
refactoring, 451
Shared Fixture strategies, 64, 

104–105
when to use, 448

setUp method
Implicit Setup, 91–92, 424–428
misuse of, 92–93
pattern naming, 577
Setup Decorator. See Setup 

Decorator
Suite Fixture Setup. See Suite 

Fixture Setup
shadows, diagramming notation, xlii
Shank, Clint, 457–458, 613, 616
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Shared Fixture. See also Standard 
Fixture

Behavior Verifi cation, 108
Chained Test. See Chained Test
customer testing, 5
Data Sensitivity cause, 243
database testing, 169
defi ned, 60–61
Delta Assertions, 111
example, 324–325
Immutable. See Immutable 

Shared Fixture
Immutable Shared Fixtures, 326
implementation, 322–323
incremental tests, 322
Interacting Tests cause, 229–231
introduction, 15, 63–65
Lazy Setup. See Lazy Setup
managing, 103–105
motivating example, 323–324
in Nondeterministic Tests, 27
overview, 317
Prebuilt Fixture. See Prebuilt 

Fixture
refactoring, 324
Setup Decorator. See Setup 

Decorator
Slow Tests cause, 318–321
Suite Fixture Setup. See Suite 

Fixture Setup
Table Truncation Teardown. 

See Table Truncation Teardown
Test Run Wars cause, 236
Unrepeatable Tests cause, 235
using Finder Methods, 600–601
when to use, 318

Shared Fixture Guard Assertion, 
492–493

Shared Fixture State Assertion, 491
Simple Success Test

example, 352–353
happy path code, 177

introduction, 77
pattern description, 349–350

The simplest thing that could 
possibly work (STTCPW), 810

Single Glance Readable. 
See Communicate Intent

Single Layer Test. See Layer Test
Single Test Suite

example, 596–597
Lost Tests solution, 270
when to use, 593–594

single tests, 161–162
Single-Condition Test

Eager Tests solution, 225–226
Obscure Tests solution, 188
principles. See Verify One 

Condition per Test
unit testing, 6

Single-Outcome Assertion
Assertion Method, 366–367
defi ned, 365
example, 369

Singleton
in Dependency Lookup, 

688–689
Interacting Tests, 230
retrofi tting testability, 146–147

Singleton, Substituted
example, 586–587
when to use, 581

skeletons, 744
Slow Component Usage, 254
Slow Tests

Asynchronous Tests, 255–256
avoiding with Shared Fixture, 

318–321
database testing, 168
design for testability, 7
due to Transaction Rollback 

Teardown, 669
General Fixtures, 255
impact, 253
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introduction, 15
optimizing execution, 180
persistent fi xtures, 102
preventing with Fake Object. 

See Fake Object
preventing with Test 

Double, 523
Slow Component Usage, 254
symptoms, 253
Too Many Tests, 256–257
troubleshooting, 253–254

smells, test. See test smells
Smith, Shaun, 39
Smoke Test

development process, 4
suites, 597–598
Test Discovery, 394

sniff test
defi ned, xxxviii
test smells, 10

solution patterns, behavior smells
Asynchronous Tests, 256
Behavior Sensitivity, 242–243
Context Sensitivity, 246
Data Sensitivity, 243–245
Eager Tests, 225–226
Frequent Debugging, 249
General Fixture, 255
Interacting Test Suites, 232
Interacting Tests, 231
Interface Sensitivity, 241–242
Manual Intervention, 

250–252
Missing Assertion Messages, 

226–227
Resource Leakage, 233
Resource Optimism, 234
Slow Component Usage, 254
Test Run War, 236–237
Too Many Tests, 257
Unrepeatable Tests, 235

solution patterns, code smells
Asynchronous Code, 211
Conditional Verifi cation Logic, 

203–204
Cut and Paste code reuse, 215
Eager Test, 188
Equality Pollution, 222
Flexible Test, 203
General Fixture, 192
Hard-Coded Test Data, 196
Hard-To-Test Code, 209
Highly Coupled Code, 210
Indirect Testing, 197–199
Irrelevant Information, 193
Multiple Test Conditions, 

207–208
Mystery Guests, 190
Obscure Tests, 199
Production Logic in Test, 205
Test Code Duplication, 115–216
Test Dependency in 

Production, 221
Test Hook, 219
For Tests Only, 220
Untestable Test Code, 212

solution patterns, project smells
Buggy Test, 261–262
Infrequently Run Test, 269
Lost Test, 270–271
Missing Unit Test, 271
Neverfail Test, 274
Untested Code, 272
Untested Requirements, 274

Special-Purpose Suite, 595–596
specifi cation

Expected Behavior, 470–471
Expected Behavior 

example, 473
Expected Object example, 466
Expected State, 464–465
tests as, xxxiii, 22
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spikes, 809
Spy, Test. See Test Spy
SQL, Table Truncation Teardown 

using, 666–667
Standard Fixture

implementation, 307–308
motivating example, 308
overview, 305–306
refactoring, 309–310
when to use, 306–307

standard test interface, 378
starbursts, diagramming 

notation, xlii
state, initializing via

Back Door Manipulation. 
See Back Door Manipulation

Named State Reaching Method, 
417–418

State Verifi cation
vs. behavior, 36
examples, 466–467
implementation, 463–465
indirect outputs, 179–180
introduction, 109–112
motivating example, 465
overview, 462–463
refactoring, 465–466
Self-Checking Tests, 108
Use the Front Door First, 41
when to use, 463

Stated Outcome Assertion
Assertion Methods, 366
defi ned, 365
example, 369
Guard Assertions as, 491
introduction, 110–111

State-Exposing Subclass
Test-Specifi c Subclass, 289–590
when to use, 580

stateless, 809
statements, “if”. See “if” statements

static binding
defi ned, 809
Dependency Injection, 

678–679
static methods, 809
static variables, 809
Statically Generated Test 

Doubles, 561
STDD (storytest-driven 

development), 4, 810
stop on fi rst failure

Naive xUnit Test Interpreter, 
292–293

xUnit introduction, 57
Stored Procedure Test

database testing, 172
examples, 658–660
implementation, 655–658
motivating example, 658
overview, 654
refactoring, 658
when to use, 654–655

storytest, 810
storytest-driven development 

(STDD), 4, 810
strategies, test automation. See test 

automation strategies
stress tests, cross-functionality, 52
strict Mock Object

defi ned, 138
when to use, 545

STTCPW (The simplest thing that 
could possibly work), 810

Stub, Test. See Test Stub
Subclass, Test-Specifi c. See

Test-Specifi c Subclass
Subclassed Humble Object, 700
Subclassed Inner Test Double, 

573–574
Subclassed Singleton, 7
Subclassed Test Double, 146–147
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Subcutaneous Test
customer testing, 5
database testing, 174
design for testability, 7
Layer Tests, 343–344

Subset Suite
example, 594–598
implementation, 594
introduction, 160–161
overview, 592
Too Many Tests solution, 257
when to use, 593

substitutable dependencies
defi ned, 810
Dependency Initialization 

Test, 352
using Test Spy, 540

Substitutable Singleton
in Dependency Lookup, 689
example, 586–587, 692–693
retrofi tting testability, 146–147
when to use, 581

substitution mechanisms, 
688–689

Suite Fixture Setup
example, 444–446
implementation, 442–443
implicit, 426
motivating example, 443–444
overview, 441–442
refactoring, 444
Shared Fixture strategies, 64
Shared Fixtures, 104–105
when to use, 442

suite method, 399
suites

Named Test Suite. See Named 
Test Suite

test organization, 160–162
Test Suite Object. See Test Suite 

Object

Suites of Suites
building with Test enumeration, 

400
defi ned, 388
example, 389–391
Interacting Test Suites, 231–232
introduction, 7, 15, 78

SUnit
defi ned, 750
Test Automation 

Frameworks, 300
Superclass, Testcase. See Testcase 

Superclass
SUT (system under test)

control points and observation 
points, 66–67

dangers of modifying, 41–42
defi ned, 810–811
Four-Phase Test, 358–361
interface sensitivity, xxxii
isolation principle, 43–44
minimizing risk, 24–25
preface, xxii–xxiii
replacing in Parameterized 

Test, 609
result verifi cation. See result 

verifi cation
state vs. behavior 

verifi cation, 36
terminology, xl–xli
test automation tools, 53–54
Test Hook in, 711–712
understanding with test 

automation, 23
SUT API Encapsulation

Chained Tests as, 455
Indirect Testing solution, 198
Interface Sensitivity 

solution, 241
SUT Encapsulation Method, 

601–602
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Symbolic Constants
example, 716
Literal Value, 715

symptoms, behavior smells
Assertion Roulette, 224
Asynchronous Tests, 255
Behavior Sensitivity, 242
Context Sensitivity, 245
Data Sensitivity, 243
Eager Tests, 224–225
Erratic Tests, 228
Fragile Tests, 239
Frequent Debugging, 248
General Fixtures, 255
Interacting Test Suites, 231
Interacting Tests, 229
Interface Sensitivity, 241
Manual Intervention, 250–252
Missing Assertion Messages, 226
Nondeterministic Tests, 237
Resource Leakage, 233
Resource Optimism, 233
Slow Tests, 253
Test Run Wars, 236
Too Many Tests, 256
Unrepeatable Tests, 234–235

symptoms, code smells
Asynchronous Code, 210
Complex Teardown, 206
Conditional Test Logic, 200
Eager Tests, 187–188
Equality Pollution, 221
Flexible Tests, 202
General Fixtures, 190–191
Hard-Coded Test Data, 

194–195
Hard-To-Test Code, 209
Highly Coupled Code, 210
Indirect Testing, 196–197
Irrelevant Information, 192–193
Multiple Test Conditions, 207

Mystery Guests, 188–189
Obscure Tests, 186
Production Logic in Test, 

204–205
Test Code Duplication, 213–214
Test Dependency in 

Production, 220
Test Logic in Production, 217
test smells, 10
For Tests Only, 219
Untestable Test Code, 211

symptoms, project smells
Buggy Tests, 260
Developers Not Writing Tests, 

263
High Test Maintenance 

Cost, 265
Infrequently Run Tests, 268–269
Lost Tests, 269
Missing Unit Tests, 271
Neverfail Tests, 274
Production Bugs, 268
Untested Code, 271–272
Untested Requirements, 272–273

symptoms, test smells, 10
synchronous tests

avoiding with Humble Object, 
696–697

defi ned, 810
system under test (SUT). See SUT 

(system under test)

T

Table Truncation Teardown
data access layer testing, 173
defi ned, 100
examples, 665–667
implementation, 662–664
motivating example, 664
overview, 661–662
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refactoring, 664–665
when to use, 662

tabular data, 291
Tabular Test

Chained Tests, 457–458
with framework support, 614
implementation, 609–610
Incremental, 613–614
Independent, 612–613

tasks, 811
TDD (test-driven development)

defi ned, 813
implementing utility methods, 

122
introduction, xxxiii–xxxiv
Missing Unit Tests, 271
need-driven development, 149
process, 4–5
Test Automation 

Frameworks, 301
test automation principles, 40

teardown, fi xture. See fi xture 
teardown

Teardown Guard Clause
example, 513
Implicit Teardown, 517–518
In-line Teardown, 511

tearDown method
Implicit Teardown, 516–519
persistent fi xtures, 98
Setup Decorator. See Setup 

Decorator
Template Method, 164
Temporary Test Stub

when to use, 530–531
xUnit terminology, 741–744

terminology
test automation introduction, 

xl–xli
transient fi xtures, 86–88
xUnit. See xUnit basics

test automater, 811
test automation, xxix–xliii

assumptions, xxxix–xl
automated unit testing, xxx–xxxii
brief tour, 3–8
code samples, xli–xlii
developer testing, xxx
diagramming notation, xlii
feedback, xxix
fragile test problem, xxxi–xxxii
limitations, xliii
overview, xxix
patterns, xxxiv–xxxviii
refactoring, xxxviii–xxxix
terminology, xl–xli
testing, xxx
uses of, xxxiii–xxxiv

Test Automation Framework
introduction, 75
pattern description, 298–301

test automation goals, 19–29
ease of running, 25–27
improving quality, 22–23
list of, 757–759
objectives, 21–22
reducing risk, 23–25
system evolution, 29
understanding SUT, 23
why test?, 19–21
writing and maintaining, 27–29

Test Automation Manifesto, 39
test automation philosophies, 31–37

author’s, 37
differences, 32–36
importance of, 31–32

test automation principles, 39–48
Communicate Intent, 41
Design for Testability, 40
Don’t Modify the SUT, 41–42
Ensure Commensurate Effort 

and Responsibility, 47–48
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Isolate the SUT, 43–44
Keep Test Logic Out of 

Production Code, 45
Keep Tests Independent, 

42–43
Minimize Test Overlap, 44
Minimize Untestable Code, 

44–45
overview, 39–40
Test Concerns Separately, 47
Use the Front Door First, 

40–41
Verify One Condition per Test, 

45–47
Write the Tests First, 40

test automation roadmap, 175–181
alternative path verifi cation, 

178–179
diffi culties, 175–176
direct output verifi cation, 178
execution and maintenance 

optimization, 180–181
happy path code, 177–178
indirect outputs verifi cation, 

178–180
maintainability, 176–177

test automation strategies, 49–73
brief tour, 3–8
control points and observation 

points, 66–67
cross-functional tests, 52–53
divide and test, 71–72
ensuring testability, 65
fi xture strategies overview, 58–61
interaction styles and testability 

patterns, 67–71
overview, 49–50
per-functionality tests, 50–52
persistent fresh fi xtures, 62–63
shared fi xture strategies, 63–65
test-driven testability, 66

tools for, 53–58
transient fresh fi xtures, 61–62
what’s next, 73
wrong, 264

Test Bed. See Prebuilt Fixture
test cases, 811
test code, 811
Test Code Duplication

causes, 214–215
Custom Assertions, 475
Delegated Setup, 412
High Test Maintenance 

Cost, 266
impact, 214
In-Line Setup, 89
introduction, 16
possible solution, 216
reducing, 114–119
reducing with Confi gurable 

Test Doubles. See Confi gurable 
Test Double

reducing with Parameterized 
Tests. See Parameterized Test

reducing with Test Utility 
Methods. See Test Utility 
Method

removing with Testcase Class per 
Fixture. See Testcase Class per 
Fixture

reusing test code, 162
symptoms, 213–214

Test Commands, 82
Test Concerns Separately, 47
test conditions, 154, 811–812
test database, 812
test debt, 812
Test Dependency in Production, 

220–221
Test Discovery

introduction, 78
Lost Tests solution, 271
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pattern description, 393–398
Test Suite Object Generator, 293
Test Suite Objects, 388

Test Double, 125–151, 521–590
Back Door Manipulation, 332
Behavior Verifi cation, 112
Confi gurable Test Double. 

See Confi gurable Test Double
confi guring, 141–142
considerations, 150
customer testing, 5
database testing, 169–171
Dependency Injection. 

See Dependency Injection
Dependency Lookup, 144–145
dependency replacement, 739
design for testability, 7
Don’t Modify the SUT, 41–42
Dummy Object, 134–135
example, 526–528
Fake Object. See Fake Object
Fragile Test, 240
Hard-Coded Test Double. 

See Hard-Coded Test Double
Highly Coupled Code 

solution, 210
indirect input and output, 

125–126
indirect input control, 128–129
indirect input, importance 

of, 126
indirect output, importance of, 

126–127
indirect output verifi cation, 

130–133
installing, 143
minimizing risk, 25
Mock Object. See Mock Object
other uses, 148–150
outside-in development, 35–36
overview, 522–523

providing, 140–141
retrofi tting testability, 

146–148
reusing test code, 162
terminology, 741–744
vs. Test Hook, 709–712
Test Spy, 137, 538–543
Test Stub. See Test Stub
Test-Specifi c Subclass. 

See Test-Specifi c Subclass
types of, 133–134
when to use, 523–526

Test Double Class
example, 572–573
implementation, 569–570

Test Double Subclass
implementation, 570
when to use, 580–581

test drivers
Assertion Messages, 370
defi ned, 813

test driving, 813
Test Enumeration

introduction, 153
pattern description, 399–402

test errors, 80, 813
test failure, 80, 813
test fi rst development

defi ned, 813–814
process, 4–5
test automation philosophy, 

32–33
vs. test-last development, xxxiv

Test Fixture Registry
accessing Shared Fixtures, 104
Test Helper use, 644

test fi xtures. See fi xtures
Test Helper

Automated Teardown, 505
introduction, xxiii
pattern description, 643–647
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Test Helper Mixin
example, 641–642
vs. Testcase Superclass, 639

Test Hook
pattern description, 709–712
in Procedural Test Stub, 

135–136
retrofi tting testability, 148
Test Logic in Production, 

217–219
testability, 70

Test Logic, Conditional. 
See Conditional Test Logic

Test Logic in Production
Equality Pollution, 221–222
impact, 217
introduction, 17
symptoms, 217
Test Dependency in Production, 

220–221
Test Hooks, 148, 217–219
For Tests Only, 219–220

test maintainer, 815
Test Method

calling Assertion. See Assertion 
Method

Constructor Test example, 
355–357

Constructor Tests, 351
Dependency Initialization 

Tests, 352
enumeration, 401
Expected Exception Test, 

350–351
Expected Exception Test using 

block closure, 354–355
Expected Exception Test using 

method attributes, 354
Expected Exception Test using 

try/catch, 353–354
fi xture design, 59

implementation, 349
invocation, 402
Lost Tests, 269–270
minimizing untested code, 

44–45
organization, 7, 155–158. See

also test organization patterns
overview, 348–349
persistent fi xtures. See persistent 

fi xtures
right-sizing, 154–155
running, 81
selection, 404–405
Simple Success Test, 349–350
Simple Success Test example, 

352–353
test automation philosophies, 34
Test Commands, 82
Test Concerns Separately, 47
Test Suite Objects, 82
Testcase Object implementation, 

384–385
transient fi xture management. 

See transient fi xtures
unit testing, 6
Verify One Condition per Test, 

46–47
writing simple tests, 28

Test Method Discovery
defi ned, 394–395
examples, 395–397

Test Object Registry. See Automated 
Teardown

test organization, 153–165
code reuse, 162–164
introduction, 153
naming conventions, 158–159
overview, 7
right-sizing Test Methods, 

154–155
test fi les, 164–165
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Test Methods and Testcase 
Classes, 155–158

test suites, 160–162
test organization patterns, 591–647

Named Test Suite. See Named 
Test Suite

Parameterized Test. 
See Parameterized Test

Test Helper, 643–647
Test Utility Method. See Test 

Utility Method
Testcase Class per Class. 

See Testcase Class per Class
Testcase Class per Feature. 

See Testcase Class per Feature
Testcase Class per Fixture. 

See Testcase Class per Fixture
Testcase Superclass, 638–642

test packages
defi ned, 815
test fi le organization, 164–165

test readers, 815
test refactorings. See also refactoring

Extractable Test Component, 
735–736

In-line Resource, 736–737
Make Resources Unique, 

737–738
Minimize Data, 738–739
Replace Dependency with Test 

Double, 739
Set Up External Resource, 740

test results
defi ned, 815
introduction, 79–80
verifi cation. See result verifi cation

Test Run War
database testing, 169
Erratic Tests cause, 235–237
introduction, 15
vs. Shared Fixture strategy, 64

Test Runner
Graphical. See Graphical Test 

Runner
implementation, 378–381
introduction, 79
Missing Assertion Messages, 

226–227
overview, 377–378
Test Automation Frameworks, 

300
test runs, 815
Test Selection

pattern description, 403–405
Test Suite Object, 388

test smells, 9–17
aliases and causes, 761–765
behavior. See behavior smells
catalog of, 12–17
code smells. See code smells
database testing. See database 

testing
defi ned, 808, 816
introduction, xxxvi
overview, 9–11
patterns and principles vs., 

xxxv–xxxvi
project smells. See project smells
reducing Test Code Duplication, 

114–119
Test Spy

Back Door Verifi cation, 333
Behavior Verifi cation, 113
Confi gurable. See Confi gurable 

Test Double
examples, 542–543
implementation, 540–541
indirect outputs verifi cation, 

179–180
introduction, 131–133, 

137, 525
motivating example, 541
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overview, 538–539
Procedural Behavior 

Verifi cation, 470
refactoring, 541–542
when to use, 539–540
xUnit terminology, 741–744

test strategy patterns, 277–345
Data-Driven Test. See Data-

Driven Test
Fresh Fixture. See Fresh Fixture
Layer Test. See Layer Test
Minimal Fixture, 302–304
Recorded Test. See Recorded 

Test
Scripted Test, 285–287
Shared Fixture. See Shared 

Fixture
Standard Fixture. See Standard 

Fixture
Test Automation Framework, 

298–301
test strippers, 816
Test Stub

Behavior-Modifying Subclass, 
584–585

Confi gurable. See Confi gurable 
Test Double

confi guring, 141–142
Context Sensitivity solution, 246
controlling indirect inputs, 129
creating in-line resources, 737
examples, 533–537
implementation, 531–532
indirect inputs control, 179
inside-out development, 34–35
introduction, 133, 135–136, 524
motivating example, 532–533
overview, 529–530
refactoring, 533
unit testing, 6

when to use, 530–531
xUnit terminology, 741–744

test success, 816
Test Suite Enumeration

defi ned, 400
example, 402

Test Suite Factory, 232
Test Suite Object

enumeration, 400
Interacting Test Suites, 231–232
introduction, 7, 82
pattern description, 387–392

Test Suite Object Generator, 293
Test Suite Object Simulator, 293
Test Suite Procedure

defi ned, 388–389
example, 391–392

test suites
defi ned, 816
Lost Tests, 269–270
Named Test Suites. See Named 

Test Suite
Test Tree Explorer, 161–162, 

380–381
Test Utility Method

Communicate Intent, 41
eliminating loops, 121
example, 605–606
implementation, 602–603
introduction, xxiii, 16–17, 23, 

162–163
motivating example, 603–604
Obscure Tests solution, 199
overview, 599
reducing risk of bugs, 181
refactoring, 605
reusing, lviii–lix
reusing via Test Helper, 643–647
reusing via Testcase Superclass, 

638–642
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using TDD to write, 122
when to use, 600–602

Test Utility Test, 603
testability, design for. See design-

for-testability
Testcase Class

introduction, 78
organization, 7, 155–158
pattern description, 373–376
reusable test logic, 123
selection, 404–405

Testcase Class Discovery
defi ned, 394
example, 397–398

Testcase Class per Class
example, 618–623
implementation, 618
overview, 617
when to use, 618

Testcase Class per Feature
example, 628–630
implementation, 626
motivating example, 626–627
overview, 624
refactoring, 627–628
when to use, 625

Testcase Class per Fixture
example, 635–637
implementation, 632–633
motivating example, 

633–634
overview, 631
refactoring, 634–635
Verify One Condition per Test, 

46–47
when to use, 632

Testcase Class per Method, 625
Testcase Class per User Story, 625
Testcase Object

introduction, 81
pattern description, 382–386

Testcase Superclass
pattern description, 638–642
reusing test code, 163–164
Test Discovery using, 397–398

test-driven bug fi xing, 812
test-driven development (TDD). 

See TDD (test-driven development)
Test-Driven Development: By 

Example (Beck), 301
test-driven testability, 66
Testing by Layers. See Layer Test
testing terminology. See terminology
test-last development

defi ned, 815
strategy, 65
test automation philosophy, 

32–33
vs. test-fi rst development, xxxiv

TestNG
defi ned, 750
Interacting Tests, 231
Testcase Object exception, 

384–385
vs. xUnit, 57

Tests as Documentation
Communicate Intent, 41
customer testing, 5
defi ned, 23
reusing test code, 162
unit testing, 6

Tests as Safety Net, 24, 260
Tests as Specifi cation, xxxiii, 22
test-specifi c equality, 588–589, 816
Test-Specifi c Extension. 

See Test-Specifi c Subclass
Test-Specifi c Subclass

Behavior-Exposing Subclass, 
587

Behavior-Modifying Subclass 
(Substituted Singleton), 
586–587

www.it-ebooks.info

http://www.it-ebooks.info/


880 Index

Behavior-Modifying Subclass 
(Test Stub), 584–585

defi ning Test-Specifi c Equality, 
588–589

Don’t Modify the SUT, 42
implementation, 581–582
Isolate the SUT, 44
motivating example, 582–584
overview, 579–580
refactoring, 584
retrofi tting testability, 146–147
State-Exposing Subclass, 

289–590
For Tests Only solution, 220
when to use, 580–581

Test::Unit, 750
Thread-Specifi c Storage, 688–689
Too Many Tests, 256–257
tools

automated unit testing, 
xxx–xxxi

commercial record and playback, 
282–283

QTP. See QTP (QuickTest 
Professional)

robot user. See robot user tools
for test automation strategy, 

53–58
types of, 753–756

Transaction Controller, Humble. 
See Humble Transaction 
Controller

Transaction Rollback Teardown
data access layer testing, 173
defi ned, 100
examples, 673–675
implementation, 671
motivating example, 672
overview, 668–669
refactoring, 672
when to use, 669–671

transient fi xtures, 85–94
Delegated Setup, 89–91
hybrid setup, 93
Implicit Setup, 91–93
In-Line Setup, 88–89
overview, 85–86
vs. persistent fi xtures, 96
tearing down, 93–94
terminology, 86–88
what’s next, 94

Transient Fresh Fixture
database testing, 170
defi ned, 60–61, 314
vs. Shared Fixture, 61–62

troubleshooting
Buggy Tests, 261
Developers Not Writing Tests, 

264
Erratic Tests, 228–229
Fragile Tests, 239–240
High Test Maintenance Cost, 

267
Slow Tests, 253–254

True Humble Executable, 703–706
True Humble Objects, 699–700
TRUNCATE command. See Table 

Truncation Teardown
try/catch

Expected Exception Tests, 
353–354

Single-Outcome Assertions, 367
try/fi nally block

cleaning up fi xture teardown 
logic, l–liv

Implicit Teardown, 519
In-line Teardown, 512–513

type compatibility, 679
type visibility

Test Helper use, 644
Test Utility Methods, 603
Testcase Superclass use, 639
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U

UAT (user acceptance tests)
defi ned, 817
principles, 42

UI (User Interface) tests
asynchronous tests, 70–71
Hard-To-Test Code, 71–72
tools, 55

UML (Unifi ed Modeling 
Language), 816

Unconfi gurable Test Doubles, 527
unexpected exceptions, 352
Unfi nished Test Assertion, 494–497
Unfi nished Test Method from 

Template, 496–497
Unifi ed Modeling Language 

(UML), 816
unique resources, 737–738
Unit Testing with Java (Link), 743
unit tests

defi ned, 817
introduction, 6
per-functionality, 51
rules, 307
Scripted Tests, 285–287
xUnit vs. Fit, 290–292

unnecessary object elimination, 
303–304

Unrepeatable Test
database testing, 169
Erratic Test cause, 234–235
introduction, 15, 64
persistent fresh fi xtures, 96
vs. Repeatable Test, 26–27

Untestable Test Code
avoiding Conditional Logic, 

119–121
Hard-To-Test Code, 211–212

Untested Code
alternative path verifi cation, 

178–179
indirect inputs and, 126
Isolate the SUT, 43
minimizing, 44–45
preventing with Test Doubles, 

523
Production Bugs, 271–272
unit testing, 6

Untested Requirement
Frequent Debugging cause, 

249
indirect output testing, 127
preventing with Test 

Doubles, 523
Production Bugs cause, 

272–274
reducing via Isolate the 

SUT, 43
usability tests, 53
use cases, 817
Use the Front Door First

defi ned, 40–41
Overspecifi ed Software 

avoidance, 246
user acceptance tests (UAT)

defi ned, 817
principles, 42

User Interface (UI) tests
asynchronous tests, 70–71
Hard-To-Test Code, 71–72
tools, 55

user story
defi ned, 817
Testcase Class per, 625

utility methods. See Test Utility 
Method

utPLSQL, 750
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V

value patterns, 713–732
Derived Values, 718–722
Dummy Objects, 728–732
Generated Values, 723–727
Literal Values, 714–717

variables
in Derived Values, 718–722
global, 92, 798
instance. See instance variables
local. See local variables
procedure variables, 805–806
static, 809

VB Lite Unit, 751
VbUnit

defi ned, 751
Suite Fixture Setup support, 442
Testcase Class terminology, 376
xUnit terminology, 300

Verbose Tests. See Obscure Test
verifi cation

alternative path, 178–179
Back Door Manipulation, 

329–330
Back Door using Test Spy, 333
cleaning up logic, xlvi–l
direct output, 178
indirect outputs, 130–133, 

178–180
state vs. behavior, 36
test results. See result verifi cation
Verify One Condition per Test, 

45–47
Verifi cation Method

defi ned, 477, 602
example, 482–483

Verify One Condition per Test
defi ned, 40, 45–47
right-sizing Test Methods, 

154–155
verify outcome, 817
Virtual Clock, 246

visibility
of SUT features from Test-

Specifi c Subclass, 581–582
test fi le organization, 165
type. See type visibility

visual objects, Humble Dialog 
use, 706

Visual Studio, 756

W

waterfall design, 65
Watir

defi ned, 756
Test Automation Frameworks, 

301
test automation tools, 53

Weinberg, Gerry, xxiv–xxv, 61–62
widgets

Humble Dialog use, 706
recognizers, 299

Wikipedia, 729
Working Effectively with Legacy 

Code (Feathers), 210
Write the Tests First, 40
writing tests

Developers Not Writing Tests 
project smells, 263–264

development process, 4–5
goals, 27–29
philosophies. See test automation 

philosophies
principles. See test automation 

principles

X

XML data fi les, Data-Driven Tests, 
294–295

xUnit
Data-Driven Tests with CSV 

input fi le, 296
Data-Driven Tests with XML 

data fi le, 294–295
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defi ned, 751
family members, 747–751
vs. Fit, 291–292
fi xture defi nitions, 86
Interacting Test Suites, 232
introduction, 56–57
language-specifi c terminology, 

xl–xli
modern, 55
Naive xUnit Test Interpreter, 

292–293
profi ling tools, 254
Suite Fixture Setup support, 

442–443
sweet spot, 58
terminology, 741–746
Test Automation Frameworks, 

300
test fi xtures, 814
test organization mechanisms, 

153
xUnit basics, 75–83

defi ning suites of tests, 78–79
defi ning tests, 76–78

fi xtures, 78
overview, 75–76
procedural world, 82–83
running Test Methods, 81
running tests, 79
Test Commands, 82
test results, 79–80
Test Suite Object, 82

xUnit basics patterns, 347–405
Assertion Message, 370–372
Assertion Method. 

See Assertion Method
Four-Phase Test, 358–361
Test Discovery, 393–398
Test Enumeration, 399–402
Test Method. 

See Test Method
Test Runner. 

See Test Runner
Test Selection, 403–405
Test Suite Object, 82, 

387–392
Testcase Class, 373–376
Testcase Object, 382–386
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List of Smells 
Assertion Roulette (224): It is hard to tell which of several assertions within the same test method caused a test failure. 
Includes Eager Test, Missing Assertion Message.

Buggy Tests (260): Bugs are regularly found in the automated tests. Includes Fragile Test, Hard-to-Test Code, Obscure Test.

Conditional Test Logic (200): A test contains code that may or may not be executed. Includes Complex Teardown, Condi-
tional Verifi cation Logic, Flexible Test, Multiple Test Conditions, Production Logic in Test.

Developers Not Writing Tests (263): Developers aren’t writing automated tests. Includes Hard-to-Test Code, Not Enough 
Time, Wrong Test Automation Strategy.

Erratic Test (228): One or more tests are behaving erratically; sometimes they pass and sometimes they fail. Includes Inter-
acting Test Suites, Interacting Tests, Lonely Test, Nondeterministic Test, Resource Leakage, Resource Optimism, Test Run 
War, Unrepeatable Test.

Fragile Test (239): A test fails to compile or run when the SUT is changed in ways that do not affect the part the test is exer-
cising. Includes Behavior Sensitivity, Context Sensitivity, Data Sensitivity, Fragile Fixture, Interface Sensitivity, Overspecifi ed 
Software, Sensitive Equality.

Frequent Debugging (248): Manual debugging is required to determine the cause of most test failures. 

Hard-to-Test Code (209): Code is diffi cult to test. Includes Asynchronous Code, Hard-Coded Dependency, Highly Coupled 
Code, Untestable Test Code.

High Test Maintenance Cost (265): Too much effort is spent maintaining existing tests. Includes Fragile Test, Hard-to-Test 
Code, Obscure Test.

Manual Intervention (250): A test requires a person to perform some manual action each time it is run. Includes Manual
Event Injection, Manual Fixture Setup, Manual Result Verifi cation.

Obscure Test (186): It is diffi cult to understand the test at a glance. Includes Eager Test, General Fixture, Hard-Coded Test 
Data, Indirect Testing, Irrelevant Information, Mystery Guest.

Production Bugs (268): We fi nd too many bugs during formal test or in production. Includes Infrequently Run Tests, Lost 
Test, Missing Unit Test, Neverfail Test, Untested Code, Untested Requirement.

Slow Tests (253): The tests take too long to run. Includes Asynchronous Test, General Fixture, Slow Component Usage, Too 
Many Tests.

Test Code Duplication (213): The same test code is repeated many times. Includes Cut-and-Paste Code Reuse, Reinventing 
the Wheel.

Test Logic in Production (217): The code that is put into production contains logic that should be exercised only during 
tests. Includes Equality Pollution, For Tests Only, Test Dependency in Production, Test Hook.
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All Patterns Listed by the Problem They Solve
How do we prepare automated tests for our software? 

Recorded Test (278); Scripted Test (285); Data-Driven Test (288)

How do we make it easy to write and run tests?
Test Automation Framework (298)

Where do we put our test code?
Test Method (348); Testcase Class (373); Test Helper (643); Testcase Superclass (638)

How do we organize our Test Methods onto Testcase Classes?
Testcase Class per Feature (624); Testcase Class per Fixture (631); Testcase Class per Class (617)

How do we make tests self-checking?
State Verifi cation (462); Behavior Verifi cation (468); Assertion Method (362); Custom Assertion (474); Delta 

Assertion (485)

How do we structure our test logic?
Four-Phase Test (358); Assertion Message (370); Unfi nished Test Assertion (494)

How do we reduce Test Code Duplication?
Data-Driven Test (288); Custom Assertion (474); Test Utility Method (599); Parameterized Test (607)

How do we run the tests?
Test Runner (377); Testcase Object (382); Test Suite Object (387); Named Test Suite (592)

How does the Test Runner know which tests to run?
Test Discovery (393); Test Enumeration (399); Test Selection (403)

Which fi xture strategy should we use?
Minimal Fixture (302); Standard Fixture (305); Fresh Fixture (311); Shared Fixture (317)

How do we construct the fi xture?
In-line Setup (408); Delegated Setup (411); Creation Method (415); Implicit Setup (424)

How do we cause the Shared Fixture to be built before the fi rst test method that needs it?
Prebuilt Fixture (429); Lazy Setup (435); Suite Fixture Setup (441); Setup Decorator (447); Chained Tests (454)

How do we specify the values to be used in tests?
Dummy Object (728); Literal Value (714); Derived Value (718); Generated Value (723)

How do we tear down the Test Fixture?
Garbage-Collected Teardown (500); In-line Teardown (509); Implicit Teardown (516); Automated Teardown (503); 

Table Truncation Teardown (661); Transaction Rollback Teardown (668)

How can we avoid Slow Tests?
Shared Fixture (317); Test Double (522); Fake Object (551)

How do we avoid Conditional Test Logic?
Custom Assertion (474); Guard Assertion (490)

How can we verify logic independently?
Back Door Manipulation (327); Layer Test (337); Test Double (522); Test Stub (529); Test Spy (538); Mock 

Object (544); Fake Object (551); Stored Procedure Test (654)

How do we implement Behavior Verifi cation?
Test Spy (538); Mock Object (544)

How do we tell a Test Double what to return or expect?
Confi gurable Test Double (558); Hard-Coded Test Double (568)

How can we make code testable?
Humble Object (695); Test-Specifi c Subclass (579)

How do we design the SUT so that we can replace its dependencies at runtime?
Dependency Injection (678); Dependency Lookup (686); Test Hook (709)
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